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Abstract: In this paper, through Rosenzweig-MacArthur predator-prey model we study the cyclic 
coexistence and stationary coexistence and discuss temporal keep and break in the food chain with 
two species. Then species' diffusion is considered and its effect on oscillation and stability of the 
ODE system is studied concerning the two different states of coexistence. We find in cyclic 
coexistence temporal oscillation of population is translated into spatial oscillation although there is 
fluctuation at the beginning of population waves and finally more stable population evolution is 
observed. Furthermore, the presence of spatial diffusion of the species can lead to steady wavefront 
propagation and alter the population distribution in the food chain with two and three species. We 
show that lower-level species with slow propagation will limit higher-level species and help to keep 
food chain in space, but through fast propagation lower-level species can survive in a new space 
without predation and realize a breakout in the linear food chain. 
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1. Introduction  

An ecosystem is a web of complex interactions among species. Food chains can be regarded as 
fundamental building blocks of the web. It has been studied broadly in ecological science, applied 
mathematics, economics and engineering science [1,2]. Food chain refers to the sequence of events 
in an ecosystem, where one organism eats others and then is eaten by another organism. A food chain 
links at least two species but can involve more species interacting in a more complex way. When one 
of the links in a food chain is no longer present the food chain will break. As examples of 
mechanisms for the food chain break we have a species becoming extinct [3,4] or when a feral 
animal takes over [5]. Sometimes, this can cause other species in the food chain to disappear or the 
whole ecosystem can become imbalanced or even collapse.  
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Since the use of mathematical models to describe the ecological system understanding of spatial 
and temporal behaviors of the species' population has been a central issue. One great interest for a 
model with multispecies' interactions is whether the involved species can keep or even stabilize at a 
coexistence steady state. In this case, the ordinary differential equation (ODE) system considering 
the species homogeneously distributed and partial differential equation (PDE) system considering the 
species in spatial inhomogeneous distribution are applied. The earliest ODE system of two-species 
food chain can date back to Lotka [6] and Volterra [7] and the relative study about coupling in 
predator-prey dynamics [8], parameterizing variable assimilation efficiency [9] and restructuring by 
recognizing prey-dependent conversion efficiency and mortality rates [10] are developed.  
Meanwhile in the tri-trophic ODE food chains it is reported that there exist rich local and global 
dynamical behaviors (i.e., the stability of equilibrium, local and global bifurcations, limit cycles, 
peak-to-peak dynamics) [11–14]. But how does the population evolve with time and space and what 
is the propagating behavior? It should be retrieved from the PDE systems. 

A food chain is not only a relation of who eats whom but also includes the property of length of 
the chain [15,16], and can shape the community pattern [17–19]. Due to the non-uniform distribution 
of resources, the species will move (diffuse) to search for food and hence interact with each other. 
This movement of species may have an impact on the structure of the food chain. The population 
dynamics and stability of the interacting species concerning spatial diffusion has recently become 
intensive research in evolutionary game theory [20], replicator dynamics [21], and in general 
reaction-diffusion systems. The use of reaction-diffusion modeling interacting species can 
encompass diverse interests, such as spatial diffusion leading to various spatiotemporal pattern 
formations [22,23], spiral waves in complex Ginzburg-Landau equations [24], and cooperation 
patterns in prisoners' dilemma dynamics [25,26]. Besides these observations of spatial structure and 
pattern in two or three dimensions, a direct study of the effect of species' diffusion on population 
dynamics and wave propagation in one dimension has been developed [27–31]. It has been shown 
that propagating wavefront can exist for the competitive [29] and mutualistic [30] and even 
general [31] two-species Lotka-Volterra system with diffusion. Such a propagating wavefront 
represents a progressive replacement of one equilibrium (ahead of the front) by another (behind the 
front). So in food chains it would be of interest to find out other possible population dynamics and 
their properties of propagation. 

