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Abstract: In this paper, a Leslie-Gower predator-prey model with ratio-dependence and state pulse
feedback control is established to investigate the effect of spraying chemical pesticides and supplement
amount of beneficial insects at the same time. Firstly, the existence, uniqueness and asymptotic stability
of the periodic solution are proved by using successor function method and the analogue of the Poincaré
criterion when the equilibria E∗ and E0 are stable, and the existence of limit cycles without impulse
system is verified when the equilibrium E∗ is unstable. Furthermore, to obtain the minimum cost per
period of controlling pests, we propose the optimization problem and calculate the optimal threshold.
Finally, the feasibility of our model is proved by numerical simulation of a concrete example.
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1. Introduction

In the real world, the threat of pests to agriculture is growing. How to control the pest quantity
effectively in agricultural development has become one of the important problems. In the past decades,
many researchers have paid their attention in finding methods to control pest populations, and there are
some good results [1–8].

There are three main methods of controlling pests. One is the use of chemical control methods,
namely spraying insecticide. Its disadvantage is that it pollutes the environment or products and also
causes the ecological imbalance because of the massive death of predators evenly. The second is the use
of biological control which can make full use of the role of natural control in the agricultural ecosystem,
that is, to reduce the population density of pests effectively by artificially raising natural enemies and
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releasing them periodically. However this method is only applicable to the smaller density of the pest
population and once the pest population exceeds a certain number, the method will be invalid. The third
method is the integrated control method of chemical control and biological control, which is the most
widely used method in the agricultural and ecological resource management. If the density of the pest
population is lower than the economic threshold, then it is not necessary to adopt any control strategy,
but once the pest population density reaches or exceeds the economic threshold, we should adopt a
certain control strategy to avoid the imbalance of ecology. In this paper, we apply state dependent
impulsive differential equations to describe the implementation of the feedback control strategy.

In recent years, semi-continuous dynamical system theory has been applied in many fields such as
biology, ecology and economics [9–17]. In [18, 19], the integrated control system with state pulse
feedback control was considered, some sufficient conditions of the existence and uniqueness of the
periodic solution were obtained by the successor function method, and the stability of the periodic
solution was proved. In [20], the related properties of the Leslie-Gower model without impulse were
studied. In [21, 22], the dynamic properties of periodic solutions of the predator-prey model were
investigated. In [23], Pei et al. applied the time pulse method to harvest the prey at fixed time. Jiao
et al. [24] mainly considered the periodic pulsed predator-prey model during hibernation and obtained
the global asymptotic stability criterion for the extinction boundary of the predators.

Although there are fruitful results on mathematical models with state dependence on the pulse
feedback control, but most of them are just based on the study of a single pulse control and few of
them considered the feedback control strategy for two different influence of the prey and predators at
the same time. These researches were rare on that how to control pesticide spraying to get greater
economic benefits [25–27]. Therefore, we construct a Leslie-Gower model with ratio-dependence and
state pulse feedback control in this paper.

The structure of this paper is as follows: In Section 2, we build a Leslie-Gower predator-prey model
with ratio-dependence and state pulse control. This is a generalisation of the original Leslie model with
ratio-dependence by adding the state pulse feedback control. In Section 3, the existence, uniqueness
and the asymptotic stability of the periodic solution are proved according to the relevant characteristics
of the positive equilibrium point E∗. In Section 4, we formulate an optimal problem and obtain the
economic threshold. In addition, some numerical simulation examples are carried out to verify our
theoretical results. We give a short conclusion in Section 5.

2. Model building

The Leslie model is one of the most classic prey-predator model, and have modified and improved
many scholars to modify and improve it in many aspects [28–31]. Especially, due to the laboratory
experiments [32–36] and observation [37–43], a few of researchers focus on the ratio-dependence of
the Leslie prey-predator model recently. Gupta et al constructed Leslie-Gower predator-prey model
with Michaelis-Menten type prey-harvesting and investigated bifurcations of the model [44]. In [45],
Zhao et al established a Leslie-Gower predator-prey system with fixed time impulsive and discussed
the persistence of system. However, state dependent pulse differential system is more in line with the
actual biological the system. Wei et al [46] proposed a Leslie-Gower pest management model with
impulsive state feedback control and discussed the conditions for existence and stability of periodic
solutions. Flores and E. González-Olivares proposed a modified Leslie-Gower predator-prey model
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with ratio-dependent functional response and alternative food for the predator [47].
In [48], Liang et al. established the following Leslie-Gower model with ratio-dependence:

x′1(t1) = rx1(t1)
(
1 −

x1(t1)
K

)
−

kx1(t1)y1(t1)
a1y1(t1) + x1(t1)

,

y′1(t1) = y1(t1)a2

(
1 − c

y1(t1)
x1(t1)

)
.

