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Abstract: Here we study how the structure and growth of a cellular population vary with the distribu-
tion of maturation times from each stage. We consider two cell cycle stages. The first represents early
G1. The second includes late G1, S, G2, and mitosis. Passage between the two reflects passage of an
important cell cycle checkpoint known as the restriction point. We model the population as a system
of partial differential equations. After establishing the existence of solutions, we characterize the mat-
uration rates and derive the steady-state age and stage distributions as well as the asymptotic growth
rates for models with exponential and inverse Gaussian maturation time distributions. We find that the
stable age and stage distributions, transient dynamics, and asymptotic growth rates are substantially
different for these two maturation models. We conclude that researchers modeling cellular populations
should take care when choosing a maturation time distribution, as the population growth rate and stage
structure can be heavily impacted by this choice. Furthermore, differences in the models’ transient
dynamics constitute testable predictions that can help further our understanding of the fundamental
process of cellular proliferation. We hope that our numerical methods and programs will provide a
scaffold for future research on cellular proliferation.

Keywords: stage and age-structured populations; cell cycle; stable age and stage distributions;
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1. Introduction

In this paper we investigate how the distribution of time spent in the various cell cycle stages impacts
the growth and stage structure of a cellular population. For brevity, we will refer to the distribution
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of time spent in a stage as the maturation time distribution of the stage. In addition to providing
fundamental insights into the process of cellular proliferation, this research can inform diverse models
of cellular population growth. Indeed, in the context of medical research, a cellular population’s stage
structure can impact the efficacy of drug therapy [1–3].

Within the mammalian cell cycle there exists a checkpoint, known as the restriction point or G1/S
checkpoint, which controls entry into S phase [4–7]. This checkpoint is regulated by growth factor
signaling. As such, mammalian cells can coarsely be divided into those that have and those that have
not received sufficient growth signals (mitogenic signals) to begin the process of cellular division [4–7].
Hence, we consider a model with two cell cycle stages, representing the stage prior to restriction point
passage (early G1) and the stage delineated by restriction point passage and mitosis (late G1 through
M) [6]. As mentioned above, we are especially interested in how the maturation time distributions
impact the stage structure of the population, i.e., the fractions of cells that have and have not passed
the restriction point.

This work builds on previous research [1, 8] which considered how division time distributions im-
pact the age or generation structure of a cellular population. For example, [8] investigates the sensitivity
of the generation structure to the distribution of division times (i.e., the intermitotic time distribution).
While similar in many respects, an important difference between the model system considered by [8]
and our own model system is that while generation number increases indefinitely, cell cycle stages
occur in a cycle. As a result, the two models have different boundary conditions, which may con-
siderably impact their dynamics. Another important difference between this work and [8] is that we
consider general maturation time distributions and more general initial age distributions, which yield
models that are not analytically solvable. A second paper of interest is [1] which develops methods
for incorporating age dependency into models of cellular populations and demonstrates the utility of
this approach for the study of drug therapy. Our work extends [1] by modeling, in addition to age,
cell cycle stage. As a result of this extension, our model could be used to investigate both age- and
stage-dependent effects in relation to drug therapy. Indeed, cell cycle dynamics and the stage structure
of a cellular population are thought to be important for drug therapy [2]. Finally, this work also relates
to [2,3] where stage-structured models are used to study the impact of drug therapy on pancreatic can-
cer cells. These models assume that, in the absence of treatment or crowding, maturation between cell
cycle phases is governed by an exponential distribution, i.e., that cells experience a constant per capita
maturation rate. In contrast, we investigate the impact of non-constant maturation rates on the stage
structure of a cellular population. In summary, to the best of our knowledge, this is the first paper to
consider the impact of maturation time distributions on the stage structure of a cellular population.

In addition to providing theoretical results relating stable age and stage structures to maturation
time distributions, we perform extensive numerical analyses. Our analyses compare and contrast the
dynamics and stable stage- and age-distributions of two distinct maturation time distributions: the ex-
ponential and the inverse Gaussian distribution. Over several decades, numerous model maturation
time distributions have been proposed [9–20]. Still, the most appropriate maturation time distribution
remains unknown and is likely context dependent. We focus on the exponential maturation time dis-
tribution because it is almost certainly the most frequently used to model progression between cell
cycle stages. This is a practical choice. Because the exponential distribution assumes that a cell has a
constant probability per unit time of maturing into the next cell cycle stage, the maturation rate for this
model is constant. As a result, cell age is an extraneous variable, in that the population stage structure
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can be modeled as a system of ordinary differential equations in time alone. For this reason, the expo-
nential model may be considered an ageless model. A drawback of the exponential model is that the
assumption of a constant transition rate is generally considered to be biologically unreasonable. More-
over, the exponential distribution provides a poor fit to data (the distribution mode is zero, whereas few,
if any, cells are observed to mature from a cell cycle stage at age zero). As a reasonable alternative to
the exponential distribution, we consider the inverse Gaussian distribution. This distribution describes
the maturation time as a first exit time [21], so that the time to exit a cell cycle stage corresponds to
the time it takes a random variable to achieve a threshold value. The corresponding maturation rate is
thus age-dependent, and the distribution mode can be shifted away from zero. Moreover, this model
has been demonstrated to provide an accurate approximation of the intermitotic time distributions of
several cell lines [20]. In considering these two very different distributions, we hope to clarify how the
qualitative behavior of the population varies with the choice of maturation time distribution.

Section 2 of this paper introduces the system of partial differential equations (PDEs) used to model
the stage-structured cellular population and presents results on the existence of solutions via the method
of characteristics. Section 3 derives the steady-state growth rate of the population and presents the sta-
ble stage and age structure of the population. Section 4 presents the numerical algorithm for simulating
the model’s solution and addresses the challenges of simulating the model with age-dependent matu-
ration rates. Section 5 presents the results of numerical simulations and compares and contrasts the
growth and structure of populations governed by exponential and inverse Gaussian maturation rates.

2. The PDE model

The PDE population model is presented below.

∂g
∂t

(a, t) +
∂g
∂a

(a, t) = −βg(a)g(a, t); for a ≥ 0, t ≥ 0 (2.1)

∂ f
∂t

(a, t) +
∂ f
∂a

(a, t) = −β f (a) f (a, t); for a ≥ 0, t ≥ 0 (2.2)

with boundary conditions:

g(a, 0) = g0(a) for a ≥ 0, (2.3)

g(0, t) = 2
∫ ∞

0
β f (a) f (a, t)da for t ≥ 0, (2.4)

f (a, 0) = f0(a) for a ≥ 0, (2.5)

f (0, t) =

∫ ∞

0
βg(a)g(a, t)da. for t ≥ 0, (2.6)

Here g gives the density of cells in the first stage, f gives the density of cells in the second stage, a
denotes the “age” of a cell relative to the time it entered its current stage, and t denotes time. According
to (2.1) the rate of change of the density of cells in the first stage (∂g

∂t ) is determined by continuous aging
(∂g
∂a ) and the age-dependent, per capita rate at which cells enter the second stage (βg(a)). Similarly, (2.2)

describes how the age density of cells in the second stage evolves through time. Boundary conditions
(2.3) and (2.5) give the initial age density at the beginning of the experiment (it is assumed that this
density is known). Finally, (2.3) and (2.5) describe how new cells (with a = 0) enter the first and
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second stages. Cells in the first stage are “born” when cells in the second stage divide, thereby giving
rise to two cells in the first stage, with the age-dependent, per capita rate of β f (a). Cells in the second
stage are created when cells in the first stage mature with an age-dependent, per capita rate of βg(a).

2.1. Existence of solutions

In this section we outline the method of proof of the existence of solutions to model equations
(2.1)–(2.6) and present the related theorems. Detailed proofs are presented in the appendix.

We employ an iterative method, in which an approximating sequence is shown to converge to a
solution. This method of proof is similar to that from [25], where global existence was shown for a
size-structured model with a single stage and bounded size. We denote the terms of the approximating
sequence by gn and fn. These functions are defined as solutions of the following system of partial
differential equations:

∂gn+1

∂t
(a, t) +

∂gn+1

∂a
(a, t) = −βg(a)gn+1(a, t); for a ≥ 0, t ≥ 0 (2.7)

∂ fn+1

∂t
(a, t) +

∂ fn+1

∂a
(a, t) = −β f (a) fn+1(a, t), ; for a ≥ 0, t ≥ 0 (2.8)

subject to the boundary conditions:

gn+1(a, 0) = g0(a) for a ≥ 0, (2.9)

gn+1(0, t) = 2
∫ ∞

0
β f (a) fn(a, t)da for t ≥ 0, (2.10)

fn+1(a, 0) = f0(a) for a ≥ 0, (2.11)

fn+1(0, t) =

∫ ∞

0
βg(a)gn(a, t)da for t ≥ 0, (2.12)

Notice that gn is approximating g, which is the distribution of the cells in the first stage of the cell
cycle, while fn is approximating f , which is the distribution of the cells in the second stage of the
cell cycle. Note that the solution value on the boundary where a ≡ 0 is determined by the previous
iterate. Solutions of (2.7)–(2.12) can be found via the method of characteristic equations. Using

this method, we arrive at the following solution formulas. Here Bg(s1, s2) :=
∫ s2

s1

βg(α)dα and

B f (s1, s2) :=
∫ s2

s1

β f (α)dα.

