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Abstract: Copy number variations (CNVs) play an important role in many types of cancer. With the 
rapid development of next generation sequencing (NGS) techniques, many methods for detecting 
CNVs of a single sample have emerged: (i) require genome-wide data of both case and control 
samples, (ii) depend on sequencing depth and GC content correction algorithm, (iii) rely on statistical 
models built on CNV positive and negative sample datasets. These make them costly in the data 
analysis and ineffective in the targeted sequencing data. In this study, we developed a novel 
alignment-free method called DL-CNV to call CNV from the target sequencing data of a single 
sample. Specifically, we collected two sets of samples. The first set consists of 1301 samples, in 
which 272 have CNVs in ERBB2 and the second set is composed of 1148 samples with 63 samples 
containing CNVs in MET. Finally, we found that a testing AUC of 0.9454 for ERBB2 and 0.9220 for 
MET. Furthermore, we hope to make the CNV detection could be more accurate with clinical “gold 
standard” (e.g. FISH) information and provide a new research direction, which can be used as the 
supplement to the existing NGS methods. 

Keywords: copy number variation; next generation sequencing; deep learning; convolutional neural 
network; target sequencing 
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1. Introduction  

Copy number variations (CNVs) are commonly repeated regions on human genomes that vary 
between individuals [1]. CNVs may be caused by non-allelic homologous recombination (NAHR) at 
highly similar sequences [2]. Genomics research has shown that approximately two-thirds of the 
whole human genome is composed of repeats [3] and 4.8–9.5% of the whole genome can be 
classified as CNV [4]. CNV plays an important role in generating necessary variations. Thus, CNV 
detection is integral to the detection of many diseases [1]. 

Currently, the “gold standard” method for detecting CNVs in clinical settings is fluorescent in 
situ hybridization (FISH) [5]. Comparative genomic hybridization is also commonly used [5]. One 
major drawback of these techniques is that the genomic resolution can be as low as 40 kb [6], 
meaning that only large repeats such as whole gene repeats can be detected. For the detection of 
small CNVs, next-generation sequencing has been applied over the last 10 years [7,8]. The most 
popular software used in the detection of CNVs, including CNVkit [9], CNVnator [10] and 
Control-FREEC [11] are based on whole genome sequencing, whole exome sequencing or target 
sequencing to detect CNVs. For CNV detection in single samples, sequencing depth and GC content 
have been used to rectify the results. As the amount of targeted sequenced samples has increased, 
CNV detection methods mainly concerning the target area, such as CNV-RF [12], PatternCNV [13] 
and Ioncopy [14] have emerged. For example, CNV-RF [12] utilizes the NGS to detect deletions as 
small as 180 bp and duplications as small as 300 bp. 

However, the existing methods all require alignment and heavily rely on the sequencing depth 
and GC content, with most works concentrating on the detection of CNVs at the level of the whole 
genome. Additionally, these methods are restricted to the alignment parameters and their 
hand-crafted parameters, which lead to complicated procedures and high costs in the detection of 
CNVs for a single sample. Moreover, for the targeted sequencing of data, some of those methods are 
not very effective. 

Our study demonstrated that the convolutional neural network (CNN) could be used to detect 
CNVs from the matrix through a basic operation based on raw data. In the fields of artificial 
intelligence, CNN first proved useful in image recognition [15], and it was afterward used in life 
science [16]. Recently, a group from Google implemented an algorithm called “deepvariant” to form 
images through sequence-alignment results. By feeding the image into a well-designed CNN, the 
group managed to detect a single nucleotide polymorphism (SNP) and a small indel variant [17]. 
However, due to the window size and the implementation of deepvariant, it is very expensive to use 
the same algorithm for the detection of large indels, also known as CNVs. To address the need for 
quick CNV detection, we wanted to develop a novel, alignment-free algorithm that could detect 
patients carrying CNVs at a high accuracy for a non-paired sample. 

2. Results 

2.1. An alignment-free deep learning pipeline to call CNV from single sample 

In this study, we developed a novel method called DL-CNV to call CNV from the sequencing 
data of a single sample. Specifically, we first collected 1301 sample dataset with 272 
ERBB2-amplification samples and 1148 sample dataset with 63 MET-amplification samples for the 
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subsequent analysis. ERBB2, also known as HER2, is the target of the monoclonal antibody 
trastuzumab (marketed as Herceptin) [18]. Detecting the amplification of ERBB2 is vital to targeted 
therapy [19]. The frequency of the CNV of ERBB2 was around 16% [20]. MET is a receptor tyrosine 
kinase (RTK) considered to be a druggable target in non-small cell lung cancer (NSCLC) [21]. The 
frequency of the CNV of MET was around 2% [22]. Two independent sample sets for two genes 
were separately trained and tested. The results showed the possible application of deep learning 
methods in detecting CNVs (Figure 1). 

