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Abstract: In this paper, we investigate a diffusive viral infection model in a spatial heterogeneous
environment with two types of infection mechanisms and distinct dispersal rates for the susceptible
and infected target cells. After establishing well-posedness of the model system, we identify the basic
reproduction number R0 and explore the properties of R0 when the dispersal rate for infected target
cells varies from zero to infinity. Moreover, we demonstrate that the basic reproduction number is a
threshold parameter: the infection and virus will be cleared out if R0 ≤ 1, while if R0 > 1, the infection
will persist and the model system admits at least one positive (chronic infection) steady state. For the
special case when all model parameters are spatial homogeneous, this chronic infection steady state is
unique and globally asymptotically stable.
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1. Introduction

The population dynamics of in-host viral infection models has been studied intensively in the
literature [1–8]. Through rigorous mathematical analysis, numerical explonation, and data fitting, the
greatly enhanced understanding of viral dynamics can provide us with guidance and support for
proposing feasible and effective control strategies to clear viral infections [4, 5, 9, 10]. Much of the
existing mathematical modelling has been focused on the cell-free infection modes only [4, 5, 10]. In
cell-free infection, only newly released free virions could infect susceptible target cells. On the other
hand, most of the existing works are grounded on ordinary or functional differential equations with
constant parameters, and do not consider the spatial heterogeneity, which may induce deficient
understanding of the spatial spread of viral infection. So far as we know, only very few works; see for
example, [11, 12], have taken into account spatial heterogeneity in viral infection modelling.

Assume that cells and virus particles live in a spatially heterogeneous but continuous environment.
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Let Ω be the spatial habitat with smooth boundary ∂Ω. Denote by u1(x, t), u2(x, t) and u3(x, t) the
populations of susceptible target cells, infected target cells and virus particles at location x and time t,
respectively. Wu et al. [12] considered a diffusive viral infection model with heterogeneous parameters
and distinct dispersal rates for the susceptible and infected target cells:

∂u1

∂t
= d1∆u1 + a(x) − β1(x)u1u3 − µ1(x)u1, x ∈ Ω, t > 0,

∂u2

∂t
= d2∆u2 + β1(x)u1u3 − µ2(x)u2, x ∈ Ω, t > 0,

∂u3

∂t
= k(x)u2 − µ3(x)u3, x ∈ Ω, t > 0,

(1.1)

with nonnegative initial conditions and the homogeneous Neumann boundary condition. Here,
d1, d2 > 0 are the diffusion coefficients of susceptible target cells and infected target cells,
respectively; ∆ is the Laplacian operator; cell-free infection mode is modelled by the mass action
mechanism with β1(x) being the cell-free transmission rate; a(x) is the recruitment rate of susceptible
target cells; µ1(x), µ2(x) and µ3(x) are the death rates of susceptible target cells, infected target cells
and virus particles, respectively; k(x) is the rate of virus production due to the lysis of infected cells.
All these parameters are positive and continuous functions on Ω̄. In [12], the authors showed that
model (1.1) possesses a global attractor, and identified the basic reproduction number R0 and proved
its threshold role.

Note that in [11, 12], only the cell-free infection mode was considered for the viral infection. It has
been recognized that there is another major viral infection mode, namely, the cell-to-cell infection
mode [13, 14], which allows viral particles to be transferred directly from an infected source cell to a
susceptible target cell through the formation of virological synapses [15]. It has been revealed that
more than half of viral infections are due to cell-to-cell transmission [15], and even during an
antiretroviral therapy, viral particles can be transferred from infected target cells to uninfected ones
through virological synapses, and the direct cell-to-cell infection affects the mechanism of HIV-1
transmission in vivo.

Motivated by the previous works, we consider the following general viral infection model
incorporating spatial heterogeneity and two infection modes:

∂u1

∂t
= ∇ · (d1(x)∇u1) + a(x) − f (u1, u2) − g(u1, u3) − µ1(x)u1,

∂u2

∂t
= ∇ · (d2(x)∇u2) + f (u1, u2) + g(u1, u3) − µ2(x)u2,

∂u3

∂t
= k(x)u2 − µ3(x)u3,

(1.2)

for x ∈ Ω, t > 0, with nonnegative initial conditions

ui(x, 0) = φi(x) ≥ 0 for x ∈ Ω, i = 1, 2, 3,

where ∇ · (di(x)∇ui) describes the divergence of di(x)∇ui and di(x) is the diffusion rate; f (u1, u2) is
the cell-to-cell transmission function; and g(u1, u3) is the cell-free transmission function. Here, we
consider an isolated habitat Ω, revealed by the Neumann boundary condition

∇ui · ν = 0, i = 1, 2, x ∈ ∂Ω, t > 0. (1.3)
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Throughout this paper, we assume that the diffusion rates di(x) with i = 1, 2, the recruitment rate a(x),
the cell-free transmission rate β1(x), the cell-to-cell transmission rate β2(x), the virus production rate
k(x), and the death rates µi(x) with i = 1, 2, 3 are positive and continuous functions on Ω̄. We also
make the following biologically motivated assumption.

(H1) f , g ∈ C1(R+ × R+) are strictly increasing with respect to both variables, and f (v,w) = 0 (resp.
g(v,w) = 0) if and only if vw = 0. Moreover, ∂2 f (v,w)/∂w2 ≤ 0 and ∂2g(v,w)/∂w2 ≤ 0.

In this paper, we will define the basic reproduction number R0 with a clear biological meaning, and
further prove that R0 is a threshold parameter for the global dynamics of model (1.2). As we shall see
later, the main challenge is caused by the different dispersal rates of the susceptible and infected target
cells and partial degeneration of the model system.

The rest of this paper is organized as follows. In Section 2, we show that our model system admits a
unique solution, which exists globally and is ultimately uniformly bounded. In Section 3, we identify
the biologically meaningful basic reproduction number R0 for the model using the standard procedure
of next generation operator, and further explore the properties of R0 when the dispersal rate for infected
target cells varies from zero to infinity. Section 4 is devoted to the global dynamics of the model for the
cases of R0 ≤ 1 and R0 > 1, respectively. In Section 5, we consider a special case when all coefficients
are spatial homogeneous, and give the global asymptotic stability of the unique chronic infection steady
state when R0 > 1.

2. Well-posedness

Denote by X := C(Ω̄,R3) the Banach space of continuous functions on Ω̄ with the supremum norm.
The nonnegative cone of X is denoted by X+ = C(Ω̄,R3

+), then (X, X+) is a strongly ordered space [16].
For any nonnegative initial condition

u(x, 0) = φ(x) := (φ1, φ2, φ3) ∈ X+,

we define T3(t)φ3 = e−µ3(·)tφ3. For each i = 1, 2, let Ti(t) be the C0 semigroups generated by the
second-order linear differential operator ∇ · (di∇) − µi with Neumann boundary condition. It then
follows from [16, Corollary 7.2.3] that Ti(t) is compact and strongly positive for all t > 0 and i = 1, 2.
Moreover, T (t) := (T1(t),T2(t),T3(t)) is a C0 semigroup on X with an infinitesimal generator A0 [17].
Then the system (1.2) can be written as an abstract differential equation

u′(t) = A0u(t) + F(u(t))

with nonnegative initial condition u(0) = φ ∈ X+, where the nonlinear operator F = (F1, F2, F3) :
X+ → X is defined by

F1(ϕ)(x) = a(x) − f (ϕ1(x), ϕ2(x)) − g(ϕ1(x), ϕ3(x)),
F2(ϕ)(x) = f (ϕ1(x), ϕ2(x)) + g(ϕ1(x), ϕ3(x)),
F3(ϕ)(x) = k(x)ϕ2(x),

for any ϕ = (ϕ1, ϕ2, ϕ3) ∈ X+. On account of (H1), there exists c > 0 such that f (ϕ1(x), ϕ2(x)) +

g(ϕ1(x), ϕ3(x)) ≤ cϕ1(x) for all x ∈ Ω̄. It is easily seen that

ϕ(x) + εF(ϕ)(x) ≥ (ϕ1(x)(1 − cε), ϕ2(x), ϕ3(x))T for x ∈ Ω.
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By choosing ε > 0 sufficiently small, we have 1 > εc and ϕ + εF(ϕ) ∈ X+. Particularly,

lim
ε→0+

1
ε

dist(ϕ + εF(ϕ), X+) = 0.

