
http://www.aimspress.com/journal/MBE

MBE, 17(5): 4578–4608.
DOI: 10.3934/mbe.2020253
Received: 12 April 2020
Accepted: 21 June 2020
Published: 02 July 2020

Research article

An optimal scheme to boost immunity and suppress viruses for HIV by
combining a phased immunotherapy with the sustaining antiviral therapy

Youyi Yang, Yongzhen Pei∗, Xiyin Liang and Yunfei Lv

School of Mathematical Sciences, Tiangong University, Tianjin 300387, China

* Correspondence: Email: yzhpei@tiangong.edu.cn.

Abstract: Despite many approaches to treat HIV virus, the endeavor, due to the inability of therapy
to eradicate HIV infection, has been aroused to formulate rational therapeutic strategies to establish
sustained immunity to suppress viruses after stopping therapy. In this paper, incorporating the time
lag of the expansion of immune cells, we propose an explicit model with continuous antiretroviral
therapy (CATT) and an intermittent immunotherapy to describe an interaction of uninfected cells,
HIV virus and immune response. Two kinds of bistability and the sensitivities of the amplitude and
period of the periodic solution with respect to all of parameters indicate that both ε and b relating
to the therapy are scheduled to propose an optimal treatment tactics. Furthermore, taking a patient
performed a CATT but with an unsuccessful outcome as a example, we inset a phased immunotherapy
into the above CATT and then adjust the therapeutic session as well as the inlaid time to quest the
preferable therapeutic regimen. Mathematically, we alter the solution of system from the basin of the
attraction of the immune-free equilibrium to the immune control balance when the treatment is ceased,
meanwhile minimize the cost function through a period of combined therapy. Due to the particularity
of our optimal problem, we contribute a novel optimization approach by meshing a special domain
on the antiretroviral and immunotherapy parameters ε and b̄, to catch an optimal combined treatment
scheme. Simulations exhibit that early mediating immunotherapy suppresses the load of virus lower
while shortening the combined treatment session does not reduce but magnify the cost function. Our
results can provide some insights into the design of optimal therapeutic strategies to boost sustained
immunity to quell viruses.
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1. Introduction

Human immunodeficiency virus (HIV) and HIV treatment have always received extensive
attention by many researchers. In 1996, Dr. He invented the famous ‘cocktail’ therapy, namely highly
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active antiretroviral therapy (HAART), from which AIDS has changed from an ‘incurable disease’ to
a controllable ‘chronic disease’ [1]. Since then, more attention has been paid to antiviral drug
therapies which aim to boost virus-specific immune response by resisting or destroying viral
infections [2–6]. Hence, HAART can effectively control viral replication in patients for a long time,
and patients can even live to their life expectancy. However HAART has some limitations, for
instance, HIV is not completely eradicated, and the virus remains hidden in some immune cells,
returning once the patient has stopped taking the antiviral; life-long HAART is thus required [7],
which brings many inconveniences and various side effects. Therefore, numerous HIV scientists are
devoted to seeking novel cures for AIDS including immunotherapy [7–11] of AIDS.

At present, the immunotherapy of AIDS has the following aspects: Anti-HIV strategy based on
antibody, such as broadly neutralizing antibodies (bNabs) [8], immune checkpoint blockers
(ICBs) [12] and antibody-mediated cell strategies to eliminate HIV infection [7]; Strategy of
therapeutic vaccine based on HIV-1; Other immunotherapies, such as the α4β7 blocker
(vedolizumab) [13], can significantly reduce the exposure of target cells to HIV by blocking the
surface of CD4+ T lymphocytes α4β7 molecules to restrict the return of CD4+ cells to the intestinal
mucosa; Immunotherapy combined with antiviral therapy and so on. The strategy of HIV-1
therapeutic vaccine is based on a class of HIV-infected people known as “elite controllers” [14].
Studies have found that very few infected people can “peacefully coexist” with the virus for a long
time. Their immune system can naturally control the replication of the virus and avoid the damage of
the virus to the immune system. “Therapeutic vaccine” aims to reactivate the immune system of the
infected person through the vaccine, so that the infected person can spontaneously produce specific
CD8+ T lymphocyte for HIV-1. After interruption of antiviral treatment, it can still inhibit the virus
and achieve functional cure.

It was argued that sustained virus-specific immunity for HIV infection may be established via
early therapy and structured therapy interruptions [15, 16]. Later, using a mathematical framework,
Komarova et al. [17] show that a single phase of antiviral therapy is also possible to achieve this goal.
Essentially, it is shown by [17] that a immune-free equilibrium (no sustained immunity) and an
immune control equilibrium (with sustained immunity) are both stable. This bistability allows a
solution from the basin of the attraction of the immune-free equilibrium to be lifted to that of the
immune control equilibrium via a single phase of therapy, resulting in sustained immunity when the
treatment is stopped.

However, HIV is rapidly reproduced and quickly becomes resistant to any single drug [18–21]. A
multi-institutional team of researchers, led by the Wistar Institute, has announced the results of a
clinical trial that showed the immune system can engage in fighting HIV infection if given the right
boost. In their studies, HIV-infected volunteers suspended their daily antiretroviral therapy to receive
weekly doses of interferon-α, an antiviral chemical produced by the human immune system.
Dramatically, 45 percent of these patients sustained the HIV control under the lower level. These
researches provide the first clinical evidence for reducing the persistent amount of HIV in patients and
increasing the ability to control HIV without continued antiretroviral therapy [22]. Hence, boosting
specific immune responses by therapeutic vaccine or immune regulation with interferon is possible
and promising.

One traditional model with antiviral drug therapy, sketched the connection among uninfected cells,
infected cells and virus, was proposed by Nowak et al. [23], which has been extensively and deeply
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probed [24, 27]. Another classical model depicted the relation between virus and immune cells was
used to snatch the boosting immunity by single or multiple phases of therapy [17, 28, 29]. But how to
tangle and capture reasonably the interaction among uninfected cells, virus and immune cells is
challenging. Furthermore, if combining antiviral drug with immune regulation therapy, what is the
dynamic outcome of three populations? In order to sustain viral suppression and immunological
motivation, which parameters and why can be adjusted to regulate therapy schemes? If we acquire
these parameters, further how to optimize these parameters to boost immune responses to sustain viral
suppression at the minimum cost after stopping treatment? These are significative and challenging
pursuits.

The outline is instructed as follows: In Section 2, a mathematical model is formulated. In Section 3,
the well-posedness and the existence of equilibrium are explored. The stability of system (2.5) as well
as Hopf bifurcation are discussed in Section 4. In Section 5, the sensitivity of the periodic solution
with sustained immunity is investigated. In Section 6, combination treatment is discussed in detail.
Finally, some conclusions are drawn in Section 7.

2. Model formulation

To answer the above issues, after principally consulting [17, 23, 29] and other literatures, we list
several main models and then formulate our model.
• Uninfected cells, infected cells, virus model and immune response model
Viral reproduction always involves host cells and uses the cellular machinery for the synthesis of

their genome and other components. Nowak et al. [30] describe the relationship between the
populations of uninfected cells, x, infected cells that produce virus, y, and free virus particles, v, the
abundance of virus-specific CTLs z, and design a simple but natural mathematical model based on
ordinary differential equations [23, 24, 30]:

dx
dt

= s − dx − βxv,
dy
dt

= βxv − µy − pyz,
dv
dt

= ky − ωv,
dz
dt

= cyz − bz.

Uninfected cells are produced at a constant rate s and die at the rate dx. Free virus infects uninfected
cells to produce infected cells at rate βxv. Infected cells die at rate µy. New virus is produced from
infected cells at rate ky and dies at rate ωv. The average life-times of infected cells are thus given by
1/µ. Hence, the average number of virus particles produced over the lifetime of a single infected cell
(the burst size) is given by k/µ. The rate of CTL proliferation in response to antigen is given by cyz. In
the absence of stimulation, CTLs decay at rate bz. Infected cells are killed by CTLs at rate pyz.

By the quasi steady-state assumption for the turnover of free virus is much faster than that of infected
cells [25, 26], we know that y = (ω/k)v at steady-state from the 3th equation of the above model, that
is, the amount of free virus is simply proportional to the number of infected cells. Hence the 2nd and
4th equations of the above model are equivalent to v′ = kβxv/ω − µv − pvz and z′ = ωcvz/k − bz,
respectively. For convenience, let k/ω = ϑ. Then the above four-dimensional model is reduced to a
three-dimensional one:

dx
dt

= s − dx − βxv,
dv
dt

= ϑβxv − µv − pvz,
dz
dt

= cvz/ϑ − bz, (2.1)
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• Virus and immune response model
Note that the immune response after viral infection is universal and necessary to eliminate or control

the disease. Antibodies, cytokines, natural killer cells, and T cells are essential components of a normal
immune response to a virus. Indeed, in most viral infections, cytotoxic T lymphocytes (CTLs) play a
critical role in antiviral defense by attacking virus-infected cells. It is believed that they are the main
host immune factor that limit the development of viral replication in vivo and thus determine virus
load [30–32]. Therefore, the population dynamics of viral infection with CTL response has been paid
much attention in the last few decades. Komarova et al. [17] established a mathematical model to
explore the relation between the virus population v and a population of immune cells z:

dv
dt

= rv(1 −
v
k

) − av − pvz,
dz
dt

=
cvz

1 + ηv
− bz − mvz, (2.2)

The virus population is assumed to grow logistically: r is the viral replication rate at low viral loads,
and assume that this rate decreases linearly with increased viral load to reach zero at a viral load k.
The virus population decays at a rate a. Overall, this gives a logistic growth with a net growth rate
r − a and a carrying capacity of k(r − a)/r. Moreover, virus is killed by the CTL response at a rate
pvz, corresponding to lytic effector mechanisms of CTL response. Immune cells at time t due to virus
activation, expand at a rate cvz/1 + ηv [33, 34], which depends on the viral load and the number of
immune cells at time t, and implies that when the virus load is low, the level of immune response is
simply proportional to both the virus population, v, and the immune response, z, but that the immune
response saturates when the virus load is sufficiently high. Immune cells die at rate b and are inhibited
by the virus population at rate mvz [28].