In this paper, based on the traditional Lotka-Volterra predator-prey model we will consider the 
more realistic Rosenzweig-MacArthur model [32,33]. We first analyze the ODE model of two 
species and get the situations of cyclic coexistence and stationary coexistence. Then considering 
spatial diffusion we investigate the population dynamics and steady wavefront propagation in these 
two different coexistence situations. On one hand, we can analyze and simulate the phase behavior 
with time in ODE system. On the other hand, considering spatial diffusion of species we can observe 
the population evolution and wavefront propagation in the food chains with two or three species and 
get a speed diagram and then give directions to the real world.  

2. ODE model of two species 

The use of mathematical models to describe the time evolution of the ecological system has 
been studied broadly. In the classical Lotka-Volterra predator-prey model, the number of prey is 
consumed and the density of the prey population is a linearly increasing function. The functional 
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response in ecology is the intake rate of a consumer as a function of food density. It is associated 
with the numerical response, which is the reproduction rate of a consumer as a function of food 
density. Following C. S. Holling [34–37] the functional responses in the classical Lotka–Volterra 
predator-prey model is defined as Type Ⅰ. In Type II the functional response is given by the 

following function ( )
1

aR
f R

ahR



, where f denotes intake rate and R denotes food (or resource) 

density. The rate at which the consumer encounters food items per unit of food density is called the 
attack rate a. The average time spent on processing a food item is called the handling time h. 
Rosenzweig and MacArthur [32] promoted a more realistic model than Lotka-Volterra model, 
considering the Type II functional response instead of the Type I functional response. Moreover this 
model has been broadly chosen because of its adaptability to a great variety of food chains and the 
richness of its behavior [33,37]. 

Our model equations are described as follows: 
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Here r1, r2 represent the growth rates of prey and predator. The environmental carrying capacity 
of prey is taken to be 1 and the intraspecific inhibition of prey is assumed to be 1. Considering a 
predator that needs time to kill and eat prey, the Holling Type Ⅱ functional response is introduced to 
the model, hereα1, 2 denotes the prey's growth rate and capacity in absence of a predator, and k is the 
conversion efficiency of predator after consuming prey. 

 
(a) (b) (c) 

Figure 1. The nullclines and trajectories of the ODE model in Eq (1). (a) the nullcline of 
prey and the dynamics can be divided into two regions by the symmetry axis (green 
dotted line); (b) the trajectory of cyclic coexistence in region Ⅰ of (a); (c) the trajectory 
of stationary coexistence in region Ⅱ of (a). Solid black and dashed red lines represent 
the nullclines of prey and predator. The fixed points are denoted by circles. Here we set

1 21, 2    to draw the picture. 

In this model we find when the nullclines of prey will not change monotonically and there is a 
symmetry axis as shown by the dotted line in Figure 1(a), which separate the phase diagram into two 
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regions. In Figure 1(b) the intersection of the two nullclines is on the left of the symmetry axis and 
the trajectory of the flow closes a cycle. While in Figure 1(c) the intersection is on the right of the 
symmetry axis and the trajectory will flow to this point. The population evolutions of predator and 
prey are shown in Figures 2 and 3, respectively. 

 

Figure 2. The phase diagram and population evolution with time of predator and prey. 

The parameters are 1 2 1 21, 1, 2, 5r r k      . We solve Eq (1) with initial conditions: 

N1 = 0.1, N2 = 0.5 and get the population evolution of prey in blue and predator in purple 
in the right picture. 

 

Figure 3. The phase diagram and population evolution with time of predator and prey. 

The parameters are 1 2 1 21, 1, 2, 2r r k      . We solve Eq (1) with initial conditions: 

N1 = 0.1, N2 = 0.5 and get the population evolution of prey in blue and predator in purple 
in the right picture. 