Case 1: For 0 ≤ a0 < t0

gn+1(a0, t0) = e−Bg(0,a0)
(
2
∫ ∞

0
β f (α) fn(α, t0 − a0)dα

)
, (2.13)

fn+1(a0, t0) = e−B f (0,a0)
(∫ ∞

0
βg(α)gn(α, t0 − a0)dα

)
. (2.14)

Case 2: For 0 ≤ t0 < a0

gn+1(a0, t0) = g0(a0 − t0)e−Bg(a0−t0,a0), (2.15)
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fn+1(a0, t0) = f0(a0 − t0)e−B f (a0−t0,a0). (2.16)

Note that in the region t < a, gn and fn are independent of n and satisfy (2.7)–(2.8) together with the
boundary conditions (2.9) and (2.11) provided β f and βg are continuous and g0 and f0 are differentiable.
Under additional assumptions, it can be shown that gn and fn satisfy (2.7)–(2.8) together with the
boundary conditions (2.10) and (2.12) also for a < t . Indeed we have the following theorem, the
assumptions of which may be strengthened to achieve global solutions (please see the appendix).

Theorem 2.1. Suppose

(i) f0 and g0 are nonnegative and continuously differentiable for a > 0,
(ii) ‖ f0‖L1[0,∞), ‖g0‖L1[0,∞) ,

∥∥∥ f ′0
∥∥∥

L1[0,∞)
, and

∥∥∥g′0
∥∥∥

L1[0,∞)
are finite,

(iii) ‖ f0‖∞ and ‖g0‖∞ are finite,
(iv) β f (α) and βg(α) are nonnegative, bounded and continuous, and
(v) there exists A∗ > 0, such that for every α > A∗, f ′0(α) and g′0(α) are negative and increasing,

then for T sufficiently small there exists solutions of (2.1)–(2.6) on Ω = [0,∞) × [0,T ), continuously
differentiable, except possibly on the line a = t.

Since we have already found a solution formula for a > t, our proof is focused on the set Ω1 =

{(a, t)|0 ≤ a ≤ t < T } , where the solution formula is given by

gn(a0, t0) = 2e−Bg(0,a0)
∫ ∞

0
β f (α) fn−1(α, t0 − a0)dα.

Establishing the continuity and differentiability of the integral,∫ ∞

0
β f (α) fn−1(α, t0 − a0)dα, (2.17)

is our primary task. Standard textbook theorems on this topic do not directly apply due to the require-
ment that there exist an L1 function, M, such that, for every t | fn−1(α, t)| ≤ |M(α)|. For this reason, we
have adopted condition (v) of Theorem 2.1, and adapted previous proofs [26, 27] to work under this
alternate condition. Details are presented in the appendix.

3. Stable growth, age- and stage-distributions

In this section we derive the stable age and stage distributions of the model. The stage distribution
of the population at time t gives the fraction of the total cells in each stage. For example, the fraction
of cells in the first stage is ∫ ∞

0
g(a, t)da∫ ∞

0
f (a, t) + g(a, t)da

.

Similarly, the fraction of cells in the second stage at time t is∫ ∞
0

g(a, t)da∫ ∞
0

f (a, t) + g(a, t)da
.
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Meanwhile, the age distribution of cells in the first stage at time t is

g(a, t)∫ ∞
0

g(a, t)da
,

and that of cells in the second stage is
f (a, t)∫ ∞

0
f (a, t)da

.

If there exists a solution of (2.1)–(2.6) such that the age distributions are constant through time, those
distributions are said to be stable age distributions for the model. Hence, the stable age distribution of
cells in the first stage is characterized as the solution of the partial differential equation:

0 =
∂

∂t
g(a, t)∫ ∞

0
g(a, t)da

. (3.1)

Similarly, for cells in the second stage. It can be seen that solutions of (3.1) are necessarily separable.
Indeed,

∂

∂t
g(a, t)∫ ∞

0
g(a, t)da

=

∫ ∞
0

g(a, t)da∂g
∂t − g(a, t)

∫ ∞
0

∂g
∂t da(∫ ∞

0
g(a, t)da

)2 (3.2)

=

∂g
∂t (a, t)∫ ∞

0
g(a, t)da

+
g(a, t)

∫ ∞
0

∂g
∂a (a, t) + βg(a)g(a, t)da(∫ ∞

0
g(a, t)da

)2 , (3.3)

where we have assumed the solution is regular enough to allow differentiation through the integral. In
regard to this assumption, note we have shown that such regular solutions exist. Indeed by Theorem 2.1,
there exist solutions which are continuously differentiable for a ≤ t, thus we may differentiate through
the integrals

∫ t

0
g(a, t)da and

∫ t

0
f (a, t)da. Moreover, in the proof of Theorem 2.1 (see Appendix 1),

we show that one can differentiate through the integrals
∫ ∞

t
g(a, t)da and

∫ ∞
t

f (a, t)da. However, the
solution may not be continuous along the line a = t. In case,

∫ ∞
0

∂g
∂t da should be replaced

∫ ∞
0

∂g
∂t da +

lima→t− g(a, t) − lima→t+ g(a, t). Similarly,
∫ ∞

0
∂ f
∂t da should be replaced by

∫ ∞
0

∂ f
∂t da + lima→t− f (a, t) −

lima→t+ f (a, t). Because the later expressions, like the former expressions, are independent of a, this
substitutions does not alter the proof that follows.

Now, setting the right-hand-side of (3.3) to zero and supposing, in addition, that lima→∞ g(a, t) = 0
(which follows from conditions ii and v of Theorem 2.1) we find

∂g
∂t (a, t)
g(a, t)

=
g(0, t) −

∫ ∞
0
βg(a)g(a, t)da∫ ∞

0
g(a, t)da

(3.4)

Integrating through the equality (with respect to t) and noting that the right-hand-side is independent
of a, we find

ln
g(a, t)
g(a, 0)

+ c(a) =

∫ t

0

g(0, t) −
∫ ∞

0
βg(a)g(a, t)da∫ ∞

0
g(a, t)da

dt := H(t), (3.5)
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where c(a) is the ‘constant’ of integration with respect to t (note it may depend on a). This yields

g(a, t) = g(a, 0)e−c(a)eH(t). (3.6)

Thus, a solution g for which the age distribution is stable is necessarily separable. Similarly, if f
exhibits a stable age distribution, then f must be separable. Hence, in characterizing the stable age
distribution we express g and f as g(a, t) = g1(t)g2(a) and f (a, t) = f1(t) f2(a). Under this assumption,
the partial differential equation for g simplifies as

g′1(t)g2(a) + g1(t)g′2(a) = −βg(a)g1(t)g2(a), (3.7)

which separates as

g′1(t)
g1(t)

=
−g′2(a)
g2(a)

− βg(a). (3.8)

The previous equation yields

g1(t) = g1(0)ecgt, (3.9)
g2(a) = g2(0)e−

∫ a
0 cg+βg(s)ds, (3.10)

where cg is a constant representing the stable growth rate of the population in stage g. Similarly, we
find

f1(t) = f1(0)ec f t, (3.11)
f2(a) = f2(0)e−

∫ a
0 c f +β f (s)ds, (3.12)

where c f is a constant representing the stable growth rate of the population in stage f .
Note that the value of the product g1(0)g2(0) uniquely determines the solution (g(a, t) = g1(t)g2(a))

given by (3.9) and (3.10). This being the case, we set g1(0) = 1. Similarly, we take f1(0) = 1. Then, by
(2.4)

g(0, t) = ecgtg2(0) = 2
∫ ∞

0
β f (a)ec f t f2(a)da. (3.13)

From which it follows that cg = c f := c. Dividing (3.13) by ect we have

g2(0) = 2
∫ ∞

0
β f (a) f2(a)da = 2

∫ ∞

0
β f (a) f2(0)e(−

∫ a
0 c+β f (s)ds)da. (3.14)

Similarly,

f2(0) =

∫ ∞

0
βg(a)g2(0)e(−

∫ a
0 c+βg(s)ds)da. (3.15)

Substituting the later into the former yields the consistency condition

1
2

=

(∫ ∞

0
e−

∫ a
0 c+βg(s)dsβg(a)da

) (∫ ∞

0
e−

∫ a
0 c+β f (s)dsβ f (a)da

)
. (3.16)

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1855–1888.



1862

This equation can be written more simply in terms of the probability densities of maturation times,
Ig(a) and I f (a). Indeed, using

βg(a) =
Ig(a)∫ ∞

a
Ig(s)ds

= −
d

da

(
ln

∫ ∞

a
Ig(s)ds

)
(3.17)

(see Methods), it follows that

Ig(a) = βg(a)
∫ ∞

a
Ig(s)ds = βg(a)e−

∫ a
0 βg(s)ds. (3.18)

Similarly, we find
I f (a) = β f (a)e−

∫ a
0 β f (s)ds. (3.19)

Substituting the previous two expressions into 3.16 we find

1
2

=

(∫ ∞

0
e−acIg(a)da

) (∫ ∞

0
e−acI f (a)da

)
= L

{
Ig

}
(c)L

{
I f

}
(c), (3.20)

which we wish to solve for c. Here we consider two cases, in which Ig and I f are exponential or inverse
Gaussian probability density functions. In the case that Ig and I f are exponential probability density
functions, it is easy to solve (3.20) for c. Doing so, we obtain

c =
−(βg + β f ) +

√
(βg + β f )2 + 4βgβ f

2
, (3.21)

where βg and β f are the constant per capita maturation rates for stages g and f . In the case that Ig

and I f are inverse Gaussian probability density functions, we prefer to obtain the solution of (3.20)
numerically.

