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Abstract:  Soft rough set model represents a different mathematical model to which many real-life 

data can be connected. In fact, this theory represents a link between soft set and rough set theories. 

The main goal of the present paper is to introduce a new approach to modify and generalize soft 

rough sets. We are discussing and exploring the basic properties for these approaches. In addition, 

we use the suggested approaches as a mathematical modeling for an uncertain data and deal with the 

ambiguity. Comparisons among the proposed methods and the previous one are obtained. Finally, a 

medical application of the suggested approximations in decision making of diagnosis of COVID-19 

is illustrated. Moreover, we develop an algorithm following these concepts and apply it to a decision 

making problem to demonstrate the applicability of the proposed methods. 
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1. Introduction 

There are different methods of mathematical modeling for uncertainty and vagueness of data 

such as rough set theory [1], fuzzy set theory [2] and soft set theory [3]. Z. Pawlak [1] introduced the 

classical rough set models in the early of the eighties as a modern role for modeling the vagueness of 

data that collected from real-life problems. The core of this approach is an equivalence relation 

which is constructed from the data of an information system. But it seems that this relation restricts 

the applications, so different methods are introduced in many proposals to remove these restrictions 

such as similarity (reflexive and symmetric) relations [4], pre-order (reflexive and transitive) 

relations [5], reflexive relations [6], binary relations [7–9], topological approaches [10–13] and 

coverings [14–17]. Soft set represents a different mathematical model to deal with the uncertainty in 

data collected from real-life situations. This concept was introduced for the first time by 
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Molodtsov [3] in (1999) which is a free from any extra restrictions and then many different 

applications have been applied by soft set theory, such as “game theory, operations research, 

Riemann integration and theory of measurement. Recently, the theory of soft set becomes very 

widespread among scientists around the world and one of the most developing tools to handle 

uncertainty in various fields such as “information theory [18], computer sciences [19], 

engineering [20], medical sciences [21,22], and economy [19,23]”. For more details about soft sets 

and its applications, we refer the reader to the references [24–36]. 

Undoubtedly the theory of rough sets differs than soft set theory, since Pawlak’s approach 

requires an equivalence relation among the members of the set under investigation. But, in many 

daily life situations many real-life problems do not always involve crisp data, so such an equivalence 

relation is very difficult to find due to imprecise human knowledge. The limitations mentioned above 

which associated with these theories are due to lack of parameterization tools. In order to understand 

this different, let us consider the following information system (Table 1). 

Table 1. An information system. 

𝐴𝑇              
𝑂𝐵  

𝑎1 𝑎2 ⋯ 𝑎𝑚 

𝑥1 𝑣11 𝑣12 ⋯ 𝑣1𝑚 
𝑥2 𝑣21 𝑣22 ⋯ 𝑣2𝑚 
⋮ ⋮ ⋮ ⋮ ⋮ 

𝑥𝑛 𝑣𝑛1 𝑣𝑛2 ⋯ 𝑣𝑛𝑚 

 

Table 1 represents a simple representation for the structure (𝑂𝐵, 𝐴𝑇, 𝑉𝐴𝐿, 𝑓)  called “an 

information system”, where   

𝑂𝐵 = {𝑥𝑖: 𝑖 = 1,2, . . . , 𝑛}, is a finite set of objects, 

𝐴𝑇 = {𝑎𝑗: 𝑗 = 1,2, . . . , 𝑚}, is a finite set of attributes, 

 𝑉𝐴𝐿 = {𝑣𝑖𝑗: 𝑖 = 1,2, . . . , 𝑛, 𝑗 = 1,2, . . . , 𝑚}is a finite set of values and the map 𝑓: 𝑂𝐵 × 𝐴𝑇 →

𝑉𝐴𝐿 is an information function such that: 𝑓(𝑥𝑖, 𝑎𝑗) = 𝑣𝑖𝑗. 

1.1 Rough set approach 

According to the information function 𝑓, we can classify the objects into disjoint subsets of 𝑂𝐵 

such that the objects that have the same value belonging to the same category and then the 

mathematical models (categories) obtained by this classification forms a partition over the 

universe 𝑂𝐵. Thus, these categories can be considered as the equivalence classes of an equivalence 

relations obtained by the following: 

𝑥𝑘𝑅𝑎𝑖
𝑥𝑙 ⇔ 𝑓(𝑥𝑘, 𝑎𝑖) = 𝑓(𝑥𝑙, 𝑎𝑖). 

1.2 Soft set approach 

A soft set induced by Table 1, is given by the pair (𝐹, 𝐴) over 𝑂𝐵, where 𝐴 represents the set of 

attributes 𝐴𝑇and defined by the set 𝐴 = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑖} and 𝐹is a mapping given by𝐹: 𝐴 → 𝑃(𝑂𝐵) 

such that 𝑃(𝑂𝐵) is the power set of 𝑂𝐵and for 𝑒 ∈ 𝐴, 𝐹(𝑒) may be considered as the set of 𝑒  -

approximate elements of the soft set(𝐹, 𝐴). It is clear a soft set is free from any restrictions. So every 
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soft set may be considered as an information system and accordingly we can generate Pawlak’s 

rough sets from soft sets.  

To solve many problems that acquired of intelligent systems identified by inadequate 

information, F. Feng et al. [37] introduced the soft rough sets theory. The used notions of the soft 

lower (resp. upper) approximations in this theory can be useful to fix the knowledge hidden in the 

information system and then expressed in the form of a decision making problem. Decision making 

performs a vital role in our daily life, and this process yields the best alternative among different 

choices. There are many applications for decision making such as ([38–45]). Decision making 

problems has been solved by Maji et al. [23]. The same authors also extended the classical soft sets 

to fuzzy soft sets [47,48]. In fact, F. Feng et al. replaced the equivalence classes by parameterized 

subsets of a set to provide the purpose of defining the lower and upper approximations of a subset. 

Although they introduced a new tool for approximating the sets, but these approaches did not satisfy 

the main properties of classical rough set theory. Accordingly, they were put some conditions to soft 

rough sets such as (soft set must be full soft set and intersection complete soft set) in order to satisfy 

the properties.  

The main contribution in the present work is to introduce another model to soft rough sets 

without any restrictions and satisfy the properties of Pawlak's rough set theory. In fact, we suggest 

new tools to approximate the sets called “Soft pre-rough approximations”. The properties of these 

approximations are studied and their relationships are examined with counter examples. We illustrate 

that the proposed approaches satisfy most properties of Pawlak’s rough sets which are never held in 

F. Feng et al. [37]. Comparisons between the current method and the previous one are obtained. 

Several examples are given to evidence the connections between the soft rough sets and soft pre-

rough sets. In addition, in section 4, two practical examples are introduced to illustrate the 

importance of the suggested approximations and to show the comparisons between the current 

method and the methods in [1] and [37]. Also, the second example shows that the proposed approach 

compatible with Pawlak’s rough sets and more accurate than this approach, but Feng [37] does not 

compatible with Pawlak’s rough sets.  

Finally, we illustrate the importance of the proposed approach in medical science for application 

in decision making problems. In fact, a medical application in decision making for information 

system of medical diagnosis of COVID-19 (Corona Virus) disease is presented with algorithm. 

Overall we think this work supply a readable frame work to the respective areas with interesting 

applications such as COVID-19. In addition, we can say that the suggested algorithm represents an easy 

tool to find the optimal solution comparatively an easier and faster way than the existed algorithms. 

2. Preliminaries 

In this section some basic definitions and results that used in sequel are mentioned. 

2.1. Pawlak rough set theory  

In 1982, Pawlak [1] introduced the theory of rough set as a new mathematical methodology or 

easy tools in order to deal with the vagueness in knowledge-based systems, information systems and 

data dissection. This theory has many applications in many fields that are used to process control, 

economics, such as medical diagnosis, chemistry, psychology, finance, marketing, biochemistry, 
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environmental science, intelligent agents, image analysis, biology, conflict analysis, 

telecommunication, and other fields. 