The phase diagram and population evolution with time of predator and prey can be drawn by 
mathematics as shown in Figures 2 and 3. According to region Ⅰ of Figure 1(a) there exists only 
one limit cycle, that is predator and prey can coexist and their population will change periodically 
when the prey is enough to bear the oscillation and satisfy the predators as shown in Figure 2, so it is 
called cyclic coexistence. While in region Ⅱ as shown in Figure 3 there is no limit cycle in the 
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phase diagram and the simple closed curves will screw to a stable fixed point. And the population of 
predator and prey will fluctuate with time at the beginning and finally tend to the stable state, which 
shows a stationary coexistence. Here the initial condition is related to the population evolution, that 
is the oscillation of population in cyclic coexistence or fluctuation of the population in stationary 
coexistence will be stronger if the initial population of predator and prey are further away from the 
intersection point.  

The phase behaviors can be further verified by theoretical analysis. There are always two fixed 
points (N1*, N2*) (in mathematics the fixed point does not change with time and space) through 
setting the partial to time and space is equal to 0 in Eq (1): O = (0, 0), A= (1, 0) and the third point B 

= ( 2
1

1 2 1 2 1 2

1 1
,  (1 )(1 ) /

k k k

 
     

 
  

) only appears when satisfying the physical meaning. 

The stabilities of the fixed points in these ODEs (1) can be analyzed as: 
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The Jacobian matrix of Eq (2) is described by: 
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At every fixed point the eigenvector λ is determined by: 

2
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The sign of the eigenvector determines the stability of the fixed point. When λ are both negative this 
fixed point will be stable and both positive corresponding to an unstable fixed point. 

Such as at the point O = (0, 0): 
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r1, r2 denote the growth rates of two species and we define them are both positive parameters so λ1 is 
positive, λ2 is negative and O is a saddle point. 

Similarly for the fixed point A = (1, 0): 
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λ1 is negative and λ2 must be positive to satisfy the nonnegative populations, which leading A to be a 
saddle point. 
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While for the fixed point B = (N1*, N2*) = ( 2
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In Figure 2, 1 2 1 21, 1, 2, 5r r k      , B= (N1*, N2*) = (1/8, 35/32), 
0.05  0.1

  7        0


, the trace is 

positive and λ1, λ2 are complex, So B is an unstable spiral. While in Figure 3 

1 2 1 21, 1, 2, 2r r k      , B = (N1*, N2*) = (1/2, 1), 
0.25  0.25

 1             0

 
 here the trace is negative 

and λ1, λ2 are complex, So B is a stable spiral. 
Compare these two different coexistences we found that in cyclic coexistence the population 

oscillation of predator and prey are stronger and stronger with time and the food chain will finally 
break if the oscillation cannot be well controlled enough, we can call this break as a temporal break 
in food chain. While in stationary coexistence the trajectory of the flow will fast screw to the third 
nonnegative fixed point and the population fluctuation also quickly approach to be calm, so it is 
easier to keep the food chain than in cyclic coexistence, and we regard it as temporal keep of food 
chain. Here we find the conversion efficiency k takes a very important role in determining the way of 
coexistence and the temporal keep or break of the predator-prey food chain system.  

3. PDE model of two species 

When considering the limit of resources, such as water, food of prey, the mobility or migration 
of species cannot be ignored and it would produce important effects on the ecology of the system. On 
one hand the stability of the system can be changed by introducing species' diffusion. Some papers 
that studied stability in Lotka-Volterra systems concluded that the addition of diffusion can lead to 
different outcomes. On one hand Vance and Allen showed that dispersal did not always promote the 
stability of the population [38,39]. Takeuchi and Hastings suggested that diffusion does not affect the 
system's stability [40,41]. On the other hand the effects of species' mobility modeled by spatial 
diffusion can result in possible wavefronts giving rise to interesting spatiotemporal dynamics. 
Referring to our previous papers about competitive and mutualistic Lotka-Volterra system with 
diffusion [28–30], we know that in the presence of diffusion the ODEs can resemble the well-studied 
Fisher-Kolmogorov equation [42,43], and then Fisher's wavefront [44,45] and not limited to this 
wave profiles are observed. Such a propagating wavefront represents a progressive replacement of 
one equilibrium by another, including the intermediate ones [27–31]. Apart from stability analysis, 
these smooth traveling waves can also be used to provide information about population dynamics [46]. 
Here it would be of interest to find out the effect of different coexistence on the propagating 
behavior of this realistic predator-prey model and then study the temporal and spatial behaviors in 
the food chains. 
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The model equations with spatial diffusion are described as follows: 
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  (3) 

