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Abstract: Manual microscopic analysis is the gold standard for analyzing blood smear. Microscopic 

analysis of blood smear by a hematologist is subjected to many challenges such as inter-observer 

variations, operator experience, and conditions of observation. This study aims to examine several 

parameters extracting from the features of blood smear images. These parameters were used to develop 

a predictive function, which can be used to automate the microscopic analysis of blood cells instead 

of manual observation. Fractal dimension, roundness, and aspect ratio were estimated for two types of 

abnormal erythrocytes: echinocyte and sickle cell. Standard conditions and the choosing of the 

optimum parameters through the imaging preprocessing were done in order to ensure that the chosen 

parameters reflect the morphological characteristics of examined erythrocytes. Statistical discriminant 

analysis was used to build the predictive function for erythrocytes morphological change by a linear 

combination of the measured parameters. The measured fractal dimensions were 1.825 ± 0.008, 1.502 

± 0.019 and 1.620 ± 0.018 for control, echinocyte, and sickle cell, respectively. The roundness values 

were 0.94 ± 0.05, 0.83 ± 0.04 and 0.56 ± 0.02 for control, echinocyte, and sickle cell, respectively. The 

aspect ratio values were 1.005 ± 0.151, 1.046 ± 0.089 and 1.742 ± 0.162 for control, echinocyte, and 

sickle cell, respectively. The differences between the image analysis parameters for echinocyte and 

sickle, when compared to control, were statistically significant. The constructed discriminant function 

using measured parameters was effectively differentiating between examined erythrocytes. The results 

demonstrated that the selected image analysis parameters extracted from microscopic images with 

conjunction with statistical discriminant analysis could be used as powerful tools in the classification 

of erythrocytes according to their morphological characteristics. The findings of this study, in addition 

to the previous attempts in this filed, could help in the enhancement of a fully automated microscopic 
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system for blood smear analysis.   
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1. Introduction 

The shape transformation of erythrocytes is of great interest in the field of hematology since 

several clinical conditions are associated with erythrocytes shape alterations [1,2]. Microscopic 

observation of blood smear is still the gold standard for blood cell analysis. It is a time-consuming 

procedure and needs technical expertise to interpret what can be seen in the blood smear [3]. Recently 

hematological analyzers with automated image analysis systems have been introduced and become a 

new technology in pathology [4,5]. Once images are digitized, computer applications can be used to 

analyze the included information. Several tools, such as assisted image analysis and multispectral 

image analysis, have been developed that promise to improve accuracy, reliability, specificity, 

productivity—moreover, spatial and spectral image information to classify image contents [6].  

Quantitative image analysis is becoming a vital technique for biological experiments. Recently 

many automated image analysis methods have been developed to quantify the contents of biological 

images [7]. Many parameters are needed to be extracted from the biological images, such as the 

number, size, and shape of the cells. A productive collaboration between biologists and imaging 

processing experts and algorithm developer has been established in order to develop imaging 

processing tools could be used effectively in the biological-image analysis [8]. Fractal analysis is 

commonly used in physics, image processing, and medical sciences [9]. Cancer research and medical 

images analysis are examples for which fractal analysis has proved its utility [10-13]. The fractal-based 

techniques have been applied in many areas of digital image processing, such as image segmentation, 

image analysis, image synthesis, computer graphics, and texture coding[14,15]. Based on the fractal 

theory, image context can be constructed by a set of model parameters that require fewer bits to 

describe than the original image [16,17]. Fractals are a rough, complex geometric shape that can be 

subdivided into parts. The fractals can be described using fractal measure (K) and fractal dimension 

(FD) [16,18–26]. There are different methods to estimated FD, such as walking divider method, box-

counting, and fractional Brownian motion [27]. Box-counting is the most straightforward method 

algorithm for computing FD of 1D and 2D objects [28-30]. It works by covering fractal (its image) 

with boxes (squares) and then evaluating how many boxes are needed to cover fractal completely. 

Repeating this measurement with different sizes of boxes will result in the logarithmical function of 

box size (x-axis) and several boxes needed to cover fractal (y-axis). The Box dimension is taken as an 

appropriate approximation of the fractal dimension [16,31]. 

This study aims to evaluate the use of fractal dimension and shape descriptors in the analysis of 

erythrocytes images and examine their efficiency  in  the microscopic differentiation of erythrocytes. 

This is in addition to creating a discriminant model for testing that estimated parameters could be used 

as predictors for the morphology of erythrocytes.  