Definition 2.1.1 [1] Let 𝑈 be a finite set called universe, and 𝑅 be an equivalence relation on𝑈, 

we use 
𝑈

𝑅
 to denote the family of all equivalence classes of 𝑅 and [𝑥]𝑅 

to denote an equivalence class 

in 𝑅 containing an element 𝑥 ∈ 𝑈. Then, the pair (𝑈, 𝑅) is called an approximation space and for any 

𝑋 ⊆ 𝑈, we can define the lower and upper approximation of 𝑋 by 𝑅(𝑋) = {𝑥 ∈ 𝑈: [𝑥]𝑅 ⊆ 𝑋} and 

𝑅(𝑋) = {𝑥 ∈ 𝑈: [𝑥]𝑅 ∩ 𝑋 ≠ ∅}, respectively.  

According to Pawlak’s definition, 𝑋 is called an exact (resp. a rough) set if 𝑅(𝑋) = 𝑅(𝑋) (resp. 

if 𝑅(𝑋) ≠ 𝑅(𝑋)). 

Definition 2.1.2 [1] Let (𝑈, 𝑅) be an approximation space and𝑋 ⊆ 𝑈. Then, the “boundary”, 

“positive” and “negative” regions and the “accuracy” of the approximations of 𝑋 ⊆ 𝑈are defined 

respectively by: 

𝐵𝑁𝐷𝑅(𝑋) = 𝑅(𝑋) − 𝑅(𝑋), 

𝑃𝑂𝑆𝑅(𝑋) = 𝑅(𝑋), 

𝑁𝐸𝐺𝑅(𝑋) = 𝑈 − 𝑅(𝑋) and 

𝜇𝑅(𝑋) =
|𝑅(𝑋)|

|𝑅(𝑋)|
 where |𝑅(𝑋)| ≠ ∅. 

Remark 2.1.1  

(i) If the boundary region of 𝑋 is empty (𝐵𝑁𝐷𝑅(𝑋) = ∅), then 𝑋is crisp (or exact) with respect 

to𝑅; in the opposite case, if 𝐵𝑁𝐷𝑅(𝑋) ≠ ∅, then𝑋is said to be rough (or inexact) with respect 

to 𝑅.  

(ii) Note that sometimes the pair (𝑅(𝑋), 𝑅(𝑋)) is also referred to as the rough set of 𝑋with 

respect to 𝑅.  

(iii) If 𝑋 ⊆ 𝑈 is defined by a predicate 𝑃 and 𝑥 ∈ 𝑈, we have the following interpretation: 

- 𝑥 ∈ 𝑃𝑂𝑆𝑅(𝑋), means that 𝑥 certainly has property 𝑃. 

- 𝑥 ∈ 𝐵𝑁𝐷𝑅(𝑋), means that 𝑥possibly has property 𝑃. 

- 𝑥 ∈ 𝑁𝐸𝐺𝑅(𝑋), means that 𝑥 definitely does not have property 𝑃. 

Proposition 2.1.1 [1] Let ∅ be the empty set and 𝑋𝑐 be the complement of 𝑋 ⊆ 𝑈. Pawlak’s 

rough set approximations have the following properties: 

 

(L1) 𝑅(𝑋) ⊆ 𝑋. 

(L2) 𝑅(∅) = ∅. 

(L3) 𝑅(𝑈) = 𝑈. 

(L4)𝑅(𝑋 ∩ 𝑌) = 𝑅(𝑋) ∩ 𝑅(𝑌). 

(U1) 𝑋 ⊆ 𝑅(𝑋). 

(U2) 𝑅(∅) = ∅. 

(U3) 𝑅(𝑈) = 𝑈. 
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(L5) If 𝑋 ⊆ 𝑌 , then 𝑅(𝑋) ⊆ 𝑅(𝑌). 

(L6)𝑅(𝑋) ∪ 𝑅(𝑌) ⊆ 𝑅(𝑋 ∪ 𝑌). 

(L7) 𝑅(𝑋𝑐) = (𝑅(𝑋))𝑐. 

(L8) 𝑅(𝑅(𝑋) = 𝑅(𝑋). 

(L9) If 𝑋 ∈
𝑈

𝑅
, then 𝑅(𝑋) = 𝑋. 

(U4) 𝑅(𝑋 ∪ 𝑌) = 𝑅(𝑋) ∪ 𝑅(𝑌). 

(U5) If 𝑋 ⊆ 𝑌, then 𝑅(𝑋) ⊆ 𝑅(𝑌). 

(U6) 𝑅(𝑋) ∩ 𝑅(𝑌) ⊇ 𝑅(𝑋 ∩ 𝑌). 

(U7) 𝑅(𝑋𝑐) = (𝑅(𝑋))𝑐 . 

(U8) 𝑅(𝑅(𝑋)) = 𝑅(𝑋). 

(U9) If 𝑋 ∈
𝑈

𝑅
, then 𝑅(𝑋) = 𝑋. 

2.2. Soft set theory and soft rough sets 

Definition 2.2.1 [3] Let 𝑈 be a non-empty set called “universe” and 𝐸  the set of certain 

parameters in relation to the objects in𝑈. A pair (𝐹, 𝐴) is called a “soft set” over𝑈 , where𝐴 ⊆

𝐸and𝐹is a mapping given by𝐹: 𝐴 → 𝑃(𝑈). In other words, a soft set over 𝑈is a parameterized family 

of subsets of the universe 𝑈 . For 𝑎 ∈ 𝐴, 𝐹(𝑎)  may be considered as the set of 𝑎  -approximate 

elements of the soft set(𝐹, 𝐴). 

Here note that for each 𝑒 ∈ 𝐸, 𝐹(𝑒) is a crisp set. Thus the soft set (𝐹, 𝐴) is called a standard 

soft set. In [23] Maji et al. defined a fuzzy soft set where, 𝐹(𝑒) is a fuzzy subset of 𝑈, for each 

parameter 𝑒 ∈ 𝐸. 

Definition 2.2.2 [37] Let 𝑆 = (𝐹, 𝐴) be a soft set over𝑈. Then the pair𝐴𝑠 = (𝑈, 𝑆) is called a 

soft approximation space. Based on the soft approximation space𝐴𝑠, we define the “soft 𝐴𝑠-lower 

and soft 𝐴𝑠 -upper” approximations of any subset 𝑋 ⊆ 𝑈 respectively by the following two 

operations: 

𝑆(𝑋) = {𝑢 ∈ 𝑈: ∃𝑒 ∈ 𝐴, [𝑢 ∈ 𝐹(𝑒) ⊆ 𝑋]}, and 

𝑆(𝑋) = {𝑢 ∈ 𝑈: ∃𝑒 ∈ 𝐴, [𝑢 ∈ 𝐹(𝑒), 𝐹(𝑒) ∩ 𝑋 ≠ ∅]}. 

In general, we refer to 𝑆(𝑋) and 𝑆(𝑋) as soft rough approximations of 𝑋 ⊆ 𝑈with respect to𝐴𝑠. 

Moreover, the sets 

𝑃𝑂𝑆𝐴𝑠
(𝑋) = 𝑆(𝑋),

 
𝑁𝐸𝐺𝐴𝑠

(𝑋) = 𝑈 − 𝑆(𝑋) = (𝑆(𝑋))𝑐, and 𝐵𝑁𝐷𝐴𝑠
(𝑋) = 𝑆(𝑋) − 𝑆(𝑋). 

are called the “soft 𝐴𝑠-positive region, the soft 𝐴𝑠-negative region and the soft 𝐴𝑠-boundary” region 

of 𝑋 ⊆ 𝑈, respectively.  

Clearly, if 𝑆(𝑋) = 𝑆(𝑋), 𝑖. 𝑒. 𝐵𝑁𝐷𝐴𝑠
(𝑋) = ∅. Then 𝑋 ⊆ 𝑈 is said to be “soft 𝐴𝑠-definable” or 

“soft 𝐴𝑠-exact” set; otherwise 𝑋is called a “soft 𝐴𝑠-rough” set. 