Firstly through numerically integrating the PDEs in Eq (3) we can observe the population 
evolution directly. Zero-flux Neumann boundary conditions are used. Forward Euler and upwind 
difference methods are applied to calculate time and space differentiation respectively. And the time 

is in units of 1/r1 and space is in units of 1 1/D r  in the numerical results. We choose two different 

diffusion coefficients in two coexistence regions as shown in Figures 4 and 5. 

(a) (b) 

Figure 4. Steady wavefront profiles with cyclic coexistence in regionⅠof the phase 

diagram in Figure 1(a). Here 1 2 1 21, 1, 2, 5r r k       and the three nonnegative 

fixed points are: (0, 0), (1, 0), (1/8, 35/32) (a) D1 = 1, D2 = 9; (b) D1 = 4, D2 = 1. 

From Figure 2 we know that for cyclic coexistence there are oscillations in the population of 
both predator and prey and this oscillation will bring the risk for keeping the food chain with time. 
But it is worth to mind that considering species' diffusion this temporal oscillation of population in 
ODE translate to the fluctuation of the population at the beginning of the wave profiles as shown in 
Figure 4. Furthermore for cyclic coexistence there is still a spatial step-up oscillation at the end of 
the traveling wavefronts connecting from X2, but finally the population oscillation can be 
controlled and more stable wave propagation is demonstrated than in ODE without diffusion, 
which is consistent with the demonstration of Barbera et al. [46]. While in stationary coexistence 
there is no oscillation at all except a burst before the ending of the wave profiles as shown in 
Figure 5, which follows the characters of the wave propagation in the competitive and mutualistic 
Lotka-Volterra models [28–30], where there is only stationary coexistence. 

The population evolution of the prey and predator in the food chain is shown in Figures 4 and 5. 
In Figures 4(a) and 5(a) the predator and prey coexist in the same space and propagate with the same 
speed, which can be regarded as spatial keep of the food chain. This similar population dynamics has 
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also been demonstrated in the hyperbolic reaction-diffusion model for the aquatic food chain, where 
considering the limit of space just the wave process at finite velocity is studied [46]. But here in 
Figures 4(b) and 5(b) the prey will perform division in space, some of the preys keep a slow wave 
speed to satisfy the predator and the other preys can escape from predation by propagating with a faster 
wavefront in the new space, which can be regarded as a spatial breakout of prey in the food chain. 

The appearance of a spatial breakout of the population can also be traced by theoretical analysis. 
Assuming local plane wavefronts with n1(x, t ) =U1(x −c1t ) and n2(x, t ) = U2(x −c2t ), Eq (2) can be 
expressed as a four-dimensional first-order ODE dynamical system: 
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This new ODE system always has three fixed points X0 ≡ (0,0,0,0), X1 ≡ (1,0,0,0) and another 

fixed point X2 ≡ ( 2
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) emerges when both populations are 

nonnegative. Nonlinear dynamical analysis is employed to analyze these fixed points one by one.  

 
(a) (b) 

Figure 5. Steady wavefront profiles with stationary coexistence in regionⅡof the phase 

diagram in Figure 1(a). Here 1 2 1 21, 1, 2, 2r r k       and the three nonnegative 

fixed points are: (0,0), (1,0),(1/2,1) (a) D1 = 1, D2 = 9; (b) D1 = 1, D2 = 1. 

For steady state X0 = (0, 0, 0, 0), the Jacobian matrix of eigenvalues is: 
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The eigenvalues of the Jacobian matrix obey 1 1 2 2

1 1 2 2

[ ( ) ][ ( ) ] 0
c r c r

D D D D
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the eigenvalues decided by species 2 are always real. For the eigenvalues related to species 1, there is 
a possibility to result in a spiral. But the physical requirement demands that these two eigenvalues 

must be real so it leads to 1 1 12c D r . In this case the fixed point X0 is a saddle. 