(2.1)

In System (2.1), x1(t1), y1(t1) represent the densities of prey(pest) and predators (natural enemies)
at time t1, respectively. a2 is the intrinsic rate of growth of natural enemies. Environmental carrying
capacity is proportional to the maximum amount of food that the environment can hold, that means,
K(x) = x/b. The natural enemies’ consumption of the pest depends on the ratio kx1

a1y1+x1
, where k is the

maximum amount of the pest. The parameter c represents the maximum value of the average deficit
reduction of y1 to x1, c y1

x1
is named the Leslie-Gower pattern. In addition, the parameters r, a1, a2, k, c,

K are all positive constants.
According to the Introduction, ET1 denotes the pest slightly harmful threshold. When the number

of the pest population achieves ET1, we only need to adopt biological control strategies to reduce
effectively the number of pests. Analogously, ET2 denotes the pest economic injury threshold. When
the number of pests achieves ET2, only by adopting chemical control strategy can the pest quantity
be reduced effectively in a short time. However, in most cases, the control strategy we adopt is the
integrated control strategy. In this paper, we apply the integrated control strategy to achieve effective
control of pests when the number of pests satisfies x1 ∈ [ET1, ET2]. To achieve this objective, we
establish a model as follows:

x′1(t1) = rx1(t1) −
r(x1(t1))2

K
−

kx1(t1)y1(t1)
a1y1(t1) + x1(t1)

,

y′1(t1) = a2y1(t1) − ca1
y1(t1)
x1(t1)

y1(t1),

 x1(t1) < ET

∆x1(t1) = −p (x1) x1(t1),
∆y1(t1) = −q (x1) y1(t1) + τ (x1) ,

 x1(t1) = ET,

(2.2)

where ET ∈ [ET1, ET2]. When the number of pests is less than the economic threshold ET, we adopt
biological control strategy for pests. When the number of pests is greater than the economic threshold
ET, the pests are adopted integrated control strategy. Consider the dynamic behavior of System (2.2),
the proportionality coefficient of the amount of the killed pests and natural enemies are defined as
p(x1)(p(x1) ∈ (0, 1)) and q(x1)(0 < q(x1) < p(x1)), and τ(x1) is defined as the number of artificial
natural enemies. To simplify, we nondimensionalize System (2.2) by using rt1 = t, x1(t1)

K = x(t), and
ky1(t1)

r = y(t). Then we get the following form:

x′(t) = x(t) − x2(t) −
x(t)y(t)

α1y(t) + x(t)
,

y′(t) = α2βy(t) −
βy2(t)
x(t)

,

 x(t) < ξ,

∆x(t) = −p (x) x(t),
∆y(t) = −q (x) y(t) + τ (x) ,

 x(t) = ξ,

(2.3)
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where α1 = a1r
kK , α2 = a2kK

rca1
, β = a1c

kK , and ξ = ET
K .



p(x) = pmax
x − ξmin

ξmax − ξmin
,

τ(x) = τmax − (τmax − τmin)
x − ξmin

ξmax − ξmin
,

q(x) = qmax
x − ξmin

ξmax − ξmin
.

(2.4)

The control parameters p(x), q(x), τ(x) are continuous functions defined on [ξmin, ξmax], ξmin and ξmax

are the minimum value and maximum value respectively, which satisfy 0 < ξmax ≤ ξ ≤ ξmax <
K

1−pmin
. In

addition, p(ξmax) = pmax, τ(ξmax) = τmin, τ(ξmin) = τmax and q(ξmax) = qmax. Denote pξ = p(ξ), τξ = τ(ξ)
and qξ = q(ξ), we may see [49] for more details.

In the absence of impulses, the predator-prey model is as follows:


x′(t) = x(t) − x2(t) −

x(t)y(t)
α1y(t) + x(t)

,

y′(t) = α2βy(t) −
βy2(t)
x(t)

.
(2.5)

The isoclinic line L1 : 1 − x − 1
α1y+xy = 0 has the following features: when the value range of x is

(0, 1), first, if the condition α1 = 1 holds, then the line L1 denotes a straight line; second, if the condition
α1 < 1 holds, then the line L1 signifies an opening downward curve line; third, if the condition α1 > 1
holds, then the line L1 signifies an opening upward curve line. According to the practical significance,
we only discuss the condition α1 < 1 in our research. It can be known from [48] that if α1α2 + 1 > α2

holds, then System (2.5) exists a positive equilibrium E∗(x∗, y∗), where x∗ = 1− α2
α1α2+1 , y∗ = α2x∗. The

equilibrium E0(1, 0) is a saddle point that the stable manifold is located on the positive x axis.