In addition, it has been recognized that the immune response is not instantaneous and the process
involves a sequence of events such as antigenic activation, selection, and proliferation of the immune
cells. It is believed that they are the main host immune factor that limit the development of viral
replication in vivo and thus determine virus load [35,36]. Therefore, the time lag between these events
should be taken into consideration in modeling and the relationship between virus population and a
population of immune cells can be simply described as:

dv
dt

= M(v) − av − g1(v, z),
dz
dt

= h(v(t − τ), z(t − τ)) − bz − g2(v, z), (2.3)

The virus population grows at a rate described by the function M(v). Immune expansion is determined
by the virus load and the number of immune cells z at time t− τ and τ is the time lag for the production
of new immune cells mediated by the infection, which is described by the function h(v(t − τ), z(t − τ)).
Functions g1(v, z) and g2(v, z) represent the interaction between immune cells and virus and further
h, g1 and g2 can be written as Holling functional response.
• Uninfected cells, virus and immune response model with combined treatment
For the sake of deep studying the dynamic behavior of immune response in human body, tangling

(2.1) with (2.3), one formulates a model consisted of three variables including uninfected target cells
x, virus v, and CTL response z. Specifically, insetting a phased immunotherapy into a continuous
antiviral treatment (such as reverse transcriptase inhibitors (RTIs)) [24,27,28,37], the following model
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with hybrid treatment comes into being:



dx
dt

= s − dx − (1 − Ψ(t))βxv,

dv
dt

= (1 − Ψ(t))ϑβxv − av − pvz,

dz
dt

=
cv(t − τ)z(t − τ)

1 + ηv(t − τ)
− bz − mvz + Θ(t)z,

(2.4)

where

Ψ(t) =


ε0 t ∈ [0, t1),
ε∗ t ∈ [t1, t2],
ε0 t ∈ (t2,T ],

Θ(t) =


0 t ∈ [0, t1),
b̄∗ t ∈ [t1, t2],
0 t ∈ (t2,T ].

Now before the detailed indagation, several symbols are given. Suppose that the patient remains on the
antiviral treatment during the whole course of patient observed [0,T ]. While t1 ∈ (0,T ) and t2 ∈ (0,T )
with t1 < t2 are the initial and terminal time of immunotherapy respectively. Then [0, t1] and [t2,T ]
are called the single antiviral treatment session (ATTS), while [t1, t2] is referred to as the combined
treatment session (CTS). 0 ≤ ε0, ε

∗ ≤ 1 describe the effectiveness of antiretroviral drugs [38] during
ATTS and CTS; b̄∗ ≥ 0 represents the efficacy of immunotherapy, which could boost specific immune
responses by therapeutic vaccine or immune regulation with interferon. The biological meaning of
parameters is presented in Table 1.

The initial conditions for system (2.4) are

(φ1(θ), φ2(θ), φ3(θ)) ∈ C+ = C([−τ, 0],R3
+), φi(0) > 0, i = 1, 2, 3,

where R3
+ = (x, v, z) ∈ R3 : x ≥ 0, v ≥ 0, z ≥ 0. Therefore, all the standard results on existence,

uniqueness and continuous dependence on initial condition of solutions are evidently satisfied.

Due to the inability of single antiviral therapy to eradicate HIV infection for many patients, in this
paper we devote to the therapeutic effect of the intermittent immunotherapy based on a continuous
antiviral treatment. So we firstly aim at the dynamic behaviors of following model which is the case in
model (2.4) under Ψ ≡ ε and Θ(t) ≡ 0:



dx
dt

= s − dx − (1 − ε)βxv,

dv
dt

= (1 − ε)ϑβxv − av − pvz,

dz
dt

=
cv(t − τ)z(t − τ)

1 + ηv(t − τ)
− bz − mvz.

(2.5)
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Table 1. Parameters and values used in simulations for system (2.5).

Parameter Description Value Reff.
s Production rate of Target cell 0.7 cells µl−1 day−1 –
d Death rate of Target cell 0.01 day−1 [43]
k Viral production rate 90 day−1 [44]
β Infection rate of Target cell 0.045 µl virus−1 day−1 –
ε Efficacy of antiviral drugs 0.8 –
a Death rate of virus 3 day−1 [29]
p Killing rate of virus 0.3 µl cells−1 day−1 –

by immune cells
c Proliferation rate of immune cells 0.6 µl virus−1 day−1 [43]
η Hill coefficient in the rate of 1 µl virus−1 [43]

immune cell production
b Death rate of immune cells 0.3 day−1 [45]
m Immune impairment rate 0.05 µl virus−1 day−1 [45]
τ Time lag for production of new – [35]

immune cells mediated by infection

3. Equilibria and reproduction thresholds

For the nonnegativeness and boundedness of solutions, we state the following lemma.

Lemma 3.1. There exists a positively invariant box Ω = [(x, v, z) ∈ R3
+ : 0 ≤ x ≤

M
ϑ
, 0 ≤ v ≤

M, 0 ≤ z ≤
c
p

M] in R3
+ such that all solutions of (2.5) with nonnegative initial conditions approach Ω

as t → ∞, where M =
sϑ
µ

+ κ, µ = min{a, b, d} and κ is a positive constant.

Proof. Solving v(t) in the second equation of (2.5) yields

v(t) = v(0)e

∫ t

0
[(1 − ε)ϑβx(θ) − a − pz(θ)]dθ

, for t ≥ 0.

Next we show that x(t) is nonnegative for t > 0. Assume to the contrary that x(t) ≥ 0 for t ∈ [0, t̂)
and x(t̂) = 0 with x′(t̂) < 0 for some t̂ > 0. Then it follows from the first equation of system (2.5) that
x′(t̂) = s > 0. This is a contradiction. Thus x(t) ≥ 0 for all t ≥ 0. Similarly, we can obtain that z(t) is
nonnegative for t > 0.

Adding up the three equations of (2.5), one gets

(ϑx(t) + v(t) +
p
c

z(t + τ))′ ≤ sϑ − dϑx(t) − av(t) − pv(t)z(t) +
pv(t)z(t)
1 + ηv(t)

−
p
c

bz(t + τ)

≤ sϑ − µ(ϑx(t) + v(t) +
p
c

z(t + τ)),
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where µ = min{a, b, d}. By the comparison theorem, we obtain that lim
t→∞

(ϑx(t) + v(t) +
p
c

z(t + τ)) ≤
sϑ
µ
.

That is, for a positive constant κ, ϑx(t) + v(t) +
p
c

z(t) ≤
sϑ
µ

+ κ=̇M holds for τ = 0 and t large enough.

Then we get a positively invariant box Ω = {(x, v, z) ∈ R3
+ : 0 ≤ x ≤

M
ϑ
, 0 ≤ v ≤ M, 0 ≤ z ≤

c
p

M} in

R3
+ by the non-negativity of x(t), v(t) and z(t), such that all solutions with nonnegative initial conditions

approach as t → ∞.
�

Next, we consider the existence of equilibrium by the right side of system (2.5).
• Virus-free equilibrium
Clearly, system (2.5) admits a virus-free equilibrium E0 = (x0, 0, 0), corresponding to the maximal

level of healthy CD4+T cells and the extinction of free virus, where x0 = s/d.
• Virus-boom and immune-free equilibrium
When z = 0, we solve the first two equation of the right side of (2.5) obtains a virus-boom and

immune-free equilibrium E1(x1, v1, 0), corresponding to partial CD4+T cells are infected but no CTL
response, where

x1 =
a

(1 − ε)ϑβ
, v1 =

sϑ
a
−

d
(1 − ε)β

=

dϑ(
(1 − ε)ϑβs

ad
− 1)

a
x1.

This implies that the level of the virus depends on related parameters of uninfected cells and the virus.
In addition, we know that if (1 − ε)ϑβs/(ad) > 1, then system (2.5) has a virus-boom and immune-
free equilibrium and the virus load in direct proportion to the population of uninfected cells at E1.

At this time, there is a linear relationship between the virus and the uninfected cells because of the
disappearance of immune response.
• Virus-suppression and immune-boost equilibrium
In the case of z , 0, corresponding to CTL response, assume that the E∗i (x∗i , v

∗
i , z
∗
i ) (i = 1, 2) is a

virus-suppression and immune-boost equilibrium with x∗i > 0, v∗i > 0, z∗i > 0. Solving the the first two
equation of the right side of (2.5) yields

x∗i =
s

(1 − ε)βv∗i + d
,

z∗i =
(1 − ε)ϑβx∗i − a

p
=

p[s(1 − ε)ϑβ − a((1 − ε)βv∗i + d)]
(1 − ε)βv∗i + d

.

Obviously, x∗i > 0 for v∗i > 0 and z∗i > 0, that is s(1 − ε)ϑβ − a((1 − ε)βv∗i + d) > 0, which is equivalent
to v∗i < s(1 − ε)ϑβ − ad/(a(1 − ε)β = v1. This shows that the sustained immunity exists if and only if
the virus load is less than the number of virus at E1.

It follows from the third equation of (2.5) that E∗i exists if and only if v∗i is a positive root of the
quadratic polynomial

g(v) = mηv2 − (c − m − bη)v + b, (3.1)

provided that v∗i < v1. Furthermore, suppose that
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(H1) : c > (
√

m +
√

bη)2

holds, then g(v) has two positive zeros:

v∗1,2 =
c − m − bη ∓

√
(c − m − bη)2 − 4bmη
2mη

.