Moreover, we can define the accuracy of the approximations as follows: 

𝜇𝐴𝑠
(𝑋) =

|𝑆(𝑋)|

|𝑆(𝑋)|
, where 𝑆(𝑋) ≠ ∅. 

𝜇𝐴𝑠
(𝑋) is called the “soft 𝐴𝑠-accuracy” of 𝑋 ⊆ 𝑈. 

Proposition 2.2.1 [37] Let 𝑆 = (𝐹, 𝐴) be a soft set over 𝑈and 𝐴𝑠 = (𝑈, 𝑆) a soft approximation 

space. Then, for each 𝑋 ⊆ 𝑈: 
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𝑆(𝑋) = ⋃ {𝐹(𝑒): 𝐹(𝑒) ⊆ 𝑋}𝑒∈𝐴 and 𝑆(𝑋) = ⋃ {𝐹(𝑒): 𝐹(𝑒) ∩ 𝑋 ≠ ∅}𝑒∈𝐴 . 

Proposition 2.2.2 [37] Let 𝑆 = (𝐹, 𝐴) be a soft set over 𝑈and 𝐴𝑠 = (𝑈, 𝑆) a soft approximation 

space. Then, the soft 𝐴𝑠 -lower and 𝐴𝑠 -upper approximations of 𝑋 ⊆ 𝑈 satisfy the following 

properties: 

 

(i) 𝑆(∅) = 𝑆(∅) = ∅. 

(ii) 𝑆(𝑈) = 𝑆(𝑈) = ⋃ 𝑓(𝑒)𝑒∈𝐴 . 

(iii) 𝑆(𝑋 ∩ 𝑌) ⊆ 𝑆(𝑋) ∩ 𝑆(𝑌). 
(iv) 𝑆(𝑋 ∪ 𝑌) ⊇ 𝑆(𝑋) ∪ 𝑆(𝑌). 

(v) 𝑆(𝑋 ∪ 𝑌) = 𝑆(𝑋) ∪ 𝑆(𝑌). 

(vi) 𝑆(𝑋 ∩ 𝑌) ⊆ 𝑆(𝑋) ∩ 𝑆(𝑌). 
(vii) If 𝑋 ⊆ 𝑌, then 𝑆(𝑋) ⊆ 𝑆(𝑌). 

(viii) If 𝑋 ⊆ 𝑌, then 𝑆(𝑋) ⊆ 𝑆(𝑌). 

Proposition 2.2.3 [37] Let 𝑆 = (𝐹, 𝐴) be a soft set over 𝑈 and 𝐴𝑠 = (𝑈, 𝑆) a soft approximation 

space. Then, for each 𝑋 ⊆ 𝑌: 

 

(i) 𝑆(𝑆(𝑋)) = 𝑆(𝑋). 

(ii) 𝑆(𝑆(𝑋)) ⊇ 𝑆(𝑋). 

(iii) 𝑆(𝑋) ⊆ 𝑆(𝑆(𝑋)). 

(iv) 𝑆(𝑆(𝑋)) = 𝑆(𝑋). 

Definition 2.2.3 [37] Let 𝑆 = (𝐹, 𝐴) be a soft set over 𝑈 and 𝐴𝑠 = (𝑈, 𝑆) a soft approximation 

space. Then, 𝑆is said to be a “full soft set” if 𝑈 = ⋃ 𝐹(𝑒)𝑒∈𝐴 .  

It is clear that if 𝑆 is a full soft set, then ∀𝑥 ∈ 𝑈, ∃𝑒 ∈ 𝐴 such that 𝑥 ∈ 𝐹(𝑒).  

Proposition 2.2.4 [37] Let 𝑆 = (𝐹, 𝐴)  be a full soft set over 𝑈 and 𝐴𝑠 = (𝑈, 𝑆)  a soft 

approximation space. Then, the following conditions are true: 

(i) 𝑆(𝑈) = 𝑆(𝑈) = 𝑈. 

(ii) 𝑋 ⊆ 𝑆(𝑋), ∀𝑋 ⊆ 𝑈. 

(iii) 𝑆({𝑥}) ≠ ∅, ∀𝑥 ∈ 𝑈. 

Definition 2.2.4 Let 𝑆 = (𝐹, 𝐴) be a full soft set over 𝑈, 𝐴𝑠 = (𝑈, 𝑆) a soft approximation space 

and 𝑋 ⊆ 𝑈. Then, we define the following four basic types of soft rough sets: 

- 𝑋 is roughly soft 𝐴𝑠-definable if 𝑆(𝑋) ≠ ∅  and 𝑆(𝑋) ≠ 𝑈. 

- 𝑋 is internally soft 𝐴𝑠-indefinable if 𝑆(𝑋) = ∅  and 𝑆(𝑋) ≠ 𝑈. 

- 𝑋 is externally soft 𝐴𝑠-indefinable if 𝑆(𝑋) ≠ ∅ and 𝑆(𝑋) = 𝑈. 

- 𝑋 is totally soft 𝐴𝑠-indefinable if 𝑆(𝑋) = ∅ and 𝑆(𝑋) = 𝑈. 

3. Generalized soft rough approximations  

In this section, we define new generalized soft rough approximations so-called “Soft pre-rough 

approximations”. The properties of suggested approaches are superimposed. Relationships among 

the current approaches and previous one in F. Feng, et al. [37] are obtained. Many examples and 
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counter examples are introduced. We will prove that the proposed method is a generalization and 

more accurate than [37].  

Definition 3.1 Let 𝑆 = (𝐹, 𝐴) be a soft set over𝑈and 𝐴𝑠 = (𝑈, 𝑆) a soft approximation space. 

Then, the soft “pre-lower” and “pre-upper” approximations of any subset 𝑋 ⊆ 𝑈 are defined 

respectively, by: 

𝑆𝑝(𝑋) = 𝑋 ∩ 𝑆(𝑆(𝑋)) and 𝑆𝑝(𝑋) = 𝑋 ∪ 𝑆(𝑆(𝑋)). 

In general, we refer to (𝑆𝑝(𝑋), 𝑆𝑝(𝑋)) as “soft pre-rough approximations” with respect to𝐴𝑠. 

Definition 3.2 Let 𝐴𝑠 = (𝑈, 𝑆) be a soft approximation space and𝑋 ⊆ 𝑈. Then, the soft “pre- 

positive, pre-negative, pre-boundary” regions and the “pre-accuracy” of the soft pre-approximations 

are defined respectively by: 

𝑃𝑂𝑆𝑝(𝑋) = 𝑆𝑝(𝑋),
 
𝑁𝐸𝐺𝑝(𝑋) = 𝑈 − 𝑆𝑝(𝑋),

 
𝐵𝑁𝐷𝑝(𝑋) = 𝑆𝑝(𝑋) − 𝑆𝑝(𝑋), and 

𝜇𝑝(𝑋) =
|𝑆𝑝(𝑋)|

|𝑆𝑝(𝑋)|
, where 𝑆𝑝(𝑋) ≠ ∅. 

Clearly, if 𝑆(𝑋) = 𝑆(𝑋), 𝑖. 𝑒. 𝐵𝑁𝐷𝐴𝑠
(𝑋) = ∅

 
and 𝜇𝑝(𝑋) = 1. Then 𝑋 ⊆ 𝑈 is said to be “soft pre-

definable” or “soft pre-exact” set; otherwise 𝑋is called a “soft pre-rough” set. 

The main goal of the following results is to introduce and superimposed the basic properties 

of soft pre-rough approximations 𝑆𝑝 𝑎𝑛𝑑 𝑆𝑝.  

Proposition 3.1 Let 𝑆 = (𝐹, 𝐴) be a soft set over 𝑈 and 𝐴𝑠 = (𝑈, 𝑆) a soft approximation space. 

