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Abstract: We investigate a piecewise-deterministic Markov process, evolving on a Polish metric
space, whose deterministic behaviour between random jumps is governed by some semi-flow, and any
state right after the jump is attained by a randomly selected continuous transformation. It is assumed
that the jumps appear at random moments, which coincide with the jump times of a Poisson process
with intensity λ. The model of this type, although in a more general version, was examined in our
previous papers, where we have shown, among others, that the Markov process under consideration
possesses a unique invariant probability measure, say ν∗λ. The aim of this paper is to prove that the
map λ 7→ ν∗λ is continuous (in the topology of weak convergence of probability measures). The studied
dynamical system is inspired by certain stochastic models for cell division and gene expression.
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1. Introduction

Piecewise-deterministic Markov processes (PDMPs) originate with M.H.A. Davis [1]. They
constitute an important class of Markov processes that is complementary to those defined by
stochastic differential equations. PDMPs are encountered as suitable mathematical models for
processes in the physical world around us, e.g., in resource allocation and service provisioning
(queing, cf. [1]) or biology: as stochastic models for gene expression and autoregulation [2, 3], cell
division [4], excitable membranes [5] or population dynamics [6, 7].

Mathematical research on PDMPs has been conducted over the years in various directions.
Applications in control and optimization have been just one direction. The fundamentals of existence
and uniqueness of invariant probability measures for Markov operators and semigroups of Markov
operators associated with PDMPs, as well as their asymptotic properties, have attracted much
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attention. See e.g., [8–11], where the considered underlying state space is locally compact. The theory
for the general case of non-locally compact Polish state space is less developed yet. It is considered
e.g., in [3, 5, 12–15]. Another direction is that of establishing the validity of the Strong Law of Large
Numbers (SLLN), the Central Limit Theorem (CLT) and the Law of the Interated Logarithm (LIL) for
non-stationary PDMPs (cf. [16–19]), which has interest in itself for non-stationary processes in
general [20].

In this paper, we are concerned with a special case of the PDMP described in [13, 14], whose
deterministic motion between jumps depends on a single continuous semi-flow, and any post-jump
location is attained by a continuous transformation of the pre-jump state, randomly selected (with
a place-dependent probability) among all possible ones. The jumps in this model occur at random
time points according to a homogeneous Poisson process. The random dynamical systems of this type
constitute a mathematical framework for certain particular biological models, such as those for gene
expression [2] or cell division [4].

The aim of the paper is to establish the continuous (in the Fortet-Mourier distance,
cf. [21, Section 8.3]) dependence of the invariant measure on the rate of a Poisson process
determining the frequency of jumps. While the SLLN and the CLT provide the theoretical foundation
for successful approximation of the invariant measure by means of observing or simulating (many)
sample trajectories of the process, this result asserts the stability of this procedure, at least locally in
parameter space. It is a prerequisite for the development of a bifurcation theory. Moreover, even
stronger regularity of this dependence on parameter (i.e., differentiability in a suitable norm on the
space of measures) would be needed for applications in control theory or for parameter estimation
(see e.g., [22]).

The outline of the paper is as follows. In Section 2, several facts on integrating measure-valued
functions and basic definitions from the theory of Markov operators have been compiled. Section 3
deals with the structure and assumptions of the model under study. In Section 4, we establish certain
auxiliary results on the transition operator of the Markov chain given by the post-jump locations. More
specifically, we show that the operator is jointly continuous (in the topology of weak convergence of
measures) as a function of measure and the jump-rate parameter, and that the weak convergence of
the distributions of the chain to its unique stationary distribution must be uniform. Section 5 is the
essential part of the paper. Here, we establish the announced results on the continuous dependence of
the invariant measure on the jump frequency for both, the discrete-time system, constituted by the post
jump-locations, and for the PDMP itself.

2. Preliminaries

Let X be a closed subset of some separable Banach space (H, ‖ · ‖), endowed with the σ-field BX

consisting of its Borel subsets. Further, let (BM(X), ‖ · ‖∞) stand for the Banach space of all bounded
Borel-measurable functions f : X → R with the supremum norm ‖ f ‖∞ := supx∈X | f (x)|. By BC(X)
and BL(X) we shall denote the subspaces of BM(X) consisting of all continuous and all Lipschitz
continuous functions, respectively. Let us further introduce

‖ f ‖BL := max
{
‖ f ‖∞, | f |Lip

}
for any f ∈ BL(X),
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where

| f |Lip := sup
{
| f (x) − f (y)|
‖x − y‖

: x, y ∈ X, x , y
}
.

It is well-known (cf. [23, Proposition 1.6.2]) that ‖·‖BL defines a norm in BL(X), for which it is a Banach
space.