According to the formula of v∗1 and v∗2, we know that the level of the virus depends on related
parameters of immune factors, that is c,m, b, η, where c is proliferation rate of immune cells, which
could boost immune response however the existence of m, b, η could suppress the immune response.
Hence if c > m + bη, i.e., positive feedback is greater than negative feedback, then there exists immune
response and positive equilibrium. Otherwise, if c < m + bη, then no CTL response and there is no
positive equilibrium.
• Remark on different virus loads
From the above calculations, we know that the virus load v1 is administrated by the proliferation,

decay of uninfected cells as well as the infectivity of virus when the immune response is free; whereas
the load virus v∗1,2 is dominated by immune response and is independent of it’s increment and decrement
when CTL effector is activated. Intuitively, this opinion is ridiculous. I think the argument maybe is
caused by neglecting the proliferation of virus.
• Reproduction thresholds
Let

R0 = (1 − ε)ϑβ ·
s
d
·

1
a

=
(1 − ε)ϑβs

ad
,

where (1 − ε)ϑβ represents infection rate of CD4+ T cells under antiretroviral treatment, s/d is the
population of uninfected cells without infection and 1/a is the average life-times of free virus [24].
Thus, the ratio R0 describes the average number of newly infected cells generated from one infected
cell at the beginning of the infectious process, which is called the basic reproduction number. Further,
from the existence of both virus-suppression and immune-boost equilibrium E1 and virus-boom and
immune-free equilibrium E∗i , we know that the R0 is a fundamental measure, which determines whether
a virus spreads within the host or becomes extinct. If R0 > 1, the virus can establish an infection. In
this case, the immune response expands and the system converges to the equilibriums E1 or E∗i .

Furthermore we define two threshold values as

R1 =
(1 − ε)β

d
v∗1 + 1, R2 =

(1 − ε)β
d

v∗2 + 1.

Lemma 3.2. Assume that (H1) is satisfied, that is, positive feedback is greater than negative feedback.
(a) If

R0 ≤ 1 (3.2)

holds, corresponds to the average number of newly infected cells produced by an infected cell is no
more than 1, then the infection-free equilibrium E0(x0, 0, 0) is the only biologically meaningful
equilibrium.

(b) If
1 < R0 ≤ R1 (i.e., 1 < R0 & v∗1 ≥ v1) (3.3)
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holds, corresponds to the average number of newly infected cells produced by an infected cell is
greater than 1 but no more than the threshold R1, then there are two equilibria: E0 and immune-free
equilibrium E1(x1, v1, 0).

(c) If

R1 < R0 ≤ R2 (i.e., 1 < R0 & v∗1 < v1 ≤ v∗2) (3.4)

holds, corresponds to the average number of newly infected cells produced by an infected cell is greater
than 1 but no more than the threshold R2 (R2 > R1), then there are three equilibria: E0, E1 and
additional equilibrium E∗1(x∗1, v

∗
1, z
∗
1).

(d) If

R0 > R2 (i.e., 1 < R0 & v∗2 < v1) (3.5)

holds, corresponds to the average number of newly infected cells produced by an infected cell large
enough and larger than R2, then there are four equilibria: E0, E1, E∗1 and E∗2(x∗2, v

∗
2, z
∗
2).

• Relation of virus loads with parameters under immune-emerging
In immune-emerging case, equilibria E1 and E∗1 are stable. In view of the fact the immune-emerging

virus load v∗1 is less than immune-free virus load v1, we know that E∗1 is more medically desirable. In
addition, from Figure 1, immune-emerging virus load v∗1 is amplified as b,m and η increases, while it
is descended as c increases. So it is feasible that treating the AIDS by arousing immunity. Particularly,
the virus load v∗1 sharply changes near the threshold values, which will contribute to devise therapeutic
schedules.
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Figure 1. The variation trends of virus loads v∗1 (solid line) and v∗2 (dashed line) on parameters
c, m, b and η. Here c = 4.5,m = 1, b = 1, η = 0.5 and in every subgraph the corresponding
parameter varies and the other parameters are fixed.

4. Dynamics of system (2.5)

In this section, we consider system (2.5) and study its dynamics.
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4.1. Global stability of infection-free equilibrium

Theorem 4.1. If R0 ≤ 1, then E0 is globally asymptotically stable in Ω; while if R0 > 1, then E0 is
unstable.

Proof. Linearizing (2.5) about E0, we obtain the characteristic equation

(λ + d)(λ + b)(λ + a − (1 − ε)ϑβx0) = 0,

and results that if R0 < 1, then E0 is locally asymptotically stable and if R0 > 1, then E0 is a saddle
point, hence unstable.

Defined a Lyapunov functional L(xt, vt, zt) = vt(0), where xt(θ) = x(t + θ), vt(θ) = v(t + θ), zt(θ) =

z(t + θ) for θ ∈ [−τ, 0]. Calculating the time derivative of L along the solutions of system (2.5), we have

L′ | (2.5) = v′(t) = (1 − ε)ϑβxv − av − pvz ≤ av(R0 − 1).

Obviously, L′ | (2.5) ≤ 0 for all x(t), v(t), z(t) ≥ 0 provided that R0 ≤ 1. L′ = 0 only if v = 0.
It can be verified that the maximal compact invariant set in L′ | (2.5) = 0 is the singleton E0. Thus it
follows from the Lyapunov-LaSalle Invariance Principle [39] that E0 is globally asymptotically stable
in Ω. �

4.2. Stability of immune-free equilibrium

The characteristic equation associated with the linearization of system (2.5) at E1 is

(λ2 + a1λ + a2)(λ + mv1 + b −
cv1

1 + ηv1
e−λτ) = 0,

where
a1 = d + (1 − ε)βv1 + a − (1 − ε)ϑβx1 = dR0,

a2 = [d + (1 − ε)βv1][a − (1 − ε)ϑβx1] + (1 − ε)2ϑβ2x1v1 = ad(R0 − 1).

Note that E1 exists if and only if R0 > 1, therefore, the two eigenvalues λ1 and λ2 of the characteristic
equation at E1 satisfy λ1 + λ2 = −a1 < 0, λ1λ2 = a2 > 0. As a consequence, both λ1 and λ2 must have
negative real parts. Therefore E1 is asymptotically stable if all zeros of g2(λ) have negative real parts,
where

g2(λ) = λ + mv1 + b −
cv1

1 + ηv1
e−λτ.

By analyzing the distribution of zeros of g2(λ), we have the following result.

Theorem 4.2. Consider system (2.5) under the assumption (H1). If either (3.3) or (3.5) holds, then E1

is locally asymptotically stable, and if (3.4) holds, then E1 is unstable.

Proof. It is easy to prove that E1 is stable when τ = 0. Next we consider the distribution of the zeros of
g2(λ) when τ > 0. Assumption (ii) of [40] holds, which ensures that no zero will come in from infinity.
That is, Re(λ) < +∞ for any zero of g2(λ). This, together with the fact that all zeros of g2(λ) depend
continuously on τ [41], implies that, as τ increases, the zeros of g2(λ) can cross the imaginary axis only
through a pair or pairs of nonzero purely imaginary zeros. Suppose that iω (ω > 0) is a zero of g2(λ).
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Substituting iω (ω > 0) into the equation g2(λ) = 0 and separating the real and imaginary parts, we
obtain

mv1 + b =
cv1

1 + ηv1
cosωτ, ω = −

cv1

1 + ηv1
sinωτ. (4.1)

The above yields

ω2 = (
cv1

1 + ηv1
)2 − (mv1 + b)2 = (

cv1

1 + ηv1
+ mv1 + b)(

cv1

1 + ηv1
− mv1 − b). (4.2)

Note that
cv1

1 + ηv1
− mv1 − b = −

g(v1)
1 + ηv1

. If (3.3) or (3.5) holds, then g(v1) > 0, and thus the righthand

side of (4.2) is negative. Therefore Eq (4.2) has no positive roots and hence g2(λ) has no purely
imaginary zeros for all τ > 0. That is, in this case, E1 is asymptotically stable for all τ > 0. If (3.4)
holds, then g(v1) < 0 and Eq (4.2) has one positive root, which we denote by ω̄. This shows that g2(λ)
admits a pair of purely imaginary roots ±iω̄ for τ = τ̄ j with

τ̄ j =
1
ω̄

{
arccos[

(mv1 + b)(1 + ηv1)
cv1

] + 2 jπ
}
, j = 1, 2, · · ·

Now we check the transversality condition. Substituting λ(τ) into the characteristic equation g2(λ) =

0 and differentiating the resulting equation with respect to τ, we obtain[
dλ
dτ

]−1

= −
(1 + ηv1)eλτ

cv1λ
−
τ

λ
. (4.3)

It follows from (4.1) and (4.3) that[
d(Reλ(τ))

dτ

]−1

τ=τ̄ j,λ=ω̄i
= Re

[
−(1 + ηv1)eλτ

cv1λ

]
τ=τ̄ j,λ=ω̄i

> 0.