Then, the soft pre-lower and pre-upper approximations of 𝑋 ⊆ 𝑈 satisfy the following properties: 

 

(i) 𝑆𝑝(∅) = 𝑆𝑝(∅) = ∅. 

(ii) 𝑆𝑝(𝑈) = ⋃ 𝑓(𝑒)𝑒∈𝐴 and 𝑆𝑝(𝑈) = 𝑈. 

(iii) If 𝑋 ⊆ 𝑌, then 𝑆𝑝(𝑋) ⊆ 𝑆𝑝(𝑌). 

(iv) If 𝑋 ⊆ 𝑌, then 𝑆𝑝(𝑋) ⊆ 𝑆𝑝(𝑌). 

(v) 𝑆𝑝(𝑋 ∩ 𝑌) ⊆ 𝑆𝑝(𝑋) ∩ 𝑆𝑝(𝑌). 

(vi) 𝑆𝑝(𝑋 ∪ 𝑌) ⊇ 𝑆𝑝(𝑋) ∪ 𝑆𝑝(𝑌). 

(vii) 𝑆𝑝(𝑋 ∩ 𝑌) ⊆ 𝑆𝑝(𝑋) ∩ 𝑆𝑝(𝑌). 

(viii) 𝑆𝑝(𝑋 ∪ 𝑌) = 𝑆𝑝(𝑋) ∪ 𝑆𝑝(𝑌). 

Proof:  

(i) Since 𝑆(∅) = 𝑆(∅) = ∅. Then 𝑆𝑝(∅) = ∅ ∩ 𝑆(𝑆(∅)) = ∅ and 𝑆𝑝(∅) = ∅ ∪ 𝑆(𝑆(∅)) = ∅. 

(ii) Since 𝑆(𝑈) = 𝑆(𝑈) = ⋃ 𝑓(𝑒)𝑒∈𝐴 , then 𝑆𝑝(𝑈) = 𝑈 ∩ 𝑆(𝑆(𝑈)) = 𝑈 ∩ 𝑆(⋃ 𝑓(𝑒)𝑒∈𝐴 ) =

⋃ 𝑓(𝑒)𝑒∈𝐴   and 𝑆𝑝(𝑈) = 𝑈 ∪ 𝑆(𝑆(𝑈)) = 𝑈 ∪ 𝑆(⋃ 𝑓(𝑒)𝑒∈𝐴 ) = 𝑈. 

(iii) Since 𝑆(𝑋) ⊆ 𝑆(𝑌) and 𝑆(𝑋) ⊆ 𝑆(𝑌) for each 𝑋 ⊆ 𝑌.    Then, for each 𝑋 ⊆ 𝑌: 

         𝑆𝑝(𝑋) = 𝑋 ∩ 𝑆(𝑆(𝑋)) ⊆ 𝑌 ∩ 𝑆(𝑆(𝑌)) = 𝑆𝑝(𝑌). 
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(iv) By similar way as (iii). 

(v) Since 𝑋 ∩ 𝑌 ⊆ 𝑋 and 𝑋 ∩ 𝑌 ⊆ 𝑌. Then, by (iii), 𝑆𝑝(𝑋 ∩ 𝑌) ⊆ 𝑆𝑝(𝑋) ∩ 𝑆𝑝(𝑌). 

(vi) Since 𝑋 ⊆ 𝑋 ∪ 𝑌 and 𝑌 ⊆ 𝑋 ∪ 𝑌. Then, by (iv),
 
𝑆𝑝(𝑋 ∪ 𝑌) ⊇ 𝑆𝑝(𝑋) ∪ 𝑆𝑝(𝑌). 

(vii) By similar way as (v). 

(viii) By using (v)-(vii), the proof is obvious. 

Proposition 3.2 Let 𝑆 = (𝐹, 𝐴) be a soft set over 𝑈and 𝐴𝑠 = (𝑈, 𝑆) a soft approximation space. 

Then, for each 𝑋 ⊆ 𝑌: 

 

(i) 𝑆𝑝(𝑆𝑝(𝑋)) = 𝑆𝑝(𝑋). 

(ii) 𝑆𝑝(𝑋) ⊆ 𝑆𝑝(𝑆𝑝(𝑋)). 

(iii) 𝑆𝑝(𝑋) ⊆ 𝑆𝑝(𝑆𝑝(𝑋)). 

(iv) 𝑆𝑝(𝑆𝑝(𝑋)) ⊆ 𝑆𝑝(𝑋). 

Proof: Straightforward. 

Remark 3.1 Note that the inclusion relations in Proposition 3.2 may be strict, as shown in 

Example 3.1 and Example 3.2. 

Example 3.1 Let 𝑆 = (𝐹, 𝐴) be a soft set over 𝑈 and 𝐴𝑠 = (𝑈, 𝑆) a soft approximation space, 

where, 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} , 𝐸 = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒6}
 
and 𝐴 = {𝑒1, 𝑒2, 𝑒3} ⊆ 𝐸  such that (𝐹, 𝐴) =

{(𝑒1, {𝑥1, 𝑥4}), (𝑒2, {𝑥3}), (𝑒3, {𝑥2, 𝑥3, 𝑥4})}. Now, let 𝑋 = {𝑥3, 𝑥4}. Then, we get 𝑆𝑝(𝑋) = {𝑥2, 𝑥3, 𝑥4} 

which implies 𝑆𝑝(𝑆𝑝(𝑋)) = 𝑈. Hence, 𝑆𝑝(𝑋) ≠ 𝑆𝑝(𝑆𝑝(𝑋)).  

Example 3.2 Let 𝑆 = (𝐹, 𝐴) be a soft set over 𝑈 and 𝐴𝑠 = (𝑈, 𝑆) be a soft approximation space, 

where𝑈 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥6} , 𝐸 = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒6}and 𝐴 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} ⊆ 𝐸  such that(𝐹, 𝐴) =

{(𝑒1, {𝑥1, 𝑥6}), (𝑒2, {𝑥3}), (𝑒3, ∅), (𝑒4, {𝑥1, 𝑥2, 𝑥5})}. Now let 𝑋 = {𝑥1, 𝑥6} and 𝑌 = {𝑥3, 𝑥4, 𝑥5}. Then, 

we get 𝑆𝑝(𝑋) = {𝑥1, 𝑥6}  which implies 𝑆𝑝(𝑆𝑝(𝑋)) = {𝑥1, 𝑥2, 𝑥5, 𝑥6} . Hence, 𝑆𝑝(𝑋) ≠ 𝑆𝑝(𝑆𝑝(𝑋)) . 

Also, 𝑆𝑝(𝑌) = {𝑥3, 𝑥4, 𝑥5} and this means that 𝑆𝑝(𝑆𝑝(𝑌)) = {𝑥3}. Hence,
 
𝑆𝑝(𝑆𝑝(𝑌)) ≠ 𝑆𝑝(𝑌).  

Proposition 3.3 Let 𝑆 = (𝐹, 𝐴) be a full soft set and 𝐴𝑠 = (𝑈, 𝑆) be a soft approximation space. 

Then: 

 

(i) 𝑆𝑝(𝑈) = 𝑈. (ii) 𝑆𝑝(𝑆𝑝(𝑋)) = 𝑆𝑝(𝑋), ∀𝑋 ⊆ 𝑈. 

Proof:  

(i) Let 𝑆 = (𝐹, 𝐴) be a full soft set, then by   Proposition 2.2.4, we get: 

𝑆𝑝(𝑈) = 𝑈 ∩ 𝑆(𝑆(𝑈)) = 𝑈 ∩ 𝑆(𝑈) = 𝑈 ∩ 𝑈 = 𝑈. 