In summary, to compute the stable age distribution one first solves (3.20) to obtain the asymptotic
growth rate, c. Substituting c for cg and 1 for g2(0) in (3.10) we find g2(a). Next, f2(0) is computed
using (3.15), and this value is used to compute f2(a) according to (3.12) with c in place of c f . Note
that in this procedure, one can vary the population size by altering the value of g2(0). Figures 8 and 9
below display the models’ stable age distributions and verify their stability.

In the following section, we will examine how stable age distributions, stable stage distributions,
and growth rates vary between these two models. In so doing it is helpful to note that the stable solution
has a single degree of freedom g2(0), which determines the initial population size.

4. Methods

4.1. Characterization of β

In simulating the model, we need to compute the per capita maturation rates, β f and βg, which can
be calculated in terms of the maturation time probability densities I f and Ig. For this, let R(a, y0) denote
the probability that a cell matures (transitions) to the next stage after age a, given that the cell’s internal
state had value y0 at a = 0. We may sometimes fix y0 and just write R(a). Now let β(a)δa + o(δa)
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(where limδa→0
o(δa)
δa

= 0) be the probability that a cell matures over the interval [a, a + δa], given that
it has not maturation at age a. That is, β(a) is the maturation rate. Then on the one hand

R(a + δa) = R(a)(1 − β(a)δa − o(δa)).

That is, the probability that a cell matures after age, a + δa, is the probability that the cell does not
mature over [a, a + δa], given it did not mature up until age a, times the probability that the cell did not
mature up until age a. On the other hand,

R(a + δa) = R(a) + R′(a)δa + o(δa).

Equating these two expressions for R(a + δa) and canceling like terms, we have

−β(a)R(a)δa = R′(a)δa + o(δa).

Dividing by δa and taking the limit as δa goes to zero, we find

β(a) =
−R′(a)
R(a)

.

Thus, we can determine the maturation probability in terms of R(a). Note that, R(a) =
∫ ∞

a
I(s)ds.

Therefore

β(a) =
I(a)∫ ∞

a
I(s)ds

. (4.1)

In general, there may not be a closed form for the maturation rate, β(a), so that it must be approxi-
mated numerically. In this case, as a grows, the numerator and denominator in the expression for β(a)
approach zero, and the computation is challenging due to limits on floating-point precision. As a result,
it is useful to have a better qualitative characterization of β(a) for the purpose of validating numerical
simulations. In the following paragraphs, we characterize several important features of the β(a) which
corresponds to the inverse Gaussian probability density.

First note we may use L’Hôpital’s rule to compute the asymptotic value of β(a). For the inverse
Gaussian distribution

I(a) :=
1

√
2σ2πa3

e−
(µa−1)2

2aσ2 ,

so that

lim
a→∞

β(a) = lim
a→∞

I(a)∫ ∞

a
I(s)ds

= lim
a→∞
−

I′(a)
I(a)

= lim
a→∞

3
2

1
a
−

1
2σ2

1
a2 +

µ2

2σ2 =
µ2

2σ2 . (4.2)

Our characterization of β also involves the ratio

−q(a) = −
I′(a)
I(a)

=
3
2

1
a
−

1
2σ2

1
a2 +

µ2

2σ2 .
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Theorem 4.1. The per capita maturation rate, β(a), has exactly one critical point, at which it takes a
maximum value. Moreover, if a∗ is the age at which β(a) takes its maximum value, β(a) < −q(a) for
a > a∗.

Proof. With β(a) =
I(a)∫ ∞

a
I(s)ds

and I′(a) = I(a)q(a), where −q(a) = 3
2

1
a −

1
2σ2

1
a2 +

µ2

2σ2 , as above we find

that

β′(a) =

∫ ∞

a
I(s)dsI(a)q(a) + I2(a)(∫ ∞

a
I(s)ds

)2 < 0 (4.3)

⇐⇒ β(a) < −q(a). (4.4)

Similarly,
β′(a) > 0 ⇐⇒ β(a) > −q(a). (4.5)

and
β′(a) = 0 ⇐⇒ β(a) = −q(a). (4.6)

Also note that as a → 0, β(a) → 0, and −q(a) → −∞. Therefore, β(a) > −q(a) for a small, i.e.,
β′(a) > 0 for a small, i.e., β(a) is initially increasing.

To show that β has a single critical point, we must also consider the behavior of −q(a). Note that

−q′(a) = −
3
2

1
a2 +

1
σ2

1
a3 = 0 ⇐⇒ −

3
2

a +
1
σ2 = 0 ⇐⇒ a =

2
3

1
σ2 .

Set â = 2
3

1
σ2 . Considering the limits of −q′(a) as a→ 0 and a→ ∞ we see that −q′(a) > 0 for a < â

and −q′(a) < 0 for a > â. Therefore −q(a) takes its maximum value at â = 2
3σ2 .

Suppose toward a contradiction that β′(a) , 0 for all a > 0, then by continuity, β′(a) > 0 for a > 0.
Thus, β(a) > −q(a) for a > 0 by (4.5). Fixing a0 > â > 0,we have β(a) > −q(a) and β′(a) > 0 > −q′(a)
for a > a0 > â. Thus,

0 = lim
s→∞

β(s) + q(s) = lim
s→∞

∫ s

a0

β′(a) + q′(a)da + β(a0) + q(a0) > β(a0) + q(a0) > 0, (4.7)

which is a contradiction. Therefore, we may define a∗ as follows,

a∗ := inf {a > 0 | β′(a) = 0} .

Note by continuity β′(a∗) = 0 and β(a∗) = −q(a∗). Note also that a∗ > 0, since β′(a) > 0 for a small.
Therefore, by continuity, β′(a) > 0 for a < a∗, i.e., β is increasing for a < a∗.
Case 1:

Suppose that 0 = β′(a∗) > −q′(a∗). Then by continuity there exists an interval over which the
inequality holds. Moreover, since β(a∗) = −q(a∗), there exists δ > 0 such that β(a) > −q(a) for
a∗ < a < a∗ + δ. Suppose toward a contradiction that there exists a > a∗ such that β(a) ≤ −q(a).
Let s∗ = inf {a > a∗ | β(a) ≤ −q(a)} , and note s∗ , a∗. Thus for a∗ < a < s∗, β(a) > −q(a), and for
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a∗ < a < s∗, β′(a) > 0. However, since −q has a single critical point at which is takes a maximum, we
know −q′(a) < 0 for a > a∗. Therefore β′(a) > −q′(a) for a∗ < a < s∗, and

β(s∗) − β(a∗) =

∫ s∗

a∗
β′(a)da >

∫ s∗

a∗
−q′(a)da = −q(s∗) − β(a∗). (4.8)

That is, β(s∗) > −q(s∗). However, by continuity and the definition of s∗, it must be that β(s∗) ≤ −q(s∗).
Thus we have reached a contradiction.

It follows that {a | a > a∗, β(a) ≤ −q(a)} is empty. That is, β(a) > −q(a) for a > a∗, i.e., β′(a) > 0
for a > a∗. Since we have already noted −q′(a) < 0 for a > a∗, we find that

0 = lim
s→∞

β(s) + q(s) = lim
s→∞

∫ s

a∗
β′(a) + q′(a)da > 0. (4.9)

Hence, this case does not occur.
Case 2:

Suppose that 0 = β′(a∗) < −q′(a∗). Then, as in Case 1, there exists δ such that β(a) < −q(a) for
a∗ < a < a∗ + δ. Suppose toward a contradiction that there exists a > a∗, so that β(a) ≥ −q(a). Let
s∗ = inf {a > a∗ | β(a) ≥ −q(a)} . Note we have s∗ > a∗, and by continuity β(s∗) = −q(s∗). However for
a∗ < a < s∗, β(a) < −q(a), and hence for a∗ < a < s∗, β′(a) < 0. Since we have already shown Case I
cannot happen, we also know that 0 = β′(s∗) ≤ −q′(s∗). Since −q has a single maximum, we see that
in fact β′(a) < 0 < −q′(a) for a∗ < a < s∗. Thus β(s∗) < −q(s∗), and we have reached a contradiction.
Thus, there exists no a > a∗ such that β(a) ≥ q(a). Therefore, there exists a unique age a∗ at which
β′(a∗) = 0, and β(a) < −q(a) for a > a∗.
Case 3:

Assume that 0 = β′(a∗) = −q′(a∗). Then since −q(a) has a single critical point at which it takes a
maximum value, −q′(a) < 0 for a > a∗. Therefore, it cannot happen that β(a) = −q(a), for a > a∗,
since we previously showed Case I cannot happen. Thus, in this case too, we see that there is a
unique time a∗ at which β′(a∗) = 0. Moreover, if there exists s∗ > a∗ so that β(s∗) > −q(s∗), then
by continuity and because β(a) , −q(a) for a > a∗, it must be that β(a) > −q(a) for every a > a∗.
Therefore, β′(a) > 0 > −q′(a) for a > a∗. Contradicting that lima→∞ β(a) = −q(a). Thus, it must be
that β(a) < −q(a) for a > a∗, as desired

Hence we have shown that, in any case, there is a unique age a∗ at which β′(a∗) = 0. Moreover,
β(a) < −q(a) for a > a∗, so that β(a) is decreasing for a > a∗. Since we have already noted that β(a) is
increasing for a > a∗ we see that β(a) takes its maximum value at a∗ as desired.