This implies that
[
d(Reλ(τ))

dτ

]
τ=τ̄ j,λ=ω̄i

> 0. Therefore, there exists a pair of complex conjugate

eigenvalues crossing to the right at τ = τ̄ j and remaining to the right of the imaginary axis when
τ > τ̄ j. Thus the characteristic equation (4.1) always has roots with positive real parts for all τ ≥ 0 and
E1 is unstable provided (3.4) holds. �

4.3. Stability of positive equilibrium and Hopf bifurcation

The characteristic equation associated with the linearization of system (2.5) at E∗i (i = 1, 2) is

Gi(λ) = λ3 + ai,2λ
2 + ai,1λ + ai,0 + (bi,2λ

2 + bi,1λ + bi,0)e−λτ = 0, (4.4)

with
ai,2 = d + (1 − ε)βv∗i + mv∗i + b,

ai,1 = (d + (1 − ε)βv∗i )(mv∗i + b) − mpv∗i z∗i + (1 − ε)2ϑβ2x∗i v∗i ,

ai,0 = (1 − ε)2ϑβ2x∗i v∗i (mv∗i + b) − mpv∗i z∗i (d + (1 − ε)βv∗i ),

bi,2 = −(mv∗i + b), bi,1 = (d + (1 − ε)βv∗i )(−mv∗i − b) +
cpv∗i z∗i

(1 + ηv∗i )2 ,

bi,0 = (1 − ε)2ϑβ2x∗i v∗i (−mv∗i − b) + (d + (1 − ε)βv∗i )
cpv∗i z∗i

(1 + ηv∗i )2 .
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When τ = 0, it is easy to prove that E∗1 is asymptotically stable, i.e., all roots of the characteristic
equation (4.4) for i = 1 have negative real parts. As τ increases, a stability switch at E∗1 can occur only
when there are some characteristic roots crossing the imaginary axis to the right. Thus we consider
the possibility of having a pair of purely imaginary roots λ = ±iω (ω > 0) for Eq (4.4) when τ > 0.
Substituting λ = ±iω (ω > 0) into Eq (4.4) and separating the real and imaginary parts, one obtains

a1,2ω
2 − a1,0 = (b1,0 − b1,2ω

2) cos(ωτ) + b1,1ω sin(ωτ),
ω3 − a1,1ω = b1,1ω cos(ωτ) − (b1,0 − b1,2ω

2) sin(ωτ).
(4.5)

Squaring and adding both equations of (4.5), we get

ω6 + (a2
1,2 − 2a1,1 − b2

1,2)ω4 + (a2
1,1 − 2a1,2a1,0 + 2b1,0b1,2 − b2

1,1)ω2 + (a2
1,0 − b2

1,0) = 0. (4.6)

Let m = ω2, it follows
h(m) = m3 + A1m2 + A2m + A3 = 0, (4.7)

where
A1 = a2

1,2 − 2a1,1 − b2
1,2, A3 = a2

1,0 − b2
1,0,

A2 = a2
1,1 − 2a1,2a1,0 + 2b1,0b1,2 − b2

1,1.

Now let’s seek for the conditions that (4.7) has at least one positive root.

Lemma 4.1. Consider (4.7), we can obtain

(i) If A3 < 0, then (4.7) must have at least one positive root.

(ii) If A3 ≥ 0 and ∆ ≤ 0 then (4.7) has no positive roots.

(iii) If A3 ≥ 0 and ∆ > 0, then (4.7) must have positive roots if and only if m2 > 0 and h(m2) ≤ 0.

Proof. For A3 < 0, we know that limm→+∞ h(m) = +∞ and h(0) = A3 < 0, thus h(m) must have at least
one positive root. In the case of A3 ≥ 0, we get

h′(m) = 3m2 + 2A1m + A2. (4.8)

Let ∆ = 4A2
1 − 12A2, h(m) = 0 does not have a positive real root for ∆ ≤ 0 and if ∆ > 0, then two roots

of (4.7) are m1 =
−2A1 −

√
∆

6
, m2 =

−2A1 +
√

∆

6
.

Furthermore, h′′(m) = 6m+2A1. It is easily seen that h′′(m1) < 0 and h′′(m2) > 0,which implies that
m1 is a local maximum of h(m) and m2 is a local minimum of h(m). It is obvious that h(m) is increasing
for (−∞,m1] or (m2,+∞), and h(m) is decreasing if m ∈ (m1,m2]. Assume to the contrary that m2 ≤ 0,
then h(m2) ≤ h(0) = A3 and h(m) > h(0) for any m > 0, thus h(m) has no roots for all m ∈ (0,+∞).
This is a contradiction. On the other hand, if m2 > 0 and h(m2) = 0, then m2 is a root of h(m) when
A3 ≥ 0 and ∆ > 0. And if h(m2) < 0, we know that limm→∞ h(m) = +∞, which implies that there
exists m3 > m2 such that h(m3) > 0. therefore h(m) must have at least one positive root provided that
m ∈ (m2,m3). �

Consequently we have the following result. Assume that (4.7) has positive roots. Without any loss
of generality, we may assume there exists three roots and three roots of (4.6) are m∗1, m∗2, m∗3, we have

ω1 =

√
m∗1, ω2 =

√
m∗2, ω3 =

√
m∗3.
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Solving Eqs (4.5) for τ yields

cosωτ =
b1,1ω

2(ω2 − a1,1) − (a1,2ω
2 − a1,0)(b1,2ω

2 − b1,0)
(b1,2ω2 − b1,0)2 + b2

1,1ω
2

.

τ
( j)
k =

1
ωk

arccos

b1,1ω
2
k(ω2

k − a1,1) − (a1,2ω
2
k − a1,0)(b1,2ω

2
k − b1,0)

(b1,2ω
2
k − b1,0)2 + b2

1,1ω
2
k

 + 2 jπ

 ,

where k = 1, 2, 3, j = 0, 1, 2, 3, . . . .

Let
τ0=̇τ

(0)
k0

= min
k=1,2,3

{τ(0)
k }, ω0=̇ωk0 . (4.9)

Lemma 4.2. Assume that h′(ω2
0) , 0, then (4.4) admits a pair of purely imaginary roots ±iω0 for

τ = τ0 and
d(Re(λ(τ)))

dτ
|τ=τ0,λ=ω0i, 0.

Proof. Let
F(λ) = λ3 + a1,2λ

2 + a1,1λ + a1,0, G(λ) = b1,2λ
2 + b1,1λ + b1,0.

Thus, (4.4) is equivalent to
F(λ) + G(λ)e−λτ = 0. (4.10)

This shows that F(λ) = −G(λ)e−λτ. Substituting ±iω into Eq (4.10), we obtain

F(iω) + F(iω)
2

=
− cosωτ(G(iω) + G(iω))

2
+

i sinωτ(G(iω) −G(iω))
2

,

F(iω) − F(iω)
2

=
cosωτ(G(iω) −G(iω))

2
+

i sinωτ(G(iω) + G(iω))
2

,

Squaring and subtracting both equations of above two yields

F(iω)F(iω) −G(iω)G(iω) = 0. (4.11)

In fact, (4.11) is equivalent to (4.6), we get

h(ω2) = F(iω)F(iω) −G(iω)G(iω).

Next differentiating the resulting equation with respect to ω

2ωh′(ω2) = i[F′(iω)F(iω) − F(iω)F′(iω) −G′(iω)G(iω) + G(iω)G′(iω)]. (4.12)

Consider that λ = iω0 is not a single root of (4.10), we have

d
dλ

[F(λ) + G(λ)e−λτ] |λ=iω0= 0.

A direct calculation gives F′(iω0) + G′(iω0)e−iω0τ0 − τ0G(iω0)e−iω0τ0 = 0. Substituting λ = iω0 into
(4.10), we obtain

F(iω0) + G(iω0)e−iω0τ0 = 0.
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The above yields

τ0 =
G′(iω0)
G(iω0)

−
F′(iω0)
F(iω0)

therefore

Imτ0 = Im
[
G′(iω0)
G(iω0)

−
F′(iω0)
F(iω0)

]
= Im

G′(iω0)G(iω0)

G(iω0)G(iω0)
−

F′(iω0)F(iω0)

F(iω0)F(iω0)


= Im

G′(iω0)G(iω0) − F′(iω0)F(iω0)

F(iω0)F(iω0)


=
−i

[
G′(iω0)G(iω0) − F′(iω0)F(iω0) −G′(iω0)G(iω0) + F′(iω0)F(iω0)

]
2F(iω0)F(iω0)

.

(4.13)

It follows from (4.12) and (4.13) that

Imτ0 =
ω0h′(ω2

0)

F(iω0)F(iω0)
=
ω0h′(ω2

0)
|F(iω0)|2

.

We may assume that h′(ω2
0) , 0, which implies that Imτ0 , 0. This is a contradiction. Next we check

the transversality condition for h′(ω2
0) , 0. Differentiating Eq (4.10) with respect to τ, one obtains

dλ
dτ

=
λG(λ)(F′(λ)e−λτ + G′(λ) − τG(λ))
|F′(λ)eλτ + G′(λ) − τG(λ)|2

.

By (4.10), we have

d(Re(λ(τ)))
dτ

|τ=τ0,λ=iω0 =
Re

{
λ[−F′(λ)F(λ) + G′(λ)G(λ) − τ|G(λ)|2]

}
|F′(λ)eλτ + G′(λ) − τG(λ)|2

|τ=τ0,λ=iω0

=
iω0[−F′(iω0)F(iω0) + G′(iω0)G(iω0) + F′(iω0)F(iω0) −G′(iω0)G(iω0)]

2|F′(iω0)eiω0τ0 + G′(iω0) − τ0G(iω0)|2
.

It follows from (4.12) that

d(Re(λ(τ)))
dτ

|τ=τ0,λ=iω0 =
ω2

0h′(ω2
0)

|F′(iω0)eiω0τ0 + G′(iω0) − τ0G(iω0)|2
.

This shows that if h′(ω2
0) , 0, the transversality condition for Hopf bifurcation is satisfied. �

With the help of Lemmas 4.1 and 4.2, we have the following results.

Theorem 4.3. If (3.4) and (H1) are satisfied, by the definition of τ0 and ω0, we have

(i) If A3 ≥ 0 and ∆ ≤ 0, then E∗1 is locally asymptotically stable for any τ ≥ 0.

(ii) If A3 < 0 or A3 ≥ 0, ∆ > 0 and h(m2) ≤ 0 with m2 > 0, then E∗1 is locally asymptotically stable for
τ ∈ [0, τ0].