Thus, by using [16, Theorem 7.3.1] or [18, Corollary 4], we establish the existence of the solution
to the system (1.2). Note that the nonlinear operator F is mixed quasimontone, then all solutions are
nonnegative due to the comparison principle. To summarize, we obtain the following lemma on the
existence and nonnegativity of the solution to (1.2).

Lemma 2.1. For every initial condition φ ∈ X+, system (1.2) with Neumann boundary condition (1.3)
has a unique solution u(x, t) on a maximal interval of existence [0, tmax). If tmax < ∞, then
lim sup

t→tmax

‖u(·, t)‖X = ∞. Moreover, u(x, t) ≥ 0 for all (x, t) ∈ Ω × [0, tmax).

To prove that tmax = ∞, we need to show that the boundedness of solutions for system (1.2). Before
stating this result, we need the following lemma.

Lemma 2.2. For any positive and continuous functions d(x), l(x) and µ(x) on Ω̄, the scalar reaction-
diffusion equation

∂w(x, t)
∂t

= ∇ · (d(x)∇w(x, t)) + l(x) − µ(x)w(x, t), x ∈ Ω, t > 0,

∇w(x, t) · ν = 0, x ∈ ∂Ω, t > 0
(2.1)

admits a unique and strictly positive steady state w∗(x), which is globally asymptotically stable in
C(Ω̄,R+). Moreover, if d(x) ≡ d, l(x) ≡ l and µ(x) ≡ µ for all x ∈ Ω, then w∗(x) ≡ l/µ for all x ∈ Ω.

Proof. In view of the standard theory of parabolic equations [19], we obtain the existence of a compact
semiflow Ψt for (2.1) in C(Ω̄,R+). Denote

l̄ = max
x∈Ω̄

l(x), l = min
x∈Ω̄

l(x), µ̄ = max
x∈Ω̄

µ(x) and µ = min
x∈Ω̄

µ(x).

It then follows from the comparison theorem and maximum principle [19] that Ψt has a global compact
attractor K ⊂ (l/µ̄, l̄/µ). This implies that K contains a positive steady state w∗(x) due to Theorem 3.1
in [20]. By using strong maximal principle [21] and the monotonicity of l(x) − µ(x)w(x, t) w.r.t w, we
can easily obtain that the positive steady state of (2.1) is unique. According to [20, Theorem 3.2], w∗(x)
attracts all solutions of (2.1) with nontrivial initial condition φ ∈ C(Ω̄,R+). This ends the proof. �

Theorem 2.3. For every initial condition φ ∈ X+, system (1.2) has a unique global solution u(x, t) ≥ 0
for t ≥ 0. Moreover, there exists a constant M > 0 independent of φ such that lim sup

t→∞
ui(x, t) ≤ M for

all x ∈ Ω and i = 1, 2, 3.

Proof. To establish the solutions of (1.2) exist globally on [0,∞), it suffices to show that the
boundedness of the solutions. For any initial condition φ ∈ X+, it follows from comparison principle
and Lemma 2.2 that u1(x, t) ≤ w(x, t) for all t ∈ [0, tmax), where w(x, t) is the solution of (2.1) with
l(x) ≡ a(x), µ(x) ≡ µ1(x) and initial condition w(x, 0) = φ1(x). Note that w(x, t) → w∗(x) as t → ∞,
which implies that

lim sup
t→∞

u1(x, t) ≤ w∗(x) uniformly for x ∈ Ω̄. (2.2)
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Thus, there exists K1 > max
x∈Ω̄

w∗(x), depending on φ, such that ‖u1(·, t)‖ ≤ K1 for all t ≥ 0.

From the last two equations of (1.2) and the definition of Ti(t) with i = 2, 3, we have

u2(·, t) = T2(t)φ2(·) +

∫ t

0
T2(t − s) ( f (u1(·, s), u2(·, s)) + g(u1(·, s), u3(·, s))) ds,

u3(·, t) = T3(t)φ3(·) +

∫ t

0
T3(t − s)ku2(·, s)ds.

Let −λ2 < 0 denote the principal eigenvalue of ∇ · (d2∇) − µ2 with Neumann boundary condition,
and λ3 = min{min

x∈Ω̄
µ3(x), λ2/2} > 0. We have ‖T2(t)‖ ≤ e−λ2t and ‖T3(t)‖ ≤ e−λ3t. By (H1) and the

boundedness of u1(x, t), there exists m1 > 0 such that

f (u1(·, s), u2(·, s)) + g(u1(·, s), u3(·, s)) ≤ m1 (‖u2(·, s)‖ + ‖u3(·, s)‖)

for all s ∈ [0, tmax). It then follows that

‖u2(·, t)‖ ≤ e−λ2t‖φ2‖ + m1

∫ t

0
e−λ2(t−s) (‖u2(·, s)‖ + ‖u3(·, s)‖) ds,

‖u3(·, t)‖ ≤ e−λ3t‖φ3‖ + k̄
∫ t

0
e−λ3(t−s)‖u2(·, s)‖ds,

(2.3)

where k̄ = max
x∈Ω̄

k(x). Substituting the second inequality into the first one gives

‖u2(·, t)‖ ≤ e−λ2t‖φ2‖ + m1

∫ t

0
e−λ2(t−s)‖u2(·, s)‖ds

+ m1

∫ t

0
e−λ2(t−s)

(
e−λ3 s‖φ3‖ + k̄

∫ s

0
e−λ3(s−r)‖u2(·, r)‖dr

)
ds

≤ ‖φ2‖ + m1

∫ t

0
‖u2(·, s)‖ds + m1‖φ3‖

∫ t

0
e−λ3 sds

+ m1k̄e−λ2t
∫ t

0
eλ3r‖u2(·, r)‖

∫ t

r
e(λ2−λ3)sdsdr

≤ C1 + C2

∫ t

0
‖u2(·, s)‖ds,

where C1 = ‖φ2‖ + m1‖φ3‖/λ3 > 0 and C2 = m1 + m1k̄/(λ2 − λ3) > 0. Thus, Gronwall’s inequality
implies that

‖u2(·, t)‖ ≤ C1eC2t for t ∈ [0, tmax).

This together with the second inequality in (2.3) yields

‖u3(·, t)‖ ≤ ‖φ3‖ +
k̄C1

C2
eC2t for t ∈ [0, tmax).

On account of Lemma 2.1, tmax = ∞ and the solution u(x, t) exists for all t ≥ 0.
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Next, we will prove that the solution is ultimately bounded with the bound independent of initial
conditions. It follows from (2.2) that there exist a constant M11 > 0, independent of φ, and t1 > 0 such
that u1(x, t) ≤ M11 for t ≥ t1. This together with (H1) implies that there exists m2 > 0 such that

f (u1(x, t), u2(x, t)) + g(u1(x, t), u3(x, t)) ≤ m2(u2(x, t) + u3(x, t)), x ∈ Ω, t ≥ t1. (2.4)

Denote ā = max
x∈Ω̄

a(x), µ̃ = min
x∈Ω̄
{µi(x) : i = 1, 2, 3} and |Ω| is the volume of Ω. By integrating (1.2) for

u1 and u2 and adding up, we obtain

∂

∂t

∫
Ω

(u1 + u2)dx ≤ |Ω|ā − µ̃
∫

Ω

(u1 + u2)dx.

It then follows from comparison principle that lim sup
t→∞

‖u2(·, t)‖1 ≤ |Ω|ā/µ̃. Particularly, there exist

t2 > t1 and M12 > 0, such that ‖u2(·, t)‖1 ≤ M12 for t ≥ t2. Similarly, we can easily obtain

∂

∂t

∫
Ω

u3dx ≤ k̄M12 − µ3

∫
Ω

u3dx for t ≥ t2,

where µ3 = min
x∈Ω̄

µ3(x). Thus, there exist t3 > t2 and M13 > 0, such that ‖u3(·, t)‖1 ≤ M13 for t ≥ t3.