�

Next we derive an estimate of the maximum value of β(a) and a lower bound on the age at which
β(a) assumes its maximum value. For this note that since −q′(a∗) ≥ 0 and β′(a) < 0 for a∗ < a

max
{a>0}

β(a) ≤ max
{a>0}

(−q(a)) = −q(â) (4.10)

=
9
8
σ2 +

µ2

2σ2 (4.11)

Lemma 4.2. For a∗ as above, µ2

2σ2 < β(a∗) ≤ 9
8σ

2 +
µ2

2σ2 . Moreover, 1
3

1
σ2 < a∗.
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Proof. To obtain the estimate on β(a∗) = max{a>0} β(a) and the lower bound on a∗, we first consider the
unique time, a∞, such that −q(a∞) =

µ2

2σ2 . That is, we consider the unique finite time at which −q(a)
achieves the asymptotic value of β(a).

We have

−q(a∞) =
µ2

2σ2 ⇐⇒ (4.12)

0 =
3
2

1
a∞
−

1
2σ2

1
a2
∞

⇐⇒ (4.13)

0 =
3
2

a∞ −
1

2σ2 ⇐⇒ (4.14)

a∞ =
1
3

1
σ2 (4.15)

It follows that 1
3

1
σ2 = a∞ < a∗. Indeed, since a∞ < â = 2

3σ2 , −q is increasing for a < a∞. Were a∗ < a∞,

we would have β(a∗) = −q(a∗) < −q(a∞) =
µ2

2σ2 . However, this leads to a contradiction because β(a) is
strictly decreasing for a > a∗ and approaches µ2

2σ2 as a → ∞. Therefore, a∞ < a∗ as desired. Hence,
β(a∗) > β(a∞) > −q(a∞) =

µ2

2σ2 , where the final inequality follows from the fact that β(a) is increasing
(i.e., β(a) > −q(a) for a < a∗.) �

4.2. Numerical approximation of β

The practical computation of the maturation rate curve presents difficulties using fixed precision
floating point techniques. This is due to the behavior of both the numerator and denominator of β(a)
as a increases causing the result to become unstable and ultimately undefined.

β(a) =
I(a)∫ ∞

a
I(s)ds

. (4.16)

lim
a→∞

I(a) = 0 (4.17)

lim
a→∞

∫ ∞

a
I(s)ds = 0 (4.18)

While variable precision arithmetic, as provided by MATLAB, allows for the stable computation of
the maturation rate, as the numerator and denominator become small, the required precision increases,
which in turn increases the computational expense. Runtimes with an acceptably small mesh sizes
were found to be excessive for our choice of parameters. This was resolved by using interpolation
to reduce the number of points that need to be evaluated with variable precision arithmetic. This is
justified as the maturation rate curve is smooth (both the numerator and denominator are smooth and
nonzero). In the absence of a predetermined method for choosing knots, we use an adaptive method:
At each iteration, we double the number of knots by evaluating points midway between the existing
knots, remembering previously computed knots using a memoization technique. Having the knots, we
then interpolate for each point on our desired mesh. The vector of approximate maturation rate values
is compared with the previous vector of approximate maturation rate values using the `2-norm of the
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difference. When this error is reduced below a specified threshold, here chosen to be 0.1, the solution is
accepted and returned. In this way, an accurate approximation of the maturation rate curve is obtained
with acceptable performance (See Figures 1 and 2).
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Figure 1. Convergence of maturation rates (β) as the number of knots increases.
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Figure 2. Adaptive error reduction with increasing numbers of knots. Blue denotes rejected
solutions and red denotes accepted solution.

4.3. Numerical method

In order to solve the system of PDEs numerically we discretize age and time in order to numerically
integrate along the model’s characteristic curves. The numerical scheme is summarized below.

Given initial data g0(a), f0(a), with g0(a) = f0(a) = 0 for a > amax, we approximate the solution of
our system for t < T as follows:

Let a = (0, h, 2h, . . . Ih), and t = (0, h, 2h, . . . Jh), where Jh = T, and Ih = T + amax. Now define
ĝ = (ĝi j) ∈ R(I+1)×(J+1) and f̂ = ( f̂i j) ∈ R(I+1)×(J+1) as matrices such that

f̂i0 = f0(ai), i = 1, . . . I, (4.19)
ĝi0 = g0(ai) i = 1, . . . I, (4.20)

f̂0 j = integral(0, aI , βgĝ:, j) j = 1, . . . J, (4.21)
ĝ0 j = 2 integral(0, aI , β f f̂:, j) j = 1, . . . J, (4.22)

f̂i+1, j+1 = f̂i j exp
{
integral(ai, ai+1,−β f )

}
(4.23)

ĝi+1, j+1 = ĝi j exp
{
integral(ai, ai+1,−βg)

}
(4.24)
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where integral(ai, ai+1,−β f ) is the approximation of
∫ ai+1

ai

−β f (α) dα using MATLAB’s implementa-

tion of the trapezoid rule with a uniform grid over [ai, ai+1] with four points, and integral(0, aI , β f f̂:, j)

is the approximation of
∫ aI

0
β f (α) f̂ (α, t j) dα using the MATLAB’s implementation of the trapezoid

rule with the grid values in a and the corresponding entries of f̂:, j. The grid size h was initially set to
.02 and was reduced by half until the relative point-wise error was less than 10−2. This algorithm is an
extension of that presented in [22] to a PDE system. The consistency and stability of the algorithm can
be shown similarly to [22], so we omit the details here. All simulations were performed in MATLAB.
These codes can be found in the following repository: https://github.com/rnleander/Asma.

5. Results

Here we simulate the model using both inverse Gaussian and exponential maturation time distribu-
tions. Parameters for the inverse Gaussian distribution were chosen to fit data on the division times of
MCF10A cells, as described in [20]. The parameters for the exponential distributions were chosen to
match the mean of the inverse Gaussian distribution as parameterized by the MCF10A cell data. Thus
the average time spent in early G1, late G1-M, and the full cell cycle are the same for both models.
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Figure 3. Stage maturation times, Ig and I f , and total intermitotic time, (Ig ∗ I f )(a), distribu-
tions for both exponential and inverse Gaussian models.

Table 1. Means and variances of model stages.

Model Meang Varianceg Mean f Variance f

Exponential 4.00 16.0 15.6 244
Inverse Gaussian 4.00 64.9 15.6 367

To explore the models’ transient dynamics, we initialize them with their stable stage structures and
two unstable age densities (see Section 3); the uniform initial age density (Figures 4 and 6) and the
Gaussian initial age density (Figure 5). For the inverse Gaussian model, the stage and age structures
oscillate over multiple days when initialized with either unstable age density. However, the amplitude
of the oscillations decreases through time, so that the population stage structure approaches the stable
stage structure (Figures 4 and 5). In contrast, for the exponential model, the stage structure is insen-
sitive to the initial age density: No matter the initial age density, the stage structure does not evolve
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through time provided it is initialized as the stable stage structure. The age distributions behave simi-
larly. Figures 4–7 demonstrate that the inverse Gaussian age distribution stabilizes much more slowly
than that of the exponential distribution. We also initialized the models with stable age densities and
perturbed stage structures. For these simulations, we perturbed the ratio of cells in early G1 to late
G1-M by a factor of two. Again, the exponential model stabilizes much more quickly that the inverse
Gaussian model (Figures 11 and 12).
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Figure 4. Inverse Gaussian model with uniform initial age density and stable initial age
structure. Note that the stage structure oscillates as the age structure evolves.
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Figure 5. Inverse Gaussian model with Gaussian initial age density and stable initial age
structure. Note that the stage structure oscillates as the age structure evolves.
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Figure 6. Exponential model with uniform initial age density and stable initial age structure.
Note that the stage structure does not evolve, and the age density stabilizes quickly.
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Figure 7. Exponential model with Gaussian initial age density and stable initial age structure.
Note that the stage structure does not evolve ,and the age density stabilizes quickly.
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Figure 8. Inverse Gaussian model with stable initial age density and stage structure. Note
that when initialized with the stable age density and stable stage structure, neither the stage
structure nor the age density evolve through time.
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Figure 9. Exponential model with stable initial age density and stage structure. Note that the
stage structure and age density do not evolve through time.
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The two models also differ in their predicted stable stage distributions (Figures 8 and 9). Despite
the fact that, as parameterized, the average time spent in early G1 and late G1-M is identical for both
models, the stable exponential stage structure has about 30% of cells in early G1, while the stable
inverse Gaussian stage structure has about 22% of cells in early G1.

Finally Figure 10 and Table 2 present the predicted and observed asymptotic growth rates of the
population for the two maturation time models. It is interesting to note that, despite exhibiting the
same average intermitotic time, the models differ substantially in terms of their asymptotic growth
rates. As a result, after 100 hours, a population with exponential maturation times is expected to be
almost twice as large as that with inverse Gaussian maturation times.
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Figure 10. Growth rate curves and exponential growth fits. Note that while oscillation in the
inverse Gaussian model does affect the total population, exponential growth remains a good
fit.

Table 2. Predicted and fitted exponential growth rates in hr−1. Note that there is some vari-
ability in the fitted growth rates for the Inverse Gaussian model with uniform and Gaussian
initial conditions due to oscillations that are not present with the stable initial conditions.

