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Abstract: We revisit the modeling of the diauxic growth of a pure microorganism on two distinct
sugars which was first described by Monod. Most available models are deterministic and make the
assumption that all cells of the microbial ecosystem behave homogeneously with respect to both
sugars, all consuming the first one and then switching to the second when the first is exhausted. We
propose here a stochastic model which describes what is called “metabolic heterogeneity”. It allows to
consider small populations as in microfluidics as well as large populations where billions of individuals
coexist in the medium in a batch or chemostat. We highlight the link between the stochastic model
and the deterministic behavior in real large cultures using a large population approximation. Then
the influence of model parameter values on model dynamics is studied, notably with respect to the
lag-phase observed in real systems depending on the sugars on which the microorganism grows. It
is shown that both metabolic parameters as well as initial conditions play a crucial role on system
dynamics.
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1. Introduction

Described for the first time by Monod [1], the diauxic growth consists in a biphasic growth in a
bacterial population consuming two different sugars in a closed medium. The corresponding curve
of biomass density at the macroscopic scale shows two distinct exponential phases separated by a
“plateau” called lag-phase (Figure 1). The explanation proposed by Monod is that the preferred sugar
(which is in some sense “easier” to metabolize) is consumed first while the metabolic pathway allowing
the consumption of the second one is suppressed. When the concentration of the first sugar becomes
low enough, this repression is lifted. Then, the microorganism may produce the enzymes necessary to
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metabolize the second sugar: This is the lag-phase. The second exponential growth is observed until
the second sugar is eventually consumed.

Figure 1. Growth of Escherichia coli in the presence of different carbohydrate pairs serving
as the only source of carbon in a synthetic medium [1].

Until recently, it was admitted that the explanation given above was homogeneous within the cell
population in the sense that each individual adopted exactly the same behavior at the same time: Each
cell first consumed the sugar that was “easiest to metabolize” first, then the other one after a duration
corresponding to the lag-phase. Such an assertion implies that the latency time would simply be a
constant depending only on the sugars involved. In order to better understand this phenomenon and
test hypotheses, many models of diauxic growth have been proposed in the literature [2–4]. All such
models have in common to make the hypothesis that each cell of the microorganism under
consideration exhibits the same behavior with respect to both substrates at a given time. In addition,
most approaches make use of deterministic models that are not suited for low biomass densities.

However, recent investigations suggest that lag phases are controlled by the inoculum history and
organized with heterogeneity among individual cells [5]. This fact was called “metabolic
heterogeneity”. Takhaveev and Heinemann [6] suggested that this heterogeneity could be induced by
mechanisms linked to ecological factors, gene expression, and other inherent dynamics, or by
interaction between individuals, which all also depend on environment changes.

In this paper, following the idea that there is an intrinsic heterogeneity of cells within the
ecosystem—which yields a metabolic heterogeneity—we develop a stochastic model of diauxic
growth. More precisely, we propose a model of a batch culture of a pure strain growing on two
different sugars. In this model, the metabolic heterogeneity is modeled via the possible emergence of
a subpopulation that consumes the second sugar while the first one is not yet totally consumed. In
other words, all cells do not exhibit the same behavior with respect to each substrate at a given time.
To be as close as possible to the observations, the model accounts for the fact that in such situations
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the acetate produced—which is a growth-inhibiting metabolite—is co-consumed by each cell, as
shown by Enjalbert et al. [7]. One goal of this work is to link both stochastic and deterministic
approaches in order to explain the observations available at different scales, and to study the main
parameters that control the length of the lag-phase.

The paper is organized as follows. First, the stochastic model is presented. Secondly, its behavior
for large populations is approximated, allowing us to write a model consisting in a set of deterministic
differential equations. Then, the model is used to investigate the role of a number of model parameters
and of initial conditions on the substrate consumption dynamics and on the length of the lag-phases.
Eventually the main conclusions and perspectives are drawn. An appendix provides some additional
information on proofs and simulations.