Consequently, lim sup
t→∞

(‖u2(·, t)‖1 + ‖u3(·, t)‖1) ≤ M1, where M1 = M12 + M13 is independent of initial

conditions.
Assume that t > t3, we now estimate the upper bound of ‖u2(·, t)‖2 + ‖u3(·, t)‖2. By multiplying the

equation for u2 (resp. u3) of (1.2) by u2 (resp. u3), and integrating on Ω, it then follows from (2.4) that

1
2
∂

∂t

∫
Ω

u2
2dx ≤ −d2

∫
Ω

|∇u2|
2dx + m2

∫
Ω

(u2
2 + u2u3)dx − µ

∫
Ω

u2
2dx,

1
2
∂

∂t

∫
Ω

u2
3dx ≤ k̄

∫
Ω

u2u3dx − µ
∫

Ω

u2
3dx,

where d2 = min
x∈Ω

d2(x). Adding the above two inequalities, together with Young’s inequality

u2u3 ≤
µ

4(m2 + k̄)
u2

3 +
m2 + k̄
µ

u2
2,

we have

1
2
∂

∂t

∫
Ω

(u2
2 + u2

3)dx ≤ −d2

∫
Ω

|∇u2|
2dx + C22

∫
Ω

u2
2dx − µ

∫
Ω

u2
2dx −

3
4
µ

∫
Ω

u2
3dx,

where C22 = m2 +
(m2+k̄)2

µ
. Making use of the Gagliardo-Nirenberg interpolation inequality: there exists

c > 0 such that ‖w‖22 ≤ ε‖∇w‖22 + cε−n/2‖w‖21 for any w ∈ W1,2(Ω) and small ε > 0, we obtain

1
2
∂

∂t

∫
Ω

(u2
2 + u2

3)dx ≤ B2M2
1 − δ2

∫
Ω

(u2
2 + u2

3)dx,

where B2 = C2cε−n/2, δ2 = 3µ/4 and ε ∈ (0, d2/C22). Therefore,

lim sup
t→∞

(‖u2(·, t)‖22 + ‖u3(·, t)‖22) ≤ B2M2
1/δ2.
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Especially, there exist t4 > t3 and M2 > 0 such that ‖u2(·, t)‖22 + ‖u3(·, t)‖22 ≤ M2 for t ≥ t4.
Denote Lp = lim sup

t→∞
(‖u2(·, t)‖p

p + ‖u3(·, t)‖p
p). We multiple the equation for u2 (resp. u3) of (1.2) by

2ku2k−1
2 (resp. 2ku2k−1

3 ) and integrate on Ω, using a similar argument as in the estimation of ‖u2(·, t)‖22 +

‖u3(·, t)‖22 to obtain that

1
2k

∂

∂t
(‖u2(·, t)‖2

k

2k + ‖u3(·, t)‖2
k

2k) ≤ 2
n
2 (k−1)B‖u2(·, t)‖2

k+1−2
2k−1 − δ(‖u2(·, t)‖2

k

2k + ‖u3(·, t)‖2
k

2k),

where B and δ are constants independent of of k and φ. Since L2k−1 ≤ M2k−1, there exist t2k−1 > 0
such that ‖u2(·, t)‖2

k−1
2k−1 + ‖u3(·, t)‖2

k−1
2k−1 ≤ L2k−1 + 1 for all t ≥ t2k−1. By comparison principle, we obtain

L2k ≤ 2
n
2 (k−1)C(L2k−1 + 1)2, where C is a constant independent of k and φ.

Finally, according to the method of induction, we prove that L2k ≤ ∞ for all k = 0, 1, 2, · · · . Define
an infinite sequence ak+1 = (C + 1)2−k−1

2kn2−k−2
ak with a0 = L1 + 1 for nonnegative integer k. It is easily

seen that L2k ≤ a2k

k and lim
k→∞

ln ak = ln C(L1 + 1) + n ln 2/2. Therefore, we have

lim sup
k→∞

2k√
L2k ≤ lim

k→∞
ak = C(L1 + 1)2n/2.

Thus we obtain lim sup
t→∞

ui(x, t) ≤ M := C(M2 + 1)2n/2 + M1 for all x ∈ Ω and i = 1, 2, 3. That is, the

solution semiflow associated with (1.2) Θ(t) for t ≥ 0 is point dissipative. This completes the proof. �

We are now in the position to address the persistence of u1(x, t).

Proposition 2.4. Let u(x, t) be the solution of (1.2) with initial condition φ ∈ X+.

(i) u1(x, t) > 0 for all t > 0 and x ∈ Ω. Furthermore, there exists a positive constant m0 independent
of φ such that

lim inf
t→∞

u1(x, t) ≥ m0 uniformly for x ∈ Ω̄.

(ii) If there exist some x0 ∈ Ω and t0 ≥ 0 such that either u2(x0, t0) > 0 or u3(x0, t0) > 0, then
ui(x, t) > 0 for all i = 2, 3, t ≥ t0 and x ∈ Ω.

Proof. (i) By using the strong maximum principle [21], it is easily seen the positivity of u1(x, t) for
t > 0 and x ∈ Ω. We then prove the persistence of u1(x, t). From Theorem 2.3, there exist t0 > 0 and
M > 0 such that ui(x, t) < M for all t > t0, i = 1, 2, 3 and x ∈ Ω. Then the first equation of (1.2) and
(H1) imply that

∂u1(x, t)
∂t

≥ ∇ · (d1(x)∇u1(x, t)) + a(x) − µ1(x)u1(x, t) − c0u1(x, t)

for all t ≥ t0 and some positive constant c0. Thus, Lemma 2.2 and comparison principle yield that
u1(x, t) is ultimately bounded below by a unique and strictly positive steady state w̄∗(x) of (2.1) with
d(x) = d1(x), l(x) ≡ a(x) and µ(x) ≡ µ1(x) + c0. Denote m0 = min

x∈Ω̄
w̄∗(x), which is a positive constant.

Then lim sup
t→∞

u1(x, t) ≥ m0 for all x ∈ Ω.

(ii) Assume that either u2(x0, t0) > 0 or u3(x0, t0) > 0 for some x0 ∈ Ω and t0 ≥ 0. Then from the
third equation of (1.2), we have

u3(x, t) = e−µ3(x)(t−t0)u3(x, t0) +

∫ t

t0
e−µ3(x)(t−s)k(x)u2(x, s)ds > 0
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for all x ∈ Ω and t > t0. We then apply strong maximum principle to the second equation of (1.2) and
obtain u2(x, t) > 0 for all t > t0 and x ∈ Ω. �

3. Basic reproduction number

Note that Lemma 2.2 implies that (2.1) with d(x) = d1(x), l(x) ≡ a(x) and µ(x) ≡ µ1(x) has a unique
and strictly positive steady state w∗(x). Thus, system (1.2) has a unique infection-free steady state
(w∗(x), 0, 0). For simplicity, we denote

βd(x) =
∂ f (w∗(x), 0)

∂u2
, βi(x) =

∂g(w∗(x), 0)
∂u3

. (3.1)

Linearizing system (1.2) for (u2(x, t), u3(x, t)) at (w∗(x), 0, 0) gives the following cooperative system for
the infected cells and free virus,

∂u2
∂t = ∇ · (d2(x)∇u2) + βd(x)u2 + βi(x)u3 − µ2(x)u2, x ∈ Ω, t > 0,
∂u3
∂t = k(x)u2 − µ3(x)u3, x ∈ Ω, t > 0,
∇u2 · ν = 0, x ∈ ∂Ω, t > 0.

(3.2)

The suitable functional space for the above system is Y := C(Ω̄,R2). The associated linear operator of
system (3.2) can be decomposed as A = F + B, where

F =

(
βd(·) βi(·)

0 0

)
, B =

(
∇ · (d2∇) − µ2(·) 0

k(·) −µ3(·)

)
.

It then follows from [22] that the basic reproduction number R0 is defined as the spectral radius of
−FB−1, that is, R0 = r(−FB−1). We can easily check that B is resolvent-positive with s(B) < 0, F is
positive and A is also resolvent-positive. Then it follows from [22, Theorem 3.5] that R0 − 1 has the
same sign as s(A), where s(A) = sup{Reλ, λ ∈ σ(A)} is the spectral bound of A.

Let eBt be the semigroup generated by B. Then the next generation operator is −FB−1 =
∫ ∞

0
FeBtdt.

Wang and Zhao [23] proved local asymptotic stability of infection-free steady state when R0 < 1.
Here, we shall prove global asymptotic stability of infection-free steady state when R0 ≤ 1. To derive
an equivalent formula for R0 such that the direct and indirect transmission mechanisms are clearly
separated in the expression, we need to make use of the following result.

