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Abstract: The continuous predator-prey model is one of the main models studied in recent years.
The dynamical properties of these models are so complex that it is an urgent topic to be studied. In
this paper, we transformed a continuous predator-prey model with modified Leslie-Gower and Holling-
type III schemes into a discrete mode by using Euler approximation method. The existence and stability
of fixed points for this discrete model were investigated. Flip bifurcation analyses of this discrete
model was carried out and corresponding bifurcation conditions were obtained. Provided with these
bifurcation conditions, an example was given to carry out numerical simulations, which shows that
the discrete model undergoes flip bifurcation around the stable fixed point. In addition, compared
with previous studies on the continuous predator-prey model, our discrete model shows more irregular
and complex dynamic characteristics. The present research can be regarded as the continuation and
development of the former studies.
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1. Introduction

In biological systems, the continuous predator-prey model has been successfully investigated and
many interesting results have been obtained (cf. [1–9] and the references therein). Moreover, based on
the continuous predator-prey model, many human factors, such as time delay [10–12], impulsive
effect [13–20], Markov Switching [21], are considered. The existing researches mainly focus on
stability, periodic solution, persistence, extinction and boundedness [22–28].
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In 2011, the authors [28] considered the system incorporating a modified version of Leslie-Gower
functional response as well as that of the Holling-type III:ẋ(t) = x(a1 − bx − c1y2

x2+k1
),

ẏ(t) = y(a2 −
c2y

x+k2
).

(1)

With the diffusion of the species being also taken into account, the authors [28] studied a reaction-
diffusion predator-prey model, and gave the stability of this model.

In model (1) x represents a prey population, y represents a predator with population, a1 and a2

represent the growth rate of prey x and predator y respectively, constant b represents the strength of
competition among individuals of prey x, c1 measures the maximum value of the per capita reduction
rate of prey x due to predator y, k1 and k2 represent the extent to which environment provides protection
to x and to y respectively, c2 admits a same meaning as c1. All the constants a1, a2, b, c1, c2, k1, k2 are
positive parameters.

However, provided with experimental and numerical researches, it has been obtained that
bifurcation is a widespread phenomenon in biological systems, from simple enzyme reactions to
complex ecosystems. In general, the bifurcation may put a population at a risk of extinction and thus
hinder reproduction, so the bifurcation has always been regarded as a unfavorable phenomenon in
biology [29]. This bifurcation phenomenon has attracted the attention of many mathematicians, so the
research on bifurcation problem is more and more abundant [30–40].

Although the continuous predator-prey model has been successfully applied in many ways, its
disadvantages are also obvious. It requires that the species studied should have continuous and
overlapping generations. In fact, we have noticed that many species do not have these characteristics,
such as salmon, which have an annual spawning season and are born at the same time each year. For
the population with non-overlapping generation characteristics, the discrete time model is more
practical than the continuous model [38], and discrete models can generate richer and more complex
dynamic properties than continuous time models [39]. In addition, since many continuous models
cannot be solved by symbolic calculation, people usually use difference equations for approximation
and then use numerical methods to solve the continuous model.

In view of the above discussion, the study of discrete system is paid more and more attention by
mathematicians. Many latest research works have focused on flip bifurcation for different models, such
as, discrete predator-prey model [41,42]; discrete reduced Lorenz system [43]; coupled thermoacoustic
systems [44]; mathematical cardiac system [45]; chemostat model [46], etc.

For the above reasons, we will study from different perspectives in this paper, focusing on the
discrete scheme of Eq (1).

In order to get a discrete form of Eq (1), we first let

u =
b
a1

x, v =
c1

a1
y, τ = a1t,

and rewrite u, v, τ as x, y, t, then (1) changes into:ẋ(t) = x(1 − x − β1y2

x2+h1
),

ẏ(t) = αy(1 − β2y
x+h2

),
(2)

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2003–2015.