For steady state X1 = (1, 0, 0, 0), the Jacobian matrix of eigenvalues is: 
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. And the fixed point X1 is also a saddle. 

 

Figure 6. The phase diagram of steady wave propagation and the normalized wavefront 
speeds vs. the speed parameter ratio c1/c2.The regions c1 < c2 and c1 > c2 are denoted by 
Ⅰ and Ⅱ respectively and separated by the green dotted lines. Symbols are wave 
speeds measured by the numerical solutions: (□): Wavefront speed of N1. (○): Wavefront 
speed of N2. (●): Wavefront speed of N2 accompanied by the waveback of N1 of the same 

speed. The solid and dashed lines are analytic values of 1 1 12c D r and

1
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, respectively. 
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For steady state X2, the eigenvalues cannot be expressed analytically and it does not set a limit 
to the wave speed. 

From the above analysis we find traveling speed c is decided by both diffusion coefficient (D) 
and proliferation rate (r) of the species, it determines the steady propagating wave profiles and the 
population distribution. 

From Figure 6 we find the phase diagram of two different wave properties is separated by the 
boundary c1 = c2. In region Ⅰ predator and prey propagate with the same speeds decided by the 
speed of prey c1, it is no doubt that the two species coexist in the same space. Accordingly in the 
phase space the phase flow is X2→ X0. While in region Ⅱ the predator and prey will not propagate 
homogeneously. One can see the prey escapes from the control of the predator and survives in a new 
space without a predator. The dynamics can be described by the flow of fixed points: X2→X1→X0, 
the dynamics of the system is first attracted to the intermediate steady state (saddle fixed point), 
leading to a slow wavefront of N2 and waveback of N1 in the wave profiles. The two different wave 
propagations are driven by the wave speed parameters.  

Similar results have been observed in the competitive and mutualistic Lotka-Volterra model of 
two species [28–30], where there are no cyclic dynamics in the corresponding ODE system. But here 
are two different coexistences: stationary and cyclic (as shown in the ODE model) encountering the 
steady wave propagation. From the above results we find that on one hand diffusion can translate 
population oscillation and approach to stable population evolution in cyclic coexistence, on the other 
hand the presence of species' diffusion can lead to steady wavefront propagation and realize a spatial 
breakout in the food chain. Next we will mainly focus on the speed parameters and population 
distribution of spatial keep and breakout in the food chain with three species. 

4. PDE model of three species 

The ecosystem that we wish to model is based on the Rosenzweig-MacArthur model, which 
assumes the prey is logistic and that the predator and top-predator have a Holling Type Ⅱfunctional 
response. And it is a linear three-species food chain where the lowest-level prey N1 is preyed upon by 
a mid-level species N2, which, in turn, is preyed upon by a top-level predator N3. There are two links 
in this food chain: the first link is N2 predating N1, the second link is N3 predating N2. Examples of 
such three-species ecosystems include mouse-snake-owl and worm-robin-falcon [47]. Employing 
bifurcation analysis the dynamics of this Rosenzweig-MacArthur food chain of ODE system have 
recently been classified into four sets (stationary, cyclic at low frequency, cyclic at high frequency, 
and chaotic) [48].  

In recent years stationary pattern in the tri-trophic food chain through inducing diffusion has 
been studied extensively, and many important phenomena have been observed. But direct observing 
the population evolution of a three-species food chain in one dimension through searching the plane 
wave solution is little concerned. In the above PDE model of two species we have studied cyclic and 
stationary states when considering the motion of species. We found diffusion can realize stable 
population evolution as long as the PDEs can resemble the Fisher-Kolmogorov equation and there 
exist steady wave profiles connecting the equilibrium fixed points although it is in an unstable cyclic 
state in the ODE system. So we do not focus on dynamics in ODEs with three species and we will 
directly study spatial keep and breakout in this more complicated food chain in PDEs. We simplify 
the model as follows: 
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 (5) 

Here a, b, c, d are positive parameters and the meaning is referring to the ODE model of two 
species. Based on the experience of the PDE model of two species here we firstly give nonlinear 
stability analysis and get the theoretical phase diagram and then observe the population evolution 
map with definite parameters.  