Lemma 3.1. Let F =

(
F11 F12

0 0

)
be a positive operator, B =

(
∇ · (d2∇) − V11 0

−V21 −V22

)
be a resolvent-

positive operator with s(B) < 0. Then we have

r(−FB−1) = r
(
F11(V11 − ∇ · (d2∇))−1 − F12V−1

22 V21(V11 − ∇ · (d2∇))−1
)
. (3.3)

Proof. Note that B is lower triangular and s(B) < 0. This implies that both V11 − ∇ · (d2∇) and V22 are
invertible. Moreover, we can calculate that

−B−1 =

(
(V11 − ∇ · (d2∇))−1 0

−V−1
22 V21(V11 − ∇ · (d2∇))−1 V−1

22

)
.
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Consequently, we obtain

−FB−1 =

(
F11(V11 − ∇ · (d2∇))−1 − F12V−1

22 V21(V11 − ∇ · (d2∇))−1 F12V−1
22

0 0

)
,

which implies that (3.3) holds. This ends the proof. �

By using Lemma 3.1 and a standard variational method, we have an equivalent formula for the basic
reproduction number

R0 = r(Ad + Ai) = sup
ψ∈H1(Ω),ψ,0

∫
Ω

(
βd(x) + βi(x)µ−1

3 (x)k(x)
)
ψ2(x)dx∫

Ω

(
d2(x)|∇ψ(x)|2 + µ2(x)ψ2(x)

)
dx

, (3.4)

where Ad = βd(µ2 − ∇ · (d2∇))−1 is the next generation operator for cell-to-cell transmission, and
Ai = βiµ

−1
3 k(µ2 − ∇ · (d2∇))−1 is the next generation operator for cell-free transmission. In the absence

of cell-free transmission, the basic reproduction number for cell-to-cell transmission is

Rd
0 = r(Ad) = sup

ψ∈H1(Ω),ψ,0

∫
Ω
βd(x)ψ2(x)dx∫

Ω

(
d2(x)|∇ψ(x)|2 + µ2(x)ψ2(x)

)
dx
.

On the other hand, if only cell-free transmission is taken into consideration, the basic reproduction
number for cell-free transmission is given by

Ri
0 = r(Ai) = sup

ψ∈H1(Ω),ψ,0

∫
Ω
βi(x)µ−1

3 (x)k(x)ψ2(x)dx∫
Ω

(
d2(x)|∇ψ(x)|2 + µ2(x)ψ2(x)

)
dx
.

Clearly, R0 ≤ Rd
0 + Ri

0. We then study the dependence of R0 on the diffusion coefficient d2.

Theorem 3.2. (i) R0 is a principal eigenvalue of Ad + Ai associated with a positive eigenfunction.

(ii) Assume that d2 is a constant on Ω̄, then R0 is a monotone decreasing function of d2, Moreover, we
have

R0 → R0 := max
x∈Ω̄

{
βd(x)
µ2(x)

+
βi(x)k(x)
µ2(x)µ3(x)

}
as d2 → 0,

R0 → R0 :=

∫
Ω

(
βd(x) + βi(x)µ−1

3 (x)k(x)
)

dx∫
Ω
µ2(x)dx

as d2 → ∞.

Proof. (i) Since Ad and Ai are compact and positive, it then follows from Krein-Rutman theorem that
R0 is a principal eigenvalue of Ad + Ai with a positive eigenfunction, denoted by φ∗(x); namely,

βd(µ2 − ∇ · (d2∇))−1φ∗ + βi(x)
k(x)
µ3(x)

(µ2 − ∇ · (d2∇))−1φ∗ = R0φ
∗, x ∈ Ω,

∇φ∗(x) · ν = 0, x ∈ ∂Ω.

Denote ψ∗ = φ∗/(βd + βiµ
−1
3 k), then the above eigenvalue problem can be rewritten as

∇ · (d2(x)∇ψ(x)) − µ2(x)ψ(x) +
βd(x) + βi(x)µ−1

3 (x)k(x)
R0

ψ(x) = 0, x ∈ Ω,

∇ψ · ν = 0, x ∈ ∂Ω,

(3.5)
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(ii) Assume that d2 is a constant on Ω̄. It is easily seen that R0 is a decreasing function of d2, and
the eigenvalue problem (3.5) can be reduced as

d2∆ψ
∗ − µ2ψ

∗ +
βd + βiµ

−1
3 k

R0
ψ∗ = 0, x ∈ Ω,

∇ψ∗(x) · ν = 0, x ∈ ∂Ω.

(3.6)

We first claim that R0 ≤ R0, otherwise we have −µ2 + (βd +βiµ
−1
3 k)/R0 < 0 and the principal eigenvalue

of d2∆−µ2 + (βd + βiµ
−1
3 k)/R0 is negative. This contradicts to (3.6). Thus lim

d2→0
R0 exists. We next prove

that lim
d2→0

R0 = R0. Assume to the contrary, then there exists ε0 > 0 such that R0 < R0− ε0 for all positive

d2. It follows from the continuity of coefficient functions that there exists a x0 ∈ Ω and a δ > 0 such
that

βd(x)
µ2(x)

+
βi(x)k(x)
µ2(x)µ3(x)

> R0 −
ε0

2
> R0 +

ε0

2
for all x ∈ Bδ(x0),

which implies that the positivity of βd(x)/µ2(x)+βi(x)k(x)/[µ2(x)µ3(x)] on Bδ(x0). Due to compactness
of continuous functions on a bounded domain, there exists ε > 0 such that

−µ2(x) +
βd(x) + βi(x)µ−1

3 (x)k(x)
R0

> ε for all x ∈ Bδ(x0).

The above inequality together with (3.6) yields −∆ψ∗ > εψ∗/d2. Denote ψ+(x) = ψ∗(x)/ min
x∈Bδ(x0)

ψ∗(x).

Then we have −∆ψ+(x) > εψ+(x)/d2 and ψ+(x) ≥ 1 on Bδ(x0). Let η > 0 be the principal eigenvalue of
−∆ on Bδ(x0) under Neumann boundary condition and ψ−(x) the corresponding eigenfunction, we can
further normalize ψ−(x) such that ψ−(x) ≤ 1 on Bδ(x0). Then we have −∆ψ−(x) = ηψ−(x) < εψ−(x)/d2.
Thus, ψ+(x) and ψ−(x) are the super- and sub-solutions of −∆ϕ = εϕ/d2 with Neumann boundary
condition. Thus, ε/d2 is an eigenvalue of −∆ on Bδ(x0) with Neumann boundary condition, which
contradicts the facts ε/d2 > η and η is the principal eigenvalue of −∆. Therefore, R0 → R0 as d2 → 0.

It is easily seen from (3.4) that R0 ≥ R0 for all d2 > 0. Thus, R0 is uniformly bounded for d2 > 0
and lim

d2→∞
R0 exists. Then we divide both sides of (3.6) by d2 to obtain

∆ψ∗ +
βd + βiµ

−1
3 k − R0µ2

R0d2
ψ∗ = 0, x ∈ Ω.

It then follows from elliptic regularity [24] that, there exists a positive constant ψ̄ such that ψ∗ → ψ̄ in
C(Ω) as d2 → ∞. Integrating (3.6) by parts over Ω yields∫

Ω

µ2ψ
∗dx =

∫
Ω

βd + βiµ
−1
3 k

R0
ψ∗dx.

Letting d2 → ∞, we obtain R0 → R0. This completes the proof. �

From the above theorem, we have a direct application on basic reproduction number.

Proposition 3.3. (i) If βd(x)/µ2(x) + βi(x)k(x)/(µ2(x)µ3(x)) ≤ 1 for all x ∈ Ω, then R0 < 1 for all
d2 > 0 and Ω is an infection-free environment.
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(ii) If
∫

Ω
(βd(x) + βi(x)µ−1

3 (x)k(x)dx ≥
∫

Ω
µ2(x)dx,, then R0 > 1 for all d2 > 0 and Ω is a favorable

environment for the viral infection.

(iii) If
∫

Ω
(βd(x) + βi(x)µ−1

3 (x)k(x)dx <
∫

Ω
µ2(x)dx and βd(x)/µ2(x) + βi(x)k(x)/(µ2(x)µ3(x)) > 1 for

some x ∈ Ω, then there exists a d∗2 > 0 such that R0 ≤ 1 if d2 ≥ d∗2 and R0 > 1 if d2 < d∗2.

4. Global dynamics of the viral infection model

4.1. Existence of a global attractor

Define the continuous semiflow {Θ(t)}t≥0 : X+ → X+ for the system (1.2) by

Θ(t)φ(·) := u(·, t, φ), t ≥ 0.