2. Materials and methods 

2.1. Sample collection and preparation 
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Blood smear slides were collected from different medical laboratories that were already diagnosed, 

and It had confirmed to contain the desired erythrocytes. The slides were classified according to the 

erythrocyte's abnormalities into three groups: Group 1: control erythrocytes, Group 2: echinocyte, and 

Group 3: sickle cells. Images were captured from each blood smear slide with a digital microscopic 

system consists of a compound light microscope (Leica DM300, Leica-microsystem), eyepiece CCD 

camera, and computer. The images were captured under a 100X oil-immersed lens and with the 

magnification of 1000X. The native resolution of the images taken was 128 × 128 pixels (0.064 × 

0.064 µm) in TIFF format. Automated imaging analysis of erythrocytes was done in three stages: 

preprocessing, segmentation, and fractal and shape descriptors analysis. MATLAB (MathWorks. 

(2011)) was used for image preprocessing, and segmentation while ImageJ was used in fractal analysis 

and shape descriptors determination [29]. Figure 1 showed the summary of the imaging preprocessing 

and processing procedures done in this study. 

 

Figure 1. The erythrocytes image processing procedures. 

2.2. Imaging preprocessing and segmentation 

All images were processed and analyzed were generated in RGB color format, which is 

challenging to be segmented [32]. Thus, we converted these images into grayscale to facilitate image 

segmentation. The cell segmentation process was done based on the analysis of the image's histogram 

to identify the two major classes present in the image, foreground "the cells" (our region of interest 

(ROI)) and background. The background intensity values tend to be higher intensity, while the 

foreground was darker than the background, as shown in Figure 2. The optimal threshold for image 

segmentation was estimated based on the image histogram to minimize the intra-class intensity 

variance "homogeneity" and increase inter-classes variance between the background and the 

foreground. All images were converted to 8-bit grayscale. Then auto-correction of the 

brightness/contrast was done. The contrast enhancement helps in accurately specify an optimal 

threshold for segmentation. The blood smear images have Bi-modal histogram distribution. One of the 

peaks represents the cells, and the other represents the background, as shown in Figure 2. By contrast 

enhancement, the separation between the two peaks was increased. 

Otsu's segmentation method is one of the popular segmentation methods that can efficiently 

segment the foreground from the background based on the image histogram [33]. Using the Otsu 

method, a robust threshold is estimated based on the enhanced histogram [34]. The optimal threshold 

is found using an exhaustive search based on all possible threshold values from 0 (minimum intensity 

value) to 255 (maximum intensity value). It shall minimize the intra-class class variability for both the 
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background and foreground. For each threshold value "𝑡" the homogeneity is calculated as follows: 

𝜎𝑤
2 (𝑡) = 𝜔0(𝑡)𝜎0

2(𝑡) + 𝜔1(𝑡)𝜎1
2(𝑡)                    (1) 

where 𝜎𝑤
2 (𝑡)is the homogeneity metric and 𝜔0(𝑡)are the 𝜔1(𝑡) class probability for the foreground 

and the background. It is calculated from the histogram using L bins as follows: 

𝜔0(𝑡) = ∑ 𝑝(𝑖)                 𝑡−1
𝑖=0 (2) 

𝜔1(𝑡) = ∑ 𝑝(𝑖)𝐿−1
𝑖=𝑡                  (3) 

𝜎0
2(𝑡)  and  𝜎1

2(𝑡) are the in-class variance. To accelerate the estimation process, inter-class variance 

is calculated as follows: 

𝜎𝑏
2(𝑡) = 𝜎2 − 𝜎𝑤

2 (𝑡) = 𝜔0(𝜇0 − 𝜇𝑇)2 + 𝜔1(𝜇1 − 𝜇𝑇)2  

= 𝜔0(𝑡)𝜔1(𝑡)[𝜇0(𝑡) − 𝜇1(𝑡)]2            (4) 

Thus, the objective is to maximize 𝜎𝑏
2(𝑡) instead of minimizing and 𝜎𝑤

2 (𝑡)  

𝜇0(𝑡) =
∑ 𝑖𝑝(𝑖)𝑡−1

𝑖=0

𝜔0(𝑡)
               (5) 

𝜇1(𝑡) =
∑ 𝑖𝑝(𝑖)𝐿−1

𝑖=𝑡

𝜔1(𝑡)
             (6) 

𝜇𝑇 = ∑ 𝑖𝑝(𝑖)                 𝐿−1
𝑖=0 (7) 

 

     The objective is to find "𝑡" to maximize 𝜎𝑏
2(𝑡) to successfully separate the foreground from the 

background. Furthermore, a smooth convex hull envelope is estimated to surround each cell to 

overcome the artifacts in the segmentation due to under segmentation. Then, the small objects in the 

image were removed using morphological operations on two steps. First, we used the opening operator 

to remove the small objects. Secondly, the images were dilated to compensate for the opening process. 