(ii) Firstly, by Proposition 3.2, we get: 𝑆𝑝(𝑆𝑝(𝑋)) ⊆ 𝑆𝑝(𝑋), ∀𝑋 ⊆ 𝑈.  Thus, we must prove the 

inverse relation 𝑆𝑝(𝑋) ⊆ 𝑆𝑝(𝑆𝑝(𝑋)) as follows: 

      Let 𝑆 = (𝐹, 𝐴) be a full soft set, then by   Proposition 2.2.4, we get: 

      
𝑋 ⊆ 𝑆(𝑋), ∀𝑋 ⊆ 𝑈and by Proposition 2.2.3, we get:

 
𝑆(𝑆(𝑋)) = 𝑆(𝑋), ∀𝑋 ⊆ 𝑈. 
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Thus,
 

𝑋 ⊆ 𝑆(𝑆(𝑋)), ∀𝑋 ⊆ 𝑈  and since 𝑆(𝑋) ⊆ 𝑋, ∀𝑋 ⊆ 𝑈.  Then 𝑆(𝑆(𝑋)) ⊆ 𝑆(𝑋)  and this 

implies   𝑆𝑝(𝑋) = [𝑋 ∪ 𝑆(𝑆(𝑋))] ⊆ 𝑆(𝑆(𝑋)) . Accordingly, 𝑆𝑝(𝑋) ⊆ 𝑆(𝑆(𝑆𝑝(𝑋)))  and this means 

that𝑆𝑝(𝑋) ⊆ 𝑆𝑝(𝑆𝑝(𝑋)), ∀𝑋 ⊆ 𝑈. 

Remark 3.2 Propositions 3.1, 3.2 and 3.3 represent one of the deviations between the proposed 

method and F. Feng, et al. [37] approach. In fact, according to these propositions, the suggested 

approximations satisfied most properties of Pawlak’s rough sets and then Table 2 summarize these 

properties which represents a first comparison among soft pre-approximation and soft rough 

approximations [37].  

Table 2. Properties of soft rough and soft pre-rough approximations. 

 𝑆 𝑆𝑝  𝑆 𝑆𝑝 

L1 1 1 U1 1 1 

L2 1 1 U2 1 1 

L3 0 0 U3 0 1 

L4 0 0 U4 1 1 

L5 1 1 U5 1 1 

L6 1 1 U6 1 1 

L7 1 1 U7 1 1 

L8 1 1 U8 1 1 

L9 1 1 U9 1 1 

Note that: The number “1” denotes “yes” and “0” denotes “no”.  

         The main goal of the following results is to illustrate the relationship between soft rough 

approximations [37] and soft pre-rough approximations (current methods). 

Theorem 3.1 Let 𝐴𝑠 = (𝑈, 𝑆) be a soft approximation space and 𝑋 ⊆ 𝑈. Then: 

(i) 𝑆(𝑋) ⊆ 𝑆𝑝(𝑋). 

(ii) 𝑆𝑝(𝑋) ⊆ 𝑆(𝑋). 

Proof: We will prove the first statement and the other similarly. 

Let𝑥 ∉ 𝑆𝑝(𝑋). Then, either 𝑥 ∉ 𝑋or 𝑥 ∉ 𝑆(𝑆(𝑋)) and this implies: 

Case (1): 𝑥 ∉ 𝑋 ⇒ 𝑥 ∉ 𝑆(𝑋). 

Case (2): 𝑥 ∉ 𝑆(𝑆(𝑋)) ⇒ ∃𝑒 ∈ 𝐸,  such that 𝑥 ∈ 𝐹(𝑒)  and 𝐹(𝑒) ⊄ 𝑆(𝑋) . Thus, 𝑥 ∈ 𝐹(𝑒)  and 

𝐹(𝑒) ⊄ 𝑆(𝑋) which means that 𝑥 ∉ 𝑆(𝑋). Accordingly, 𝑆(𝑋) ⊆ 𝑆𝑝(𝑋), ∀𝑋 ⊆ 𝑈. 

Corollary 3.1 Let 𝐴𝑠 = (𝑈, 𝑆) be a soft approximation space and 𝑋 ⊆ 𝑈. Then, 

(i) 𝐵𝑁𝐷𝑝(𝑋) ⊆ 𝐵𝑁𝐷𝐴𝑠
(𝑋). 

(ii) 𝜇𝐴𝑠
(𝑋) ≤ 𝜇𝑝(𝑋). 
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Corollary 3.2 Let 𝐴𝑠 = (𝑈, 𝑆) be a soft approximation space and 𝑋 ⊆ 𝑈. If 𝑋 is a soft exact set, 

then it is a soft pre-exact set. 

       Remark 3.3 The converse of the above results is not true in general as Example 3.3 illustrated. 

Example 3.3 Consider Example 3.2, and let𝑋 = {𝑥3, 𝑥4, 𝑥5}and 𝑌 = {𝑥3, 𝑥6} . Thus 𝑆(𝑋) =

{𝑥3}and𝑆(𝑋) = {𝑥1, 𝑥2, 𝑥3, 𝑥5}. But 𝑆𝑝(𝑋) = {𝑥3, 𝑥5}and 𝑆𝑝(𝑋) = {𝑥3, 𝑥4, 𝑥5}. It is clear that 𝑆(𝑋) ⊆

𝑆𝑝(𝑋)  and 𝑆𝑝(𝑋) ⊆ 𝑆(𝑋) . Moreover, 𝑋 ⊄ 𝑆(𝑋) . But, 𝑆𝑝(𝑋) ⊆ 𝑋 ⊆ 𝑆𝑝(𝑋) . Similarly, 𝑆(𝑌) =

{𝑥3} , 𝑆(𝑌) = {𝑥1, 𝑥3, 𝑥6} and then 𝐵𝑁𝐷𝐴𝑠
(𝑌) = {𝑥1, 𝑥6} and 𝜇𝐴𝑠

(𝑌) =
1

3
. But 𝑆𝑝(𝑌) = 𝑆𝑝(𝑌) = 𝑌 

and then 𝐵𝑁𝐷𝑝(𝑌) = ∅ and 𝜇𝑝(𝑌) = 1. It is clear that 𝑌is a soft pre-exact in our approach although 

it is a soft rough with respect to [37].  

According to Theorem 3.1, we define the following important definition: 

Definition 3.4 Let 𝑆 = (𝐹, 𝐴) be a full soft set over𝑈, 𝐴𝑠 = (𝑈, 𝑆) a soft approximation space 

and𝑋 ⊆ 𝑈. Then, we define the following four basic types of soft pre-rough sets: 

- 𝑋 is roughly soft pre-definable if  𝑆𝑝(𝑋) ≠ ∅ and 𝑆𝑝(𝑋) ≠ 𝑈. 

- 𝑋 is internally soft pre-indefinable if 𝑆𝑝(𝑋) = ∅ and 𝑆𝑝(𝑋) ≠ 𝑈. 

- 𝑋 is externally soft pre-indefinable if 𝑆𝑝(𝑋) ≠ ∅ and 𝑆𝑝(𝑋) = 𝑈. 

- 𝑋 is totally soft pre-indefinable if 𝑆𝑝(𝑋) = ∅ and 𝑆𝑝(𝑋) = 𝑈. 

The intuitive meaning of this classification is as follows: 

- If 𝑋 is roughly soft pre-definable, this means that we are able to decide for some elements of 

𝑈 that they belong to 𝑋, and meanwhile for some elements of 𝑈, we are able to decide that 

they belong to 𝑋𝑐, by using available knowledge from a soft approximation space 𝐴𝑠.  

- If 𝑋  is internally soft pre-indefinable, this means that we are able to decide about some 

elements of 𝑈 that they belong to 𝑋𝑐, but we are unable to decide for any element of 𝑈 that it 

belongs to 𝑋, by employing 𝐴𝑠.  

- If 𝑋 is externally soft pre-indefinable, this means that we are able to decide for some elements 

of 𝑈 that they belong to 𝑋, but we are unable to decide, for any element of 𝑈 that it belongs to 

𝑋𝑐, by employing 𝐴𝑠. 