Model Predicted Uniform Gaussian Stable
Exponential 0.04462 0.04455 0.04455 0.04455

Inverse Gaussian 0.03689 0.03673 0.03694 0.03685
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6. Conclusion

Our results demonstrate that maturation time distributions can significantly impact the transient dy-
namics, growth, and structure of a cellular population. Indeed, when employing the ageless exponential
maturation time distribution, the population stage structure is insensitive to the initial age density, in
that perturbations in the age density do not perturb the stage structure. Moreover, the stage structure
and age density stabilize quickly on perturbation. In contrast, the inverse Gaussian model’s stage struc-
ture exhibits sustained oscillations over several days when the age desnity is perturbed away from the
stable age density. This difference represents a major qualitative distinction between the two models.
Importantly, the models also differ in their mean-predicted growth rates. That is, when parameterized
so that the average time spent in each stage, and thus the average time spent in the full cell cycle, is
the same for both models, the asymptotic growth rate of the exponential model is considerably greater.
This difference is likely due to the fact that few cells exhibit short maturation times under the inverse
Gaussian model. In contrast, short maturation times are common in the exponential model. Thus,
the difference in growth rates is likely the result of variability in the time to mature. As a result of
these differences, we recommend that modelers take care when choosing a maturation time distribu-
tion. Indeed, we hope that our methods and programs can help researchers develop and simulate more
accurate, predictive models of cellular population growth. We note that the cell cycle model presented
here is well-suited to study the impact of CDK inhibitors, which impact restriction point passage (in
our model, maturation into late G1) [23]. The model could also be adapted to study the impact of
drugs which target S phase (e.g., gemcitabine) [3]. A second benefit of this work is that it provides
testable predictions that can be used to determine if the exponential distribution provides a reasonable
approximation to a population’s maturation time distribution. In particular, the rapidity with which the
exponential model achieves a stable stage distribution is predicted to be a robust feature of the model
that would be readily observable via experimentation. In summary, we find evidence that a popula-
tion’s maturation time distribution can inform model development and refinement while deepening our
understanding of the fundamental process of cellular proliferation.
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Appendix 1: Proof of Existence

In proving Theorem 2.1 we consider C(Ω1), the Banach space of continuous, bounded functions on
Ω1 with the norm

||h||∞ := sup
x∈Ω1

h(x). (6.1)

We begin by establishing the following lemma.

Lemma 6.1. For f0, g0, β f (α), and βg(α) as in Theorem 2.1
(i) gn and fn ∈ C(Ω1) and
(ii) g := limn→∞ gn and f := limn→∞ fn belong to C(Ω1).

Proof. The proof is by induction. First note that for (a0, t0) ∈ Ω1,

gn(a0, t0) = 2e−Bg(0,a0)
∫ ∞

0
β f (α) fn−1(α, t0 − a0)dα.

Since e−Bg(0,a0) is continuous, it suffices to show that
∫ ∞

0
β f (α) fn−1(α, t0 − a0)dα is continuous in Ω1.

Suppose fn−1(a, t) is continuous in Ω1. Choose (a0, t0) ∈ Ω1, let ε > 0, and let (ak, tk) be a sequence
of points converging to (a0, t0) in Ω1.

The integral of interest may be written as:

|

∫ ∞

0
β f (α) fn−1(α, tk − ak)dα −

∫ ∞

0
β f (α) fn−1(α, t0 − a0)dα| (6.2)

≤

∫ ∞

0
β f (α)| fn−1(α, tk − ak) − fn−1(α, t0 − a0)| dα
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=

∫ A+T

0
β f (α)| fn−1(α, tk − ak) − fn−1(α, t0 − a0)| dα

+

∫ ∞

A+T
β f (α)| fn−1(α, tk − ak) − fn−1(α, t0 − a0)| dα,

where A is chosen so that ∫ ∞

A
| f0(α)| dα ≤

ε

2
∥∥∥β f

∥∥∥
∞

.

Note by our assumptions, tk − ak < T and t0 − a0 < T. Hence, there exists τ < T so that tk −

ak ≤ τ for k = 0, 1, . . .. Also, since fn−1(a, t) is continuous on the closed and bounded sets D1 =

{(a, t)|0 ≤ a ≤ t ≤ τ} and D2 = {(a, t)|0 ≤ t ≤ a ≤ A + T, 0 ≤ t ≤ τ}, there exists a constant C so that
fn−1(a, t) < C on D1 ∪ D2, and, for every α ∈ [0, t0 − a0) ∪ (t0 − a0, A + T ], as (ak, tk) → (a0, t0),
fn−1(α, tk − ak)→ fn−1(α, t0 − a0). Hence, by Lebesgue’s Dominated Convergence Theorem [24],∫ A+T

0
β f (α)| fn−1(α, tk − ak) − fn−1(α, t0 − a0)| dα→ 0.

Now note that the final term to the right of the equality in (6.2) is bounded by our choice of A.
Indeed, ∥∥∥β f

∥∥∥
∞

∫ ∞

A+T
| f0(α − (tk − ak))e−B f (α−(tk−ak),α) − f0(α − (t0 − a0))e−B f (α−(t0−a0),α)| dα

≤
∥∥∥β f

∥∥∥
∞

∫ ∞

A+T
| f0(α − (tk − ak))| dα

+
∥∥∥β f

∥∥∥
∞

∫ ∞

A+T
| f0(α − (t0 − a0))| dα

≤ ε (6.3)

Since ε was arbitrary, we see that gn is continuous in Ω1. Similarly, it can be shown that fn is
continuous in Ω1. This ends the proof that fn and gn are continuous in Ω1.

Now we show that fn and gn have limits in C(Ω1). For a < t and n = 0 we have

|g1 − g0|(a, t) = Ne−Bg(0,a)
∫ ∞

0
f0(α)dα − g0(a) (6.4)

≤ N ‖ f0‖L1 + ‖g0‖∞ ≤ ∞, (6.5)
| f1 − f0|(a, t) ≤ N ‖g0‖L1 + ‖ f0‖∞ ≤ ∞. (6.6)

Where N := max
{
2
∥∥∥βg

∥∥∥
∞
,
∥∥∥β f

∥∥∥
∞
, 2

∥∥∥β f

∥∥∥2

∞
, 2

∥∥∥βg

∥∥∥2

∞
, 2

∥∥∥β f

∥∥∥
∞

∥∥∥βg

∥∥∥
∞

}
. Hence, we can define M :=

max
{
‖ f1 − f0‖∞ , ‖g1 − g0‖∞

}
< ∞.

In general,

gn+1(a, t) − gn(a, t) = e−Bg(0,a)
(∫ ∞

0
2β f (α)( fn(α, t − a)dα − fn−1(α, t − a))dα

)
. (6.7)

Thus, for a < t < T

|gn+1(a, t) − gn(a, t)| =

∣∣∣∣∣e−Bg(0,a)
∫ ∞

0
2β f (α)( fn(α, t − a) − fn−1(α, t − a))dα

∣∣∣∣∣
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≤ e−Bg(0,a)
∫ t−a

0
2β f (α)| fn − fn−1|dα

= Ne−Bg(0,a)(t − a) ‖ fn − fn−1‖∞

≤ NT ‖ fn − fn−1‖∞ (6.8)

That is,
‖gn+1 − gn‖∞ ≤ NT ‖ fn − fn−1‖∞ . (6.9)

Similarly,
‖ fn+1 − fn‖∞ ≤ NT ‖gn − gn−1‖∞ . (6.10)

(Note that by the triangle inequality and since ‖ fn‖∞ and ‖gn‖∞ are finite, ‖ fn+1‖∞ and ‖gn+1‖∞ are finite
as well.) We now have that

‖gn+1 − gn‖∞ ≤ NT ‖ fn − fn−1‖∞ (6.11)
≤ (NT )n−1M, (6.12)

and

‖ fn+1 − fn‖∞ ≤ NT ‖gn − gn−1‖∞ (6.13)
≤ (NT )n−1M. (6.14)

Since

gn = g0 +

n∑
i=1

(gi − gi−1), (6.15)

we see that

g := lim
n→∞

gn = g0 +

∞∑
i=1

(gi − gi−1) (6.16)

exists, and the convergence is uniform on Ω1 by the Weierstrass M-test, provided

T <
1
N
. (6.17)

Therefore, g ∈ C(Ω1). Similarly,

f := lim
n→∞

fn = f0 +

∞∑
i=1

( fi − fi−1) (6.18)

exists in C(Ω1). This concludes the proof of convergence, so we have established Lemma 2.2. �

Assuming that we may differentiate through the integral in (2.13) - (2.14), and accounting for the
possible discontinuity at a = t we find:
Case 1 : For 0 ≤ a < t

∂gn+1

∂a
(a, t) = −2e−Bg(0,a)

∫ ∞

0
β f (α)

(
βg(a)( fn(α, t − a) +

∂ fn
∂t

(α, t − a)
)

dα
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− 2β f (t − a)e−Bg(0,a)
(

lim
α→(t−a)−

fn(α, t − a) − lim
α→(t−a)+

fn(α, t − a)
)

(6.19)

∂gn+1

∂t
(a, t) = 2e−Bg(0,a)

∫ ∞

0
β f (α)

∂ fn
∂t

(α, t − a)dα

+ 2β f (t − a)e−Bg(0,a)
(

lim
α→(t−a)−

fn(α, t − a) − lim
α→(t−a)+

fn(α, t − a)
)

(6.20)

∂ fn+1

∂a
(a, t) = −e−B f (0,a)

∫ ∞

0
βg(α)

(
β f (a)gn(α, t − a) +

∂gn

∂t
(α, t − a)

)
dα

− βg(t − a)e−B f (0,a)
(

lim
α→(t−a)−

gn(α, t − a) − lim
α→(t−a)+

gn(α, t − a)
)

(6.21)

∂ fn+1

∂t
(a, t) = e−B f (0,a)

∫ ∞

0
βg(α)

∂gn

∂t
(α, t − a)dα

+ βg(t − a)e−B f (0,a)
(

lim
α→(t−a)−

gn(α, t − a) − lim
α→(t−a)+

gn(α, t − a)
)

(6.22)

Case 2 : For 0 ≤ t < a

∂gn+1

∂a
(a, t) = e−Bg(a−t,a)

(
g′0(a − t) + βg(a − t)g0(a − t) − βg(a)g0(a − t)

)
(6.23)

∂gn+1

∂t
(a, t) = −e−Bg(a−t,a)

(
g′0(a − t) − βg(a − t)g0(a − t)

)
(6.24)

∂ fn+1

∂a
(a, t) = e−B f (a−t,a)

(
f ′0(a − t) + β f (a − t) f0(a − t) − β f (a) f0(a − t)

)
(6.25)

∂ fn+1

∂t
(a, t) = −e−B f (a−t,a)

(
f ′0(a − t) − β f (a − t) f0(a − t)

)
. (6.26)

From the above cases we see that gn and fn given by (2.13)-(2.16) will satisfy (2.7) - (2.8) together
with the boundary conditions (2.9) - (2.12), provided we may differentiate through the integral.