Similarly we assume local plane wave fronts with n1(x, t) = U1(x−c1t ), n2(x, t) = U2(x−c2t ) and 
n3(x, t) = U3(x–c3t ), Eq (5) are expressed as a six-dimensional first-order ODE dynamical system: 
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 (6) 

The fixed points in Eq (6) are P0 = (0, 0, 0, 0, 0, 0), P1= (1, 0, 0, 0, 0, 0) and P2= 

(
2

1 1
,  [1 ] / ,  0,  0,  0,  0

1 ( 1)
a

b b


 
) appearing when b > 2, and P3 = 

(
1 1

1 , , ( 1)* ,  0,  0,  0
1 1 ( 1)1 1

a b d a d

d d c dd d a

 
 

     
) appearing when d > a + 1. 

For steady state P0= (0, 0, 0, 0, 0, 0), the Jacobian matrix of eigenvalues is: 

1 1
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So we can get: 1 1 12c D r  

For steady state P1 (1, 0, 0, 0, 0, 0), the Jacobian matrix of eigenvalues is: 

1 1

1
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, so there is only one speed constraint:
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.
 

For steady state P3, there is no speed limit. 

Similarly the steady propagating wave profiles are determined by the speed parameters of three 
species, and the phase diagram of steady wave propagation is shown in Figure 7.  

For a three-species food chain there are three speed limits in the wave propagation, so there are 
six groups of speed sorting. As shown in Figure 7 they can be divided into four regions of wave 
profiles. Combining with the observation of wave profiles we can further investigate the population 
distribution of this food chain. 
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(a) (b) 

Figure 7. The phase diagram of steady wave propagation and the normalized wavefront 
speeds vs. the speed parameter ratio c1/c2. (a) c2 < c3 (b) c2 > c3. Symbols are wave speeds 
measured by the numerical solutions, hollowed symbols represent the fast wavefront 
speed. And the solid symbols represent the slow wavefront speed and the speed of 
waveback. (□): Wavefront speed of N1. (○): Wavefront speed of N2. (△): Wavefront 

speed of N3. The solid, dashed and dotted lines are analytic values of 1 1 12c D r , 

2 2 22 ( 1)
2

b
c D r   and 

3 3 3

( 2)
2 ( 1)

d b
c D r

ab


   respectively. 

Then we study the wavefront profiles and population distribution by numerically solving the 
PDEs in Eq (5). We set the parameter values as a = 2, b = 4, c = 3, d = 5 and get the population 
density in each steady state with P0 (0, 0, 0), P1 (1, 0, 0), P2 (1/3, 4/9, 0), P3 (0.707, 0.25, 0.27). Then 
we fix the growth rates r1 = r2 = r3 = 1 and just change the diffusion coefficients according to the 
theoretical phase diagram to trace the wave propagation in four different regions. 

4.1. Keep of food chain (c1 < c2 < c3 or c1 < c3 < c2) 

From Figure 8 we find that three species propagate at the same speeds and they coexist in the 
same space. The prey is just enough to satisfy the intermediate predator, which is also right to satisfy 
the top-predator. So the food chain can be kept stable forever. The flow of the dynamics can be 
described as P3→P0. 