In what follows, we will write (Msig(X), ‖ · ‖TV) for the Banach space of all finite, countably
additive functions (signed measures) on BX, endowed with the total variation norm ‖ · ‖TV , which can
be expressed as

‖µ‖TV := |µ|(X) = sup {|〈 f , µ〉| : f ∈ BM(X), ‖ f ‖∞ ≤ 1} for µ ∈ Msig(X),

where

〈 f , µ〉 :=
∫

X
f (x)µ(dx)

and |µ| stands for the absolute variation of µ (cf. e.g., [24]). The symbolsM+(X) andM1(X) will be
used to denote the subsets ofMsig(X), consisting of all non-negative and all probability measures on
BX, respectively. Moreover, we will writeM1,1(X) for the set of all measures µ ∈ M1(X) with finite
first moment, i.e., satisfying 〈‖ · ‖, µ〉 < ∞.

Let us now define, for any µ ∈ Msig(X), the linear functional Iµ : BL(X)→ R given by

Iµ( f ) = 〈 f , µ〉 for f ∈ BL(X).

It easy to show that Iµ ∈ BL(X)∗ for every µ ∈ Msig(X), where BL(X)∗ stands for the dual space of
(BL(X), ‖ · ‖BL) with the operator norm ‖ · ‖∗BL given by

‖ϕ‖∗BL := sup {|ϕ( f )| : f ∈ BL(X), ‖ f ‖BL ≤ 1} for any ϕ ∈ BL(X)∗.

Moreover, we have ‖Iµ‖∗BL ≤ ‖µ‖TV for any µ ∈ Msig(X).
Furthermore, it is well known (see [25, Lemma 6]), that the mapping

Msig(X) 3 µ 7→ Iµ ∈ BL(X)∗

is injective, and thus the space (Msig(X), ‖·‖TV) may be embedded into (BL(X)∗, ‖·‖∗BL). This enables us
to identify each measure µ ∈ Msig(X) with the functional Iµ ∈ BL(X)∗. Note that ‖ · ‖∗BL induces a norm
onMsig(X), called the Fortet-Mourier (or bounded Lipschitz, cf. e.g., [26, 27]) norm and denoted by
‖ · ‖FM. Consequently, we can write

‖µ‖FM :=
∥∥∥Iµ

∥∥∥∗
BL

= sup{|〈 f , µ〉| : f ∈ BL(X), ‖ f ‖BL ≤ 1} for any µ ∈ Msig(X).

As we have already seen, generally ‖µ‖FM = ‖Iµ‖∗BL ≤ ‖µ‖TV for any µ ∈ Msig(X). However, for positive
measures the norms coincide, i.e., ‖µ‖FM = µ(X) = ‖µ‖TV for all µ ∈ M+(X) (cf. [25]).

Let us now writeD(X) andD+(X) for the linear space and the convex cone, respectively, generated
by the set {δx : x ∈ X} ⊂ BL(X)∗ of functionals of the form

δx( f ) := f (x) for any f ∈ BL(X), x ∈ X,
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which can be also viewed as Dirac measures. It is not hard to check that the ‖ · ‖∗BL-closure of D(X) is
a separable Banach subspace of BL(X)∗. Moreover, one can show (cf. [27, Theorems 2.3.8–2.3.19])
that M+(X) = clD+(X) (using the completeness of X), which in turn implies that Msig(X) is
a ‖ · ‖∗BL-dense subspace of clD(X), i.e., clMsig(X) = clD(X). The key idea underlying the proof of
this result is to show that every measure µ ∈ M+(X) can be represented by the Bochner integral (for
definition see e.g., [28]) of the continuous map X 3 x 7→ δx ∈ clD(X), i.e.,

µ =

∫
X
δx µ(dx) ∈ clD+(X).

In particular, it follows that
(
clMsig(X), ‖ · ‖∗BL|clD(X)

)
is a separable Banach space.

What is more, according to [27, Theorem 2.3.22], the dual space of clMsig(X) = clD(X) with the
operator norm

‖κ‖∗∗clD := sup{|κ(ϕ)| : ϕ ∈ clD(X), ‖ϕ‖∗BL ≤ 1}, κ ∈ [clD(X)]∗,

is isometrically isomorphic with the space (BL(X), ‖ · ‖BL), and each functional κ ∈ [clD(X)]∗ can be
represented by some f ∈ BL(X), in the sense that κ(ϕ) = ϕ( f ) for ϕ ∈ clD(X). In particular, we then
have κ(µ) = Iµ( f ) = 〈 f , µ〉 whenever µ ∈ Msig(X) (by identifying µ with Iµ).

In view of the above observations, the norm ‖ · ‖∗BL is convenient for integrating (in the Bochner
sense) measure-valued functions p : E →Msig(X), where E is an arbitrary measure space. The Pettis
measurability theorem (see e.g., [28, Chapter II, Theorem 2]), together with the separability of
clMsig(X), ensures that p is strongly measurable as a map with values in clMsig(X) (i.e., it is
a pointwise a.e. limit of simple functions) if and only if, for any f ∈ BL(X), the functional
E 3 t 7→ 〈 f , p(t)〉 ∈ R is measurable. Moreover, we have at our disposal the following result
(see [27, Propositions 3.2.3–3.2.5] or [29, Proposition C.2]), which provides a tractable condition
guaranteeing the integrability of p and ensuring that the integral is an element ofMsig(X):

Theorem 2.1. Let (E,Σ) be a measurable space endowed with a σ-finite measure ν, and let
p : E →Msig(X) be a strongly measurable function. Suppose that there exists a real-valued function
g ∈ L1(E,Σ, ν) such that

‖p(t)‖TV ≤ g(t) for a.e. t ∈ E.