-  If 𝑋 is totally soft pre-indefinable, we are unable to decide for any element of 𝑈 whether it 

belongs to 𝑋 or 𝑋𝑐, by employing 𝐴𝑠. 

Theorem 3.2 Let 𝐴𝑠 = (𝑈, 𝑆) be a soft approximation space and 𝑋 ⊆ 𝑈. Then: 

(i) If 𝑋 is roughly soft pre-definable, then 𝑋is roughly soft 𝐴𝑠-definable. 

(ii) If 𝑋 is internally soft pre-definable, then 𝑋is internally soft 𝐴𝑠-indefinable. 

(iii) If 𝑋 is externally soft pre-definable, then 𝑋is externally soft 𝐴𝑠-indefinable.  

(iv) If 𝑋 is totally soft pre-indefinable, then 𝑋is totally soft 𝐴𝑠-indefinable. 

Proof: By Theorem 3.1, the proof is obvious. 
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Remark 3.4  

(i) Theorem 3.2 represents another difference between soft rough approximations [37] and soft pre-

rough approximations (current methods). Moreover, this theorem shows the importance of our 

approaches in defining the sets, for example: if 𝑋  is totally soft 𝐴𝑠 -indefinable, then𝑆(𝑋) =

∅ and  𝑆(𝑋) = 𝑈 and this means that we are unable to decide for any element of 𝑈whether it 

belongs to 𝑋 or 𝑋𝑐. But, by using soft pre-rough approximations, 𝑆𝑝(𝑋) ≠ ∅ and 𝑆𝑝(𝑋) ≠ 𝑈and 

then 𝑋can be roughly soft pre-definable which means that we are able to decide for some 

elements of 𝑈 that they belong to 𝑋, and meanwhile for some elements of 𝑈, we are able to 

decide that they belong to 𝑋𝑐, by using available knowledge from the soft approximation space 

𝐴𝑠 (Example 3.2 and 4.1 illustrate this fact). 

(ii) The converse of Theorem 3.3 is not true in general as Example 4.1 illustrated.   

4. A decision making for information system 

In the present section, we introduce two practical examples as applications of the current 

approaches in decision making for information system. First example represents a set valued 

information system of food nutrients for students in a one of school. In the second example, we used 

the interesting example that given in [37] to illustrate the importance of the suggested methods and thus 

we obtain a comparison between our approaches and the previous one such as Pawlak approach [1] and 

F. Feng et al. [37] approach. 

Example 4.1 A set valued information system is presented in Table 4, where 𝑈 =

{𝑆1, 𝑆2, 𝑆3, … , 𝑆6}  of students, 𝐸 = {𝑒1 = Food contains preservatives, 𝑒2 =  Carbohydrates, 

𝑒3 =Protein, 𝑒4 =Vitamins, 𝑒5 =Fats, 𝑒6 =Minerals, 𝑒7 =Junk food, 𝑒8 =Ice-cream}
 
be a set of 

parameters which illustrate food nutrients for students.  

Consider the soft set(𝐹, 𝐸) which describes the attractiveness of the students given by(𝐹, 𝐸) = 

{Students eat food containing “Food containing preservatives”= ∅, Students eat food containing 

“Carbohydrate” = 𝑈, Students eat food containing “Protein”= {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆6}, Students eat food 

containing “Vitamins” = 𝑈 , Students eat food containing “Fat” = {𝑆1, 𝑆3, 𝑆6}, Students eat food 

containing “Minerals” = {𝑆1, 𝑆2, 𝑆6} , Students eat “Junk food” = {S2, S4, S5} , Students eat “Ice-

cream”= {𝑆1, 𝑆3, 𝑆6}.  Suppose that, Mr. 𝑋  is interested to buy food on the basis of his choice 

parameters {𝑒1, 𝑒3, 𝑒6, . . . , 𝑒8}  which constitute the subset 𝐴 = {𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6}  of the set𝐸 . That 

means, out of available food in 𝑈, he is to select that food which qualifies with all (or with maximum 

number of) parameters of the soft set. The problem is to select the food which is a suitable choice of 

parameters set by Mr. 𝑋. Let us first make a tabular representation of the problem. Consider the soft 

set (𝐹, 𝐴) where 𝐴is the choice parameter of Mr. 𝑋 as in Table 3. Here (𝐹, 𝐴) is a soft subset of 

(𝐹, 𝐸) such that:  

(𝐹, 𝐸) = {(𝑒2, 𝑈), (𝑒3, {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆6}), (𝑒4, 𝑈), (𝑒5, {𝑆1, 𝑆3, 𝑆6}), (𝑒6, {𝑆1, 𝑆2, 𝑆6})}. 

Thus, we can represent the soft set by tabular representation as shown in Table 3.   

Now, we will calculate the approximations of some subsets using F. Feng method [37] and our 

method as shown in Table 4. 
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Table 3. Food Information System. 

Students          𝒆𝟐    𝒆𝟑         𝒆𝟒         𝒆𝟓          𝒆𝟔 

𝑆1 1 1 1 1 1 

𝑆2 1 1 1 0 1 

𝑆3 1 1 1 1 0 

𝑆4 1 1 1 0 0 

𝑆5 1 0 1 0 0 

𝑆6 1 1 1 1 1 

Table 4. Comparisons among the soft rough approximations [37] and soft pre-rough 

approximations (Current methods). 

𝑋 Feng method in Definition 2.2.4 Current method in Definition 3.1 

𝑆(𝑋) 𝑆(𝑋) 𝐵𝑁𝐷𝐴𝑠
(𝑋) 𝜇𝐴𝑠

(𝑋) 𝑆𝑝(𝑋) 𝑆𝑝(𝑋) 𝐵𝑁𝐷𝑝(𝑋) 𝜇𝑝(𝑋) 

{𝑆2, 𝑆3} ∅ 𝑈 𝑈 0 {𝑆2, 𝑆3} {𝑆2, 𝑆3} ∅ 1 

{𝑆1, 𝑆3, 𝑆6} ∅ 𝑈 𝑈 0 {𝑆1, 𝑆3, 𝑆6} {𝑆1, 𝑆3, 𝑆6} ∅ 1 

{𝑆1, 𝑆2, 𝑆3, 𝑆6} ∅ 𝑈 𝑈 0 {𝑆1, 𝑆2, 𝑆3, 𝑆6} {𝑆1, 𝑆2, 𝑆3, 𝑆6} ∅ 1 

{𝑆2, 𝑆3, 𝑆4, 𝑆5} ∅ 𝑈 𝑈 0 {𝑆2, 𝑆3, 𝑆4, 𝑆5} {𝑆2, 𝑆3, 𝑆4, 𝑆5} ∅ 1 

Remark 4.1 From Table 4, we can notice the following: 

(i) There are many subsets which are soft rough (totally soft rough indefinable), but they are soft pre-

exact (totally soft pre-definable). The suggested approaches “soft pre-rough approximations” 

represent the best tools for approximating the sets since by using them, the boundary regions 

decreased (or canceled). Moreover, the accuracy of the soft pre-approximations is more accurate 

than F. Feng et al. approach [37].  

(ii) According to the results in Section 3 (Theorem 3.1 and Corollary 3.1 & 3.2), we can say that 

the proposed method is more accurate than [37] in decision making and accordingly these method 

is very useful in real-life applications. 

  Thus, we conclude that this approach represents a best tool to identify the best feeding system 

for students. Accordingly, using the soft pre-rough approximations, we can study the properties of 

the feeding system of students and give the accuracy of decision making. 

For example, assume that Mr. 𝑋 wants to choice a best feeding system that contains some of the 

basic elements in food and then according to the soft set (𝐹, 𝐸) make their initial decision. Let Mr. 𝑋 

points out that (𝐹, 𝐵) = {𝐹(𝑒2), 𝐹(𝑒3), 𝐹(𝑒4), 𝐹(𝑒5)}  is the best choice for feeding system that 

contains the main components {𝑒2,𝑒3, 𝑒4, 𝑒5}. Then, according to Table 3, the set of students 𝑌 =

{𝑆1, 𝑆3, 𝑆6} satisfy this feeding system (𝐹, 𝐵) by choice of Mr. 𝑋. Thus, we can make the following 

computations (Table 5) to compare among [37] method and our method in decision making. 