4.2. Breakout of basal prey (c2 < c1 < c3 or c2 < c3 < c1) 

As shown in Figure 9 we find there is a breakout in food chain. This situation originates from 
the division in the propagating speeds of the basal prey. The predator owns a slow speed, which 
results in the same slow speed as the top-predator, but the prey can escape by propagating with a 
faster wavefront while leaving a slower waveback of vanishing population. The waveback of the 
basal prey propagates with the same speed as the wavefront of intermediate predator and top-predator, 
reflecting the fact that they are consumed by the intermediate predator, which is also right consumed 
by top-predator. The dynamics of this system can be described as P3→P1→P0. The faster speed of 
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the basal preys is determined by the fixed point P0 and the slow speed of intermediate predator and 
top-predator is determined by P1. Comparing the two figures in Figure 9 we find however the 
top-predator travels faster or slower than the basal prey, they cannot pass the intermediate predator to 
connect each other. So the mid-level species is a key role to link three species in this linear food chain. 

 

Figure 8. Steady wavefront profiles in section 4.1. of Figure 7 for D1 = 1, D2 = 4, D3 = 9 
or D1 = 1, D2 = 9, D3 = 4. The measured wave propagating speed is equal to c1. 

 

(a) (b) 

Figure 9. Steady wavefront profiles in section 4.2. of Figure 7. (a) D1 = 4, D2 = 1, D3 = 9; 
(b) D1 = 9, D2 = 1, D3 = 4. The measured wave propagating speeds are: the fast wavefront 
of N1 traveling with c1; the slow wavefront of N2, N3 and the waveback of N1 all 
propagating with c2. 

4.3. Breakout of the group of basal prey and intermediate predator (c3 < c1 < c2) 

From Figure 10 we also find a breakout in the food chain, but it is different from the situation in 
Figure 9. Here intermediate predator and basal prey escape as a group from the top-predator. There is 
a simultaneous division of wave speeds both in basal prey and intermediate predator. Only the 
top-predator owns a slow wavefront, both basal preys and intermediate predators escape as a group 
to a new space with faster wavefronts and leaving wavebacks to keep the same slow speed as the 
top-predator. Moreover we find the waveback of the basal prey shows a decreasing population and 
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that of intermediate predator shows an increasing population. It demonstrates that in the new space 
there is a new distribution of population and the intermediate predator gets a larger population. The 
dynamics of this system can be described as P3→P2→P0. The faster speed of the basal preys is 
determined by the fixed point P0 and the slow speeds of intermediate predator and basal prey are 
determined by P2.  

 

Figure 10. Steady wavefront profiles in section 4.3. of Figure 7 for D1 = 4, D2 = 9, D3 = 1. 
The measured wave propagating speed are: the fast wavefront of N1 and N2 traveling with 
c1; the slow wavefront of N3 and the waveback of N1 and N2 propagating with c3. 

4.4. Each breakout of basal prey and intermediate predator (c3 < c2 < c1) 

The most complicated wave profiles in the food chain system are shown in Figure 11. Here basal 
prey can live in three different regions. In the region of basal prey's slowest traveling speed where 
three species propagate with the same speed and the food chain keeps in space as a whole. In the 
middle region, the top-predator extinguishes but intermediate predator and basal prey remain and 
similarly intermediate predator gets a larger population. In the farthest region from the origin where 
basal prey travels with the fastest speed and survives freely. We find in each breakout there is a new 
distribution in the population. The flow of dynamics in this case can be described as P3→P2→P1→P0. 
The fixed points P2, P1 and P0 respectively determine the values of wavefront speeds: c3, c2 and c1. 

5. Conclusions 

This linear food chain model can be promoted to more species. The intermediate species are 
both predator of lower-level species and prey of high-level species and their traveling speeds play 
key roles in spatial keep and breakout in the whole food chain. When a predator travels faster than 
prey, its speed cannot be unlimitedly promoted due to the constrain of prey and the food chain has to 
keep. But when the prey propagates faster than the predator, it can escape from predation and survive 
in the new space without a predator and realize a breakout in the food chain. 