(iii) If the conditions of (ii) are satisfied and h′(ω2
0) , 0, then thus E∗1 is unstable for τ > τ0, and system

(2.5) undergoes Hopf bifurcations at E∗1 along a sequence of τ values τ j
0, j = 0, 1, . . .
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Our next result shows that E∗2 is unstable whenever it exists.

Theorem 4.4. Assume that (H1) is satisfied. If (3.5) holds, then E∗2 is unstable for all τ ≥ 0.

Proof. By (4.4), we have

G2(0) = a2,0 + b2,0 = −(d + (1 − ε)βv∗2)(mpv∗2z∗2) + (d + (1 − ε)βv∗2)
cpv∗2z∗2

(1 + ηv∗2)2

= (d + (1 − ε)βv∗2)(
c

(1 + ηv∗2)2 − m)pv∗2z∗2

= (d + (1 − ε)βv∗2)g1(v∗2)pv∗2z∗2 < 0.

Note that G2(0) < 0 and G2(∞) > 0 for any τ ≥ 0, thus as long as E∗2 exists, the associated characteristic
equation must have at least one positive real root and hence E∗2 is always unstable for τ ≥ 0. �

4.4. Stability of Periodic Solutions

In the previous section, we obtained conditions for Hopf bifurcation to occur when τ = τ0. In
this section, formulae for determining the direction of Hopf bifurcation and stability of bifurcating
periodic solutions of system (2.5) at τ0 shall be presented by employing the normal form method and
center manifold theorem introduced by Hassard et al. [42]. Throughout this section, we always assume
that the system (2.5) undergoes Hopf bifurcation at the positive equilibrium E∗1 for τ = τ0, and then
±iω0 denotes the corresponding purely imaginary roots of the characteristic equation at the positive
equilibrium E∗1.

For convenience, let t = sτ, x(sτ) = x1(s), y(sτ) = y1(s), z(sτ) = z1(s), and τ = τ0 + µ, µ ∈ R. Still
denote s = t, then the system (2.5) can be written as an FDE in C = C([−1, 0],R3) as

u̇(t) = Lµ(ut) + F(µ, ut), (4.14)

where u(t) = (x1(t), x2(t), x3(t)) and ut(θ) = u(t + θ) = (x1(t + θ), x2(t + θ), x3(t + θ)) ∈ C, and Lµ : C →
R3, F : R ×C → R3 are given by

Lµ(φ) = (τ0 + µ)A(φ1(0), φ2(0), φ3(0))T + (τ0 + µ)B(φ1(−1), φ2(−1), φ3(−1))T , (4.15)

and F(µ, φ) = (τ0 + µ)(F1, F2, F3)T , where φ(θ) = (φ1(θ), φ2(θ), φ3(θ))T ∈ C. It follows from (2.5) that

A =


a11 a12 0
a21 a22 a23

0 a31 a32

 , B =


0 0 0
0 0 0
0 a33 a34

 ,
and

F1 = a13φ1(0)φ2(0), F2 = a24φ1(0)φ2(0) + a25φ2(0)φ3(0),
F3 = a35φ2(−1)φ2(−1) + a36φ2(−1)φ3(−1) + a37φ2(−1)φ2(−1)φ3(−1)

+ a38φ2(−1)φ2(−1)φ2(−1) + a39φ2(0)φ3(0),
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where

a11 = −d − (1 − ε)βv∗1, a12 = −(1 − ε)βx∗1, a13 = −(1 − ε)β, a21 = (1 − ε)ϑβv∗1,

a22 = (1 − ε)ϑβx∗1 − a − pz∗1, a23 = −pv∗1, a24 = (1 − ε)ϑβ, a25 = −p,

a31 = −mz∗1, a39 = −m a32 = −b − mv∗1, a33 =
cz∗1

(1 + ηv∗1)2 , a34 =
cv∗1

1 + ηv∗1
,

a35 = −
2cz∗1η

(1 + ηv∗1)3 , a36 =
c

(1 + ηv∗1)2 , a37 = −
2cη

(1 + ηv∗1)3 , a38 =
6cz∗1η

2

(1 + ηv∗1)4 .

Here Lµ is a one parameter family of bounded linear operator in C[−1, 0] → R3. By the Riesz
representation theorem, there exists a matrix whose components are bounded variation functions
η(θ, µ) in [−1, 0]→ R3, such that

Lµ(φ) =

∫ 0

−1
dη(θ, µ)φ(θ).

In fact, we choose
η(θ, µ) = (τ0 + µ)Aδ(θ) + (τ0 + µ)Bδ(θ + 1),

where δ is the Dirac delta function, then (4.15) is satisfied. For φ(θ) ∈ C[−1, 0]→ R3, define

A(µ)φ =


dφ(θ)

dθ
, − 1 ≤ θ < 0,∫ 0

−1
dη(θ, µ)φ(θ), θ = 0,

and R(µ)φ =

 0, − 1 ≤ θ < 0,

F(µ, φ), θ = 0.

In order to study the Hopf bifurcation problem, we transform system (4.14) into the operator equation
of the form

u̇(t) = A(µ)u(t) + R(µ)u(t). (4.16)

The adjoint operator

A∗(µ)ψ(s) =


−

dψ(s)
ds

, 0 < s ≤ 1,∫ 0

−1
dηT (s, µ)ψ(−s), s = 0,

where ηT is the transpose of the matrix η.
The domains of A and A∗ are in C[−1, 0] and C[0, 1] respectively, for φ ∈ C[−1, 0] and ψ ∈ C[0, 1].

In order to normalize the eigenvectors of operator A and adjoint operator A∗, we need to introduce the
following bilinear form

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0) −
∫ 0

θ=−1

∫ θ

ξ=0
ψ̄T (ξ − θ)dη(θ)φ(ξ)dξ,

here η(θ) = η(θ, 0).
By the last section of the discussion, we know that ±iω0τ0 are the eigenvalues of A, thus they are

also eigenvalues of A∗. We have the following results.
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Lemma 4.3. Assume that q(θ) = (1, q1, q2)T e−iω0τ0θ and q∗(s) = D(1, q∗1, q
∗
2)T eiω0τ0 s be the eigenvectors

of A respects to iω0τ0, and adjoint operator A∗ respects to −iω0τ0, respectively, then 〈q∗(s), q(θ)〉 = 1,
〈q∗(s), q̄(θ)〉 = 0,

where

q1 =
−(a11 − iω0)

a12
, q2 =

a11a22 − (a11 + a22)iω0 − ω
2
0 + a12a21

a12a23
,

q∗1 =
−(a11 + iω0)

a21
, q∗2 =

a23(a11 + iω0)
a21(a32 + a34eiω0τ0 + iω0)

,

D̄ =
1

1 + q̄∗1q1 + q̄∗2q2 + (q̄∗2q1a33 + q̄∗2q2a34)τ0e−iω0τ0
.

Proof. Let q(θ) is the eigenvector of A, which is respect to iω0τ0, we have A(θ)q(θ) = iω0τ0q(θ). Then

τ0


a11 − iω0 a12 0

a21 a22 − iω0 a23

0 a31 + a33e−iω0τ0 a32 + a34e−iω0τ0 − iω0

 q(0) =


0
0
0


The above yields

q1 =
−(a11 − iω0)

a12
, q2 =

a11a22 − (a11 + a22)iω0 − ω
2
0 + a12a21

a12a23
.

Let q∗(θ) = D(1, q∗1, q
∗
2)T eiω0τ0θ is the eigenvector of A∗, which is respect to −iω0τ0. Similarly, we also

have
A∗(0)q∗(s) = −iωτ0q∗(s).

Furthermore,

q∗(0) = D(1, q∗1, q
∗
2)T , q∗1 =

−(a11 + iω0)
a21

, q∗2 =
a23(a11 + iω0)

a21(a32 + a34eiω0τ0 + iω0)
.

Next we consider 〈q∗, q〉,

〈q∗, q〉 = D̄(1, q̄∗1, q̄
∗
2)(1, q1, q2)T −

∫ 0

−1

∫ θ

ξ=0
D̄(1, q̄∗1, q̄

∗
2)e−iω0(ξ−θ)dη(θ)(1, q1, q2)T e−iω0ξdξ

= D̄[1 + q̄∗1q1 + q̄∗2q2 −

∫ 0

−1
(1, q̄∗1, q̄

∗
2)θe−iω0(ξ−θ)dη(θ)(1, q1, q2)T ]

= D̄
{
1 + q̄∗1q1 + q̄∗2q2 + (1, q̄∗1, q̄

∗
2)[Be−iω0τ0](1, q1, q2)T

}
= D̄[1 + q̄∗1q1 + q̄∗2q2 + (q̄∗2q1a33 + q̄∗2q2a34)τ0e−iω0τ0]

Obviously, if

D̄ =
1

1 + q̄∗1q1 + q̄∗2q2 + (q̄∗2q1a33 + q̄∗2q2a34)τ0e−iω0τ0
,

then 〈q∗, q〉 = 1. On the other hand,

−iω0τ0〈q∗, q̄〉 = 〈q∗, Aq̄〉 = 〈A∗q∗, q̄〉 = 〈−iω0τ0q∗, q̄〉 = iω0τ0〈q∗, q̄〉,

therefore, 〈q∗, q〉 = 0, and the proof is complete. �
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Next, we study the stability of bifurcating periodic solutions. We first construct the coordinates to
describe a centre manifold C0 near µ = 0, which is a local invariant. Assume that ut is the solution of
(4.14) for µ = 0, we define

p(t) = 〈q∗, u(t)〉, w(t, θ) = ut(θ) − 2Re {p(t)q(θ)} , (4.17)

On the center manifold C0, we have w(t, θ) = w(p(t), p̄(t), θ), where

w(p(t), p̄(t), θ) = w20(θ)
p2

2
+ w11(θ)pp̄ + w02(θ)

p̄2

2
+ . . . , (4.18)

and p and p̄ are local coordinates of centre manifold C0 in the direction of q∗ and q̄∗ respectively.
The existence of centre manifold C0 enables us to reduce (4.16) to an ordinary differential equation

in a single complex variable on C0. For the solution ut ∈ C0 of (4.16), since µ = 0,

ṗ(t) = iω0τ0 p + q̄∗(0)F0(p(t), p̄(t)),

and we rewrite this equation as
ṗ(t) = iω0τ0 p + g(p, p̄), (4.19)

where

g(p, p̄) = q̄∗(0)F0(p(t), p̄(t)) = g20
p2

2
+ g11 pp̄ + g02

p̄2

2
+ g21

p2 p̄
2

+ . . . .