 

Figure 1. A schematic view of the procedures for model generation for ERBB2 and MET. 

A conceptual overview of DL-CNV is shown in Figure 1. As for the labels, the widely used 
software Ioncopy was fine-tuned using previously tested data (data not shown) to make sure the 
result will be highly similar to the result generated by FISH. And then, the fine-tuned Ioncopy was 
used to output the labels of each sample. We generated the windows of the reference exon sequence 
split by 50 bp with a stride of 40 bp, and the windows of all exons of a specific gene were then piled 
up. Afterward, we generated matrices from different raw sequencing data for different samples that 
represented the window-wise read depths; the read depths were in the same order as the reference 
windows. Normalization was done to balance the factor of the whole genome sequencing depth. The 
learned CNN model could intuit the local features from a matrix and generalize them across different 
matrices from different samples (Figure 2). The training set and the test set were split according to 
the year of the sequenced samples. 

Figure 2a showed the procedures used to prepare the coverage matrices. First, exons from one 
gene were extracted. Then, each exon was separated by 50-bp windows with 10-bp overlaps. The 
read number that covered the window was counted and then used to generate a list of read numbers 
for the current exon. After counting each exon, lists of read numbers were piled up to form a matrix. 
The elements corresponding to shorter exons were filled with zeroes. The matrix was used for the 
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models as a training or test sample. The CNN model was used for the classification of CNV of the 
matrix. Figure 2b showed the CNN architecture. The heatmap on the left is an example for the 
sample with brightness, which indicates the read number after the normalization. The CNN 
contained one convolutional layer, one max pooling layer, one dropout layer, and two fully 
connected layers. The kernel used in the convolutional layer was set at 5 × 5. The kernel used in the 
max pooling layer was set at 2 × 2. The fully connected layers were of the sizes 1024 and 2, in which 
the second layer was the output layer that classified whether the sample was CNV positive. The 
dropout layer whose dropout value was set 0.5 was between the two fully connected layers. 

 

Figure 2. A schematic view of the procedure to detect CNV. 

2.2. CNN could outperform the logistic regression model in the training process 

The matrices were generated using the methods mentioned in the Materials and Methods section. 
Two algorithms, logistic regression and CNN, were applied separately to classify the matrices 
representing positive/negative samples. To make up for the low number of the samples, 10-fold cross 
validation and 5-fold cross validation were applied to the data of ERBB2 and MET, respectively. 
Cross-validations were conducted for each gene, generating 10 models for ERBB2 and 5 models for 
MET. The validation results were merged for analysis. The best hyperparameter were chosen by 

a 

b 
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AUC using grid search among the parameters mentioned in the materials and methods section. The 
best accuracy, sensitivity and specificity of those models are shown in Table 1 (Figure 3). 

Table 1. The performance of the models given the gene and the algorithm during the 
training phase. 

Gene ERBB2 MET 

Algorithm CNN Logistic CNN Logistic 

AUC 0.9304 0.9293 0.8884 0.8497 

Accuracy (threshold set to 0.5) 88.27% 86.78% 90.00% 86.09% 

Sensitivity (threshold set to 0.5) 83.41% 81.17% 58.33% 60.00% 

Specificity (threshold set to 0.5) 89.60% 88.31% 91.74% 87.91% 

 

Figure 3. The plotted ROC using the predicted values from the validation dataset during 
the cross validation. 

The CNN model for ERBB2 outperformed the logistic regression model as expected. The 
sensitivity for CNN model for the MET is lower than that of the logistic regression model. This 
might have been due to the small number of samples of MET.  

2.3. CNN had a better generalization ability 

Next, the best hyperparameters were applied to train all samples in the training dataset. 
Afterwards, the trained model was used to classify all samples in the test dataset. The AUC for the 
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test dataset of ERBB2 by CNN was 0.9454, similar to that of logistic regression which is 0.9477. The 
AUC for the test dataset of MET by CNN was 0.9220, outperforming that of logistic regression 
which is 0.8666 (Figure 4). It showed that the CNN method may have a better generalization ability 
than that of the logistic regression method. 