2005

where β1 = b2

c1a1
, h1 = b2k1

a2
1
, α = a2

c1
, β2 = c2b

c1a2
, h2 = bk2

a1
.

Next, we use Euler approximation method, i.e., let

dx
dt
≈

xn+1 − xn

4t
,

dy
dt
≈

yn+1 − yn

4t
,

where 4t denotes a time step, xn, yn and xn+1, yn+1 represent consecutive points. Provided with Euler
approximation method with the time step 4t = 1, (2) changes into a two-dimensional discrete
dynamical system: xn+1 = xn + xn(1 − xn −

β1y2
n

x2
n+h1

),

yn+1 = yn + αyn(1 − β2yn
xn+h2

).
(3)

For the sake of analysis, we rewrite (3) in the following map form:

(
x
y

)
7→


x + x(1 − x −

β1y2

x2 + h1
)

y + αy(1 −
β2y

x + h2
)

 . (4)

In this paper, we will consider the effect of the coefficients of map (4) on the dynamic behavior of
the map (4). Our goal is to show how a flipped bifurcation of map (4) can appear under some certain
conditions.

The remainder of the present paper is organized as follows. In section 2, we discuss the fixed points
of map (4) including existence and stability. In section 3, we investigate the flip bifurcation at equilibria
E2 and E∗. It has been proved that map (4) can undergo the flip bifurcation provided with that some
values of parameters be given certain. In section 4, we give an example to support the theoretical
results of the present paper. As the conclusion, we make a brief discussion in section 5.

2. Existence and stability of fixed points

Obviously, E1(1, 0) and E2(0, h2
β2

) are fixed points of map (4). Given the biological significance of
the system, we focus on the existence of an interior fixed point E∗(x∗, y∗), where x∗ > 0, y∗ > 0 and
satisfy

1 − x∗ =
β1(y∗)2

(x∗)2 + h1
, x∗ + h2 = β2y∗,

i.e., x∗ is the positive root of the following cubic equation:

β2
2x3 + (β1 − β

2
2)x2 + (β2

2h1 + 2β1h2)x + β1h2
2 − β

2
2h1 = 0. (5)

Based on the relationship between the roots and the coefficients of Eq (5), we have
Lemma 2.1 Assume that β1h2

2 − β
2
2h1 < 0, then Eq (5) has least one positive root, and in particular

(i) a unique positive root, if β1 ≥ β
2
2;

(ii) three positive roots, if β1 < β
2
2.

The proof of Lemma 2.1 is easy, and so it is omitted.
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In order to study the stability of equilibria, we first give the Jacobian matrix J(E) of map (4) at any
a fixed point E(x, y), which can be written as

J(E) =

2 − 2x − β1y2(h1−x2)
(x2+h1)2 −

2β1 xy
x2+h1

αβ2y2

(x+h2)2 1 + α − 2αβ2y
x+h2

 .
For equilibria E1, we have

J(E1) =

(
0 0
0 1 + α

)
.

The eigenvalues of J(E1) are λ1 = 0, λ2 = 1 + α with λ2 > 1 due to the constant α > 0, so E1(1, 0) is a
saddle.

For equilibria E2, note that

J(E2) =

2 − β1h2
2

β2
2h1

0
α
β2

1 − α

 ,
then the eigenvalues of J(E2) are λ1 = 2 − β1h2

2
β2

2h1
, λ2 = 1 − α, and so we get

Lemma 2.2 The fixed point E2(0, h2
β2

) is

(i) a sink if 1 < β1h2
2

β2
2h1

< 3 and 0 < α < 2;

(ii) a source if β1h2
2

β2
2h1

< 1 or β1h2
2

β2
2h1

> 3 and α > 2;

(iii) a a saddle if 1 < β1h2
2

β2
2h1

< 3 and α > 2, or, β1h2
2

β2
2h1

< 1 or β1h2
2

β2
2h1

> 3 and 0 < α < 2;

(iv) non-hyperbolic if β1h2
2

β2
2h1

= 1 or β1h2
2

β2
2h1

= 3 or α = 2.