Finally, each cell is individually labeled in the input image. We estimated the size of the surrounding 

box for each cell, as shown in Figure 3. Based on the estimated bounding boxes, cells were cropped 

from the input image to be processed individually, as shown in Figure 4. 

2.3. Fractal dimension 

The fractal dimension (FD) was calculated for the segmented cells using the Box counting method. 

The cell edge boundary was extracted by edge detection technique. A grid of 𝑁 squares was 

superimposed over the edges. The boxes occupied the cell edge were counted. The Hausdorff fractal 

dimension (FD) was calculated as the following: 

𝐹𝐷 =
log (𝑁)

log (𝑁(𝑠))
              (7) 

 where, 𝑁 is the number of squares in the superimposed grid, and 𝑁(𝑠) is boxes. 
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Figure 2. Contrast Enhancement for the grayscale image. The grayscale image in (A) is 

preprocessed for contrast enhancement in (B). The histogram distribution became bi-

modal as the separation between the image object is more obvious. 

 

Figure 3. Bounding boxes around each cell. 

 

Figure 4. Individual cells are segmented and cropped from the original image. 
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2.4. Shape descriptors 

The segmented cells were represented with none zero pixels from the binary equivalent image. 

The shape features measured in this study were region and boundary-based. The features determined 

were roundness (RO) and aspect ratio (AR). RO and AR were estimated by the following formulas: 

𝑅𝑂 = 4 ×
𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎

𝜋×𝐶𝑒𝑙𝑙 𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠
           (8) 

𝐴𝑅 =
𝐶𝑒𝑙𝑙 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 

𝐶𝑒𝑙𝑙 𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 
              (9) 

2.5. Statistical analysis 

All the parameters were presented as mean ± SD. The statistical significance was considered 

as p ˂ 0.001. FD, RO, and AR were used as a predictor variable to build a discriminant model [35]. 

The proposed discriminant analysis formed from the composition of canonical discriminant functions 

of a linear combination of independent predictor variables. Predicator equations (PE) were built by the 

coefficients of predictor variables, which were the Fisher linear functions [35]. Casewise testing was 

performed to check the validity of PE. IBM SPSS 23 was used to perform statistical analysis. 

3. Results and discussion  

 

Figure 5. Fractal dimension of echinocyte and sickle cell compared to control. *** 

statistically highly significant as P < 0.001. 

Human erythrocytes were used in this study to examine that fractal dimension and shape 

descriptors parameters could reflect well the morphological characteristics of normal and abnormal 

erythrocytes. One hundred erythrocytes for each group were used in this study to be analyzed by the 

suggested image analysis parameters. As shown in Figure 5, FD for control was 1.825 ± 0.008, while 

it was 1.502 ± 0.019 and 1.620 ± 0.018 for echinocyte, and sickle cell, respectively. RO was 0.94 ± 
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0.05, 0.83 ± 0.04 and 0.56 ± 0.02 for control, echinocyte, and sickle cell, respectively. As shown in 

Figure 6, the difference between RO of control and echinocyte and the sickle cell was highly significant. 

The aspect ratio values were 1.005 ± 0.151, 1.046 ± 0.089 and 1.742 ± 0.162 for control, echinocyte, 

and sickle cell, respectively, and the differences were statistically significant, as shown in Figure 7. 

 

Figure 6. Roundness of echinocyte and sickle cell compared to control. *** statistically 

highly significant as P < 0.001. 

 

 

Figure 7. Aspect ratio of echinocyte and sickle cell compared to control. *** statistically 

highly significant as P < 0.001. 
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The normality test of FD, RO, and AR showed that they were normally distributed. As normality 

is the prerequisite of discriminant analysis, FD, RO, and AR for the three examined groups were 

suitable to be used as discriminators parameters. Table 1 shows the two canonical discriminant 

functions. The discriminant analysis showed that the two discriminant functions cumulatively 

accounted for 100 % of the variance. Thus, these two functions could represent the suggested 

predictive model correctly. Table 2 represents the links between the canonical functions and the 

original variable by introducing the structure matrix of the model. A strong positive correlation was 

indicated between FD and first function, while the strong negative correlation between RO and second 

function was reported. A moderate correlation between AR and second function was reported. Fisher's 

function coefficients are listed in Table 3. These coefficients were used to build the predictor equation 