It follows from Theorem 2.3 that the semiflow Θ(t) of system (1.2) is point dissipative and the orbit
γ+(U) =

⋃
φ∈U

γ+(φ) is bounded for any bounded set U ⊂ X+. To apply the theory in [25], we have to

show that Θ(t) is asymptotically smooth. Since Θ(t) is not compact, we introduce the weak
compactness condition called κ-contraction, and Kuratowski measure of the noncompactness defined
by [25]

κ(U) := inf{r ≥ 0 : U has a finite cover of diameter less than r} (4.1)

for any bounded set U ⊂ X+. Clearly, κ(U) = 0 if and only if U is precompact. We need to show that
Θ(t) is a κ-contraction, that is, there exists a continuous function q(t) ∈ [0, 1) : R+ → R+ such that
κ(Θ(t)U) ≤ q(t)κ(U) for any bounded set U ⊂ X+ and t > 0. To achieve this, we need the following
lemma. The proof is similar to that in [12, Lemma 2.5] with some minor modifications.

Lemma 4.1. For any bounded set U ⊂ X+ and t > 0, {ui(·, t, φ) : φ ∈ U} and
{
∫ t

0
e−µ3(·)(t−s)k(·)u2(·, s, φ)ds : φ ∈ U} with i = 1, 2 are precompact in C(Ω̄).

Theorem 4.2. The semiflow Θ(t) is a κ-contraction and asymptotically smooth. Moreover, system (1.2)
admits a connected global attractor in X+.

Proof. For any initial condition φ = (φ1, φ2, φ3) ∈ X+, we have Θ(t)φ = Θ1(t)φ + Θ2(t)φ for all t ≥ 0,
where

Θ1(t)φ =

(
u1(·, t, φ), u2(·, t, φ),

∫ t

0
e−µ3(·)(t−s)k(·)u2(·, s, φ)ds

)
,

Θ2(t)φ = (0, 0, e−µ3(·)tφ3)

For any bounded set U ⊂ X+, it follows from (4.1) that

κ(Θ2(t)U) ≤ ‖e−µ3(·)t‖κ(U) ≤ e−µ3
tκ(U) for all t ≥ 0,

where µ
3

= min
x∈Ω̄

µ3(x). Note that Lemma 4.1 implies that Θ1(t)U is precompact in C(Ω̄) for any t > 0,

that is, κ(Θ1(t)U) = 0. Hence, for any t > 0, we have

κ(Θ(t)U) ≤ κ(Θ1(t)U) + κ(Θ2(t)U) ≤ e−µ3
tκ(U).

Therefore, Θ(t) is a κ-contraction. It then follows from [25, Lemma 2.3.4] that Θ(t) is asymptotically
smooth. Therefore, by Theorem 2.4.6 in [25], system (1.2) admits a connected global attractor in
X+. �
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4.2. Global stability of infection-free steady state

It follows from Theorem 3.1 in [23] that the infection-free steady state (w∗(x), 0, 0) is locally
asymptotically stable when R0 < 1. To establish global asymptotic stability of infection-free steady
state when R0 ≤ 1, we shall first develop the following approach to show local asymptotic stability of
infection-free steady state not only when R0 < 1, but also for the critical case R0 = 1.

Denote A as the linear operator of (3.2) and eAt the semigroup generated by A. The exponential
growth bound of eAt is defined as

ω(eAt) := lim
t→∞

ln ‖eAt‖

t
.

Lemma 4.3. Assume that R0 ≤ 1, then s(A) ≤ 0, ω(eAt) ≤ 0, and there exists a constant Ma > 0 such
that ‖eAt‖ ≤ Ma.

Proof. By Theorem 3.5 in [22], s(A) ≤ 0 if R0 ≤ 1. It follows from [26] that

ω(eAt) = max{s(A), ωess(eAt)},

where ωess(eAt) is the essential growth bound of eAt defined by

ωess(eAt) := lim
t→∞

lnσ(eAt)
t

.

Here, σ(eAt) denotes the distance of eAt from the set of compact linear operators in Y = C(Ω̄,R2). To
prove thatω(eAt) ≤ 0, it is sufficient to show thatωess(eAt) ≤ 0. For any φ̂ := (φ2, φ3) ∈ Y , the solution of
the linear system (3.2) is eAtφ̂ = Ψ2(t)φ̂+Ψ3(t)φ̂, where Ψ2(t)φ̂ = (u2(·, t, φ̂),

∫ t

0
e−µ3(·)(t−s)k(·)u2(·, s, φ̂)ds)

and Ψ3(t)φ̂ = (0, e−µ3(·)tφ3). Note that Lemma 4.1 implies that Ψ2(t) is a compact linear operator, that
is, σ(Ψ2(t)) = 0. Thus, we have σ(eAt) = σ(Ψ2(t) + Ψ3(t)) = σ(Ψ3(t)) ≤ ‖Ψ3(t)‖ ≤ e−µ3

t. Therefore, we
compute

ωess(eAt) ≤ −µ
3
< 0.

This implies that the there exists a constant Ma > 0 such that ‖eAt‖ ≤ Ma. �

Theorem 4.4. Assume that R0 ≤ 1, then the infection-free steady state (w∗(x), 0, 0) of (1.2) is locally
asymptotically stable.

Proof. Given any small δ > 0, let u(x, t) be any solution of (1.2) with initial condition satisfies
‖u1(x, 0) − w∗(x)‖ + ‖u2(x, 0)‖ + ‖u3(x, 0)‖ < δ. Denote w1(x, t) = u1(x, t) − w∗(x) and
µ

1
= min

x∈Ω
µ1(x) > 0 which satisfies

∂w1

∂t
= ∇ · (d1∇w1) − µ1w1 − f (w1 + w∗, u2) − g(w1 + w∗, u3)

≤ ∇ · (d1∇w1) − µ
1
w1.

Let −λ̃1 < 0 be the principle eigenvalue of T̃1(t), where T̃1(t) is the C0 semigroup generated by ∇ ·
(d1∇) − µ

1
with Neumann boundary condition. It then follows from comparison principle that

w1(x, t) ≤ ‖T̃1(t)w1(x, 0)‖ ≤ e−λ̃1t‖u1(x, 0) − w∗(x)‖ ≤ δe−λ̃1t
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for all x ∈ Ω and t ≥ 0. Thus, we have u1(x, t) ≤ ũ1(x, t) := w∗(x) + δe−λ̃1t on Ω × [0,∞). By (H1), we
obtain

f (u1, u2) ≤ f (̃u1, u2) ≤
∂ f (̃u1, 0)
∂u2

u2 and g(u1, u3) ≤ g(̃u1, u3) ≤
∂g(̃u1, 0)
∂u3

u3.

We obtain from the definitions of βd and βi in (3.1) and the second equation of (1.2) that

∂u2

∂t
≤ ∇ · (d2(x)∇u2) + βd(x)u2 + βi(x)u3 − µ2(x)u2 + p(x, t)

for x ∈ Ω and t > 0, where

p(x, t) =

(
∂ f (̃u1, 0)
∂u2

− βd

)
u2 +

(
∂g(̃u1, 0)
∂u3

− βd

)
u3.

It follows from system (1.2) and comparison principle that(
u2(·, t)
u3(·, t)

)
≤ eAt

(
u2(·, 0)
u3(·, 0)

)
+

∫ t

0
eA(t−s)

(
p(·, s)

0

)
ds, (4.2)

Recall K1 > max
x∈Ω̄

w∗(x) and ‖u1(x, t)‖ ≤ K1 for all t ≥ 0 in the proof of Theorem 2.3. Denote

f̄ = max
u1∈[0,K1]

∣∣∣∣∣∣∂2 f (u1, 0)
∂u1∂u2

∣∣∣∣∣∣ , ḡ = max
u1∈[0,K1]

∣∣∣∣∣∣∂2g(u1, 0)
∂u1∂u3

∣∣∣∣∣∣ .
We then have p(x, t) ≤ δe−λ̃1t( f̄ u2 + ḡu3). Set E(t) = max{max

x∈Ω
u2(x, t),max

x∈Ω
u3(x, t)}. By Lemma 4.3

and inequality (4.2), we obtain

E(t) ≤ δMa + δMa( f̄ + ḡ)
∫ t

0
e−λ̃1 sE(s)ds.

Then Gronwall’s inequality yields

E(t) ≤ δMae
∫ t

0 δMa( f̄ +ḡ)e−λ̃1 sds ≤ δMae
δMa( f̄ +ḡ)

λ̃1 for all t ≥ 0.