3. Flip bifurcation

In this section, we will use the relevant results of literature [38–40] to study the flip bifurcation at
equilibria E2 and E∗.

3.1. Flip bifurcation at equilibria E2

Based on (iii) in Lemma 2.2, it is known that if α = 2, the eigenvalues of J(E2) are: λ1 = 2 −
β1h2

2
β2

2h1
, λ2 = −1. Define

Fl = {(β1, β2, h1, h2, α) : α = 2, β1, β2, h1, h2 > 0}.

We conclude that a flip bifurcation at E2(0, h2
β2

) of map (4) can appear if the parameters vary in a small
neighborhood of the set Fl.

To study the flip bifurcation, we take constant α as the bifurcation parameter, and transform E2(0, h2
β2

)

into the origin. Let e = 2 − β1h2
2

β2
2h1
, α1 = α − 2, and

u(n) = x(n), v(n) = y(n) −
h2

β2
,

Mathematical Biosciences and Engineering Volume 17, Issue 3, 2003–2015.



2007

then map (4) can be turned into

(
u
v

)
7→


eu − u2 −

2β1h2

β2h1
uv + O((|u| + |v| + |α1|)3)

2
β2

u − v −
2

β2h2
u2 −

2β2

h2
v2 +

4
h2

uv +
α1

β2
u − α1v −

α1

β2h2
u2

−
α1β2

h2
v2 +

2α1

h2
uv + O((|u| + |v| + |α1|)3)


. (6)

Let

T1 =

(
1 + e 0

2
β2

1

)
,

then by the following invertible transformation:(
u
v

)
= T1

(
s
w

)
,

map (6) turns into(
s
w

)
7→

 es − (1 + e)s2 −
2β1h2

β2h1
s(

2s
β2

+ w) + O(|s| + |w| + |α1|)3

−w + F2(s,w, α1)

 , (7)

where

F2 =
2
β2

[(1 + e)s2 +
2β1h2

β2h1
s(

2s
β2

+ w)] −
2

β2h2
(1 + e)2s2 −

2β2

h2
(
2s
β2

+ w)2 +
4(1 + e)

h2
s(

2s
β2

+ w)

+
(1 + e)α1

β2
s − α1(

2s
β2

+ w) −
(1 + e)2α1

β2h2
s2 −

α1β2

h2
(
2s
β2

+ w)2

+
2(1 + e)α1

h2
s(

2s
β2

+ w) + O(|s| + |w| + |α1|)3.

Provided with the center manifold theorem (Theorem 7 in [40]), it can be obtained that there will exist
a center manifold Wc(0, 0) for map (7), and the center manifold Wc(0, 0) can be approximated as:

Wc(0, 0) = {(w, s, α1) ∈ R3 : s = aw2 + bwα1 + c(α1)2 + O(|w| + |α1|)3}.

As the center manifold satisfies:

s = a(−w + F2)2 + b(−w + F2)α1 + c(α1)2

= e(aw2 + bwα1 + c(α1)2) − (1 + e)(aw2 + bwα1 + c(α1)2)2

−
2β1h2
β2h1

(aw2 + bwα1 + c(α1)2)( 2
β2

(aw2 + bwα1 + c(α1)2) + w)
+O(|s| + |w| + |α1|)3,

it can be obtained by comparing the coefficients of the above equality that a = 0, b = 0, c = 0, so the
center manifold of map (7) at E2(0, h2

β2
) is s = 0. Then map (7) restricted to the center manifold turns

into
w(n + 1) = −w(n) − α1w(n) −

2β2

h2
w2(n) −

α1β2

h2
w2(n) + O(|w(n)| + |α1|)3
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, f (w, α1).