From the above results of Table 5, we conclude that: Using soft pre-rough approximation 

(Current method), Mr. X is most likely (or must) to buy the food in 𝑃𝑂𝑆𝑝(𝑌) = 𝑌 and then he is sure 

for his choice for these students. In addition, he also is sure that his choice food (𝐹, 𝐵) =

{𝐹(𝑒2), 𝐹(𝑒3), 𝐹(𝑒4), 𝐹(𝑒5)}  will not be taken outside the range of 𝑌 since to the students 

𝑁𝐸𝐺𝑝(𝑌) = {𝑆2, 𝑆4, 𝑆5} which represents the students are lie out of his choice. Thus, Mr. X’s initial 

demand for food is analyzed and delineated by using the concept of soft pre-rough tools and related 

soft computing techniques.  On the other hand, if we use the soft rough approximations [37], Mr. X 
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can not to decide the best food or the food never be taken exactly (Because 𝑆(𝑌) = ∅ and 𝑆(𝑌) = 𝑈, 

that is 𝑌here is totally soft rough set. In addition, the soft positive 𝑃𝑂𝑆𝐴𝑠
(𝑌) = 𝑁𝐸𝐺𝐴𝑠

(𝑌) = ∅ and 

the soft accuracy measure is 𝜇𝐴𝑠
(𝑌) = 0. 

Table 5. Comparison between soft approximations of 𝑌 using [37] and current method. 

 F. Feng et al. [37] Soft pre-rough (Current method) 

Soft lower ∅ {𝑆1, 𝑆3, 𝑆6} 

Soft upper 𝑈 {𝑆1, 𝑆3, 𝑆6} 

Soft boundary region 𝑈 ∅ 

Soft positive region ∅ {𝑆1, 𝑆3, 𝑆6} 

Soft negative region ∅ {𝑆2, 𝑆4, 𝑆5} 

Soft accuracy 0 1 

 

Example 4.2 [37] Let us consider the following soft set 𝑆 =  (𝐹, 𝐸)  which describes ‘‘life 

expectancy’’. Let 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6} consists of six persons and 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} is a set 

of decision parameters. The 𝑒𝑖 (𝑖 =  1,2,3,4) stands for ‘‘under stress’’, ‘‘young’’, ‘‘drug addict’’ 

and ‘‘healthy’’. Set 𝐹(𝑒1) =  {𝑢5}, 𝐹(𝑒2) = {𝑢1, 𝑢2}, 𝐹(𝑒3) = ∅ and 𝐹(𝑒4) =  {𝑢1, 𝑢2, 𝑢3, 𝑢6}. Thus 

the soft set (𝐹, 𝐸) is given by:  

(𝐹, 𝐸) = {(under stress, {𝑢5}), (young, {𝑢1, 𝑢2}), (drug addict, ∅), (healthy, {𝑢1, 𝑢2, 𝑢3, 𝑢6})}. 

Table 6. An information table. 

 𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 𝒖𝟔 

Sex Woman Woman Man Man Man Man 

Age category Young Young Mature age Old Mature age Baby 

Living area City City City Village City Village 

Habits NSND NSND Smoke SD Smoke NSND 

By other words, ''life expectancy'' topic can be presented using rough sets as follows: The 

estimate will be done in codes of attributes: ''sex'', ''age category'', ''living area'', ''habits'', stands by 

the value sets ''{man, woman}'',''{baby, young, mature age, old}'', ''{village, city}'' and ''{smoke, 

drinking, smoke and drinking, no smoke and no drinking}''. We denote ''smoke and drinking'' by SD 

and ''no smoke and no drinking'' by NSND. Table 4, gives the information such that the rows 

represent the attributes and the table entries are the different values of attributes for every person.  

Therefore, we get the following equivalence classes that generated by these attributes:[𝑢1]𝑅  =

[𝑢2]𝑅 =  {𝑢1, 𝑢2}, [𝑢3]𝑅 = [𝑢5]𝑅 = {𝑢3, 𝑢5}, [𝑢4]𝑅 =  {𝑢4}, [𝑢6]𝑅 =  {𝑢6}. 

Thus, we calculate the approximations of some subsets of 𝑈 by using “Pawlak method [1]”, “F. 

Feng et al. method [37]” and “Current method” as Table 7 illustrated.  

Remark 4.2 From Table 6, we can notice the following: 
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Table 6. Comparison among the rough approximations (Pawlak [1]), the soft rough 

approximations (F. Feng et al [37]) and soft pre-rough approximations (Current method). 

𝑋 Pawlak Method Feng Method 

𝑅(𝑋) 𝑅(𝑋) 𝜇𝑅(𝑋) 𝑆(𝑋) 𝑆(𝑋) 𝜇𝐴𝑠
(𝑋) 

{𝑢5} ∅ {𝑢2, 𝑢5} 0 {𝑢5} {𝑢5} 1 

{𝑢6} {𝑢6} {𝑢6} 1 ∅ {𝑢1, 𝑢2, 𝑢3, 𝑢6} 0 

{𝑢1, 𝑢3} ∅ {𝑢1, 𝑢2, 𝑢3, 𝑢5} 0 ∅ {𝑢1, 𝑢2, 𝑢3, 𝑢6} 0 

{𝑢2, 𝑢3} ∅ {𝑢1, 𝑢2, 𝑢3, 𝑢5} 0 ∅ {𝑢1, 𝑢2, 𝑢3, 𝑢6} 0 

{𝑢2, 𝑢5} {𝑢2, 𝑢5} {𝑢2, 𝑢5} 1 {𝑢5} {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢6} 1

5
 

{𝑢4, 𝑢5} {𝑢4} {𝑢3, 𝑢4, 𝑢5} 1

3
 

{𝑢5} {𝑢5} 1 

{𝑢1, 𝑢5, 𝑢6} {𝑢1, 𝑢5, 𝑢6} {𝑢1, 𝑢5, 𝑢6} 1 {𝑢5} {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢6} 1

5
 

{𝑢1, 𝑢2, 𝑢3, 𝑢6} {𝑢1, 𝑢2, 𝑢6} {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢6} 3

5
 

{𝑢1, 𝑢2, 𝑢3, 𝑢6} {𝑢1, 𝑢2, 𝑢3, 𝑢6} 1 

𝑈 𝑈 𝑈 1 {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢6} {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢6} 1 

𝑋 Current Method 

𝑆𝑝(𝑋) 𝑆𝑝(𝑋) 𝜇𝑝(𝑋) 

{𝑢5} {𝑢5} {𝑢5} 1 

{𝑢6} {𝑢6} {𝑢6} 1 

{𝑢1, 𝑢3} {𝑢1, 𝑢3} {𝑢1, 𝑢3} 1 

{𝑢2, 𝑢3} {𝑢2, 𝑢3} {𝑢2, 𝑢3} 1 

{𝑢2, 𝑢5} {𝑢2, 𝑢5} {𝑢2, 𝑢5} 1 

{𝑢4, 𝑢5} {𝑢4, 𝑢5} {𝑢4, 𝑢5} 1 

{𝑢1, 𝑢5, 𝑢6} {𝑢1, 𝑢5, 𝑢6} {𝑢1, 𝑢5, 𝑢6} 1 

{𝑢1, 𝑢2, 𝑢3, 𝑢6} {𝑢1, 𝑢2, 𝑢3, 𝑢6} {𝑢1, 𝑢2, 𝑢3, 𝑢6} 1 

𝑈 𝑈 𝑈 1 

                Exact (definable) set  

(i) There are different methods to approximate the sets. The best of them is “soft pre-rough 

approximations since, by using them, the boundary regions decreased (or canceled) by increasing 

the lower approximation and decreasing the upper approximation. Moreover, the accuracy of the 

soft pre-approximations is more accurate than the other accuracy measures such as [1] and [37].  