 

Figure 4. The plotted ROC of the test dataset using the model trained from the whole 
training dataset using the best hyperparameters. 

2.4. Optimization 

Since the CNV classification of MET was much worse than that of ERBB2, we made further 
efforts to analyze the source of the error. 
(a) Firstly, we tried to merged the paired-end reads to avoid some possible repeat counts in the split 
windows, but the results were not significantly improved or even worse. 
(b) Then, we tried to add a GC content correction algorithm to improve our method. The procedure 
for calculating the GC content of a sample was as follows: (1) The sequences of the previously 
mentioned windows split from the exons were used as the seed sequence. (2) The reads that 
contained the seed sequence were extracted from the raw fastq. (3) For each window, a GC content 
percentage was calculated from the matched reads. (4) The mean of all GC content percentages of all 
windows was calculated as the divisor for each sample. 

We analyzed the GC content difference between the correctly classified samples and the 
incorrectly classified samples using the training dataset (Figure 5a) and the test dataset (Figure 5b), 
respectively. We found that in the training/test dataset, the median GC content of the reads that 
mapped to the gene of the incorrectly classified samples was significantly different from that of the 
correctly classified samples (two-tailed heteroscedasticity t test; ERBB2: p = 0.0015/p = 0.0015; 
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MET: p = 0.032/p = 6.90e−05). Thus, we attempted to reduce the influence of the GC content by 
dividing the normalized matrices by the mean GC content of the reads covering the gene. To test 
whether we can utilize the GC content to gain better performance, 78 samples of MET were chosen 
for cross validation. The GC content-corrected matrices were used again on the same sample sets for 
CNN cross-validation. The accuracy before GC content correction was 89.74%, and the accuracy 
after GC content correction dropped to 88.46%, showing the above-mentioned method did not boost 
the CNN performance. 

 

Figure 5. (a) GC content differences between the correctly classified samples and the 
incorrectly classified samples from the training dataset; (b) GC content difference 
between the correctly classified samples and the incorrectly classified samples from the 
test dataset. Dotted line means ERBB2/MET’s GC content on the reference genome. 
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2.5. Comparison to other methods 

We chose 2 softwares, Control-FREEC [11] and CNVnator [10] as candidates to make a 
comparison with our method. First, we randomly selected 221 samples (94 CNV-positive samples 
and 127 CNV-negative samples) for ERBB2 gene set and 237 samples (14 CNV-positive samples and 
223 CNV-negative samples) for MET for further tests. The two methods were separately fine-tuned 
and predicted the CNV of the random selected samples. The results were shown in Table 2. The 
results indicate that the DL-CNV outperformed the Control-FREEC and the CNVnator, while 
considering both precisions and recalls. 

Table 2. The comparison between the CNVnator, Control-FREEC and DL-CNV on 
two datasets. 

 CNVnator DL-CNV FreeC 

ERBB2 dataset Precision Recall Specificity Precision Recall Specificity Precision Recall Specificity 

Negative 57.47% 100.00% 0.00% 92.80% 91.34% 90.43% 97.96% 37.80% 98.94% 

Positive 0.00% 0.00% 100.00% 88.54% 90.43% 91.34% 54.07% 98.94% 37.80% 

Accuracy 57.47% 90.95% 63.80% 

MET dataset Precision Recall Specificity Precision Recall Specificity Precision Recall Specificity 

Negative 94.09% 100.00% 0.00% 95.48% 94.62% 28.57% 100.00% 48.43% 100.00% 

Positive 0.00% 0.00% 100.00% 25.00% 28.57% 94.62% 10.85% 100.00% 48.43% 

Accuracy 94.09% 90.72% 51.48% 

3. Discussion 

We developed an alignment-free and no-control method for the detection of CNV in which all 
that we needed were the reads that covered the gene of interest. Combine with clinical “gold 
standard” (e.g. FISH) information, the CNV detection could be more accurate since they could 
complement each other. As the concordance rate between our method and the current NGS method 
was high, which indicated that the reads covering the gene of interest contained almost enough 
information to determine the copy number abnormality, there were still contradictory results and 
optimization was needed. Our method could be a better complement to the existing NGS methods to 
detect copy number variations. This tool was made freely available at 
https://github.com/wangbo00129/DL-CNV. 

We also inferred that the size of the training set greatly influenced testing performance. Even 
when the sample number of ERBB2 and MET were similar, the large imbalance of positive/negative 
samples made the available positive training sample of MET relatively lacking. 