Then the following conditions hold:

(i) The function p is Bochner ν-integrable as a map acting from (E,Σ) to
(
clMsig(X), ‖ · ‖∗BL|clD(X)

)
.

Moreover, we have ∥∥∥∥∥∫
E

p(t) ν(dt)
∥∥∥∥∥

TV
≤

∫
E
‖p(t)‖TV ν(dt).

(ii) The Bochner integral
∫

E
p(t) ν(dt) ∈ clMsig(X) belongs toMsig(X) and satisfies(∫

E
p(t)ν(dt)

)
(A) =

∫
E

p(t)(A)ν(dt) for any A ∈ BX.

Another crucial observation is that the restriction of the weak topology on Msig(X), generated by
BC(X), to M+(X) equals to the topology induced by the norm ‖ · ‖FM |M+(X) (cf. [25, Theorem 18]
or [21, Theorem 8.3.2]). In particular, the following holds:
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Theorem 2.2. Let µn, µ ∈ M+(X) for every n ∈ N. Then limn→∞ ‖µn − µ‖FM = 0 if and only if µn
w
→ µ,

as n→ ∞, that is,
lim
n→∞
〈 f , µn〉 = 〈 f , µ〉 for any f ∈ BC(X).

Let us now recall several basic definitions concerning Markov operators acting on measures. First
of all, a function P : X × BX → [0, 1] is called a stochastic kernel if, for any fixed A ∈ BX, x 7→ P(x, A)
is a Borel-measurable map on X, and, for any fixed x ∈ X, A 7→ P(x, A) is a probability Borel measure
on BX. We can consider two operators corresponding to a stochastic kernel P, namely

µP(A) =

∫
X

P(x, A) µ(dx) for µ ∈ Msig(X), A ∈ BX (2.1)

and
P f (x) =

∫
X

f (y) P(x, dy) for f ∈ BM(X), x ∈ X. (2.2)

The operator (·)P :Msig(X) →Msig(X), given by (2.1), is called a regular Markov operator. It is easy
to check that

〈 f , µP〉 = 〈P f , µ〉 for any f ∈ BM(X), µ ∈ Msig(X),

and, therefore, P(·) : BM(X)→ BM(X), defined by (2.2), is said to be the dual operator of (·)P.
A regular Markov operator (·)P is said to be Feller if its dual operator P(·) preserves continuity, that

is, P f ∈ BC(X) for every f ∈ BC(X). A measure µ∗ ∈ M+(X) is called an invariant measure for (·)P
whenever µ∗P = µ∗.

We will say that the operator (·)P is exponentially ergodic in the Fortet-Mourier distance if there
exists a unique invariant measure µ∗ ∈ M1(X) of (·)P, for which there is q ∈ [0, 1) such that, for any
µ ∈ M1,1(X) and some constant C(µ), we have

‖µPn − µ∗‖FM ≤ C(µ)qn for any n ∈ N.

The measure µ∗ is then usually called exponentially attracting.
A regular Markov semigroup (P(t))t∈R+

is a family of regular Markov operators
(·)P(t) :Msig(X)→Msig(X), t ∈ R+ := [0,∞), which form a semigroup (under composition) with the
identity transformation (·)P(0) as the unity element. Provided that (·)P(t) is a Markov-Feller operator
for every t ∈ R+, the semigroup (P(t))t∈R+

is said to be Markov-Feller, too. If, for some ν∗ ∈ Msig(X),
ν∗P(t) = ν∗ for every t ∈ R+, then ν∗ is called an invariant measure of (P(t))t∈R+

.

3. Description of the model

Recall that X is a closed subset of some separable Banach space (H, ‖ · ‖), and let (Θ,BΘ, ϑ) be
a topological measure space with a σ-finite Borel measure ϑ. With a slight abuse of notation, we will
further write dθ only, instead of ϑ(dθ).

Let us consider a PDMP (X(t))t∈R+
, evolving on the space X through random jumps occuring at the

jump times τn, n ∈ N, of a homogeneous Poisson process with intensity λ > 0. The state right after the
jump is attained by a transformation wθ : X → X, randomly selected from the set {wθ : θ ∈ Θ}. The
probability of choosing wθ is determined by a place-dependent density function θ 7→ p(x, θ), where
x describes the state of the process just before the jump. It is required that the maps (x, θ) 7→ p(x, θ)
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and (x, θ) 7→ wθ(x) are continuous. Between the jumps, the process is deterministically driven by
a continuous (with respect to each variable) semi-flow S : R+ × X → X. The flow property means, as
usual, that S (0, x) = x and S (s + t, x) = S (s, S (t, x)) for any x ∈ X and any s, t ∈ R+.