(ii) There are many sets which are rough according to [1] and [37], but they are soft pre-exact 

according to the presented method. Moreover, there are some subsets which are soft rough 

according to [37] although they are exact in Pawlak, but they are soft pre-exact in our approach.  

So, we can say that the proposed approaches are useful in removing the vagueness of rough sets. 

Hence, these approaches will be useful in decision making for extracting the information and 

help in removing the vagueness of the data in real-life problems. 

(iii) The importance of the current approximations is not only that it is reducing or deleting the 

boundary regions, but also it is satisfying most properties of Pawlak's rough sets without any 

restrictions. Note that the subset 𝑋 = {𝑢4, 𝑢5} is not soft definable (according to [37]) although 
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𝑆(𝑋) = 𝑆(𝑋) and 𝜇𝐴𝑠
(𝑋) = 1since𝑋 ⊄ 𝑆(𝑋). Similarly, the universe set 𝑈is not soft definable 

(with respect to [37]) although 𝑆(𝑈) = 𝑆(𝑈) and 𝜇𝐴𝑠
(𝑈) = 1, since𝑆(𝑈) ≠ 𝑈 and 𝑆(𝑈) ≠ 𝑈. 

But these sets are soft pre-exact (definable) in our approach.  

(iv) Theorem 3.1 and Corollary 3.1 & 3.2 show that soft pre-rough set approximation is a worth 

considering alternative to the rough set approximation. Soft pre-rough sets could provide a better 

approximation than soft rough or rough sets do, depending on the structure of the equivalence 

classes and of the subsets𝐹(𝑒), where𝑒 ∈ 𝐴.  

5. A medical application for “COVID-19” 

 Currently, the emergence of a novel human coronavirus, (SARS-CoV-2) or (COVID-19), has 

become a global health concern causing severe respiratory tract infections in humans. Human-to-

human transmissions have been described with incubation times between 2-10 days, facilitating its 

spread via droplets, contaminated hands or surfaces. According to paper [48], human coronaviruses 

can remain infectious on inanimate surfaces for up to 9 days. A novel coronavirus (SARS-CoV-2) or 

(COVID-19) has recently emerged from China with a total of 45171 confirmed cases of pneumonia 

(as of February 12, 2020) [48]. Most two impact factors for infections transmission namely “Contact 

with infected surfaces” and “Interactions with infected people” of the virus. In the present section, 

we introduce an application to show how our approaches are the best tools in decision making about 

the infection of COVID-19. 

Example 5.1 Suppose that the universe 𝑈 = {𝑝1, 𝑝2, 𝑝3, . . . , 𝑝10}
 
consists of ten persons and 𝐴 =

{𝑒1, 𝑒2, 𝑒3, 𝑒4}
 
is a set of attributes parameters, where 𝑒1 stands for ‘‘stay at home’’, 𝑒2 stands for ‘‘go 

out the home and contact with infected people’’, 𝑒3 stands for ‘‘work at hospital’’, 𝑒4 stands for 

‘‘study at home’’ and 𝑒5 stands for ‘‘study out the home’’. Let (𝐹, 𝐴) be a soft set over given by 

Table 7. 

Table 7. Tabular representation for a soft set (𝐹, 𝐴). 

𝑈

𝐴
 

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑰𝒏𝒇𝒆𝒄𝒕𝒆𝒅 𝒘𝒊𝒕𝒉 COVID-19 

𝑝1 1 0 0 1 1 0 

𝑝2 0 1 1 0 1 0 

𝑝3 0 1 1 0 1 1 

𝑝4 
1 0 1 0 0 1 

𝑝5 
1 0 0 1 1 0 

𝑝6 
0 0 0 1 1 0 

𝑝7 
0 1 1 0 0 1 

𝑝8 
1 0 0 1 0 0 

𝑝9 
0 1 1 0 1 1 

𝑝10 1 0 0 0 1 0 

Here 1 and 0 denote “yes” and “no” respectively. 

From Table 7, we get the set of infected patient with COVID-19 is 𝑋 = {𝑝3, 𝑝4, 𝑝7, 𝑝9}. Thus: 
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5.1. According to F. Feng et al. [37] approach 

𝑆(𝑋) = ∅  and 𝑆(𝑋) = 𝑈 which implies 𝐵𝑁𝐷𝒜𝑆
(𝑋) = 𝑈 and 𝜇𝒜𝑆

(𝑋) = 0 . Thus, 𝑋  is rough 

(totally soft 𝒜𝑆-indefinable) set which means that no elements in 𝑋 or no patients having COVID-19 

which contradicts Table 5.1. Accordingly, by using [8], we are unable to decide for any element of 𝑈 

whether it belongs to 𝑋 or 𝑋𝑐. 

5.2. According to current approach 

𝑆𝑝(𝑋) = 𝑆𝑝(𝑋) = 𝑋 which implies 𝐵𝑁𝐷𝑝(𝑋) = ∅ and 𝜇𝑝(𝑋) = 1. Thus, 𝑋 is exact (totally soft pre-

definable) set which means that, by using an available knowledge, we can decide the infected 

patients with more accurate than the other methods.  On the other hand, we can decide whether 

patients are not infected. Hence, we can say that the suggested approaches are useful in removing the 

vagueness of the rough sets. Hence, these approaches will be useful in decision making for extracting 

the information and help in removing the vagueness of the data in real-life problems. 

 At the end of the paper, we give an algorithm which can be used to have a decision making for 

information system in terms of the soft pre-approximations. 

 

Algorithm 5.1  A decision making via Soft pre-rough approximations. 

Step 1: Input the soft set (𝐹, 𝐸). 
Step 2: Input the set 𝐴 of choice parameters of Mr. X which is a 

subset of 𝐸. 
Step 3: Investigate the soft pre-upper approximation, say, 𝑆𝑝(𝑋) and 

soft pre-lower approximation, say, 𝑆𝑝(𝑋) , for every 𝑋 ⊆ 𝑈. 

According to Definition 3.1. 

Step 4: Determine a boundary region, say, 𝐵𝑁𝐷𝑝(𝑋) from Step 2, 

for every𝑋 ⊆ 𝑈. According to Definition 3.1. 

Step 5: Calculate the accuracy of the approximation, say, 𝜇𝑝(𝑋) by 

Step 2, for every𝑋 ⊆ 𝑈. According to Definition 3.1. 
Step 6: Decide, exactly, rough sets and exact sets. Using Definition 

3.1. 

6. Conclusion 

In this paper, we have presented some solutions to improve the approach of soft rough sets [33]. 

The suggested method can be considered as a modification to soft rough set models (given by F. 

Feng et al. [37]).  In fact, new approximations called “Soft pre-rough approximations” have been 

introduced and their properties have been studied. Comparisons among these approaches and the 

other works in [1] and [37] have been provided. Moreover, according to our results “Theorem 3.1 

and its corollaries”, the proposed methods are more accurate than [37] in decision making and 

accordingly these methods are very useful in real-life applications. The importance of the current 

paper is not only that it introduces a new type of generalized soft rough set approximations, but also 
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the suggested approaches satisfied most properties of Pawlak’s rough sets, without any extra 

restrictions, that never held in [37].  

Finally, we have introduced two applications examples in decision making to illustrate the 

importance of current methods and also to compare between this method and the previous one in [1] 

and [37]. Moreover, we have introduced a medical application about Corona virus “COVID-19” to 

illustrate the importance of the proposed approximations in decision making. In addition, we obtain 

an algorithm for the proposed methods to be useful in decision making of any future real-life 

problem. More importantly the present paper not only provides a complete new range of 

approximation spaces but also increase the accuracy of approximations of the subsets of a set. 
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