2. The stochastic model

First and foremost, let us introduce the parameter K > 0 that scales the initial number of individuals.
Indeed, the population size varies widely between different kinds of bacterial cultures, and may range
from a few individuals in microfluidics (then K is very small) to billions or more in fermenters (then K
is very large). Letting K increase to infinity allows to make the link between the stochastic model and
the deterministic limit model for large populations

Let us consider two different substrates, Sugar 1 which is preferential and Sugar 2, and a
stochastically described population of bacteria split into two compartments constituted respectively of
Sugar 1 consumers and of Sugar 2 consumers. Let NK

1 (t) and NK
2 (t) denote respectively the numbers

of individuals in each compartment and

NK(t) =
(
NK

1 (t),NK
2 (t)

)
, t ≥ 0 .

Here we are introducing the specific scaling in which K can be seen as proportional to the carrying
capacity of the medium and 1/K as proportional to the individual biomass, and in order to capture the
two subpopulation densities per unit of volume we introduce the rescaling

nK(t) =
(
nK

1 (t), nK
2 (t)

)
=

(
NK

1 (t)
VK

,
NK

2 (t)
VK

)
, t ≥ 0 .

The mass concentration of each sugar is described by a continuous process

RK(t) =
(
RK

1 (t),RK
2 (t)

)
, t ≥ 0 ,

which corresponds in the same order to Sugar 1 and Sugar 2. We also take into account the mass
concentration AK(t) of a metabolite produced during the consumption of sugars by each individual
and co-consumed with them. As an illustration, we may consider a mixed medium with glucose and
xylose as Sugar 1 and Sugar 2, and acetate as the metabolite: Sugars are consumed sequentially,
and when the preferential sugar glucose is abundant the xylose consumers switch to consume it; the
reverse transition is more complex and requires that an activated xylR protein binds to the DNA of each
switching individual. The activation of this protein is caused by the presence of xylose but inhibited
by glucose due to the catabolic repression.

We describe the complete culture medium by the Markov process

(nK(t),RK(t), AK(t))t≥0 = (nK
1 (t), nK

2 (t),RK
1 (t),RK

2 (t), AK(t))t≥0 (2.1)

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5120–5133.



5123

evolving as follows.

• Demography. An individual growing on Sugar 1 divides at rate b1(RK
1 (t), AK(t)) due to Sugar 1

and metabolite co-consumption. Likewise, an individual growing on Sugar 2 divides at rate
b2(RK

2 (t), AK(t)) due to Sugar 2 and metabolite co-consumption. This results in the jumps
transitions

n1 −→ n1 +
1

VK
at rate b1(RK

1 (t), AK(t))VKn1 ,

n2 −→ n2 +
1

VK
at rate b2(RK

2 (t), AK(t))VKn2 .

(2.2)

• State transitions. An individual growing on Sugar 1 switches its state in order to consume
Sugar 2 at rate η1(RK(t)), which depends on both resources since this is inhibited by the catabolic
repression due to Sugar 1, the preferential sugar. Likewise, an individual growing on Sugar 2
switches its metabolic state to consume Sugar 1 at rate η2(RK

1 (t)) which depends only on the
abundance of Sugar 1. This results in the jumps transitions

(n1, n2) −→
(
n1 −

1
VK

, n2 +
1

VK

)
at rate η1(RK(t))VKn1 ,

(n1, n2) −→
(
n1 +

1
VK

, n2 −
1

VK

)
at rate η2(RK

1 (t))VKn2 .

(2.3)

• Resource dynamics. These are linked to the biomass and metabolite synthesis by the
biochemical reactions that happen continuously inside the batch. An individual growing on
Sugar 1 consumes a small amount µ1(RK

1 (t), AK(t))/q1K of Sugar 1 and produces a small amount
θ1µ1(RK

1 (t), AK(t))/K of metabolite per unit of time, before dividing as a result of this
consumption. Similarly, an individual growing on Sugar 2 consumes a small amount
µ2(RK

2 (t), AK(t))/q2K of Sugar 2 and produces a small amount θ2µ2(RK
2 (t), AK(t))/K of metabolite

per unit of time, before dividing as a result of this consumption. Note that it could happen that
the metabolite inhibits the consumption of sugars as is the case for acetate in glucose-xylose
consumption, see Enjalbert et al. [7]. Finally, each individual consumes a small amount
µ3(AK(t))/q3K of metabolite per unit of time by a separate independent pathway before dividing
as a result of this consumption. This leads us to describe the resource dynamics by the
dynamical system

dRK
1

dt
(t) = −

µ1(RK
1 (t), AK(t))

q1
nK

1 (t) ,

dRK
2

dt
(t) = −

µ2(RK
2 (t), AK(t))

q2
nK

2 (t) ,

dAK

dt
(t) = −

µ3(AK(t))
q3

(
nK

1 (t) + nK
2 (t)

)
+ θ1µ1(RK

1 (t), AK(t))nK
1 (t)

+ θ2µ2(RK
2 (t), AK(t))nK

2 (t) .