Let us now move on to the formal description of the model. Given λ > 0 and µ ∈ M1(X), on
some suitable probability space, we first define a discrete-time stochastic process (Xn)n∈N0 with initial
destribution µ, so that

Xn+1 = wθn+1 (S (∆τn+1, Xn)) for every n ∈ N0,

with ∆τn+1 := τn+1 − τn, where (τn)n∈N0 and (θn)n∈N are sequences of random variables with values in
R+ and Θ, respectively, defined in such a way that τ0 = 0, τn → ∞ Pµ-a.s., as n→ ∞, and

Pµ (∆τn+1 ≤ t |Wn) = 1 − e−λt for any t ∈ R+, n ∈ N0,

Pµ (θn+1 ∈ B | S (∆τn+1, Xn) = x, Wn) =

∫
B

p(x, θ) dθ for any x ∈ X, B ∈ BΘ, n ∈ N0,

with W0 := X0 and Wn := (W0, τ1, . . . , τn, θ1, . . . , θn) for n ∈ N. We also demand that, for any n ∈ N0,
the variables ∆τn+1 and θn+1 are conditionally independent given Wn.

A standard computation shows that (Xn)n∈N0 is a time-homogeneous Markov chain with transition
law Pλ : X × BX → [0, 1] given by

Pλ(x, A) =

∫ ∞

0
λe−λt

∫
Θ

p(S (t, x), θ)1A (wθ(S (t, x))) dθ dt for x ∈ X, A ∈ BX, (3.1)

that is,

Pλ(x, A) = P (Xn+1 ∈ A | Xn = x) for any x ∈ X, A ∈ BX, n ∈ N0.

On the same probability space, we now define a Markov process (X(t))t∈R+
, as an iterpolation of the

chain (Xn)n∈N0 , namely

X(t) = S (t − τn, Xn) for t ∈ [τn, τn+1), n ∈ N0.

By (Pλ(t))t∈R+
we shall denote the Markov semigroup associated with the process (X(t))t∈R+

, so that, for
any t ∈ R+, Pλ(t) is the Markov operator corresponding to the stochastic kernel satisfying

Pλ(t)(x, A) = Pµ (X(s + t) ∈ A | X(s) = x) for any A ∈ BX, x ∈ X, s ∈ R+. (3.2)

We further assume that there exist a point x̄ ∈ X, a Borel measurable function J : X → [0,∞) and
constants α ∈ R, L, Lw, Lp, λmin, λmax, p > 0, such that

LLw +
α

λ
< 1 for each λ ∈ [λmin, λmax], (3.3)

and, for any x, y ∈ X, the following conditions hold:

κ := sup
x∈X

∫ ∞

0
e−λmint

∫
Θ

p (S (t, x), θ) ‖wθ (S (t, x̄))‖ dθ dt < ∞, (3.4)
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‖S (t, x) − S (t, y)‖ ≤ Leαt‖x − y‖ for t ∈ R+, (3.5)
‖S (t, x) − S (s, x)‖ ≤ (t − s)emax{αs,αt}J(x) for 0 ≤ s ≤ t, (3.6)∫

Θ

p(x, θ) ‖wθ(x) − wθ(y)‖ dθ ≤ Lw ‖x − y‖ , (3.7)∫
Θ

|p(x, θ) − p(y, θ)| dθ ≤ Lp ‖x − y‖ , (3.8)∫
Θ(x,y)

min{p(x, θ), p(y, θ)} dθ ≥ p, where Θ(x, y) := {θ ∈ Θ : ‖wθ(x) − wθ(y)‖ ≤ Lw ‖x − y‖}. (3.9)

Note that, upon assuming (3.3), we have λ > max{0, α} for any λ ∈ [λmin, λmax]. In what follows,
we will write shortly

ᾱ := max{0, α}. (3.10)

Moreover, let us introduce

Msig,J(X) = {µ ∈ Msig(X) : 〈J, |µ|〉 < ∞},

where J is given in (3.6).
Note that, if (H, 〈·|·〉) is a Hilbert space and A : X → H is an α-dissipative operator with α ≤ 0, i.e.,

〈Ax − Ay|x − y〉 ≤ α ‖x − y‖2 for any x, y ∈ X,

which additionally satisfies the so-called range condition, that is, for some T > 0,

X ⊂ Range (idX −tA) for t ∈ (0,T ),

then, for any x ∈ X, the Cauchy problem of the form{
y′(t) = A(y(t))
y(0) = x

has a unique solution t 7→ S (t, x) such that the semi-flow S enjoys conditions (3.5), with L = 1, and
(3.6), with J(x) = ‖Ax‖ (cf. [30, Theorem 5.3 and Corollary 5.4], as well as [13, Section 3]).

Moreover, upon assuming compactness of Θ, condition (3.4) can be derived from the conjunction
of (3.6) and (3.7) at least in two cases: whenever p does not depend on the pre-jump state, i.e.,
p(y, θ) = p̄(θ) for some continuous density function p̄ : Θ → R+, or if all the transformations wθ,
θ ∈ Θ, are Lipschitz continuous with a common Lipschitz constant Lw (see [13, Corollary 3.4] for the
proof).