It follows from (4.17) and (4.18) that we can obtain the following form

g(p, p̄) = D̄(1, q̄∗1, q̄
∗
2)F(0, ut) = τ0D̄

[
a13φ1(0)φ2(0) + q̄∗1(a24φ1(0)φ2(0) + a25φ2(0)φ3(0))

+ q̄∗2 (a35φ2(−1)φ2(−1) + a36φ2(−1)φ3(−1) + a37φ2(−1)φ2(−1)φ3(−1)

+a38φ2(−1)φ2(−1)φ2(−1) + a39φ2(0)φ3(0))
]
.

The above yields

g20 = 2D̄τ0[a13q1 + q̄∗1(a24q1 + a25q1q2) + q̄∗2(a35q2
1e−2iω0τ0 + a36q1q2e−2iω0τ0 + a39q1q2)],

g11 = D̄τ0

[
a13(q1 + q̄1) + q̄∗1(a24q1 + a24q̄1 + a25q1q̄2 + a25q̄1q2 + q̄∗2 (2a35q1q̄1 + a36q1q̄2

+a36q̄1q2 + a39q1q̄2 + a39q̄1q2)
]
,

g02 = 2D̄τ0[a13q̄1 + q̄∗1(a24q̄1 + a25q̄1q̄2) + q̄∗2(a35q̄1
2e2iω0τ0 + a36q̄1q̄2e2iω0τ0 + a39q̄1q̄2)],

g21 = 2D̄τ0

[
a13ω

(2)
11 (0) +

1
2

a13ω
(2)
20 (0) + a13q1ω

(1)
11 (0) +

1
2

a13q̄1ω
(1)
20 (0) + q̄∗1

(
a24ω

(2)
11 (0) +

1
2

a24ω
(2)
20 (0)

+a24q1ω
(1)
11 (0) +

1
2

a24q̄1ω
(1)
20 (0) + a25q1ω

(3)
11 (0) +

1
2

a25q̄1ω
(3)
20 (0) + a25q2ω

(2)
11 (0) +

1
2

a25q̄2ω
(2)
20 (0)

)
+q̄∗2

(
2a35q1e−iω0τ0ω(2)

11 (−1) + a35q̄1eiω0τ0ω(2)
20 (−1) + a36q1e−iω0τ0ω(3)

11 (−1) +
1
2

a36q̄1eiω0τ0ω(3)
20 (−1)

+
1
2

a36q̄2eiω0τ0ω(2)
20 (−1) + a36q2e−iω0τ0ω(2)

11 (−1) + a37q2
1q̄2e−iω0τ0 + 2a37q1q2q̄1e−iω0τ0

+3a38q2
1q̄1e−iω0τ0 + a39q1ω

(3)
11 (0) +

1
2

a39q̄1ω
(3)
20 (0) + a39q2ω

(2)
11 (0) +

1
2

a39q̄2ω
(2)
20 (0)

)]
.
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In the following we focus on the computation of W20(θ) and W11(θ), (4.16) and (4.19) imply that

ẇ = u̇t − ṗq1 − ˙̄pq̄1 = Aw + H(p, p̄), (4.20)

H(p, p̄, θ) = H20(θ)
p2

2
+ H11(θ)pp̄ + H02(θ)

p̄2

2
. (4.21)

Comparing the coefficients of equations (4.20) and (4.21), we get

(A − 2iω0τ0)w20(θ) = −H20(θ), Aw11(θ) = −H11(θ). (4.22)

For θ ∈ [−1, 0], according to (4.19) and (4.20), we get

H(p, p̄, θ) = −q̄∗(0)Fq(θ) − q∗(0)F̄0q̄(θ) = −g(p, p̄)q(θ) − ḡ(p, p̄)q̄(θ)

= −(
1
2

g20 p2 + g11 pp̄ +
1
2

g02 p̄2 +
1
2

g21 p2 p̄)q(θ)

−(
1
2

¯g20 p̄2 + ¯g11 pp̄ +
1
2

¯g02 p2 +
1
2

¯g21 p̄2 p)q̄(θ) + . . . .

(4.23)

Comparing the coefficients of Eqs (4.21) and (4.23), we obtain

H20(θ) = −g20q(θ) − ḡ02q̄(θ), H11(θ) = −g11q(θ) − ḡ11q̄(θ). (4.24)

Next, substituting (4.24) in (4.22) yields

ẇ20(θ) = 2iω0τ0w20(θ) + g20q(θ) + ḡ02q̄(θ).

According to q(θ) = (1, q1, q2)T eiω0τ0θ, thus we derive

w20(θ) =
ig20

ω0τ0
q(0)eiω0τ0θ +

iḡ02

3ω0τ0
q̄(0)e−iω0τ0θ + E1e2iω0τ0θ,

w11(θ) = −
ig11

ω0τ0
q(0)eiω0τ0θ +

iḡ11

ω0τ0
q̄(0)e−iω0τ0θ + E2,

where E1 = (E11, E1,2, E1,3)T , E2 = (E21, E22, E23)T . Then we have∫ 0

−1
dη(θ)w20(θ) = 2iω0τ0w20(θ) − H20(0),

∫ 0

−1
dη(θ)w11(θ) = −H11(0), (4.25)

where η(θ) = η(θ, 0). Furthermore, H20(0) = −g20q(0) − ḡ02q̄(0) + 2τ0(E11, E12, E13)T .

By (4.24), we obtain(2iω0τ0 −

∫ 0

−1
dη(θ)e2iω0τ0θ)E1 = 2τ0(k1, k2, k3)T , which is rewritten as

(2iω0τ0 − τ0A − τ0Be−2iω0τ0θ)E1 = 2τ0(k1, k2, k3)T .

And a direct calculation yields
2iω0τ0 − a11 −a12 0

−a21 2iω0τ0 − a22 −a23

0 −a31 − a33e−2iω0τ0 2iω0τ0 − a32 − a34e−2iω0τ0




E11

E12

E13

 = 2


k1

k2

k3

 ,
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where
k1 = a13q1, k2 = a24q1 + a25q1q2, k3 = a35q2

1e−2iω0τ0 + a36q1q2e−2iω0τ0 ,

and
E11 =

∆11

∆1
, E12 =

∆12

∆1
, E13 =

∆13

∆1
,

∆1 = det


2iω0τ0 − a11 −a12 0

−a21 2iω0τ0 − a22 −a23

0 −a31 − −a33e−2iω0τ0 2iω0τ0 − a32 − a34e−2iω0τ0

 ,

∆11 = 2det


k1 −a12 0

k2 2iω0τ0 − a22 −a23

k3 −a31 − −a33e−2iω0τ0 2iω0τ0 − a32 − a34e−2iω0τ0

 ,

∆12 = 2det


2iω0τ0 − a11 k1 0

−a21 k2 −a23

0 k3 2iω0τ0 − a32 − a34e−2iω0τ0

 ,

∆13 = 2det


2iω0τ0 − a11 −a12 k1

−a21 2iω0τ0 − a22 k2

0 −a31 − −a33e−2iω0τ0 k3

 .
Similarly, we have

H11(0) = −g11q(0) − ḡ11q̄(0) −
∫ 0

−1
dη(θ)E2,

−


a11 a12 0

a21 a22 a23

0 a31 + a33 a32 + a34




E21

E22

E23

 =


k4

k5

k6

 ,
where

k4 = 2a13Re {q1} , k5 = a24Re {q1} + 2a25Re {q1q̄2} , k6 = 2a35q1q̄1 + 2a36Re {q1q̄2} ,

and
E21 =

∆21

∆2
, E22 =

∆22

∆2
, E23 =

∆23

∆2
,

∆2 = det


−a11 −a12 0

−a21 −a22 −a23

0 −a31 − −a33 −a32 − a34

 , ∆21 = det


k4 −a12 0

k5 −a22 −a23

k6 −a31 − a33 −a32 − a34

 ,

∆22 = det


−a11 k4 0

−a21 k5 −a23

0 k6 −a32 − a34

 , ∆23 = det


−a11 −a12 k4

−a21 −a22 k5

0 −a31 − −a33 k6

 .
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Now from w20(θ) and w11(θ), we can calculate the following values:

C1(0) =
i

2ω0τ0
(g11g20 − 2|g11|

2 −
|g02|

2

3
+

g21

2
),

U = −
Re {C1(0)}
Re {λ′(τ0)}

, M = 2Re {C1(0)} ,

T2 = −
Im {C1(0)} + UIm {λ

′(τ0)}
ω0τ0

.

These formulas give a description of the Hopf bifurcating periodic solutions of (2.5) at τ = τ0 on the
center manifold. From the discussion above, we have the following theorem.

Theorem 4.5. For the periodic solution of (2.5), the following results hold.

(i) The periodic solution is supercritical (subcritical) if U > 0 (U < 0);

(ii) The bifurcating periodic solutions are orbitally asymptotically stable (unstable) with asymptotical
phase if M < 0 (M > 0);

(iii) The period of the bifurcating periodic solutions increase (decrease) if T2 > 0 (T2 < 0).