Shortly we will show that the first partial derivatives of gn and fn are given by (6.19)-(6.22), but
first we will establish the continuity of the expressions to the right of each equality in (6.19)-(6.22).
Moreover, we will show these expressions converge uniformly in Ω1. For convenience, we refer to the
integral expressions above as the partial derivatives of fn and gn; however, in the following lemma and
proof, we do not assume this to be the case. That is, in the following lemma ∂gn

∂a ,
∂gn
∂t ,

∂ fn
∂a , and ∂ fn

∂t stand
for the expressions on the right-hand-side of (6.23)-(6.26), respectively.

Lemma 6.2. Let f0, g0, β f (α) and βg(α) as in Theorem 2.1, and define
∂gn

∂t
,
∂ fn

∂t
,
∂gn

∂a
, and

∂ fn

∂a
by

(6.20),(6.22),(6.19) and (6.21), respectively.

(i)
∂gn

∂t
,
∂ fn

∂t
,
∂gn

∂a
, and

∂ fn

∂a
belong to C(Ω1)

(ii) ∂ fn
∂t , ∂ fn

∂a , ∂gn
∂t and ∂gn

∂a converge uniformly on Ω1.
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Proof. The continuity of
∂gn

∂t
,
∂ fn

∂t
,
∂gn

∂a
, and

∂ fn

∂a
on Ω1 follows by induction as in the proof of Lemma

2.2.
Now we show the sequences ∂ fn

∂t ,
∂ fn
∂a , ∂gn

∂t and ∂gn
∂a converge uniformly on Ω1. (Note that these

sequences are constant for a > t, and hence convergence is uniform in this region as well.)
We see that ∣∣∣∣∣∂gn+1

∂t
−
∂gn

∂t

∣∣∣∣∣ ≤ Ne−Bg(0,a)
∫ t−a

0

∣∣∣∣∣∂ fn
∂t
−
∂ fn−1

∂t

∣∣∣∣∣ dα (6.27)

+ Ne−Bg(0,a)
∣∣∣∣∣ lim
α→(t−a)−

fn(α, t − a) − lim
α→(t−a)+

fn−1(α, t − a)
∣∣∣∣∣

≤ N(t − a)
∥∥∥∥∥∂ fn
∂t
−
∂ fn−1

∂t

∥∥∥∥∥
∞

+ N ‖ fn − fn−1‖∞ (6.28)

≤ NT
∥∥∥∥∥∂ fn
∂t
−
∂ fn−1

∂t

∥∥∥∥∥
∞

+ N(NT )n−1M, (6.29)

and ∣∣∣∣∣∂ fn+1

∂t
−
∂ fn

∂t

∣∣∣∣∣ ≤ Ne−B f (0,a)
∫ t−a

0
|
∂gn

∂t
−
∂gn−1

∂t
dα| (6.30)

+ Ne−B f (0,a)
∣∣∣∣∣ lim
α→(t−a)−

gn(α, t − a) − lim
α→(t−a)+

gn−1(α, t − a)
∣∣∣∣∣

≤ N(t − a)
∥∥∥∥∥∂gn

∂t
−
∂gn−1

∂t

∥∥∥∥∥
∞

+ N ‖gn − gn−1‖∞ (6.31)

≤ NT
∥∥∥∥∥∂gn

∂t
−
∂gn−1

∂t

∥∥∥∥∥
∞

+ N(NT )n−1M. (6.32)

Combining these two together :∥∥∥∥∥∂gn+1

∂t
−
∂gn

∂t

∥∥∥∥∥
∞

≤ NT
∥∥∥∥∥∂ fn

∂t
−
∂ fn−1

∂t

∥∥∥∥∥
∞

+ N(NT )n−1M (6.33)∥∥∥∥∥∂ fn+1

∂t
−
∂ fn

∂t

∥∥∥∥∥
∞

≤ NT
∥∥∥∥∥∂gn

∂t
−
∂gn−1

∂t

∥∥∥∥∥
∞

+ N(NT )n−1M (6.34)

Let M̂ := max
{∥∥∥∥∥∂ f2

∂t
−
∂ f1

∂t

∥∥∥∥∥
∞

,

∥∥∥∥∥∂g2

∂t
−
∂g1

∂t

∥∥∥∥∥
∞

}
. Then,

∥∥∥∥∥∂gn+1

∂t
−
∂gn

∂t

∥∥∥∥∥
∞

≤ NT
∥∥∥∥∥∂ fn

∂t
−
∂ fn−1

∂t

∥∥∥∥∥
∞

+ N(NT )n−1M (6.35)

≤ . . .

≤ M̂(NT )n−1 + (n − 1)NM(NT )n−1. (6.36)

Similarly, ∥∥∥∥∥∂ fn+1

∂t
−
∂ fn

∂t

∥∥∥∥∥
∞

≤ . . . ≤ M̂(NT )n−1 + (n − 1)NM(NT )n−1. (6.37)

Thus, provided M̂ is finite, the sequences of partial derivatives converge uniformly for t ≤ T < 1
N .
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To show that M̂ is finite, we first consider the base case. For this, it is useful to recall

f0(a, t) = f0(a). (6.38)
g0(a, t) = g0(a), (6.39)

Also, for n > 0 and a < t,

∂gn+1

∂t
(a, t) = 2e−Bg(0,a)

∫ ∞

0
β f (α)

∂ fn
∂t

(α, t − a)dα

+ 2β f (t − a)e−Bg(0,a)
(

lim
α→(t−a)−

fn(α, t − a) − lim
α→(t−a)+

fn(α, t − a)
)

(6.40)

∂ fn+1

∂t
(a, t) = e−B f (0,a)

∫ ∞

0
βg(α)

∂gn

∂t
(α, t − a)dα

+ βg(t − a)e−B f (0,a)
(

lim
α→(t−a)−

gn(α, t − a) − lim
α→(t−a)+

gn(α, t − a)
)
, (6.41)

while for n > 0 and t < a

∂gn+1

∂t
(a, t) = −e−Bg(a−t,a)

(
g′0(a − t) − βg(a − t)g0(a − t)

)
(6.42)

∂ fn+1

∂t
(a, t) = −e−B f (a−t,a)

(
f ′0(a − t) − β f (a − t) f0(a − t)

)
. (6.43)

From (6.38) and (6.39)

∂g0

∂t
(a, t) = 0 for (a, t) ∈ (0,∞) × (0,T ) (6.44)

∂ f0

∂t
(a, t) = 0 for (a, t) ∈ (0,∞) × (0,T ). (6.45)

Also, f0(a, t) ≡ f0(a) is continuous. Hence by (6.40) and (6.41)

∂g1

∂t
(a, t) = 0 for a < t (6.46)

∂ f1

∂t
(a, t) = 0 for a < t. (6.47)

On the other hand, for t < a,
∂g1

∂t
and

∂ f1

∂t
are given by (6.42) and (6.43), respectively. Having

computed
∂g1

∂t
and

∂ f1

∂t
we are ready to compute

∂g2

∂t
and

∂ f2

∂t
. For a < t :

∂g2

∂t
(a, t) = 2e−Bg(0,a)

(∫ t−a

0
β f (α)

∂ f1
∂t

(α, t − a)dα +

∫ ∞

t−a
β f (α)

∂ f1
∂t

(α, t − a)dα
)

+ 2β f (t − a)e−Bg(0,a)
(

lim
α→(t−a)−

f1(α, t − a) − lim
α→(t−a)+

f1(α, t − a)
)

= −2e−Bg(0,a)
∫ ∞

t−a
β f (α)β f (α − (t − a))e−B f (α−(t−a),α) f0(α − (t − a))dα

− 2e−Bg(0,a)
∫ ∞

t−a
β f (α)e−B f (α−(t−a),α) f ′0(α − (t − a))dα

+ 2β f (t − a)e−Bg(0,a)e−B f (0,t−a)
(∫ ∞

0
βg(α)g0(α)dα − f0(0)

)
(6.48)
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For the first two terms to the right of the final equality above, let u = α − (t − a) and du = dα, so that
we obtain:

∂g2

∂t
(a, t) = − 2e−Bg(0,a)

∫ ∞

0
e−B f (u,u+(t−a))β f (u + (t − a))β f (u) f0(u)du

− 2e−Bg(0,a)
∫ ∞

0
e−B f (u,u+(t−a))β f (u + (t − a)) f ′0(u)du. (6.49)