Thus ‖u2(·, t)‖ + ‖u3(·, t)‖ = O(δ) as δ→ 0. We next show that ‖u1(·, t) − w∗(x)‖ = O(δ) as δ→ 0. Note
that (H1) implies that

f (u1, u2) ≤ f (K1, u2) ≤
∂ f (K1, 0)
∂u2

u2 ≤
∂ f (K1, 0)
∂u2

δMae
δMa( f̄ +ḡ)

λ̃1 ,

g(u1, u3) ≤ g(K1, u3) ≤
∂g(K1, 0)
∂u3

u3 ≤
∂g(K1, 0)
∂u3

δMae
δMa( f̄ +ḡ)

λ̃1 .

It then follows from the above inequalities and the first equation of (1.2) that

∂u1

∂t
≥ ∇ · (d1(x)∇u1) + a(x) − qδ − µ1(x)u1, (4.3)
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where q = (∂ f (K1, 0)/∂u2 + ∂g(K1, 0)/∂u3) MaeδMa( f̄ +ḡ)/̃λ1 is positive and finite. By Lemma 2.1, for any
small δ > 0, the following reaction-diffusion equation

∂w
∂t

= ∇ · (d1(x)∇w) + a(x) − qδ − µ1(x)w, x ∈ Ω, t > 0,

∇w(x, t) · ν = 0, x ∈ ∂Ω, t > 0

admits a unique and strictly positive steady state wδ(x), which is globally asymptotically stable in
C(Ω̄,R+). Moreover, ‖w∗(x) − wδ(x)‖ = O(δ) as δ → 0. Thus, it follows from (4.3) and comparison
principle that

u1(x, t) ≥ wδ(x) ≥ w∗(x) + O(δ) as δ→ 0.

Recall that u1(x, t) ≤ w∗(x)+δe−λ̃1t on Ω×[0,∞). Therefore, ‖u1(·, t)−w∗(·)‖+‖u2(·, t)‖+‖u2(·, t)‖ = O(δ)
as δ→ 0, thus proving local stability of (w∗(x), 0, 0) if R0 ≤ 1. �

We are now in the position to establish global attractivity of infection-free steady state by
constructing a suitable Lyapunov functional and LaSalle invariance principle.

Theorem 4.5. If R0 ≤ 1, then the infection-free steady state (w∗(x), 0, 0) of (1.2) is globally
asymptotically stable.

Proof. We establish the global asymptotic stability of (w∗(x), 0, 0) by proving the following two claims.
Define a region D = {φ ∈ X+ : φ(x) ≤ w∗(x)}.
Claim 1. For any initial data φ ∈ X+, the omega limit set of φ is contained in D.

Clearly, for any x ∈ Ω, if u1(x, t0) ≤ w∗(x) for some t0 ≥ 0, then u1(x, t) ≤ w∗(x) for all t ≥ t0.
Then we divide the domain Ω into two sub-domains Ω1 := {x ∈ Ω : u1(x, t) > w∗(x) for all t ≥ 0} and
Ω2 := {x ∈ Ω : u1(x, t) ≤ w∗(x) for some t ≥ 0}. Here, Ω2 is closed in Ω, and there exists t0 ≥ 0 that
u1(x, t) ≤ w∗(x) for all x ∈ Ω2. Without loss of generality, we assume t0 = 0.

For any x ∈ Ω1, Lemma 2.1 and the first equation of (1.2) imply that ∂u1(x, t)/∂t ≤ 0, that is, u1(x, t)
is a decreasing function in t. It then follows from u1(x, t) ≥ w∗(x) for x ∈ Ω1 that lim

t→∞
u1(x, t) exists, and

lim
t→∞

u1(x, t) ≥ w∗(x). Moreover, if lim
t→∞

u1(x, t) > w∗(x), then we obtain from the first equation of (1.2)
that 0 = lim

t→∞
∂u1(x, t)/∂t < 0. This is a contradiction. Therefore, lim

t→∞
u1(x, t) = w∗(x), which implies

that the omega limit set of φ is contained in D.
Claim 2. The infection-free steady state (w∗(x), 0, 0) attracts all initial profiles in D.

We consider the solution semiflow restricted on the invariant set D and construct a Lyapunov
functional V1 : D→ R given by

V1(u1, u2, u3) =

∫
D

(
u2

2(x, t) +
βi(x)
k(x)

u2
3(x, t)

)
dx.

Taking the derivative of V1 along the solution, we obtain

dV1

dt
=

∫
D

(
u2

[
∇ · (d2∇u2) + f (u1, u2) + g(u1, u3) − µ2u2

]
+
βi

k
u3(ku2 − µ3u3)

)
dx.
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Note that u1(x, t) ≤ w∗(x) in D, it is readily seen from (H1) that f (u1, u2) ≤ f (w∗(x), u2) ≤ βdu2 and
g(u1, u3) ≤ g(w∗(x), u3) ≤ βiu3. These inequalities and Neumann boundary condition yield that

dV1

dt
≤

∫
D

(
−d2|∇u2|

2 − (µ2 − βd)u2
2 + 2βiu2u3 −

βiµ3

k
u2

3

)
dx

≤

∫
D

−d2|∇u2|
2 − (µ2 − βd)u2

2 +
βik
µ3

u2
2 − βi(

√
µ3

k
u3 −

√
k
µ3

u2)2

 dx

≤

∫
D

(
−d2|∇u2|

2 − (µ2 − βd)u2
2 +

βik
µ3

u2
2

)
dx.

We next prove ∫
Ω

βik
µ3
ψ2dx ≤

∫
Ω

(
d2|∇ψ|

2 + (µ2 − βd)ψ2
)

dx. (4.4)

holds for any ψ ∈ H1(Ω) if R0 ≤ 1. We make another decomposition of the linear operator A = F1 + B1

associated with the linear system (3.2), where

F1 =

(
0 βi(·)
0 0

)
, B1 =

(
∇ · (d2∇) − (µ2(·) − βd(·)) 0

k(·) −µ3(·)

)
. (4.5)

Note that Theorem 3.2 implies that µ2 > βd when R0 ≤ 1. Thus the operator B1 is resolvent-positive
with s(B1) < 0. Then it follows from [22, Theorem 3.5] and R0 ≤ 1 that s(A) ≤ 0 and

r(−F1B−1
1 ) = r

(
βik
µ3

(µ2 − βd − ∇ · (d2∇))−1
)

= sup
ψ∈H1(Ω),ψ,0

∫
Ω
βi(x)µ−1

3 (x)k(x)ψ2(x)dx∫
Ω

(
d2(x)|∇ψ(x)|2 + (µ2(x) − βd(x))ψ2(x)

)
dx
≤ 1.

Hence, we obtain (4.4) for any ψ ∈ H1(Ω) if R0 ≤ 1. This implies that dV1/dt ≤ 0 if R0 ≤ 1. Moreover,
K = {(w̄∗(x), 0, 0)}, where K is an invariant set on which dV1/dt = 0. Note that (w̄∗(x), 0, 0) is the
unique point in the largest invariant set on which dV1/dt = 0. By the LaSalle invariance principal,
(w̄∗(x), 0, 0) is globally attractive in D.

Finally, it follows from Lemma 1.2.1 in [27] that the omega limit set of any initial data φ ∈ X+

is internally chain transitive. The above two claims and [27, Theorem 1.2.1] yield (w∗(x), 0, 0) is
globally attractive in X+. This, together with the local stability result in Theorem 4.4, implies the
global asymptotic stability of (w∗(x), 0, 0) in X+ when R0 ≤ 1. This ends the proof. �

4.3. Persistence of infection when R0 > 1

By using the same idea in [12, Lemma 3.7], we show that s(A) is actually the principal eigenvalue
of A when R0 ≥ 1.

Lemma 4.6. If R0 ≥ 1, then s(A) is the principal eigenvalue of A with a strongly positive eigenfunction.

Proof. The eigenvalue problem of A is given by

λϕ2(x) = ∇ · (d2(x)∇ϕ2(x)) + βd(x)ϕ2(x) + βi(x)ϕ3(x) − µ2(x)ϕ2(x), x ∈ Ω,

λϕ3(x) = k(x)ϕ2(x) − µ3(x)ϕ3(x), x ∈ Ω,

∇ϕ2(x) · ν = 0, x ∈ ∂Ω.

(4.6)
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Then we define a one-parameter family of linear operators with Neumann boundary condition on C(Ω̄):

Lλ = ∇ · (d2∇) + βd +
βik

λ + µ3
− µ2.