(PE) as the following [36]: 

𝑃𝐸 = 𝐹𝐷. 𝐶𝑜𝑒𝑓𝐹𝐷 + 𝑅𝑂. 𝐶𝑜𝑒𝑓𝑅𝑂 + 𝐴𝑅. 𝐶𝑜𝑒𝑓𝐴𝑅 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡       (10) 

where 𝐶𝑜𝑒𝑓𝐹𝐷 is the group classification coefficient of 𝐹𝐷   , 𝐶𝑜𝑒𝑓𝑅𝑂  is the group classification 

coefficient of 𝑅𝑂, and 𝐶𝑜𝑒𝑓𝐴𝑅 is the group classification coefficient of 𝐴𝑅.  

PE was used in erythrocytes classification. The classification of the erythrocyte, according to the 

suggested model, was originated from the substitution for FD, RO, and AR and their coefficients given 

in Table 3 in equation 10.  Classification of the erythrocytes was done according to the largest PE value. 

The summary of the classification results of casewise testing is reported in Table 4. The comparison 

between the observed and predicted erythrocytes was 96%, 94%, and 98 % for control, echinocyte, 

and sickle cell, respectively. The coefficient of the agreement was 0.75 (95% confidence interval, p < 

0.001). In this study, evaluation of using imaging processing software in conjunction with the statistical 

tool was presented. Our results showed that the predictor function originated from the discriminant 

analysis effectively classified erythrocytes according to their morphological characteristics. Thus the 

discriminant analysis is proven to be a powerful statistical tool that overcomes the deficiency in the 

corresponding analysis tools [37,38]. The imaging analysis in this study was performed using two 

different applications MATLAB and ImageJ. This may be considered as a drawback of this study. 

Image segmentation is the most critical step in imaging processing, as well as choosing the ROI. We 

applied image segmentation by MATLAB to get reliable results with high efficiency due to the options 

offered in MATLAB. ImageJ was used in this study to estimate the fractal dimension and shape 

descriptors of erythrocytes. ImageJ offered considerable sensitivity and specificity in the 

morphological analysis of erythrocytes. The automated cell morphometric method based on 

discriminant analysis was suggested by Albertini et al. [36]. Their model was based on the 

morphometric parameters such as chromogenic index and density profile extracted from the image 

processing of erythrocytes [36]. The same analytical method was used in this study but with different 

predictor variables. By using FD with other shape descriptors from three different erythrocyte cell 

shape morphologies, three PE were constructed. PE sensitivity and specificity were higher than other 

classification functions used in the previous studies [36]. This can be explained as we entered the 

fractal dimension in the analysis with other shape descriptors. FD was used before to study living cells 

and tissues in different pathogenic cases [39-41]. Fractal analysis expresses well the details of the 

exterior features of the object [40,42]. The fractal dimension was one of the predictor variables used 

in the present study and improved remarkably the suggested classification PE results.  
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Table 1. Summary of the predictor functions. 

Function Eigenvalue % of Variance Cumulative % Canonical Correlation 

1 53.173a 78.3 78.3 0.991 

2 14.705a 21.7 100.0 0.968 

a. First 2 canonical discriminant functions were used in the analysis. 

Table 2. Structure matrix of predictor model. 

Variables Function1 Function2 

FD 0.857* 0.507 

RO 0.365 -0.744* 

AR -0.163 0.561* 

Pooled within-groups correlations between discriminating 

variables and standardized canonical discriminant functions 

Variables ordered by absolute size of correlation within function. 

*. Largest absolute correlation between each variable and any 

discriminant function. 

Table 3. Classification function coefficients. 

Variables 
Type 

Control Echinocyte Sickle cell 

FD 4524.468 3725.123 3957.578 

RO 806.539 694.857 555.051 

AR 12.752 22.147 55.269 

(Constant) -4517.802 -3098.574 -3410.204 

Fisher's linear discriminant functions. 

Table 4. Classification summary using the predictor function. 

 

 

 Predicted Group Membership  

Type Control Echinocyte Sickle cell Total 

Count % 

Control 96 % 4 % 0 100 % 

Echinocyte 4 % 94 % 2 % 100 % 

Sickle cell 0 % 2 % 98 % 100 % 

4. Conclusion 

The fractal analysis and shape descriptors in the present study reflected well the morphological 

characteristics of the erythrocytes. The discriminant analysis using fractal dimension and 

morphological parameters improved classifications results of erythrocytes. The method suggested in 

this study provides a suitable tool with high sensitivity and specificity to differentiate erythrocytes. 
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