(2.4)

The typical situation we will consider is the following. The initial conditions satisfy

nK(0) =

(
bn0

1VKc
VK

,
bn0

2VKc
VK

)
, RK(0) = r0 , AK(0) = 0 ,
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in which (n0, r0) = (n0
1, n

0
2, r

0
1, r

0
2) is fixed. The above rate functions involve Monod-type and classic

inhibition functions and are of the forms

µ j(r j, a) = µ̄ j
r j

κ j + r j
·

λ

λ + a
, j = 1, 2 , µ3(a) = µ̄3

a
κ3 + a

·
λ

λ + a
,

η1(r) = η̄1
r2

k1 + r2
·

ki

ki + r1
, η2(r1) = η̄2

r1

k2 + r1
.

Note that the terms of inhibition (due to the metabolite on each growth rate, and due to Sugar 1 on
the switching rate) and their incidence are antagonistic. Indeed, decreasing any of the coefficients λ
and ki increase the repression on the corresponding mechanisms. In addition, since the sugars and the
metabolite are co-consumed by independent pathways, the birth rates defined in the transitions (2.2)
chosen as

b j(r j, a) = µ j(r j, a) + µ3(a) , j = 1, 2 , (2.5)

ensure a conservation law on average:

E
{
nK

1 (t) + nK
2 (t) + q1(1 + θ1q3)RK

1 (t) + q2(1 + θ2q3)RK
2 (t) + q3AK(t)

}
= Cst. (2.6)

To illustrate this model, we use the parameters described in Table 1 taken from recent batch
experiments [8] for the sugars glucose and xylose.

Table 1. Parameters for the rate functions in the example.

Parameter Biological signification Default value Units
for simulations

µ̄1 Maximal growth rate on Sugar 1 6.50e-01 h−1

κ1 Monod constant on Sugar 1 3.26e-01 g/L
λ Inhibition coefficient due to the metabolite 4.70e-01 g/L
µ̄2 Maximal growth rate on Sugar 2 5.70e-01 h−1

κ2 Monod constant on Sugar 2 4.68e-01 g/L
µ̄3 Maximal growth rate on the metabolite 1.47e-01 h−1

κ3 Monod constant on the metabolite 6.45e-01 g/L
η̄1 Maximal switching rate from Sugar 1 to Sugar 2 2.04e-03 h−1

k1 Regulation coefficient of the Sugar 1 to Sugar 2 transition 1.20e-02 g/L
ki Inhibition coefficient of the Sugar 1 to Sugar 2 transition 1.03e-03 g/L
η̄2 Maximal switching rate from Sugar 2 to Sugar 1 6.60e-01 h−1

k2 Regulation coefficient of the Sugar 2 to Sugar 1 transition 4.50e-02 g/L
q1 Individual yield on Sugar1 5.50e-01 gbiomass/gsubstrate

θ1 Metabolite yield on Sugar1 6.00e-01 gsubstrate/gbiomass

q2 Individual yield on Sugar2 4.50e-01 gbiomass/gsubstrate

θ2 Metabolite yield on Sugar2 5.60e-01 gsubstrate/gbiomass

q3 Individual yield on the metabolite 2.50e-01 gbiomass/gsubstrate

The subpopulation densities per unit of volume (or biomass concentrations) and the resources mass
concentrations are expressed in g/L. For the typical case that will be illustrated in simulations, the
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volume is one liter and the default initial conditions are given by

n0 = (0.28, 0.0) , r0 = (8.15, 9.05).

Figure 2 shows that this model is able to predict the diauxic growth observed by Monod (Figure 1).
This can be observed even for a small number of individuals. We additionally observe that the
trajectories oscillate randomly for small K and become smoother as K becomes larger. This
observation will be developed in the next section, in which the stochastic model will be shown to be
approximated by a deterministic model when K increases to infinity.
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Figure 2. Total population and resource concentrations for a small (K = 10) and a
moderately large (K = 1000) population.