In this study, we applied a CNN to the detection of the CNV problem. We chose 2 genes, 
ERBB2 and MET, as candidates, and used the coverage depth throughout the gene region as inputs in 
order to determine whether a sample had a CNV at the specific gene. To make up for the low number 
of the samples, cross-validations were performed. 

Among each model family generated through cross-validation, the accuracy varied greatly, 
indicating that the training set was crucial to the CNN model. 

Though the concordance rate between the CNN model and the NGS result was high, it 
remains unclear whether the CNN model has a high concordance rate with the true CNV because 
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the gold standard method was not used [23]. This method could be viewed as an auxiliary method 
for the NGS method. 

Furthermore, as shown in the results from the ERBB2 models and the MET models, the accuracy, 
sensitivity and specificity was greatly influenced by the size of the training set. While the training set 
was too small (this was caused by lower frequency of MET CNV, leading to only 76 samples for the 
MET dataset), the CNN model may not outperform the logistic regression model. However, even the 
CNN model output exhibited lower accuracy than the logistic regression model in the 
cross-validation for MET. The CNN model performed better in the test set, showing its strong 
generalization ability. 

We recommend the positive sample number should be similar to the ERBB2 dataset, which is 
about 200 if a high precision and recall rate are expected. Since the negative samples are more than 
the positive samples in most cases, the negative samples were not discussed here.  

We further attempted to refine the CNN model by adjusting the stride size, joining the raw 
fastq format files. Furthermore, we calculated the median GC content of all the reads that matches 
each window of the specific gene, and divide the read number matrices by dividing by the GC 
content median for GC content correction. After adjusting the stride size, the models did not seem 
to improve, indicating that the stride size did not affect the performance of the method. After 
joining the fastqs, the CNN’s performance did not change significantly, showing that the fused 
fastqs neither abolished nor gained any information. After the GC content correction, the 
specificity of the models improved, but the gain was insignificant, which showed that the GC 
content might not have been the source of error. 

We can further optimize the current method by (1) collecting more training sets, (2) taking the 
case history into account, (3) working with the base qualities while calculating coverage depth and (4) 
re-considering the way to utilize the GC content for each sample, (5) coming up with a method for 
lowering the amount of the sample size, which will make researches about rare diseases possible. 
The method is expected to exhibit better performance on the detection problem when utilizing 
information other than the read coverage depth. 

Two commonly used CNV detecting tools, Control-FREEC and CNVnator was also used for 
about 200 samples for each gene dataset. Apparently, our method detects the CNVs better. It is 
worth noting that the CNVnator makes all-0 predictions, which might be due to the CNVnator 
was developed for whole-genome sequencing but not for target sequencing. As for 
Control-FREEC, the samples tend to be predicted as CNV-positive samples, which raised the 
false positive rate. One possible reason might be that that the two tools both work at a relatively 
wide sequencing intervals, which leads to deficiency at narrow sequencing intervals as the scope 
was shrunk to the single-gene-wide scope. Thus, at small intervals, the DL-CNV method 
performed better than the traditional tools. 

4. Methods 

4.1 Sample source 

We collected 2449 (ERBB2: 1301; MET: 1148) non-paired samples data through ERBB2+MET 
whole-exon-designed NGS panel sequencing with Illumina Nextseq500 platform (Illumina, San 
Diego, CA, US). All the data were produced from Geneis Lung Cancer 41 Gene Detecting Panel. 
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4.2 CNV classification procedure by NGS 

Ioncopy [14] was used to label the CNV samples as positive or negative. The pipeline of CNV 
detection through an NGS panel was (1) use Cutadapt V1.12 to cut the adapters with parameters of 
“–e 0.01 –q 5 –m32”; (2) use bwa-aln [24] for alignment with the parameters of “–o 1 –e50 –m 
100000 –t 4 –i 15 –q 10”; (3) use samtools [25] to remove duplicates; (4) use Ioncopy with the 
default cut-off value of 3.48 for tab.CN to classify the samples (Figure 6a). Ioncopy is used for to 
generate the labels of the samples for indicating CNV. 

4.3 Preparation of datasets combined with FISH results 

Based on the FISH results, the CNV-positive sample’s target region almost always had the gain 
signal, so we defined this to calibrate our predicted CNV-positive samples (Figure 6b–d). Finally, we 
collected 272 ERBB2 CNV-positive samples and 1029 CNV-negative samples, and we collected 63 
MET CNV-positive samples and 1085 CNV-negative samples. 