Thus for a < t

∣∣∣∣∣∂g2

∂t
(a, t)

∣∣∣∣∣ ≤ 2
∥∥∥β f

∥∥∥2

∞
‖ f0‖L1 + 2

∥∥∥β f

∥∥∥
∞

∥∥∥ f ′0
∥∥∥

L1

+ 2
∥∥∥β f

∥∥∥
∞

∥∥∥βg

∥∥∥
∞
‖g0‖L1 + 2

∥∥∥β f

∥∥∥
∞
‖ f0‖∞

≤ N(‖ f0‖L1 + ‖ g0‖L1 +
∥∥∥ f ′0

∥∥∥
L1 + ‖ f0‖∞). (6.50)

Therefore, ∥∥∥∥∥∂g2

∂t
−
∂g1

∂t

∥∥∥∥∥
∞

< ∞. (6.51)

Similarly, ∥∥∥∥∥∂ f2

∂t
−
∂ f1

∂t

∥∥∥∥∥
∞

< ∞. (6.52)

This shows that M̂ is finite, and the partial derivatives with respect to t converge uniformly to their
limits in Ω1 for T < 1

N . Furthermore, from (6.19) and (6.21) we see that

∂gn+1

∂a
(a0, t0) = −

∂gn+1

∂t
(a0, t0) − βg(a0)gn+1(a0, t0), (6.53)

∂ fn+1

∂a
(a0, t0) = −

∂ fn+1

∂t
(a0, t0) − β f (a0) fn+1(a0, t0). (6.54)

Therefore, the uniform convergence of ∂gn
∂a and ∂ fn

∂a follows from that of ∂gn
∂t , ∂ fn

∂t , fn and gn. �

Now we will show that for every n ∈ N, fn and gn are continuously differentiable with respect to t.
Moreover, we can compute ∂ fn

∂t and ∂gn
∂t by differentiating through the integral in (2.13) and (2.14). The

proof is by induction.

Proof. Suppose that fn is continuously differentiable with respect to t in Ω1. Let (a, t) ∈ Ω1 and choose
δ > 0 so that (a, t ± δ) ∈ Ω1 (or, in case a = t, (a, t + δ) ∈ Ω1). Also, suppose δ > ∆t > 0. Since Ω1 is
convex, we see that (a, t ± ∆t) ∈ Ω1 for any such ∆t. Given ε > 0, suppose that A > A∗ is chosen such
that ∥∥∥β f

∥∥∥
∞

∫ ∞

A

∣∣∣ f ′0(α)
∣∣∣ dα +

∥∥∥β f

∥∥∥2

∞

∫ ∞

A
| f0(α)| dα <

ε

2
.

This is possible since f ′0 and f0 are L1. Now we establish convergence of the difference quotient:∫ ∞

0

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα =

∫ A+T

0

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα
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+

∫ ∞

A+T

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα (6.55)

We will handle the first and second terms to the right if the inequality in (6.55) separately. The first
term can be expressed as∫ A+T

0

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα =

∫ t−a

0

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα

+

∫ t−a+∆t

t−a

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα

+

∫ A+T

t−a+∆t

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα (6.56)

Since fn(α, t∗) and ∂ fn
∂t (α, t∗) are continuous on the sets D1 = {(α, t∗)|0 ≤ α ≤ t∗ ≤ t − a + δ} and D2 =

{(α, t∗)|0 ≤ t∗ ≤ a ≤ A + T, 0 ≤ t∗ ≤ t − a + δ} , by the mean value theorem, the first and third terms to
the right of the equality in (6.56) can be expressed as:∫ t−a

0
β f (α)

fn(α, t + ∆t − a) − fn(α, t − a)
∆t

dα =

∫ t−a

0
β f (α)

∂ fn

∂t
(α, t∗(α))dα,

∫ A+T

t−a+∆t
β f (α)

fn(α, t + ∆t − a) − fn(α, t − a)
∆t

dα =

∫ A+T

t−a+∆t
β f (α)

∂ fn

∂t
(α, t∗(α))dα.

Where t∗(a) is between t − a and t − a + ∆t. Since ∂ fn
∂t (α, t∗) is continuous on D1 and D2, we have that

∂ fn
∂t (α, t∗(α)) → ∂ fn

∂t (α, t) point-wise as ∆t → 0. Moreover, since D1 and D2 are closed and bounded,
there exists a constant C so that ∂ fn

∂t (α, t∗) < C on D1 ∪ D2. Therefore, by Lebesgue’s dominated
convergence theorem, as ∆t → 0,∫ t−a

0
β f (α)

∂ fn

∂t
(α, t∗(α))dα→

∫ t−a

0
β f (α)

∂ fn

∂t
(α, t − a)dα

and ∫ A+T

t−a+∆t
β f (α)

∂ fn

∂t
(α, t∗(α))dα→

∫ A+T

t−a+∆t
β f (α)

∂ fn

∂t
(α, t − a)dα.

For the second term in (6.56) we have∫ t−a+∆t

t−a
β f (α)

fn(α, t + ∆t − a) − fn(α, t − a)
∆t

dα =
1
∆t

∫ t−a+∆t

t−a
β f (α) fn(α, t + ∆t − a)dα

−
1
∆t

∫ t−a+∆t

t−a
β f (α) fn(α, t − a)dα (6.57)

Since fn(α, t∗) is uniformly continuous on D1, which contains the domain of integration for the first
integral above, as ∆t → 0,

1
∆t

∫ t−a+∆t

t−a
β f (α) fn(α, t + ∆t − a)dα→ lim

α→(t−a)−
β f (α) fn(α, t − a).
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Since fn(α, t∗) is uniformly continuous on the closed and bounded region D2, which contains the do-
main of integration for the second integral above, as ∆t → 0,

1
∆t

∫ t−a+∆t

t−a
β f (α) fn(α, t − a)dα→ lim

α→(t−a)+
β f (α) fn(α, t − a).

Hence ∫ A+T

0

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα→
∫ A+T

0
β f (α)

∂ fn

∂t
(α, t − a)dα

+ lim
α→(t−a)−

β f (α) fn(α, t − a)

− lim
α→(t−a)+

β f (α) fn(α, t − a).

Now we show the convergence of the second term in (6.55). Applying the mean value theorem to
fn(α, t∗(α)) for α ≥ t∗,∣∣∣∣∣∣

∫ ∞

A+T

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα

∣∣∣∣∣∣ =

∣∣∣∣∣∫ ∞

A+T
β f (α)

∂ fn

∂t
(α, t∗(α))dα

∣∣∣∣∣
≤

∥∥∥β f

∥∥∥
∞

∫ ∞

A+T

∣∣∣∣∣∂ fn

∂t
(α, t∗(α))

∣∣∣∣∣ dα (6.58)

where t∗(a) is between t − a and t − a + ∆t. The integral in the final term can be expanded as:∥∥∥β f

∥∥∥
∞

∫ ∞

A+T

∣∣∣∣∣∂ fn

∂t
(α, t∗(α))

∣∣∣∣∣ dα
=

∥∥∥β f

∥∥∥
∞

∫ ∞

A+T

∣∣∣∣e−B f (α−t∗(α),α)
(

f ′0(α − t∗(α)) + β f (α − t∗(α)) f0(α − t∗(α))
)∣∣∣∣ dα

≤
∥∥∥β f

∥∥∥
∞

∫ ∞

A+T

∣∣∣ f ′0(α − t∗(α))
∣∣∣ dα +

∥∥∥β f

∥∥∥2

∞

∫ ∞

A+T
| f0(α − t∗(α))| dα. (6.59)

Since (α − t∗(α)) ≥ (α − (t + ∆t − a)) ≥ A, by (v) of Theorem 2.1, we have that
∣∣∣ f ′0(α − t∗(α))

∣∣∣ ≤∣∣∣ f ′0(α − (t + ∆t − a))
∣∣∣ and | f0(α − t∗(α))| ≤ | f0(α − (t + ∆t − a))| . Thus,

∥∥∥β f

∥∥∥
∞

∫ ∞

A+T

∣∣∣ f ′0(α − t∗(α))
∣∣∣ dα +

∥∥∥β f

∥∥∥2

∞

∫ ∞

A+T
| f0(α − t∗(α))| dα

≤
∥∥∥β f

∥∥∥
∞

∫ ∞

A+T

∣∣∣ f ′0(α − (t + ∆t − a))
∣∣∣ dα +

∥∥∥β f

∥∥∥2

∞

∫ ∞

A+T
| f0(α − (t + ∆t − a))| dα

≤
∥∥∥β f

∥∥∥
∞

∫ ∞

A

∣∣∣ f ′0(α)
∣∣∣ dα +

∥∥∥β f

∥∥∥2

∞

∫ ∞

A
| f0(α)| dα

≤
ε

2
. (6.60)

In summary, ∣∣∣∣∣∣
∫ ∞

A+T

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα

∣∣∣∣∣∣ < ε

2
.
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Similarly ∣∣∣∣∣∫ ∞

A+T
β f (α)

∂ fn

∂t
(α, t − a)dα

∣∣∣∣∣
≤

∥∥∥β f

∥∥∥
∞

∫ ∞

A+T

∣∣∣∣e−B f (α−(t−a),α)
(

f ′0(α − (t − a)) + β f (α − (t − a)) f0(α − (t − a))
)∣∣∣∣ dα

≤
∥∥∥β f

∥∥∥
∞

∫ ∞

A+T

∣∣∣ f ′0(α − (t − a))
∣∣∣ dα +

∥∥∥β f

∥∥∥2

∞

∫ ∞

A+T
| f0(α − (t − a))| dα

≤
∥∥∥β f

∥∥∥
∞

∫ ∞

A

∣∣∣ f ′0(α)
∣∣∣ dα +

∥∥∥β f

∥∥∥2

∞

∫ ∞

A
| f0(α)| dα

≤
ε

2
. (6.61)