3. Large population approximation

The amplitude of any jump occurring in the population is bounded by a factor of the weight 1/K
attributed to a single individual and hence has a variance of order 1/K2. Moreover, the mean number of
jumps per unit of time is of order K, the order of magnitude of the number of individuals. Heuristically,
for a large population the process should approach a limit deterministic continuous process dictated by
the mean values, with random oscillations around this limit corresponding to variances of order 1/K
and hence to standard deviations of order 1/

√
K. We can build on these heuristics and prove that the

stochastic model is indeed approximated by a deterministic model in the limit of large K. This yields
the following deterministic limit.

Theorem 3.1. Let us assume that

∀ε > 0 , P
(∥∥∥(nK(0),RK(0), AK(0)

)
−

(
n0, r0, a0)∥∥∥ > ε) −−−−→

K→∞
0 ,

and that supK E
(∥∥∥(nK(0),RK(0), AK(0)

)∥∥∥) < +∞. Let (n(t), r(t), a(t))t≥0 be the unique solution with
initial condition (n0, r0, a0) of the differential system
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n′1(t) =
{
b1(r1(t), a(t)) − η1(r(t))

}
n1(t) + η2(r1(t))n2(t) ,

n′2(t) =
{
b2(r2(t), a(t)) − η2(r1(t))

}
n2(t) + η1(r(t))n1(t) ,

r′1(t) = −
µ1(r1(t), a(t))

q1
n1(t) ,

r′2(t) = −
µ2(r2(t), a(t))

q2
n2(t) ,

a′(t) = −
µ3(a(t))

q3
(n1(t) + n2(t)) + θ1µ1(r1(t), a(t))n1(t) + θ2µ2(r2(t), a(t))n2(t) .

(3.1)

Then the stochastic process (nK(t),RK(t), AK(t))t≥0 is approximated for large K by (n(t), r(t), a(t))t≥0 in
the sense that

∀T > 0, ε > 0 , P

(
sup

0≤t≤T

∥∥∥(nK(t),RK(t), AK(t)) − (n(t), r(t), a(t))
∥∥∥ > ε) −−−−→

K→∞
0 .

This theorem allows to explain on a rigorous basis the observations we have made on the simulations
in the previous section. Before discussing the proof methods, let us address the important question of
the range of validity of the approximation.

For small K and most notably for populations consisting of a few individuals, the deterministic
system is not a good approximation of the stochastic model and does not provide a pertinent model
for the population. On the contrary, when K is large enough for the approximation to be accurate, the
deterministic system provides a pertinent model on which theoretical studies and numerical
computations can be performed for qualitative and quantitative investigations on the population.

Therefore, it is fundamental to obtain a precise evaluation of the size of K required for the
approximation to be tight and to assess the error made in terms of K. The heuristics given before the
theorem indicate that that the error terms should be of order 1/

√
K. Under adequate assumptions on

the initial conditions, this can be made rigorous through a functional central limit theorem: The
process

√
K
((

nK(t),RK(t), AK(t)
)
− (n(t), r(t), a(t))

)
, t ≥ 0 ,

converges as K goes to infinity to a Gaussian process of Ornstein-Uhlenbeck type, with mean and
covariance structure expressed solely in terms of the limit process (n(t), r(t), a(t))t≥0 and of the variance
of the jumps in a sufficiently explicit fashion to be well evaluated. This allows to evaluate the minimal
size of K required for a tight approximation and to provide confidence intervals on this, as well as
the possibility for intermediate sizes of K to simulate the deterministic limit process and add to it
fluctuations simulated according to this Gaussian process in order to obtain a tighter approximation.

The proofs of Theorem 3.1 and of the functional central limit theorem build on the heuristic
explanation given before the theorem using probabilistic compactness-uniqueness methods. Ethier
and Kurtz [9] is a classic book on the subject, and Anderson and Kurtz [10] and Bansaye and
Méléard [11] provide pedagogical expositions well suited to the present field of application.