 

Figure 6. The procedures to infer the label. (a) A pipeline for CNV detection by an 
NGS panel using Ioncopy; (b) the ddPCR validation for a MET CNV-positive sample, 
which showed high accordance with FISH result; (c) the FISH validation for a MET 
CNV-positive sample; (d) the analysis results of a MET CNV-positive sample by an 
NGS panel. 



212 

Mathematical Biosciences and Engineering  Volume 17, Issue 1, 202–215. 

4.4 Coverage depth calculation 

The first step of our algorithm was the preparation of the read number matrix of the specific 
gene. Our approach involved no alignment. Instead, we split the reference exons into multiple 50-bp 
bins with a stride of 40-bp (or 25-bp), with a 10-bp (or 25-bp) overlap between every pair of adjacent 
windows. We counted the reads that matched the whole bin to calculate the read number at each bin. 
The rows representing the exons consisting of the read numbers were then piled up to form up the 
input matrix for the next step’s training (Figure 1). Since the exons were of different lengths, the max 
length was used as the width of the matrix, in which the blank elements were filled by zeroes. 

4.5 Coverage normalization 

The original matrices were first used as the dataset for the prediction of CNV. However, when 
the CNN were fed with the training set, the algorithm did not converge after 20,000 iterations. We 
inspected the prediction accuracy of the training set and found that the algorithm predicted whole 
ones or whole zeroes for all samples, leading the training accuracy to remain at ~50%. The 
predictions for the test set also consisted of whole ones or whole zeros. We presumed that the read 
numbers were so imbalanced in different samples, which induced a high volume of noise in the 
algorithm. As a result, we attempted to normalize the matrices to lower the impact of the read 
number noise. For normalizing purposes, we chose the mean value of the non-zero elements of each 
matrix as the divisor for the elements from the corresponding matrix. If necessary, the GC content 
percentage was used for the divisor of the normalized matrix to perform the GC content correction. 

4.6 Network design 

The LeNet-5 model for classifying MNIST [15] was used to classify the CNV samples. The 
deep learning framework TensorFlow [26] was used to implement the CNV detection algorithm. 
The algorithm structure is shown in Figure 2. It contains one convolutional layer, one max 
pooling layer, one dropout layer and two fully connected layers. The kernel used in the 
convolutional layer was set to n × n where n ∈ {3,5,7,9,11,13,15,17,19,21}. The kernel used in 
the max pooling layer was set to 2 × 2. The fully connected layers were of the size 1024 and 2, in 
which the second layer was the output layer that classified whether the sample was CNV-positive. 
The dropout layer, whose dropout value was set to lr ∈ {0.3,0.5,0.7,0.9,1.0}, was between the 
two fully connected layers. The Adam algorithm was used as the gradient-decent method. The 
learning rate was set as 1 × 10−n where n∈ {4,5,6,7}. The model was trained for 10,000 
iterations with a batch size of 30 samples. 

For the implementation of the logistic regression model, the sigmoid function was used as the 
activation function and the batch-gradient descent was used. The learning rate was set to 1 × 10−n 
where n ∈ {4,5,6,7,8,9}. The model was trained for 10,000 epochs. 

4.7 Training and cross validation 

272 NGS-positive and 1029 NGS-negative samples for ERBB2, and 63 NGS-positive and 
1085 NGS-negative samples for MET were used as the dataset for the evaluation of our method. 
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For the balance of positive and negative samples, 223 NGS-positive and 817 NGS-negative 
ERBB2 samples were used as the training set of the ERBB2 CNN model. 51 NGS-positive and 
867 NGS-negative MET samples were used as the training set of the MET CNN model. The rest 
of the ERBB2 and MET samples were used as the test set for the two genes, respectively. The 
training set was randomly split into 10 parts for the ERBB2 samples and 5 parts for the MET 
samples for further cross-validation. 

4.8 Evaluation of classifier 

Accuracy =  

Sensitivity =  

Specificity =  

where: TP = True positive; FP = False positive; TN = True negative; FN = False negative. 

4.9 Other methods for comparison 

The other methods, Control-FREEC and CNVnator was chosen as candidates for the 
comparison with our method. The parameters of Control-FREEC and CNVnator were separately 
adjusted according to their instructions. Specifically, the parameters of Control-FREEC were 
“breakPointType = 4; window = 0, breakPointThreshold = 1.2, readCountThreshold = 50” and the 
parameters of CNVnator were “-his 30;-stat 30;-partition 30;-call 30”. 
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