4.5. Simulations of bistability

It is shown in Theorems 4.3 and 4.5 that system (2.5) admits one or multiple periodic solutions.
These periodic solutions can be either stable or unstable. For the parameters given from Table 1, if
(3.5) and (H1) are satisfied and thus system (2.5) admits four equilibria: E0 = (70, 0, 0),
E1 ≈ (11.11, 5.89, 0), E∗1 = (25, 2, 12.5), E∗2 ≈ (18.92, 3, 7.03), where E1 is asymptotically stable
provided (3.5) holds for τ ≥ 0. By some computation one gets the bifurcation value ω0 = 0.1946 and
τ0 = 1.1241. From Theorems 4.3, we know that the transversal condition is satisfied, thus the positive
equilibrium E∗1 is asymptotically stable for τ < τ0 and unstable for τ > τ0, and when τ = τ0, (2.5)
undergoes Hopf bifurcation at the positive equilibrium E∗1. By the algorithms derived in Section 4.4,
we can obtain C1(0) = −0.0956 − 0.4901i and M = −0.1912 < 0, implying the bifurcating periodic
solutions are orbitally asymptotically stable. Further U = 18.3944 > 0 and T2 = 22.9542 > 0 show
that the Hopf bifurcation is supercritical. In the light of the above aspects, two conclusions are
achieved:

• If τ ∈ [0, τ0], system (2.5) emerges a bistability called type I which holds two stable equilibria
E1 and E∗1 (see Figure 2(a));
• If τ ∈ (τ0,+∞) system (2.5) appears a bistability defined by type II which possesses a stable

equilibrium E1 and a stable periodic solution (see Figure 2(b) and (c)).

Then we ran numerical simulations to illustrate the above results as follows.
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Figure 2. (a) Bistability type I characterising two stable equilibria, here τ = 0.5. (b) and (c)
Bistability type II featuring that a equilibrium and a limit cycle are stable on small and large
scales, respectively. Here τ = 2.6. (b) c = 0.6 (c) c = 0.63. Others parameters are given in
Table 1.

By comparing Figure 2(b) with (c), we can find that the domain of attraction of periodic solution
can be expanded by boosting proliferation rate c of immune cells given the same parameter value and
initial value. Thus it can be seen that the immune parameter c affects the period or amplitude of the
periodic solution, but the influence of other parameters on it is unknown. In order to find out the
influence of other parameters on the period and amplitude of the periodic solution, and to solve the
problem of which parameters can adjust the treatment scheme, we will fist analyze the sensitivity of
period and amplitude of the periodic solution to parameters.

5. Sensitivity of periodic solution

In this section, we use a sensitivity analysis method proposed in [46, 47], and focus on sensitivities
of amplitude and of the period when our delay model (2.5) admits a periodic solution. First, compute
all of sensitivity equations with respect to all parameters in system (2.5), taking particularly ε and b as
examples in following:

dRx
ε(t)

dt
= −(d + (1 − ε)βv)Rx

ε(t) − (1 − ε)βxRv
ε(t) + βxv,

dRv
ε(t)

dt
= (1 − ε)ϑβvRx

ε(t) + ((1 − ε)ϑβx − a − pz)Rv
ε(t) − pvRz

ε(t) − ϑβxv,

dRz
ε(t)

dt
= −mzRv

ε(t) − (b + mv)Rz
ε(t) +

cz(t − τ)
(1 + ηv(t − τ))2 Rv

ε(t − τ) +
cv(t − τ)

1 + ηv(t − τ)
Rz
ε(t − τ).

and 

dRx
b(t)

dt
= −(d + (1 − ε)βv)Rx

b(t) − (1 − ε)βxRv
b(t),

dRv
b(t)

dt
= (1 − ε)ϑβvRx

b(t) + ((1 − ε)ϑβx − a − pz)Rv
b(t) − pvRz

b(t),

dRz
b(t)

dt
= −mzRv

b(t) − (b + mv)Rz
b(t) +

cz(t − τ)
(1 + ηv(t − τ))2 Rv

b(t − τ) +
cv(t − τ)

1 + ηv(t − τ)
Rz

b(t − τ).
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Solving the sensitivity equations, and according to the circumscription of sensitivities of the limit
cycle in [46], we obtain the relative sensitivities of the amplitude and of the period shown in Figure 3.
The effective impact of τ on both amplitude and period of the CTL immune response reveals that
it is transparent that the positive equilibrium E∗1 switches from stable to unstable and a stable limit
cycle occurs with the increase of the time lag. In addition, the amplitude and period of CTL response
also depend on antiviral therapy parameter ε, immune parameters c,m, b and η, which indicates that
effective combination of antiviral therapy and immunotherapy is needed for successful treatment.
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Figure 3. Relative sensitivities of amplitude (a) and of period (b) in the density of immune
cells. Here τ = 2.6 and other parameter values are given in Table 1.

6. Optimal combined treatment strategy

The above sensitivity analyses illuminate that parameters ε, c,m, b, η and τ are impressible for the
periodic solution regulating the sustained immunity. But we only schedule both ε and b relating to
the therapy rather than the other parameters being intrinsic for individual organisms. Taking a patient
performed a continuous antiretroviral therapy of 1000 days but with an unsuccessful outcome as a
example, we firstly simulate a combined treatment by introduce a phased immunotherapy into the
continuous antiviral treatment and then adjust the therapeutic session as well as the insetting time to
quest the preferable therapeutic regimen by model (2.4).

6.1. Combined treatment

In the following, we invariably take T = 1000 days. Now we take initial states of (2.4) as follows:
x(0)=25 cells/µl, v(0)=5 virus/µl, z(0)=10 cells/µl, and τ = 2.6, other parameter values are given in
Table 1. Then for system (2.4), the immune-free equilibrium E1 is stable while virus-suppression and
immune-boost equilibrium E∗1 is unstable (see Figure 4(a) and (d)). That is, immune is free and the virus
settles down at an equilibrium level. These symptoms expose that single antiretroviral treatment can
not defeat the virus even if the dosage is high. So we inset a phased immunotherapy into a continuous
antiviral treatment and formulate a hybrid model (2.4). Thus, we try to regulate CTL response by
changing the value of b̄. Referencing the works [17,28] and incorporating two types of bistability in the
above, as well as the oscillatory viral loads and immune cells of the clinical data during therapies [29],
we aim at proposing a immunotherapy tactics to achieve the sustained immunity in the form of periodic
oscillation.
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Now we evaluate the efficacy of these treatments by simulations. For the sick individual dominated
by parameters in Table 1.
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Figure 4. (a) and (d): The results of single antiretroviral treatment ε = 0.8 without
immunotherapy treatment featuring that the immune-free equilibrium is stable and there
is no sustained immunity with a high viral load; (b) and (e): The successful effects of an
appropriate combined therapy with the antiretroviral treatment ε = 0.8 and immunotherapy
treatment b̄ = 0.05 for t ∈ [100, 250]. Then the sustained immunity with a low viral load
is established after stoping immunotherapy. (c) and ( f ): The failed effects of an improper
combined therapy with the antiretroviral treatment ε = 0.8 and immunotherapy b̄ = 0.07 for
t ∈ [100, 250]. Then the immunity quickly vanishes after stoping immunotherapy.

After a continual immunotherapy with b̄ = 0.05 from t1 =100th day to t2 =250th day, and then
interrupting therapy with b̄ = 0 formulates the sustained immunity with a low viral load (see
Figure 4(b) and (e)). From mathematics angle, we alter the solution of (2.4) from the basin of the
attraction of the immune-free equilibrium to the immune control balance through the immunotherapy
when the treatment is ceased. We perform another therapeutic regimen by increasing the
immunotherapy dose of patient to b̄ = 0.07 during the same course of treatment and then stoping
immunotherapy. Figure 4(c) and (f) manifest that even if the immunity of patient is enhanced and the
virus load is depressed during therapeutic session, unfortunately they soon return to premarital levels
after suspending immunotherapy. The unappealing outcomes arise due to the improper dosage of
immunotherapy. Therefore we will seek the optimal combined treatment scheme in the next
subsection.

6.2. Optimal Combined treatment

In this subsection we firstly promote the above treatment scheme by optimizing the cost function
meanwhile building the consistent immunity on HIV. Furthermore, we adjust the therapeutic session
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and the start time of immunotherapy treatment to quest the preferable therapeutic regimen.
In order to acquire the optimal therapeutic regimens, define cost function as follows:

J = p1ε0(t1 + T − t2)︸               ︷︷               ︸
the cost o f drugs on ATTS

+ (p1ε + p2b̄)(t2 − t1)︸                  ︷︷                  ︸
the cost o f drugs on CTS

+p3J0,

where p1, p2 describe the prices of antiviral therapy and immunotherapy, respectively, p3 is the weight
factor and ε0 is an idiomatic dosage, while

J0 =

∫ t1

0
v(t)dt︸      ︷︷      ︸

AV on ATTS with ε=ε0, b̄=0

+

∫ t2

t1
v(t)dt︸      ︷︷      ︸

AV on CTS with ε×b̄ ∈ D

+

∫ T

t2
v(t)dt︸     ︷︷     ︸

AV on ATTS with ε=ε0, b̄=0

where D is the therapy parameters admissible domain of ε × b̄. J0 denotes the accumulated viruses
(AV) during the observation course of patient. The first and third integrals represent respectively the
AV of the patient prior to combined treatment and after stopping immunotherapy, while the second one
trace the AV during combined treatment.

• Our aim is to find (ε∗, b̄∗) ∈ D to minimize the objective functional J and meanwhile make
the solution of system (2.4) with (ε∗, b̄∗) at t2 to alight on the attractive basin of the periodic
solution of system (2.4) with ε = ε0, b̄ = 0.

Just as we mentioned in the above, our optimal problem differs the traditional one so that Pontryagin
Maximum Principle is invalid. So we contribute an efficient algorithm aiming at mounting a defense to
HIV infection at the lowest cost by selecting the appropriate antiviral parameter ε and immunotherapy
parameter b̄ during CTS.