Obviously,

fw(0, 0) = −1, fww(0, 0) = −
4β2

h2
,

so
( fww(0, 0))2

2
+

fwww(0, 0)
3

, 0, fwα1(0, 0) = −1 , 0.

Therefore, Theorem 4.3 in [38] guarantees that map (3) undergoes a flip bifurcation at E2(0, h2
β2

). �

3.2. Flip bifurcation at equilibria E∗

Note that

J(E∗) =

2 − 2x∗ − β1(y∗)2(h1−(x∗)2)
((x∗)2+h1)2 −

2β1 x∗y∗

(x∗)2+h1
α
β2

1 − α

 ,
then the characteristic equation of Jacobian matrix J(E∗) of map (3) at E∗(x∗, y∗) is:

λ2 − (1 + α0 − α)λ + (1 − α)α0 − ηα = 0, (8)

where

α0 = 2 − 2x∗ −
β1(y∗)2(h1 − (x∗)2)

((x∗)2 + h1)2 , η = −
2β1x∗y∗

β2((x∗)2 + h1)
.

Firstly, we discuss the stability of the fixed point E∗(x∗, y∗). The stability results can be described as
the the following Lemma, which can be easily proved by the relations between roots and coefficients
of the characteristic Eq (8), so the proof has been omitted.

Lemma 3.1 The fixed point E∗(x∗, y∗) is
(i) a sink if one of the following conditions holds.

(i.1) 0 < α0 + η < 1, and α0−1
α0+η

< α < 2(1+α0)
1+α0+η

;
(i.2) −1 < α0 + η < 0, and α < min{α0−1

α0+η
, 2(1+α0)

1+α0+η
};

(i.3) α0 + η < −1, and α0−1
α0+η

> α > 2(1+α0)
1+α0+η

;
(ii) a source if one of the following conditions holds.

(ii.1) 0 < α0 + η < 1, and α < min{α0−1
α0+η

, 2(1+α0)
1+α0+η

};
(ii.2) −1 < α0 + η < 0, and α0−1

α0+η
< α < 2(1+α0)

1+α0+η
;

(ii.3) α0 + η < −1, and α > max{α0−1
α0+η

, 2(1+α0)
1+α0+η

};
(iii) a saddle if one of the following conditions holds.

(iii.1) −1 < α0 + η < 1, and α > 2(1+α0)
1+α0+η

;
(iii.2) α0 + η < −1, and α < 2(1+α0)

1+α0+η
;

(iv) non-hyperbolic if one of the following conditions holds.
(iv.1) α0 + η = 1;
(iv.2) α0 + η , −1; and α =

2(1+α0)
1+α0+η

;
(iv.3) α0 + η , 0, α = α0−1

α0+η
and (1 + α0 − α)2 < 4((1 − α)α0 − ηα).
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Then based on (iv.2) of Lemma 3.1 and α , 1 + α0, 3 + α0, we get that one of the eigenvalues at
E∗(x∗, y∗) is −1 and the other satisfies |λ| , 1. For α, β1, β2, h1, h2 > 0, let us define a set:

Fl = {(β1, β2, h1, h2, α) : α =
2(1 + α0)
1 + α0 + η

, α0 + η , −1, α , 1 + α0, 3 + α0}.

We assert that a flip bifurcation at E∗(x∗, y∗) of map (3) can appear if the parameters vary in a small
neighborhood of the set Fl.

To discuss flip bifurcation at E∗(x∗, y∗) of map (3), we choose constant α as the bifurcation parameter
and adopt the central manifold and bifurcation theory [38–40].

Let parameters (α1, β1, β2, h1, h2) ∈ Fl, and consider map (3) with (α1, β1, β2, h1, h2), then map (3)
can be described as xn+1 = xn + xn(1 − xn −

β1y2
n

x2
n+h1

),

yn+1 = yn + α1yn(1 − β2yn
xn+h2

).
(9)

Obviously, map (9) has only a unique positive fixed point E∗(x∗, y∗), and the eigenvalues
are λ1 = − 1, λ2 = 2 + α0 − α, where |λ2| , 1.