This linear food chain is only a branch in complicated food webs, so we can compare our results 
with the relative literature of food webs and get some extension. Borvall et al. [49] found that the risk 
of additional species extinction decreases with the number of species per functional group, which 
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states that the more species there are in a food web, the system is less susceptible to cascading 
extinctions. From our paper we can indeed find that there is more probability to reorganize the 
population distribution so the system could be less extinct. Especially there are reports that when a 
top predator has been removed the risk of cascading extinction will decrease [50] and the decline and 
disappearance of the top predator will affect the distribution and abundance of the basal prey [51], 
which is consistent with our result that the lower-order species can survive in new space without 
predator and realize a breakout. McCann et al. [52] study the similar Rosenzweig-MacArthur model 
and discuss the dynamics of spatially coupled food webs. They also get a result that mobile 
consumers are important factors to the food web stability, and may display contradictory effects 
depending on the spatial structure. However in our model we found the mobile lower-order 
organisms could actively escape from predation and realize complex population dynamics, though 
for simplicity we did not consider the limit of space and resource here. In future work we may study 
the effect of time delay and spatial limit and even consider omnivory in a more realistic linear food 
chain in this framework. 

 

Figure 11. Steady wavefront profiles in section 4.4. of Figure 7 for D1 = 9, D2 = 4, D3 = 1, 
The measured wave propagating speeds are: the fastest wavefront of N1 traveling with c1; 
the faster wavefront of N2 and the middle waveback of N1 propagating with c2; the 
wavefront of N3, the waveback of N2 and the slowest waveback of N1propagating with c3. 

For the Lotka-Volterra model with diffusion, many mathematicians have studied the existence 
and stability of traveling wave solutions and the parameter dependence of wave speed in theoretical 
analysis and mathematical proof [42–45], but little is combined with numerical verification and give 
further discussion in the light of possible biological relevance and ecological implications. In 
studying the model on cell movement and growth we have calculated in a previous paper the wave 
profile analytically, which agrees with the numerical integrating the reaction-diffusion equations, and 
the wave speed can also be calculated by theory and verified by numerical measurement [53]. 
Especially this propagating speed of wavefront can be compared with experiments of Escherichia 
coli growth [54] so we can use the cell model to qualitatively explain wound healing and tumor 
growth in biology. Moreover in studying the hyperbolic reaction-diffusion model for the aquatic food 
chain, Barbera et al. also observed the similar wave propagation through numerically integrating the 
governing equations [46], and they just consider a finite velocity due to the limit of space and did not 
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concern the wavefront connecting the intermediate state but what is the general population behavior 
in food chain? That is the motivation that we studied the population dynamics in this linear food 
chain through combining theoretical analysis and numerical measurement and we indeed observed a 
spatial breakout with velocity division beyond finite velocity [46]. 

Food chain contains a large number of transfers of energy or nutrients from the base to the top 
of a food web but they are extremely difficult to analyze. The simple model of two or three species 
has been broadly studied in theory and simulation, theoretical analysis mainly aims to get phase 
behavior and stability while simulation in two or three dimensions is to get pattern formation and 
transition. But little research combines ODE with PDE and performs theoretical analysis and 
numerical verification. In this paper we execute a systematical study on the population dynamics in 
Rosenzweig-MacArthur model from two species to three species, from ODE model to PDE model. 
Now we summarize our results in at least two aspects. 

On one hand considering species' diffusion in food chain model, most studies focus on the 
population pattern formation and transition in two or three dimensions. We concern about the 
existence of the plane wave solution in this reaction-diffusion model and perform nonlinear stability 
analysis and then verify it through observing wave propagation in one dimension. We analyze the 
effect of diffusion on system stability and get insights into the population dynamics and wave 
propagation. Especially for unstable cyclic coexistence in ODEs, we find the presence of diffusion 
can translate the population oscillation and realize more stable population evolution. 

On the other hand linear food chain is only one branch in the food webs, where the interactions 
among species are much more complicated and the decline or even extinction of one species could 
lead to dramatic changes in species composition and ecosystem process. In our simple model we 
have found the temporal keep and break of the food chain strongly depend on the transition 
efficiency of the predator, moreover considering species' diffusion there occurs spatial breakout in 
the food chain and the lower-level species has a chance to occupy new space and realize new 
distribution. This breakout of species may alter the population distribution and bring a new direction 
in food-chain research. 
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