• Algorithm:
• Step 1. Give parameters domain ε × b̄ ∈ D and a fixed interval [0,T ] as well as t1 ∈ (0,T ) and

t2 ∈ (0,T ) with t1 < t2, respectively;
• Step 2. Latticing domain D by step length h to yield n sets of data (εi, b̄i) for i = 1, 2, · · · , n;
• Step 3. Solve (2.4) with ε = ε0 and b̄ = 0 in t ∈ [0, t1]. Then substitute (εi, b̄i) into system (2.4)

and furthermore solve it in t ∈ (t1, t2] and seek all of (ε j
i , b̄

j
i ) which make (x(t2), v(t2), z(t2)) alight

on the attractive basin of the periodic solution of system (2.4) with ε = ε0 and b̄ = 0;
• Step 4. Substitute all of (ε j

i , b̄
j
i ) into the cost function and find the (ε∗i , b̄

∗
i ) which minimizes the

cost function.

In the above algorithm, the positive parameter pairs (εi, b̄i) , (ε j
i , b̄

j
i ) and (ε∗i , b̄

∗
i ) are called the

combined treatment strategy, the successful combined treatment strategy and the optimal combined
treatment strategy, respectively.

For convenience, we always take ε0 = 0.8, ε × b̄ ∈ D = [0.7, 0.9] × [0, 0.2] and h = 0.01 together
with p1 = 2, p2 = 2.5, p3 = 1.5 in the following simulations. Then latticing domain D obtains 441 sets
of data, namely, 441 kinds of combinations of treatment strategies. The other parameters of system
(2.4) are the same as Table 1.

Scheme 1. Taking t1 = 100 day and t2 = 250 day implies that the combined treatment session is
150 days. Our goal is to find a set of parameters (ε∗, b̄∗) ∈ D that authorizes the patient to establish
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sustained immunity after 150 days of combination treatment at the lowest cost. For this reason, we
seek parameters to ensure that at the end of combination treatment the solution of the system
(x(250), v(250), z(250)) is in the attractive basin of the periodic solution of the system (2.4) without
immunotherapy, resulting in a periodic solution with sustained immunity. Along with the idea of
Algorithm, we found the 7 sets of successful treatment parameters from the 441 sets of data, listed in
the Table 2. After replacing 7 sets data into the objective function J, the optimal therapeutic regimen
(ε∗, b̄∗) = (0.83, 0.04) making min J = 5083 can be acquired.

Table 2. Successful strategies of Scheme 1.

i 1 2 3 4 5 6∗ 7
ε 0.7 0.77 0.79 0.8 0.82 0.83∗ 0.84
b̄ 0.08 0.06 0.05 0.05 0.04 0.04∗ 0.04
J 5372 5353 5440 5298 5301 5083∗ 5185

Next we shorten CTS from 150 days to 100 days and still keep the start time of immunotherapy
treatment at 100th day. Now we will simulate another optimal therapeutic regimen as follows.

Scheme 2. Taking t1 = 100 day and t2 = 200 day implies that the combined treatment session is
100 days. According to the above algorithm, we seek out 6 sets of successful data listed in Table 3 and
further catch the optimal therapeutic regimen (ε∗, b̄∗) = (0.84, 0.03) authorizes the patient to establish
sustained immunity after 100 days of combination treatment at the lowest cost min J = 5327.

Table 3. Successful strategies of Scheme 2.

i 1 2 3 4 5 6∗

ε 0.7 0.71 0.72 0.81 0.83 0.84∗

b̄ 0.12 0.12 0.11 0.04 0.03 0.03∗

J 5330 5501 5473 5377 5448 5327∗

Finally, we adjust the start time of treatment and keep the CTS 150 days to quest the optimal
therapeutic regimen.

Scheme 3. Taking t1 = 50 and t2 = 200 day implies that the combined treatment advances 50 days
than Scheme 1. By the above algorithm, 8 sets of successful data listed in Table 4 are explored out
and further we obtain the optimal therapeutic regimen (ε∗, b̄∗) = (0.81, 0.02) authorizes the patient to
establish sustained immunity after 150 days of combination treatment at the lowest cost min J = 4949
.

Table 4. Successful strategies of Scheme 3.

i 1 2 3 4∗ 5 6 7 8
ε 0.77 0.79 0.8 0.81∗ 0.82 0.82 0.83 0.83
b̄ 0.03 0.02 0.02 0.02∗ 0.01 0.02 0.01 0.02
J 5102 5228 5033 4949∗ 5202 4959 5214 5026
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(a) (b) (c)

Figure 5. (a): Scheme 1, CTS is [100, 250] day, indicated by shaded areas. Continuous
antiretroviral therapy (CATT), unsuccessful combined treatment(UCT), successful combined
treatment (SCT) and optimal combined treatment (OCT) were described with ‘black dashed’,
‘blue dashed’, ‘green dashed’ and ‘red solid’ respectively; (b): Scheme 2, CTS treatment is
[100, 200] indicated by shaded areas; (c) Scheme 3, CTS treatment is [50, 200] indicated by
shaded areas.

From Figure 5, it is indicated that the levels of virus rapidly increase and then fall sharply during
the combined treatment session. After stoping immunotherapy, levels of virus slightly climb and
quickly perform a periodic oscillation implying that the patient has established sustained immunity.
By comparison, early mediating immunotherapy in Scheme 3 suppresses the load of virus lower than
Scheme 1 during combined treatment (see Figure 5(a) and (c)). Moreover, shortening CTS does not
reduce but magnify the cost function J. On the whole, Scheme 3 is the best one. So designing a
combined treatment schedule synthesizes the antiviral parameter ε, immunotherapy parameter b̄,
combined treatment session, as well as initial and terminal time of immunotherapy.

7. Conclusion and discussion

Despite many new approaches to treat HIV virus, including HAART, immunotherapy, structured
treatment interruption [15, 16] and so on, the enthusiasm, due to the inability of therapy to eradicate
HIV infection, has been aroused to formulate rational therapeutic strategies to establish sustained
immunity to suppress viruses after stopping therapy. Studies have shown that AIDS patients can
improve their ability to control HIV through therapeutic vaccines or interferon immunomodulation
after suspension of antiretroviral therapy [23]. In this paper, we establish an uninfected cells, virus
and immune response model with continuous antiretroviral therapy meanwhile also taking into
account the time lag needed for the expansion of immune cells.

Firstly, we have investigated the dynamic behavior of the model (2.5). By defining a basic
regeneration number R0, which describes the average number of newly infected cells generated from
one infected cell, we found that the basic regeneration number R0 and the time lag τ both play crucial
roles in determining the CTL response dynamics. As R0 increases, the dynamics shift through four
possible outcomes: (i) If R0 < 1, then number of infected cells is so small that the virus does not
spread, the system converges to the infection-free equilibrium E0 which is globally stable
(Theorem 4.1); (ii)As R0 increases, i.e., the number of infected cells is gradually increasing, then the
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virus is able to infect the host without a sustained CTL response, the system converges to the
immune-free equilibrium E1, which is always locally stable (Theorem 4.2); (iii) If R0 exceeds the first
threshold, R1, then the CTL response controls the virus; the system either converges to the positive
equilibrium E∗1, or the system admits at least one periodic solution, which depends on the time lag τ
(Theorem 4.3); (iv) If R0 sufficiently large and R0 > R2, then the number of infected cells is large
enough to cause the virus to multiply, so either the system is stimulated by the virus to produce
sustained immunity, or the immune function is lost due to too much virus, which depends on the load
of virus. This is a bistability, namely, the system converges to either immune-free equilibrium E1 or
positive equilibrium E∗1 (with the increase of time delay, it converges to a stable periodic solution),
depending on different initial conditions.

Secondly, the sensitivity analysis method proposed in [46] were applied to acquire the sensitivities
of the amplitude and the period with respect to all of parameters when model (2.5) admits a periodic
solution. Results indicate that parameters ε, c, p, b, η and τ are impressible for the periodic solution
symbolizing the sustained immunity. But we only schedule both ε and b relating to the therapy rather
than the other parameters being intrinsic for individual organisms. This offers primordial motivations
to propose an optimal treatment tactics by combining the continuous antiretroviral therapy with a phase
of immunotherapy (which efficiency denoted by b̄) to achieve the sustained immunity.

Furthermore, taking a patient performed a continuous antiretroviral therapy of 1000 days but with
an unsuccessful outcome (see Figure 4(a) and (d)) as a example, we simulate a combined treatment by
introduce immunotherapy of 150 days and then adjust the therapeutic session as well as the start time
of immunotherapy treatment to quest the preferable therapeutic regimen. Incorporating two types of
bistability on system (2.4), and the oscillatory viral loads and immune cells of the clinical data during
therapies [29], we mathematically alter the solution of (2.4) from the basin of the attraction of the
immune-free equilibrium to the immune control balance when the treatment is ceased, meanwhile
minimize the cost function through the a period of immunotherapy. Because our optimal problem
differs the traditional one, we contribute an efficient algorithm, by meshing a special domain on the
antiretroviral and immunotherapy parameters ε and b̄, to find successful combined treatment schemes
and further seek the optimal one. By comparison, simulations exhibit that early mediating
immunotherapy in Scheme 3 suppresses the load of virus lower than Scheme 1 during combined
treatment (see Figure 5(a) and (c)), but shortening CTS in Scheme 2 does not reduce but magnify the
cost function J.

Finally, it’s also worth pointing out, even if our findings can provide some insights into the design of
effective and rational therapeutic strategies to boost sustained immunity to quell viruses, the accuracy of
therapeutic strategies depends on the step h of meshing in Algorithm. In addition, the general algorithm
to seek the therapeutic session as well as the start and stop time of immunotherapy is significant and
pendent.
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