Let Tλ(t) be the semigroup generated by Lλ. Since βd +
βik
λ+µ3
− µ2 is cooperative and irreducible for

all x ∈ Ω, it then follows from Theorem 7.5.1 in [16] that Tλ(t) is a compact and strongly positive
operator for all t > 0. By Krein-Rutman theorem, s(Lλ) is a principal eigenvalue of Lλ with positive
eigenfunction ϕ∗2(x). Clearly, s(Lλ) is decreasing and continuously with respect to λ, and s(Lλ) is finite
when λ is large.

According to Lemma 2.3(d) in [28], we obtain that R0 − 1 and s(A) have the same sign as λ0, where
λ0 is the principal eigenvalue of L0. This yields that s(L0) = λ0 ≥ 0. Thus, there exists a unique λ∗ ≥ 0
such that s(Lλ∗) = λ∗. Note that the problem (4.6) can be written as Lλϕ2(x) = λϕ2(x). Therefore,
if R0 ≥ 1, then s(Lλ∗) = λ∗ > 0 is a principal eigenvalue of A with a strongly positive eigenfunction
(ϕ∗2(x), ϕ∗3(x)), where ϕ∗3(x) =

k(x)
s(Lλ)+µ3(x)ϕ

∗
2(x). Finally, we can further obtain λ∗ = s(A) by using Theorem

2.3 in [23]. �

To establish the existence of the chronic infection steady state when R0 > 1, we now apply the
permanence theorem in [29, Theorem 3] and use an argument similar to that in the proof of [11,
Theorem 2.2] to obtain the following persistence result.

Theorem 4.7. If R0 > 1, then system (1.2) is uniformly persistent in X+, that is, there exists a η > 0
such that for any φ ∈ X0, we have

lim inf
t→∞

ui(x, t, φ) ≥ η, (i = 1, 2, 3) uniformly for all x ∈ Ω̄.

Moreover, system (1.2) admits at least one chronic infection steady state (u∗1(x), u∗2(x), u∗3(x)).

Proof. Denote X0 := {(φ1, φ2, φ3) ∈ X+ : φ2(·) . 0 and φ3(·) . 0} and

∂X0 := X+\X0 = {(φ1, φ2, φ3) ∈ X+ : φ2(·) ≡ 0 or φ3(·) ≡ 0}.

Obviously, X0 ∩ ∂X0 = ∅, X0 ∪ ∂X0 = X+, X0 is open and dense in X+, and Θ(t)∂X0 ⊆ ∂X0. Note that
Proposition 2.4(ii) implies that Θ(t)X0 ⊆ X0 for all t ≥ 0. Denote M∂ as the largest positively invariant
set in ∂X0. It follows from Proposition 2.4(ii) that

M∂ = {(φ1, φ2, φ3) ∈ X+ : φ2 ≡ 0 and φ3 ≡ 0}.

For any initial data φ ∈ M∂, we can easily obtain that ui(x, t, φ) ≡ 0 for all i = 2, 3, x ∈ Ω and
t ≥ 0. Then in view of Lemma 2.1, the limiting system when ui ≡ 0 for i = 2, 3 has a unique
globally asymptotically stable steady state u1(x, t) = w∗(x). We then obtain from [30, Theorem 4.1] that
(w∗(x), 0, 0) is globally attractive in M∂. We now define a generalized distance function ρ : X+ → [0,∞)
by

ρ(φ) = min
x∈Ω̄
{φ2(x), φ3(x)} for any φ ∈ X+.

From strong maximum principle, we have ρ(Θ(t)φ) > 0 for all φ ∈ X0. Since ρ−1(0,∞) ⊂ X0, the
condition (P) in [29, Section 3] is satisfied.
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Denote W s((w∗(x), 0, 0)) as the stable manifold of (w∗(x), 0, 0). We next verify that
W s((w∗(x), 0, 0)) ∩ ρ−1(0,∞) = ∅. It suffices to show that there exists a η0 > 0 such that

lim sup
t→∞

‖Θtφ − (w∗(x), 0, 0)‖ ≥ η0 for any φ ∈ ρ−1(0,∞).

Suppose, to the contrary, for any η0 > 0 there exists φ̃ ∈ ρ−1(0,∞) such that

lim sup
t→∞

‖Θtφ̃ − (w∗(x), 0, 0)‖ < η0. (4.7)

In view of Lemma 4.6, λ0 = s(A) > 0 is the principal eigenvalue of A = F + B with a strongly positive
eigenfunction if R0 > 1. For any sufficiently small ε > 0, we consider a small perturbation of F:

Fε =

(
βd − ε βi − ε

0 0

)
.

Similar as in the proof of Lemma 4.6, one can show that the eigenvalue problem

λϕ2 = ∇ · (d2∇ϕ2) + (βd − ε)ϕ2 + (βi − ε)ϕ3 − µ2ϕ2, x ∈ Ω,

λϕ3 = kϕ2 − µ3ϕ3, x ∈ Ω,

∇ϕ2 · ν = 0, x ∈ ∂Ω.

has a principle eigenvalue λε with strongly positive eigenfunction (ϕε2, ϕ
ε
3). By continuity of the

operator, we have λε → λ0 > 0 as ε → 0+. We then choose a small ε > 0 such that λε > 0. It follows
from (4.7) and (H1) that there exists a t̃ > 0 such that

f (u1, u2) ≥ (βd − ε)u2 and g(u1, u3) ≥ (βi − ε)u3 for all t ≥ t̃.

Thus, for all t ≥ t̃, (u2(x, t, φ̃), u3(x, t, φ̃)) satisfies

∂u2
∂t ≥ ∇ · (d2(x)∇u2) + (βd − ε)u2 + (βi − ε)u3 − µ2u2, x ∈ Ω, t > t̃,
∂u3
∂t = k(x)u2 − µ3(x)u3, x ∈ Ω, t > t̃,
∇u2 · ν = 0, x ∈ ∂Ω, t > t̃.

(4.8)

Since ui(x, t, φ̃) > 0 for all x ∈ Ω̄, t > 0 and i = 2, 3, there exists δ > 0 such that u2(x, t̃, φ̃) ≥ δϕε2 and
u3(x, t̃, φ̃) ≥ δϕε3. It then follows from (4.8) and comparison principle that

(u2(x, t, φ̃), u3(x, t, φ̃)) ≥ (δeλε(t−t̃)ϕε2, δe
λε(t−t̃)ϕε3) for x ∈ Ω̄, t ≥ t̃.

Therefore, ui(x, t, φ̃) → ∞ as t → ∞ for i = 2, 3, which contradicts to Theorem 2.3. Thus, we prove
W s((w∗(x), 0, 0)) ∩ ρ−1(0,∞) = ∅. Then by applying [29, Theorem 3], there exists η0 > 0 such that
lim inf

t→∞
ρ(Θ(t)φ) ≥ η0 for any φ ∈ X+. This, together with Proposition 2.4 implies that lim inf

t→∞
ui(x, t) ≥ η

for all i = 1, 2, 3 and x ∈ Ω̄, where η = min{η0,m0}.
Furthermore, in view of [31, Theorem 4.7] and Theorem 4.2, system (1.2) admits at least one

positive steady state. This ends the proof. �
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5. Spatially homogeneous case

In this section, we consider the special case where all the coefficients in (1.2) are independent of the
variable x, that is, d1(x) = d1, a(x) = a, µ j(x) = µ j ( j = 1, 2, 3), d2(x) = d2, k(x) = k for all x ∈ Ω̄. We
further assume that

(C) f (u1, u2) = h(u1) f1(u2) and g(u1, u3) = h(u1)g1(u3), where h, f1, g1 ∈ C1(R+ × R+) are increasing
functions, and h(v) = 0 (resp. f1(v) = 0, g1(v) = 0) if and only if v = 0. Moreover, d2 f1(v)/dv2 ≤ 0
and d2g1(v)/dv2 ≤ 0.

System (1.2) becomes homogeneous, that is,

∂u1

∂t
= d1∆u1 + a − h(u1) f1(u2) − h(u1)g1(u3) − µ1u1,

∂u2

∂t
= d2∆u2 + h(u1) f1(u2) + h(u1)g1(u3) − µ2u2,

∂u3

∂t
= ku2 − µ3u3,

(5.1)

for x ∈ Ω, t > 0 with the homogeneous Neumann boundary condition and nonnegative initial
conditions. It then follows that w∗(x) = a/µ1. By applying Krein-Rutman theorem, Ad + Ai is a
compact and positive operator with a positive eigenfunction 1 corresponding to a positive principle
eigenvalue

R0 =
βd

µ2
+

βik
µ2µ3

,

where βd = h(a/µ1) f ′1(0) and βi = h(a/µ1)g′1(0) are constants. This implies that the basic reproduction
numbers for system (5.1) and the corresponding diffusive-free (d1 = d2 = 0) system are same. Denote
(u∗1, u

∗
2, u

∗
3) as the positive constant steady state, which satisfy the following equilibrium equations

a − µ1u∗1 = h(u∗1)
(
f1(u∗2) + g1(u∗3)

)
= µ2u∗2 =

µ2µ3

k
u∗3. (5.2)

Since the existence of constant steady state for system (5.1) same as for the corresponding ODE system.
This, together with Theorem 3.1 in [8], yields the following lemma.