We illustrate these convergence results in Figure 3, by the simulations of a hundred trajectories of
the total biomass for the stochastic and the limiting model, for three increasing values of the scale
parameter K.
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Figure 3. Ten independent stochastic trajectories, the empirical mean over a hundred
independent trajectories, and the deterministic limit simulated for each of the total
populations in the cases K = 10, K = 100, and K = 1000.

4. Heterogeneity and lag-phase sensitivity

As shown in Figure 4, the model is able to capture the heterogeneity of the population observed by
biologists as well as the diauxic growth at the level of the total population size highlighted by Monod.
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Figure 4. Metabolic Heterogeneity. Diauxic growth of the total population and growths of
the subpopulations for a simulation of the stochastic model with K = 100 (left) and of the
deterministic limit (right). The evolutions of the two resources are plotted for each.

Furthermore, we are interested in how the metabolic parameters and initial conditions can influence
the length of the lag-phase in the deterministic model. We perform a sensitivity analysis by considering
an approximation of the lag duration defined as the time elapsed between the instant when the intake
of preferential sugar and metabolite reaches a minimum threshold ε1 > 0, and the instant when a new
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phase of population growth is detected beyond another thresold ε2 > 0. Note that as in Eq (2.6) for the
birth rate (2.5) in the stochastic model, we have the following conservation law for the deterministic
limit

n1(t) + n2(t) + q1(1 + θ1q3)r1(t) + q2(1 + θ2q3)r2(t) + q3r3(t) = C st. (4.1)

Then, since Sugar 2 is almost constant during the lag-phase, the intake of the preferred sugar and
metabolite is proportional to the quantity

q1(1 + θ1q3)r1(t) + q3r3(t).

We then set

τε = tε1,ε2 − tε1 (4.2)

where

tε1 = inf {t ≥ 0 : q1(1 + θ1q3)r1(t) + q3r3(t) ≤ ε1} ,

tε1,ε2 = inf
{
t ≥ tε1 : n1(t) + n2(t) ≥ n1(tε1) + n2(tε1) + ε2

}
.

For all simulations of the deterministic model, we use the classical Runge-Kutta numerical scheme of
order 4. Figure 5 illustrates this construction of the interval [tε1 , tε1,ε2] approximating the lag phase.
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Figure 5. Approximation of the lag-phase during the diauxic growth by the interval [tε1 , tε1,ε2]
delimited by the blue dashed lines, for ε1 = 0.07 and ε2 = 0.10.
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Figure 6. Effects of changes in the switch parameter η̄1 (left), in the inhibition coefficient ki

(center) and in the initial population (right) on the lag phase duration. In this last figure, the
initial population is assumed to be (n1(0), n2(0)) = (δw, (1 − δ)w) with w = 0.28.

We present several simulations in which we vary the values of the maximal switching rate η̄1, the
inhibition coefficient ki and the initial conditions in different intervals and plot the corresponding lag
duration approximation. Figure 6 reveals that as the switching rate η̄1 increases, the lag phase become
considerably shorter. This is particularly noticeable for small values of this parameter. This is also the
case for the inhibition coefficient ki that affects the lag phase considerably for small values. Hence, the
lag phase sensitivity is significant for strong inhibition. Finally, we consider varied initial conditions
for the subpopulations which all have the same total population size, and observe that the lag phase
duration seems to be well correlated to the initial proportion of sugar1 consumers. This situation is
interesting in order to understand how the transplantation from a first culture medium to another could
affect the lag.

5. Conclusions

In this paper, we proposed a stochastic model of diauxic growth of a microorganism on two different
sugars. The model assumes that the individuals preferentially consume one of the sugars while the
metabolic pathway allowing the consumption of the second one is repressed until the first sugar is
exhausted. To account for the fact that all individual do not behave homogeneously with respect to the
consumption of sugars—which is called metabolic heterogeneity—it is supposed that some individuals
can switch their metabolism in such a way they can consume the second sugar while the first one is
not totally exhausted. Thus the model involves two different subpopulations: the first one which grows
on the first sugar, and the second one, which emerges from the first subpopulation and consumes the
second sugar. In addition, three resource variables with continuous dynamics are added: The two
sugars, and the intermediate metabolite which is produced when the sugars are consumed and then
re-consumed by both subpopulations. Then, the deterministic model that approximates the stochastic
model dynamics is derived using a large population approximation. Using parameter values that are
supposed to be close to those we can find in real experiments, for instance when Escherichia coli grows
on both glucose (the preferential sugar) and xylose, we performed a number of simulations in order
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to investigate the influence of the most important parameters on the model dynamics. Further, we
show the importance of the weighting factor K, which allows us to understand what is the population
size starting from which the deterministic model can be used to approximate the stochastic model
dynamics. Finally, it is shown that several parameters, such as the maximal switching rate η̄1 from
Sugar 1 to Sugar 2 consumption and the inhibition coefficient ki of the Sugar 1 to Sugar 2 transition,
as well as the initial conditions of the system significantly influence the lag-phase, allowing us to pave
the way and to suggest strategies to minimize the lag-phase in practical experiments.
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11. V. Bansaye, S. Méléard, Stochastic Models for Structured Populations: Scaling Limits and Long
Time Behavior, Springer, 2015.