Note that (α1, β1, β2, h1, h2) ∈ Fl, then α1 =
2(1+α0)
1+α0+η

. Let |α∗| small enough, and consider the following
perturbation of map (9) described byxn+1 = xn + xn(1 − xn −

β1y2
n

x2
n+h1

),

yn+1 = yn + (α1 + α∗)yn(1 − β2yn
xn+h2

),
(10)

with α∗ be a perturbation parameter.
To transform E∗(x∗, y∗) into the origin, we let u = x − x∗, v = y − y∗, then map (10) changes into

(
u
v

)
7→


a1u + a2v + a3u2 + a4uv + a5v2 + a6u3 + a7u2v

+a8uv2 + a9v3 + O((|u| + |v|)4)
b1u + b2v + b3u2 + b4uv + b5v2 + c1uα∗ + c2vα∗ + c3u2α∗

+c4uvα∗ + c5v2α∗ + b6u3 + b7u2v + b8uv2 + b9v3

+O((|u| + |v| + |α∗|)4)


, (11)

where
a1 = 2 − 2x∗ − β1(y∗)2 f (0) − β1x∗(y∗)2 f ′(0); a2 = −2β1x∗y∗ f (0);
a3 = −1 − β1(y∗)2 f ′(0) − 1

2β1x∗(y∗)2 f ′′(0); a4 = −2β1y∗ f (0) − 2β1x∗y∗ f ′(0);
a5 = −β1x∗ f (0); a6 = −1

2β1(y∗)2 f ′′(0) − 1
6β1x∗(y∗)2 f ′′′(0);

a7 = −β1x∗y∗ f ′′(0) − 2β1y∗ f ′(0); a8 = −β1 f (0) − β1x∗ f ′(0), a9 = 0;
f (0) = 1

(x∗)2+h1
, f ′(0) = −2x∗

[(x∗)2+h1]2 , f ′′(0) =
6(x∗)2−2h1
[(x∗)2+h1]3 , f ′′′(0) =

24x∗(h1−(x∗)2)
[(x∗)2+h1]4 .

b1 =
α1β2(y∗)2

(x∗+h2)2 ; b2 = 1 + α1 −
α1β2y∗

x∗+h2
; b3 = −

α1β2(y∗)2

(x∗+h2)3 ; b4 =
2α1β2y∗

(x∗+h2)2 ;

b5 = −
α1β2
x∗+h2

; c1 =
β2(y∗)2

(x∗+h2)2 ; c2 = 1 − β2y∗

x∗+h2
; c3 = −

β2(y∗)2

(x∗+h2)3 ;

c4 =
2β2y∗

(x∗+h2)2 ; c5 = −
β2

x∗+h2
; b6 =

α1β2(y∗)2

(x∗+h2)4 ; b7 = −
2α1β2y∗

(x∗+h2)3 ;

b8 =
α1β2

(x∗ + h2)2 ; b9 = 0.
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Now let’s construct an matrix

T2 =

(
a2 a2

−1 − a1 λ2 − a1

)
.

It’s obvious that the matrix T2 is invertible due to λ2 , −1, and then we use the following invertible
translation (

u
v

)
= T2

(
s
w

)
,

map (11) can be described by (
s
w

)
7→

(
−s + f1(s,w, α∗)
λ2w + f2(s,w, α∗)