Furthermore, note that conditions formulated in a manner similar to (3.7)–(3.9) are commonly
required while examining the asymptotic properties of random iterated function systems (see
[26, 31, 32]), which are covered by the discrete-time model discussed here (in the case where

S (t, x) = x). In this connection, it is also worth mentioning that the example described in [33]
indicates that the condition of type (3.8) cannot be omitted even in the simplest cases. More precisely,
the system {(w1, p), (w2, 1 − p)}, consisting of two contractive maps w1, w2 and a positive continuous
probability function p, may admit more than one invariant probability measure (unless at least the
Dini continuity of p is assumed).

Finally, let us indicate that conditions (3.3)–(3.9) are naturally satisfied by a few particular
biological models, such as e.g., the model for gene expression [2] (cf. also [13, Section 5]), the model
of autoregulated gene expression [3] or the one for cell division [4, 15] (see also [34]).
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4. Some properties of the operator Pλ

Consider the abstract model introduced in Section 3. In order to simplify notation, for any t ∈ R+,
let us introduce the function Π(t) : X × BX → [0, 1] given by

Π(t)(x, A) :=
∫

Θ

p (S (t, x), θ) 1A (wθ (S (t, x))) dθ for x ∈ X, A ∈ BX. (4.1)

Note that Π(t) is a stochastic kernel, and that the corresponding Markov operator is Feller, due to the
continuity of p(·, θ), S (t, ·) and wθ, θ ∈ Θ. Moreover, observe that, for an arbitrary λ > 0, we have

µPλ(A) =

∫
X

∫ ∞

0
λe−λtΠ(t)(x, A) dt µ(dx) =

∫ ∞

0
λe−λt

∫
X

Π(t)(x, A) µ(dx) dt

=

∫ ∞

0
λe−λtµΠ(t)(A) dt for any µ ∈ Msig(X), A ∈ BX.

(4.2)

Lemma 4.1. Suppose that conditions (3.6)–(3.8) hold. Then, for any λ > 0 and any µ ∈ Msig,J(X), the
function t 7→ e−λtµΠ(t) is Bochner integrable as a map from R+ to (clMsig(X), ‖ · ‖∗BL|clMsig(X)), and we
have

µPλ =

∫ ∞

0
λe−λtµΠ(t) dt.

Proof. Let λ > 0 and µ ∈ Msig(X). Note that condition (3.6) implies that

‖S (t, x) − S (s, x)‖ ≤ J(x)eᾱ(t+s)|t − s| for any s, t ∈ R+, x ∈ X,

where ᾱ is given by (3.10). Hence, applying (3.7) and (3.8), we see that, for every f ∈ BL(X),∣∣∣〈 f , µΠ(t)
〉
−

〈
f , µΠ(s)

〉∣∣∣ =
∣∣∣〈Π(t) f − Π(s) f , µ

〉∣∣∣
≤

∫
X

∫
Θ

p(S (t, x), θ) | f (wθ(S (t, x))) − f (wθ(S (s, x)))| dθ |µ|(dx)

+

∫
X

∫
Θ

|p(S (t, x), θ) − p(S (s, x), θ)| | f (wθ(S (s, x)))| dθ |µ|(dx)

≤
(
| f |LipLw + ‖ f ‖∞Lp

) ∫
X
‖S (t, x) − S (s, x)‖ |µ|(dx)

≤‖ f ‖BL

(
Lw + Lp

)
〈J, |µ|〉 eᾱ(t+s)|t − s| for any s, t ∈ R+.

This shows that the map t 7→
〈

f , e−λtµΠ(t)

〉
is continuous for any f ∈ BL(X), and thus it is Borel

measurable. Consequently, it now follows from the Pettis measurability theorem (cf. [28]) that the
map t 7→ e−λtµΠ(t) is strongly measurable. Furthermore, we have∥∥∥e−λtµΠ(t)

∥∥∥
TV
≤ ‖µ‖TV e−λt for any t ∈ R+,

which, due to Theorem 2.1, yields that t 7→ e−λtµΠ(t) ∈ clMsig(X) is Bochner integrable (with respect
to the Lebesgue measure) on R+, and that the integral is a measure inMsig(X), which satisfies(∫ ∞

0
λe−λtµΠ(t) dt

)
(A) =

∫ ∞

0
λe−λtµΠ(t)(A) dt for any A ∈ BX.

The assertion of the lemma now follows from (4.2). �
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Lemma 4.2. Let f ∈ BL(X). Upon assuming (3.5), (3.7) and (3.8), we have∥∥∥µΠ(t)

∥∥∥
FM
≤

(
1 +

(
Lw + Lp

)
Leαt

)
‖µ‖FM for any µ ∈ Msig(X), t ∈ R+.