A. Appendix

A.1. Proof of main results

Let us comment the proof of Theorem 3.1 which can easily adapted from the results in [9–11]. Let
us firstly note that we can express the stochastic process (nK(t),RK(t))t≥0 as

nK
1 (t) = nK

1 (0) + MK
1 (t) +

∫ t

0

({
b1(RK

1 (s), AK(s)) − η1(RK(s))
}
nK

1 (s) + η2(RK
1 (s))nK

2 (s)
)

ds ,

nK
2 (t) = nK

2 (0) + MK
2 (t) +

∫ t

0

({
b2(RK

2 (s), AK(s)) − η2(RK
1 (s))

}
nK

2 (s) + η1(RK(s))nK
1 (s)

)
ds ,

where the processes MK
1 and MK

2 are square integrable martingales such that

E((MK
1 (t))2) =

1
VK

∫ t

0

({
b1(RK

1 (s), AK(s)) + η1(RK(s))
}
nK

1 (s) + η2(RK
1 (s))nK

2 (s)
)

ds ,

E((MK
2 (t))2) =

1
VK

∫ t

0

({
b2(RK

2 (s), AK(s)) + η2(RK
1 (s))

}
nK

2 (s) + η1(RK(s))nK
1 (s)

)
ds ,

E(MK
1 (t)MK

2 (t)) = −
1

VK

∫ t

0

(
η1(RK(s)) nK

1 (s) + η2(RK
1 (s)) nK

2 (s)
)

ds . (A.1)

The proof firstly consists in showing that the sequence of laws of the stochastic processes
(nK(t),RK(t), AK(t), t ≥ 0)K is relatively compact. It is based on 2-moments estimates, uniform on
finite time intervals and on K and on a well known criterion of uniform tightness (cf. for
example [11]). Then there exists at least one limiting probability measure (on the path space). Using
the fact that the jump amplitudes are going to 0 when K tends to infinity, uniformly on finite time
intervals, we deduce that these probability measures only charge continuous trajectories. Moreover,
the moment estimates and Eq (A.1) allow to prove that the martingale part converges in probability to
0 when K tends to infinity. Therefore, it is easy to deduce that the limiting probability measures only
charge the solutions of the dynamical system (3.1). The last step consists in proving the uniqueness of
such a solution, which is due to a Cauchy-Lipschitz Theorem.

A.2. Numerical simulations

In order to simulate the Markov process (XK(t))t≥0 = (nK(t),RK(t), AK(t))t≥0 defined in Eq (2.1)
for various sets of parameters, we propose an algorithm simulating numerically the differential system
satisfied by the resources in between the jump instants, while the jump instants and the jump amplitudes
are simulated directly in terms of the past. The ideas are based on first principles according to the
Markov property.
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The jump structure of (XK(t))t≥0 can be described locally at each state x by the value α(x) ≥ 0 of a
jump rate function α and if α(x) > 0 by a probability measure π(x, dh) for drawing the amplitudes of
the jumps. More precisely, there are overall p ≥ 1 possible non-null jump amplitudes h1, · · · , hp, taken
at each state x = (n, r, a) at respective rates α1(x) ≥ 0, · · · , αp(x) ≥ 0, and

α(x) =

p∑
i=1

αi(x) , π(x, hi) =
αi(x)
α(x)

, i = 1, · · · , p .