)
, (12)

where
f1(s,w, α∗) =

(λ2−a1)a3−a2b3
a2(λ2+1) u2 +

(λ2−a1)a4−a2b4
a2(λ2+1) uv +

(λ2−a1)a5−a2b5
a2(λ2+1) v2 +

(λ2−a1)a6−a2b6
a2(λ2+1) u3

+
(λ2−a1)a7−a2b7

a2(λ2+1) u2v +
(λ2−1)a8−a2b8

a2(λ2+1) uv2 +
(λ2−a1)a9−a2b9

a2(λ2+1) v3 −
a2c1

a2(λ2+1)uα
∗

−
a2c2

a2(λ2+1)vα
∗ −

a2c3
a2(λ2+1)u

2α∗ − a2c4
a2(λ2+1)uvα∗ − a2c5

a2(λ2+1)v
2α∗

+ O((|s| + |w| + |α∗|)4),
f2(s,w, α∗) =

(a1+1)a3+a2b3
a2(λ2+1) u2 +

(a1+1)a4+a2b4
a2(λ2+1) uv +

(a1+1)a5+a2b5
a2(λ2+1) v2 +

(a1+1)a6+a2b6
a2(λ2+1) u3

+
(a1+1)a7+a2b7

a2(λ2+1) u2v +
(a1+1)a8+a2b8

a2(λ2+1) uv2 +
(a1+1)a9+a2b9

a2(λ2+1) v3 + a2c1
a2(λ2+1)uα

∗

+ a2c2
a2(λ2+1)vα

∗ + a2c3
a2(λ2+1)u

2α∗ + a2c4
a2(λ2+1)uvα∗ +

a2c5
a2(λ2+1)v

2α∗

+ O((|s| + |w| + |α∗|)4),
with

u = a2(s + w), v = (λ2 − a1)w − (a1 + 1)s;
u2 = (a2(s + w))2;
uv = (a2(s + w))((λ2 − a1)w − (a1 + 1)s);
v2 = ((λ2 − a1)w − (a1 + 1)s)2;
u3 = (a2(s + w))3;
u2v = (a2(s + w))2((λ2 − a1)w − (a1 + 1)s);
uv2 = (a2(s + w))((λ2 − a1)w − (a1 + 1)s)2;
v3 = ((λ2 − a1)w − (a1 + 1)s)3.

In the following, we will study the center manifold of map (12) at fixed point (0,0) in a small
neighborhood of α∗ = 0. The well-known center manifold theorem guarantee that a center manifold
Wc(0, 0) can exist, and it can be approximated as follows

Wc(0, 0) = {(s,w, α∗) ∈ R3 : w = d1s2 + d2sα∗ + d3(α∗)2 + O((|s| + |α∗|)3)},

which satisfies
w = d1(−s + f1(s,w, α∗))2 + d2(−s + f1(s,w, α∗))α∗ + d3(α∗)2

= λ2(d1s2 + d2sα∗ + d3(α∗)2) + f2(s,w, α∗).

By comparing the coefficients of the above equation, we have

d1 =
a2((a1 + 1)a3 + a2b3)

1 − λ2
2

−
(a1 + 1)((a1 + 1)a4 + a2b4)

1 − λ2
2

+
(a1 + 1)2((a1 + 1)a5 + a2b5)

1 − λ2
2

,
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d2 =
c2(a1 + 1) − a2c1

(1 + λ2)2 , d3 = 0.

So, restricted to the center manifold Wc(0, 0), map (12) turns into

s 7→ −s + e1s2 + e2sα∗ + e3s2α∗ + e4s(α∗)2 + e5s3 + O((|s| + |α∗|)4)

, F2(s, α∗), (13)

where
e1 = A1a2

2 − A2a2(a1 + 1) + A3(a1 + 1)2;
e2 = −A8a2 + A9(a1 + 1);
e3 = 2A1d2a2

2 + A2a2d2(λ2 − 2a1 − 1) − 2A3d2(λ2 − a1)(a1 + 1) − A8a2d1

−A9(λ2 − a1)d1 − A10a2
2 + A11a2(a1 + 1) − A12(a1 + 1)2;

e4 = −A8a2d2 − A9(λ2 − a1)d2;
e5 = 2A1a2

2d1 + A2a2d1(λ2 − 2a1 − 1) − 2A3d1(λ2 − a1)(a1 + 1) + A4a3
2

−A5a2
2(a1 + 1) + A6a2(a1 + 1)2 − A7(a1 + 1)3;

with
A1 =

(λ2−a1)a3−a2b3
a2(λ2+1) ; A2 =

(λ2−a1)a4−a2b4
a2(λ2+1) ; A3 =

(λ2−a1)a5−a2b5
a2(λ2+1) ; A4 =

(λ2−a1)a6−a2b6
a2(λ2+1) ;