Thus,

lim
∆t→0

∣∣∣∣∣∣
∫ ∞

A+T

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα −
∫ ∞

A+T
β f (α)

∂ fn
∂t

(α, t − a)dα

∣∣∣∣∣∣ ≤ ε.
Therefore the absolute value of∫ ∞

0

β f (α)( fn(α, t + ∆t − a) − fn(α, t − a))
∆t

dα

−

(∫ ∞

0
β f (α)

∂ fn
∂t

(α, t − a)dα + lim
α→(t−a)−

β f (α) fn(α, t − a) − lim
α→(t−a)+

β f (α) fn(α, t − a)
)

is less than ε. Since ε > 0 was arbitrary, for any (a, t) ∈ Ω1,

∂gn+1

∂t
(a, t) = 2e−Bg(0,a)

∫ ∞

0
β f (α)

∂ fn
∂t

(α, t − a)dα

+ 2β f (t − a)e−Bg(0,a)
(

lim
α→(t−a)−

fn(α, t − a) − lim
α→(t−a)+

fn(α, t − a)
)
. (6.62)

From Lemma 2.3, the expression to the right of the equality above is continuous, hence we have
shown that gn is continuously differentiable with respect to t in Ω1. Similarly, we find that fn and gn

are continuously differentiable with respect to both t and a in Ω1, and their derivatives are given by
(6.19)–(6.22). Moreover, we see that gn and fn satisfy (2.7)–(2.8). It then follows from the uniform
convergence of the partial derivatives of fn and gn together with the convergence of the sequences fn

and gn, that

lim
n→∞

∂ fn

∂t
=
∂ f
∂t
,

and

lim
n→∞

∂gn

∂a
=
∂g
∂t
.

Hence, taking the limit through (2.7)–(2.8), we see that f and g satisfy (2.1)–(2.2). Moreover, since
the convergence is uniform, we have that f and g are continuously differentiable on Ω1. �

To complete the proof of Theorem 2.1, it remains to show that g and f satisfy the boundary condi-
tions (2.4) and (2.6).
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Proof. Note that:

gn+1(0, t) = 2
∫ ∞

0
β f (a) fn(a, t)da

= 2
∫ t

0
β f (a) fn(a, t)da + 2

∫ ∞

t
β f (a) f0(a − t)e−B f (a−t,a)da (6.63)

Since the domain of integration for the first integral is contained in Ω1 where fn converges uniformly
to f we have that:

2
∫ t

0
β f (a) fn(a, t)da→ 2

∫ t

0
β f (a) f (a, t)da.

Thus,

gn+1(0, t) → 2
∫ t

0
β f (a) f (a, t)da + 2

∫ ∞

t
β f (a) f0(a − t)e−B f (a−t,a)da

= 2
∫ ∞

0
β f (a) f (a, t)da (6.64)

as desired. Similarly, we find that f satisfies the boundary condition (2.6). �

Thus, the proof of Theorem 2.1 is complete.

Theorem 6.3. Assume that in addition to conditions (i)−(v) of Theorem 2.1, βg and β f are differentiable
and

(vi) For a > Â∗, β′g and β′f are non-postive and increasing,

then there exist continuously differentiable solutions of (2.1)–(2.2) together with the boundary condi-
tions (2.3)-(2.6) on Ω = {(a, t)|0 ≤ a, 0 ≤ t < T }, for all T > 0.

Proof. By Theorem 2.1 there exist solutions g and f of (2.1)–(2.2) together with the boundary con-
ditions (2.4) and (2.6) on Ω̄1 = {(a, t)|0 ≤ a ≤ t ≤ T }, for T = 1

2N . We may set f̂0(a) = f (a,T ) and
ĝ0(a) = g(a,T ). Note that f̂0 and ĝ0 are continuous and continuously differentiable for a , T at which
point they are continuous from the left and right, with a jump discontinuity. Also we have that f̂0 and
ĝ0 are L∞. This is because ‖gn − g‖∞ → 0 and ‖ fn − f ‖∞ → 0 in Ω̄1, and, in addition, f and g are L∞

for 0 ≤ t ≤ a by (2.15) and (2.16). Also, f̂0 and ĝ0 are L1. This follows from the fact that f̂0 and ĝ0 are
L∞ and given by (2.15) and (2.16 ) for a large, where f0 and g0 are L1.

Also we have that f̂ ′0 =
∂ f
∂a (a,T ) and ĝ′0 =

∂g
∂a (a,T ) are L∞. This is because

∥∥∥∂gn
∂a −

∂g
∂a

∥∥∥
∞
→ 0 and∥∥∥∂ fn

∂a −
∂ f
∂a

∥∥∥
∞
→ 0 in Ω̄1, and, in addition, ∂ f

∂a (a,T ) and ∂ f
∂a (a,T ) are L∞ for 0 ≤ t ≤ a by (6.23) and

(6.25). Also, f̂ ′0 and ĝ′0 are L1. This follows from the fact that f̂ ′0 and ĝ′0 are L∞ and given by (6.23) and
(6.25) for a large, where β f , βg are L∞ and f0, f ′0 , g0 and g′0 are L1.

Now we will verify that f̂ ′0 and ĝ′0 satisfy condition v.

f̂ ′0(a) = f ′0(a − T )e−B f (a−T,a) − f0(a − T )[β f (a − T ) − β f (a)]e−B f (a−T,a) (6.65)

Since f ′0(a) satisfies v and β f is decreasing for a > Â∗ we see that f̂ ′0(a) is non-positive for a > A :=
max

{
A∗ + T, Â∗ + T

}
. Note also that the first term above,

f ′0(a − T )e−B f (a−T,a),
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is increasing for a > A. Indeed, e−B f (a−T,a) is decreasing for a > A, and f ′0(a − T ) is negative and
increasing for a > A∗. Therefore for â > a > A,

f ′0(a − T )e−B f (a−T,a) ≤ f ′0(â − T )e−B f (a−T,a) ≤ f ′0(â − T )e−B f (â−T,â)

Now, taking the derivative of the second term,

− f0(a − T )[β f (a − T ) − β f (a)]e−B f (a−T,a),

we get:

− f ′0(a − T )(βg(a − T ) − βg(a))e−Bg(a−T,a) − f0(a − T )(β′g(a − T ) − β′g(a)e−Bg(a−T,a)

+ f0(a − T )(β′g(a − T ) − β′g(a))2e−Bg(a−T,a),

which is positive for a > A by conditions v and vi. Therefore f̂ ′0(a) is increasing for a large. Similarly
ĝ′0(a) is negative and increasing for a large. Therefore, f̂0 and ĝ0 satisfy condition (v) of Theorem 2.1.

Having verified these conditions, we can begin to solve (2.1) and (2.2) subject to the boundary
conditions (2.4) and (2.6), with f̂0 and ĝ0 in place of f0 and g0, and f̂n and ĝn in place of fn and gn. For
simplicity, we may change to time variable to τ = t − T, so that the initial data corresponds to τ = 0.
The characteristic equations are unchanged. The only change is the jump discontinuity in f̂0 and ĝ0.
Note that jump discontinuities do not impact the continuity of the expressions in (2.13) and (2.14).
Indeed, the proof that these expressions are continuous assumed a jump discontinuity, at a = t. In our
new variables, that discontinuity is at a = τ + T ; ĝn and f̂n are, in fact, continuous at a = τ. Indeed,
since

f (0,T ) =

∫ ∞

0
βg(α)g(α,T )dα

and

g(0,T ) = 2
∫ ∞

0
β f (a) f (α,T )dα

f̂0 and ĝ0 satisfy the boundary conditions

ĝ0(0) = 2
∫ ∞

0
β f (α) f̂0(α)dα

and

f̂0(0) =

∫ ∞

0
βg(α)ĝ0(α)dα.

Therefore, when a = τ we have,

lim
a→τ−

ĝn(a, τ) = 2e−Bg(0,τ)
∫ ∞

0
β f (α) f̂0(α)dα

= e−Bg(0,τ)ĝ(0)
= lim

a→τ+
ĝn(a, τ) (6.66)
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Similarly,

lim
a→τ−

f̂n(a, τ) = lim
a→τ+

f̂n(a, τ) (6.67)

Thus, f̂n and ĝn converge to continuously differentiable solutions of (2.7) and (2.8) subject to (2.3)–
(2.6), on {(a, τ)|0 ≤ τ ≤ T, 0 ≤ a ≤ T + τ} . Returning to our original variables, we extend our original
solution to t ≤ 2T . Continuing in this way, for all time, we can define solutions of (2.7) and (2.8)
subject to the boundary conditions (2.3)–(2.6), continuously differentiable for a , t. �

7. Appendix 2: Perturbed Stage Structures
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Figure 11. Inverse Gaussian model with stable initial age density and initial stage ratio
perturbed by a factor of three. Note that the perturbed initial stage structure alone is sufficient
to induce oscillations in both age density and stage structure.
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Figure 12. Exponential model with stable initial age density and initial stage ratio perturbed
by a factor of three. Note that the stage structure quickly stabilizes and does not overshoot or
oscillate.
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