Lemma 5.1. If R0 > 1, then system (5.1) has a unique positive constant steady state (u∗1, u
∗
2, u

∗
3).

We next establish that R0 is a threshold role for the global dynamics of system (5.1), and further
give the global stability of the positive constant steady state.

Theorem 5.2. (i) If R0 ≤ 1, then the infection-free steady state (a/µ1, 0, 0) for system (5.1) is globally
asymptotically stable in X+.

(ii) If R0 > 1, then system (5.1) admits a unique chronic infection steady state (u∗1, u
∗
2, u

∗
3), which is

also homogeneous and globally asymptotically stable in X0.

Proof. Theorem 4.5 implies that (i) holds. We next prove the local asymptotic stability of the positive
constant steady state (u∗1, u

∗
2, u

∗
3) when R0 > 1. Linearizing system (5.1) at (u∗1, u

∗
2, u

∗
3), we obtain

dU(t)
dt

= d∆U(t) + L(U(t)),
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where U(t) = (u1(x, t), u2(x, t), u3(x, t))T , b = h′(u∗1)( f1(u∗2) + g1(u∗3)) > 0,

d∆ =


d1∆ 0 0

0 d2∆ 0
0 0 0

 , L(φ) =


−b − µ1 −h(u∗1) f ′1(u∗2) −h(u∗1)g′1(u∗3)

b h(u∗1) f ′1(u∗2) − µ2 h(u∗1)g′1(u∗3)
0 k −µ3

 ,
and dom(d∆) = {(u1, u2)T : ui ∈ W2,2(Ω), ∂ui

∂ν
= 0 for i = 1, 2.}. Then the characteristic equation for the

above linear system is
λy − d∆y − L(y) = 0 for y ∈ dom(d∆), y , 0.

It is well known that the eigenvalue problem

−∆ψ = ζψ, x ∈ Ω,

∂ψ

∂ν
= 0, x ∈ ∂Ω,

has eigenvalues 0 = ζ0 < ζ1 ≤ ζ2 ≤ · · · ≤ ζn ≤ ζn+1 ≤ · · · ,with the corresponding eigenfunctions ψ̂n(x).

Substituting y =
∞∑

n=0
ynψ̂n(x) into the characteristic equation gives

(λ + b + µ1 + d1ζn)(λ + µ2 + d2ζn)(λ + µ3) = (λ + µ1 + d1ζn)Φ1(λ)

for n = 0, 1, 2, · · · , where Φ1(λ) = (λ+µ3)h(u∗1) f ′1(u∗2)+kh(u∗1)g′1(u∗3). The above characteristic equation
is equivalent to

(λ + b + µ1 + d1ζn)(
λ

µ2
+ 1 +

d2ζn

µ2
)(λ + µ3) = (λ + µ1 + d1ζn)Φ2(λ) (5.3)

where

Φ2(λ) =

(
1

1 + kg′1(u∗3)/(µ3 f ′1(u∗2))
λ + µ3

) (
h(u∗1) f ′1(u∗2)

µ2
+

kh(u∗1)g′1(u∗3)
µ2µ3

)
.

We claim that all eigenvalues of (5.3) have negative real parts. Otherwise, suppose that λ = σ + ωi is
an eigenvalue satisfying σ ≥ 0. Then for any nonnegative integer n, we have

|λ + b + µ1 + d1ζn| > |λ + µ1 + d1ζn|, |
λ

µ2
+ 1 +

d2ζn

µ2
| ≥ 1.

It follows from (C) and (5.2) that

h(u∗1) f ′1(u∗2)
µ2

+
kh(u∗1)g′1(u∗3)

µ2µ3
≤

h(u∗1) f1(u∗2)
µ2u∗2

+
kh(u∗1)g1(u∗3)
µ2µ3u∗3

= 1,

which implies that |Φ2(λ)| ≤ |λ + µ3|. Therefore, we obtain

|(λ + b + µ1 + d1ζn)(
λ

µ2
+ 1 +

d2ζn

µ2
)(λ + µ3)| > |(λ + µ1 + d1ζn)Φ2(λ)|

for all integer n ≥ 0. This is a contradiction. Hence we proved the claim, and (u∗1, u
∗
2, u

∗
3) is locally

asymptotically stable when R0 > 1.
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Denote q(z) = z − 1 − ln z. Clearly, q(z) ≥ 0 for z > 0, and q(z) = 0 if and only if z = 1. We next
prove global attractiveness of (u∗1, u

∗
2, u

∗
3) in X0 by constructing a Lyapunov functional V2 : X0 → R as

follows.

V2(u1, u2, u3) =

∫
Ω

W(u1, u2, u3)dx,

where

W(u1, u2, u3) = u1 −

∫ u1

u∗1

h(u∗1)
h(s)

ds + u∗2 q
(
u2

u∗2

)
+

h(u∗1)g1(u∗3)u∗3
ku∗2

q
(
u3

u∗3

)
.

It follows from Theorems 2.3 and 4.7 that the solutions of system (5.1) are bounded and uniform
persistent, which implies that V2 and W are well-defined. Making use of the equilibrium equations
(5.2), the time derivative of W along a positive solution of system (5.1) after a tedious calculation, is
given by

dW
dt

=d1(1 −
h(u∗1)
h(u1)

)∆u1 + d2(1 −
u∗2
u2

)∆u2 − µ1(u1 − u∗1)
(
1 −

h(u∗1)
h(u1)

)
− h(u∗1)g1(u∗3)

[
q
(
h(u∗1)
h(u1)

)
+ q

(
u2u∗3
u∗2u3

)
− q

(
u3g1(u∗3)
u∗3g1(u3)

)
− q

(
u∗2h(u1)g1(u3)
u2h(u∗1)g1(u∗3)

)]
− h(u∗1) f1(u∗2)

[
q
(
h(u∗1)
h(u1)

)
+ q

(
u2 f1(u∗2)
u∗2 f1(u2)

)
+ q

(
u∗2h(u1) f1(u2)
u2h(u∗1) f1(u∗2)

)]
+ h(u∗1)g1(u∗3)

u3

u∗3

(
g1(u3)
g1(u∗3)

− 1
) (

u∗3
u3
−

g1(u∗3)
g1(u3)

)
+ h(u∗1) f1(u∗2)

(
u2

u∗2
−

f1(u2)
f1(u∗2)

) (
f1(u∗2)
f1(u2)

− 1
)
.

Note from the Green’s identity and Neumann boundary condition that∫
Ω

d1

(
1 −

h(u∗1)
h(u1)

)
∆u1dx = −d1

∫
Ω

h(u∗1)h′(u1)
h2(u1)

|∇u1|
2dx ≤ 0,∫

Ω

d1

(
1 −

u∗2
u2

)
∆u2dx = −d2

∫
Ω

u∗2
u2

2

|∇u2|
2dx ≤ 0.

Since h, f1 and g1 are increasing functions, f1 and g1 are concave down, then we have (u1 − u∗1)(1 −
h(u∗1)/h(u1)) ≥ 0 and(

g1(u3)
g1(u∗3)

− 1
) (

u∗3
u3
−

g1(u∗3)
g1(u3)

)
≤ 0,

(
u2

u∗2
−

f1(u2)
f1(u∗2)

) (
f1(u∗2)
f1(u2)

− 1
)
≤ 0.

Thus, dV2/dt =
∫

Ω
(dW/dt)dx ≤ 0. The largest invariant subset of dV2/dt = 0 is the singleton

(u∗1, u
∗
2, u

∗
3). By LaSalle-Lyapunov invariance principle, the positive constant steady state (u∗1, u

∗
2, u

∗
3) is

globally attractive in X0. The uniqueness of chronic infection steady state follows immediately from
the global attractivity. This, together with the local asymptotic stability, yields that the global
asymptotic stability of the positive constant steady state (u∗1, u

∗
2, u

∗
3) in X0 if R0 > 1. �
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