A5 =
(λ2−a1)a7−a2b7

a2(λ2+1) ; A6 =
(λ2−1)a8−a2b8

a2(λ2+1) ; A7 =
(λ2−a1)a9−a2b9

a2(λ2+1) ; A8 = a2c1
a2(λ2+1) ;

A9 = a2c2
a2(λ2+1) ; A10 = a2c3

a2(λ2+1) ; A11 = a2c4
a2(λ2+1) ; A12 =

a2c5
a2(λ2+1) .

To study the flip bifurcation of map (13), we define the following two discriminatory quantities

µ1 =

(
∂2F2

∂s∂α∗
+

1
2
∂F2

∂α∗
∂2F2

∂s2

)
|(0,0),

and

µ2 =

1
6
∂3F2

∂s3 +

(
1
2
∂2F2

∂s2

)2 |(0,0)

which can be showed in [38]. Then provided with Theorem 3.1 in [38], the following result can be
given as

Theorem 3.1. Assume that µ1 and µ2 are not zero, then a flip bifurcation can occur at E∗(x∗, y∗) of
map (3) if the parameter α∗ varies in a small neighborhood of origin. And that when µ2 > 0(< 0), the
period-2 orbit bifurcated from E∗(x∗, y∗) of map (3) is stable (unstable).

4. Example

As application, we now give an example to support the theoretical results of this paper by using
MATLAB. Let β1 = 1, β2 = 0.5, h1 = 0.05, h2 = 0.1, then we get from (5) that map (3) has only
one positive point E∗(0.0113, 0.2226). And we further have µ1 = e2 = 0.1134 , 0, µ2 = e5 + e2

1 =

−4.4869 , 0, which implies that all conditions of Theorem 3.1 hold, a flip bifurcation comes from E∗

at the bifurcation parameter α = 2.2238 , so the flip bifurcation is supercritical, i.e., the period-2 orbit
is unstable.

According to Figures 1 and 2, the positive point E∗(0.0113, 0.2226) is stable for 2 ≤ α ≤ 2.4
and loses its stability at the bifurcation parameter value α = 2.2238. Which implies that map (3) has
complex dynamical properties.
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Figure 1. Flip bifurcation diagram of
map (3) in the (α, x ) plane for β1 =

1, β2 = 0.5, h1 = 0.05, h2 = 0.1. The
initial value is ( 0.0213 , 0.2326 ).
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Figure 2. Flip bifurcation diagram of
map (3) in the (α, y ) plane for β1 =

1, β2 = 0.5, h1 = 0.05, h2 = 0.1. The
initial value is ( 0.0213 , 0.2326 ).

5. Conclusions

In this paper, a predator-prey model with modified Leslie-Gower and Holling-type III schemes is
considered from another aspect. The complex behavior of the corresponding discrete time dynamic
system is investigated. we have obtained that the fixed point E1 of map (4) is a saddle, and the fixed
points E2 and E∗ of map (4) can undergo flip bifurcation. Moreover, Theorem 3.1 tell us that the
period-2 orbit bifurcated from E∗(x∗, y∗) of map (3) is stable under some sufficient conditions, which
means that the predator and prey can coexist on the stable period-2 orbit. So, compared with previous
studies [28] on the continuous predator-prey model, our discrete model shows more irregular and
complex dynamic characteristics. The present research can be regarded as the continuation and
development of the former studies in [28].
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