Proof. Let f ∈ BL(X) be such that ‖ f ‖BL ≤ 1. Obviously, ‖Π(t) f ‖∞ ≤ 1 for every t ∈ R+. Moreover,
from conditions (3.5), (3.7), (3.8) it follows that Π(t) f ∈ BL(X), and

|Π(t) f |Lip ≤ (Lw + Lp)Leαt for any t ∈ R+,

since∣∣∣Π(t) f (x) − Π(t) f (y)
∣∣∣ =

∣∣∣∣∣∫
Θ

p (S (t, x), θ) f (wθ (S (t, x))) dθ −
∫

Θ

p (S (t, y), θ) f (wθ (S (t, y))) dθ
∣∣∣∣∣

≤
(
Lw + Lp

)
‖S (t, x) − S (t, y)‖ ≤

(
Lw + Lp

)
Leαt‖x − y‖ for all x, y ∈ X, t ∈ R+.

Therefore, for any µ ∈ Msig(X) and any t ∈ R+, we obtain∣∣∣〈 f , µΠ(t)
〉∣∣∣ =

∣∣∣〈Π(t) f , µ
〉∣∣∣ ≤ ∥∥∥Π(t) f

∥∥∥
BL
‖µ‖FM ,

which gives the desired conclusion. �

Lemma 4.3. For any λ1, λ2 > 0, we have∫ ∞

0

∣∣∣λ1e−λ1t − λ2e−λ2t
∣∣∣ dt ≤ |λ1 − λ2|

(
1
λ1

+
1
λ2

)
.

Proof. Without loss of generality, we may assume that λ1 < λ2. Since 1 − e−x ≤ x for every x ∈ R, we
obtain ∫ ∞

0

∣∣∣λ1e−λ1t − λ2e−λ2t
∣∣∣ dt ≤ λ1

∫ ∞

0

∣∣∣e−λ1t − e−λ2t
∣∣∣ dt + (λ2 − λ1)

∫ ∞

0
e−λ2tdt

= λ1

∫ ∞

0
e−λ1t

(
1 − e−(λ2−λ1)t

)
dt +

λ2 − λ1

λ2

≤ λ1 (λ2 − λ1)
∫ ∞

0
e−λ1tt dt +

(λ2 − λ1)
λ2

= |λ1 − λ2|

(
1
λ1

+
1
λ2

)
,

which completes the proof. �

Lemma 4.4. LetMsig(X) be endowed with the topology induced by the norm ‖ · ‖FM, and suppose that
conditions (3.5)–(3.8) hold. Then, the map (ᾱ,∞) ×Msig,J(X) 3 (λ, µ) 7→ µPλ ∈ Msig(X), where ᾱ is
given by (3.10), is jointly continuous.

Proof. Let λ1, λ2 > ᾱ and µ1, µ2 ∈ Msig,J(X). Note that, due to Lemma 4.1, we have∥∥∥µ1Pλ1 − µ2Pλ2

∥∥∥
FM

=

∥∥∥∥∥∫ ∞

0

(
λ1e−λ1tµ1Π(t) − λ2e−λ2tµ2Π(t)

)
dt

∥∥∥∥∥
FM

≤ ‖µ1‖TV

∫ ∞

0

∣∣∣λ1e−λ1t − λ2e−λ2t
∣∣∣ dt +

∫ ∞

0
λ2e−λ2t

∥∥∥µ1Π(t) − µ2Π(t)

∥∥∥
FM

dt,
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where the inequality follows from statement (i) of Theorem 2.1 and the fact that ‖µ1Π(t)‖TV ≤ ‖µ1‖TV .
Further, applying Lemmas 4.2 and 4.3, we obtain

∥∥∥µ1Pλ1 − µ2Pλ2

∥∥∥
FM
≤ ‖µ1‖TV |λ1 − λ2|

(
1
λ1

+
1
λ2

)
+ ‖µ1 − µ2‖FM

(
1 +

(
Lw + Lp

)
L

λ2

λ2 − α

)
.

We now see that ‖µ1Pλ1 − µ2Pλ2‖FM → 0, as |λ1 − λ2| → 0 and ‖µ1 − µ2‖FM → 0, which completes the
proof. �

Suppose that conditions (3.4), (3.5) and (3.7)–(3.9) hold. Then, according to [13, Theorem 4.1] (or
[14, Theorem 4.1]), for any λ ∈ [λmin, λmax] satisfying LLw + αλ−1 < 1, there exist a unique invariant

measure µ∗λ ∈ M1,1(X) for Pλ and constants qλ ∈ (0, 1), Cλ ∈ R+ such that∥∥∥µPn
λ − µ

∗
λ

∥∥∥
FM
≤ qn

λCλ

(
1 + 〈V, µ〉 +

〈
V, µ∗λ

〉)
for any µ ∈ M1,1(X) and any n ∈ N, (4.3)

where V : X → [0,∞) is given by V(x) = ‖x − x̄‖.
Following the proof of [13, Theorem 4.1], we may conclude that qλ and Cλ depend only on the

jump rate od the PDMP and other constants appearing in conditions (3.3)–(3.5) and (3.7)–(3.9) (note
that they do not depend on the structure of the model, that is the definitions of S , wθ and p).