The strong Markov property yields interesting consequences for the construction of the process. The
future of the process after each jump is independent from its past given the new state. Thus, in order
to construct the process it is sufficient to be able to do so from time 0 until the first jump instant, and
then iterate the procedure by considering each jump instant as a new time origin. Moreover, starting at
time 0 the probability that the process (XK(t))t≥0 has not jumped yet at time t > 0 is given in terms of
the rate function α by

exp
(
−

∫ t

0
α(XK(s)) ds

)
.

This allows to construct the first jump instant as follows. If the non-decreasing continuous process
(Λ(t))t≥0 and its left-continuous inverse (Λ−1(t))t≥0 are defined by

Λ(t) =

∫ t

0
α(XK(s)) ds , Λ−1(t) = inf{u ≥ 0 : Λ(u) ≥ t} , (A.2)

and D is an exponential random variable of parameter 1, then

P
(
Λ−1(D) > t

)
= P

(
D >

∫ t

0
α(XK(s)) ds

)
= exp

(
−

∫ t

0
α(XK(s)) ds

)
.

Hence, we can simulate the first jump instant T1 of the process by taking T1 = Λ−1(D) while
simultaneously constructing the process on [0,T1). If XK(T1−) = x then XK(T1) = x + h for a jump
amplitude h drawn according to π(x, dh).

Using this construction directly for an actual simulation raises several issues.
The first problem is that we must be able to simulate the process (XK(t))t≥0 up to the first jump

instant. In the present situation this consists in simulating the components (RK(t), AK(t))t≥0 of the
Markov process (2.1) by solving the differential system (2.4) in which the other components of (2.1)
remain constant between jumps. This cannot be done exactly but can be approximated numerically
quickly and with precision.

The second problem is that simultaneously to (RK(t), AK(t))t≥0 we must be able to compute the
integral Λ(t) and its inverse Λ−1(t) defined in Eq (A.2). This can be done numerically but is often
costly in computer time and inefficient. This has a practical solution which we proceed to describe.
We introduce a function α̃ such that α ≤ α̃ and that the corresponding Λ̃ and that Λ̃−1 defined
similarly to Eq (A.2) are simpler to compute than Λ and Λ−1. We simulate the process (XK(t))t≥0 by an
acceptance-rejection method which proposes a jump from state x at rate α̃(x) and accepts it with
probability α(x)/α̃(x) and else rejects it. There are various ways to justify that this construction is
correct. One of these is to consider the rejection as the introduction of a jump of amplitude 0 taken at
the excessive rate α̃(x) − α(x) (the process does not actually jump, and this is called a “fictitious
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jump”) and reason as above. The simplest situation is when the dominating function α̃ is a constant.
Then the true jump instants of (XK(t))t≥0 constitute a thinning of a Poisson process of constant
intensity α̃, which can be easily simulated, in which a jump instant of this Poisson process taken when
XK(T1−) = x is accepted with probability α(x)/α̃(x).

Let us come back to our model and denote by L(XK(0)) the distribution of the initial random
vector XK(0), by E (λ) the exponential law with parameter λ > 0 and by U([0, 1]) the uniform law
on [0, 1]. If we moreover denote by (φ(x, t − t0))t≥t0 the flow of the process (XK(t))t≥0 from an initial
condition XK(t0) = x until the next jump time, the above description can be summarized in the
following algorithm.

Algorithm:

Simulate x0 ∼ L(XK(0))
T0 ←− 0 ;
k ←− 0 ;
Repeat

Simulate εk+1 ∼ E (α̃ (xk)) ;
Tk+1 ←− Tk + εk+1 ;
Follow the flow (φ(xk, t − Tk))t≥Tk

for resources, until the moment Tk+1 ∧ T ;
xk+1 ←− φ(xk,Tk+1 ∧ T − Tk) ;
If Tk+1 < T , then

Simulate U2k ∼ U([0, 1]) ;
If U2kα̃(xk+1) ≤ α(xk+1), then

i←− 1 ;
Simulate U2k+1 ∼ U([0, 1]) ;
s←− α1(xk+1) ;
While i < p and U2k+1α(xk+1) > s, do

i←− i + 1 ;
s←− s + αi(xk+1) ;

End While.
xk+1 ←− xk+1 + hi ;

End If.
End If.
k ←− k + 1 ;

Until Tk ≥ T .
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