Upon assuming (3.3)–(3.5) and (3.7)–(3.9), there exists C0 > 0 such that〈
V, µ∗λ

〉
≤ C0 for any λ ∈ [λmin, λmax] . (4.4)

Indeed, let us first define

a :=
λmaxLLw

λmin − α
and b := λmaxκ,

where κ is given in (3.4), and observe that a < 1, due to (3.3). Proceeding similarly as in Step I of the
proof of [13, Theorem 4.1], we see that conditions (3.5) and (3.7) imply the following:

PλV(x) ≤ aV(x) + b for any x ∈ X and any λ ∈ [λmin, λmax] ,

which further gives

Pn
λV(x) ≤ anV(x) +

b
1 − a

for any n ∈ N and any λ ∈ [λmin, λmax] .

Now, let C0 := b(1 − a)−1. Then, using the fact that µ∗λ is an invariant measure of Pλ, we get〈
V, µ∗λ

〉
=

〈
V, µ∗λPn

λ

〉
=

〈
Pn
λV, µ

∗
λ

〉
≤ an 〈

V, µ∗λ
〉

+ C0 for any n ∈ N and any λ ∈ [λmin, λmax] .

Going with n to infinity, we obtain the desired estimation (4.4). As a consequence, we may write (4.3)
in the following form:∥∥∥µPn

λ − µ
∗
λ

∥∥∥
FM
≤ qn

λC̃λ (1 + 〈V, µ〉) for any µ ∈ M1,1(X) and any n ∈ N, (4.5)

where C̃λ := Cλ(1 + C0).
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Lemma 4.5. Suppose that conditions (3.4), (3.5) and (3.7)–(3.9) hold with constants satisfying (3.3),
and, for any λ ∈ [λmin, λmax], let µ∗λ stand for the unique invariant probability measure of Pλ. Then, the
convergence ‖µPn

λ − µ
∗
λ‖FM → 0 (as n→ ∞) is uniform with respect to λ, whenever µ ∈ M1,1(X).

Proof. In view of [13, Theorem 4.1], it is sufficient to prove that the convergence is uniform with
respect to λ.

Let us consider the case where α ≤ 0. Choose an arbitrary λ ∈ [λmin, λmax], and note that, by
substituting t = λmaxλ

−1u, the operator Pλ can be expressed in the following form:

µPλ(A) =

∫
X

∫ ∞

0
λe−λt

∫
Θ

p (S (t, x), θ) 1A (wθ (S (t, x))) dθ dt µ(dx)

=

∫
X

∫ ∞

0
λmaxe−λmaxu

∫
Θ

p (S λ(u, x), θ) 1A (wθ (S λ(u, x))) dθ du µ(dx)

for any µ ∈ M1(X), A ∈ BX, where

S λ(u, x) := S
(
λmax

λ
u, x

)
for u ∈ R+, x ∈ X.

Moreover, the semi-flow S λ enjoys condition (3.5), since, for any t ∈ R+ and any x, y ∈ X, we have

‖S λ(t, x) − S λ(t, y)‖ ≤ Leαλmaxλ
−1t ‖x − y‖ ≤ Leαt ‖x − y‖ .

Hence, we can write Pλ = P̃λmax , where P̃λmax stands for the Markov operator corresponding to the
instance of our system with the jump intensity λmax and the flow S λ in place of S . Taking into account
the above observation, it is evident that such a modified system still satisfies conditions (3.4)–(3.5)
and (3.7)–(3.9) with constants determined by the primary model, which additionally satisfy
LLw + αλ−1

max < 1. Consequently, µ∗λ is then an invariant measure of P̃λmax , and hence we can denote it
by µ̃∗λmax

. Finally, keeping in mind (4.5), we can conclude that there exist qλmax ∈ (0, 1) and C̃λmax ∈ R+

such that∥∥∥µPn
λ − µ

∗
λ

∥∥∥
FM

=
∥∥∥µP̃n

λmax
− µ̃∗λmax

∥∥∥
FM
≤ qn

λmax
C̃λmax (1 + 〈V, µ〉) for any µ ∈ M1,1(X), n ∈ N.

In the case where α > 0, the proof is similar to the one conducted above (except that this time we
substitute t := λminλ

−1u), so we omit it. �

5. Main results

Before we formulate and prove the main theorems of this paper, let us first quote the result provided
in [35, Theorem 7.11].

Lemma 5.1. Let (Y, %) and (Z, d) be some metric spaces, and let E be an arbitrary subset of Y. Suppose
that ( fn)n∈N0 is a sequence of functions, defined on E, with values in Z, which converges uniformly on
E to some function f : E → Z. Further, let ȳ be a limit point of E, and assume that

an := lim
y→ȳ

fn(y)
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exists and is finite for every n ∈ N0. Then, f has a finite limit at ȳ, and the sequence (an)n∈N0 converges
to it, that is,

lim
n→∞

(
lim
y→ȳ

fn(y)
)

= lim
y→ȳ

(
lim
n→∞

fn(y)
)
.

We are now in a position to state the result concerning the continuous dependence of an invariant
measure µ∗λ of Pλ on the parameter λ. In the proof we will refer to the lemmas provided in Section 4,
as well as to Lemma 5.1.

Theorem 5.2. Suppose that conditions (3.4)–(3.9) hold with constants satisfying (3.3), and, for any
λ ∈ [λmin, λmax], let µ∗λ stand for the unique invariant probability measure of Pλ. Then, for every
λ̄ ∈ [λmin, λmax], we have µ∗λ

w
→ µ∗

λ̄
, as λ→ λ̄.

Proof. Let λ̄ ∈ [λmin, λmax]. Due to Lemma 4.5, we know that, for every µ ∈ M1(X) and any
λ ∈ [λmin, λmax], we have ‖µPn

λ − µ
∗
λ‖FM → 0, as n → ∞, and the convergence is uniform with respect

to λ.
Further, sinceM1(X) ⊂ Msig,J(X), Lemma 4.4 yields that (ᾱ,∞)×M1(X) 3 (λ, µ) 7→ µPλ ∈ M1(X)

is jointly continuous, provided thatM1(X) is equipped with the topology induced by the Fortet-Mourier
norm. Hence, for any µ ∈ M1(X) and any n ∈ N0, it follows that ‖µPn

λ − µPn
λ̄
‖FM → 0, as λ → λ̄.

Finally, according to Lemma 5.1, we get

lim
λ→λ̄

µ∗λ = lim
λ→λ̄

(
lim
n→∞

µPn
λ

)
= lim

n→∞

(
lim
λ→λ̄

µPn
λ

)
= lim

n→∞
Pn
λ̄
µ = µ∗

λ̄
,

where the limits are taken in (Msig(X), ‖ · ‖FM). This, together with Theorem 2.2, gives the desired
conclusion. �

In the final part of the paper we will study the properties of the Markov semigroup (Pλ(t))t∈R+
,

defined by (3.2). In order to apply the relevant results of [13], in what follows, we additionally assume
that the measure ϑ, given on the set Θ, is finite. Then, according to [13, Theorem 4.4], for any λ > 0,
there is a one-to-one correspondence between invariant measures of the operator Pλ and those of the
semigroup (Pλ(t))t∈R+

. More precisely, if µ∗λ ∈ M1(X) is a unique invariant probability measure of Pλ,
then ν∗λ := µ∗λGλ ∈ M1(X), where

µGλ(A) =

∫
X

∫ ∞

0
λe−λt

1A (S (t, x)) dt µ(dx) for any µ ∈ M1(X), A ∈ BX,

is a unique invariant probability measure of (Pλ(t))t∈R+
.

The main result concerning the continuous-time model, which is formulated and proven below,
ensures the continuity of the map λ 7→ ν∗λ.

Theorem 5.3. Let ϑ be a finite Borel measure on Θ. Further, suppose that conditions (3.4)–(3.9)
hold with constants satisfying (3.3), and, for any λ ∈ [λmin, λmax], let ν∗λ stand for the unique invariant
probability measure of (Pλ(t))t∈R+

. Then, for any λ̄ ∈ [λmin, λmax], we have ν∗λ
w
→ ν∗

λ̄
, as λ→ λ̄.

Proof. Let λ̄ ∈ [λmin, λmax], and let f ∈ BL(X) be such that ‖ f ‖BL ≤ 1. For any λ ∈ [λmin, λmax], we have〈
f , ν∗λ

〉
=

〈
f , µ∗λGλ

〉
=

∫
X

∫ ∞

0
λe−λt f (S (t, x)) dt µ∗λ(dx),
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whence ∣∣∣∣〈 f , ν∗λ − ν
∗

λ̄

〉∣∣∣∣ ≤∫ ∞

0

∣∣∣λe−λt − λ̄e−λ̄t
∣∣∣ dt +

∣∣∣∣∣∫ ∞

0
λ̄e−λ̄t

〈
f ◦ S (t, ·), µ∗λ − µ

∗

λ̄

〉
dt

∣∣∣∣∣ .
Note that, due to (3.5), f ◦ S (t, ·) ∈ BL(X) and ‖ f ◦ S (t, ·)‖BL ≤ 1 + Leαt, and therefore∣∣∣∣∣∫ ∞

0
λ̄e−λ̄t

〈
f ◦ S (t, ·), µ∗λ − µ

∗

λ̄

〉
dt

∣∣∣∣∣ ≤ ∥∥∥µ∗λ − µ∗λ̄∥∥∥FM

∫ ∞

0
λ̄e−λt (1 + Leαt) dt

=
∥∥∥µ∗λ − µ∗λ̄∥∥∥FM

(
1 +

Lλ̄
λ̄ − α

)
.

Combining this and Lemma 4.3, finally gives∥∥∥ν∗λ − ν∗λ̄∥∥∥FM
≤

∣∣∣λ − λ̄∣∣∣ (1
λ

+
1
λ̄

)
+ c

∥∥∥µ∗λ − µ∗λ̄∥∥∥FM

with c := 1 + Lλ̄(λ̄ − α)−1. Hence, referring to Theorems 5.2 and 2.2, we obtain

lim
λ→λ̄

∥∥∥ν∗λ − ν∗λ̄∥∥∥FM
= 0,

and the proof is completed. �
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