Lemma 1 [48] If condition α1 > 1 holds, then system (5) is permanent.

Lemma 2 [48] The equilibrium E0(1, 0) of system (5) is a saddle point with the positive x-axis as
its stable manifold.

Lemma 3 [48] If conditions α1 · α2 + 1 > α2 and (α1α2 + 2)α2 < (βα2 + 1)(α1 · α2 + 1)2 hold, then
the positive equilibrium E∗(x∗, y∗) of system (2.5) is a locally asymptotically stable node or focus. If
conditions α1α2 + 1 > α2 and (α1α2 + 2)α2 > (βα2 + 1)(α1 ·α2 + 1)2 hold, then the positive equilibrium
E∗(x∗, y∗) of system (2.5) is an unstable node or focus. In addition, system (2.5) has a unique limit
cycle. The vector field of System (2.5) is shown in Figure 1.
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Figure 1. The phase diagram of System (2.5). (a) Parameters value: α1 = 0.8, α2 = 0.6,
β = 1.5. E∗ is a stable node. (b) Parameters value: α1 = 0.75, α2 = 1.5, β = 0.05. E∗ is a
stable focus.(c) Parameters value: α1 = 0.75, α2 = 2, β = 0.05. Limit cycle.

By [50, Definition 2.1], system (2.3) is a semi-continuous power system. For system (2.3), the
impulse set is

∑
M = {(x, y) ∈ R2

+|x = ξ, y ≥ 0}, the pulse mapping is ϕ : (x, y) ∈
∑

M → ((1 −
p(ξ))x, (1 − q(ξ))y + τ) ∈ R2

+, and the image set is
∑

N = ϕ(
∑

M) = {(x, y) ∈ R2
+|x = (1 − pξ)ξ, y ≥ 0}.

For any point T , xT and yT are denoted its horizontal coordinate and vertical coordinate, respectively.
If T ∈

∑
M, then the impulse starts at the point T , and the impulse function will run from T to

∑
N .

Considering the ecological practice, we apply system (2.3) to the space R2
+.

3. Dynamical analysis of system (2.3)

In two aspects, we prove the existence, uniqueness and asymptotic stability of periodic solutions:
ξ ≤ min{x∗, ξmax} and max{x∗, ξmin} < ξ < 1.

3.1. When ξ ≤ min{x∗, ξmax}

Theorem 3.1. If conditions α1 ·α2 + 1 > α2, ξ ≤ min{x∗, ξmax} and (α1α2 + 2)α2 < (βα2 + 1)(α1α2 + 1)2

hold, then system (2.3) possesses order-1 periodic solution.

Proof. According to Theorem 1, we can see that the positive equilibrium E∗(x∗, y∗) is stable.
The isoclinic line L1 : 1−x− y

α1y+x = 0 intersects with the image set
∑

N at the point A. The trajectory
with the initial point A intersects with the impulse set

∑
M at point A1, then runs to the point A+

1 ∈
∑

N

with impulse effects. According to the location of point A+
1 , there may be three possible scenarios :

(1) yA+
1

= yA, (2) yA+
1
> yA, (3) yA+

1
< yA.

Now, we prove each of these cases separately.
Case I: yA+

1
= yA.

In this case, A+
1 coincides with A, and the successor function of A is I(A) = yA+

1
− yA = 0. According

to [51, Definition 2.2], then we shall get that system (2.3) possesses order-1 periodic solutions in case
of yA+

1
= yA (see Figure 2(a)).
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Figure 2. The existence of order-1 periodic solutions of system (2.3). (a) yA+
1

= yA. (b)
yA+

1
> yA. (c) yA+

1
< yA.

Case II: yA+
1
> yA.

In this case, A+
1 is above A, then the successor function of point A is I(A) = yA+

1
− yA > 0. The

trajectory, which has an initial point A+
1 , intersects with impulse set

∑
M at the point A2, then jumps to

the point A+
2 with impulse effects. In view of vector field and disjointness of any two trajectories, we

shall get that yA2 < yA1 , so we have yA+
2
< yA+

1
. Therefore, the successor function [51, Definition 2.1]of

point A+
1 is I(A+

1 ) = yA+
2
− yA+

1
< 0 (see Figure 2(b)).

�

Therefore, there must exist a point T which makes I(T ) = 0. It follows from [51, Lemma 2.3],
between the point A and the point A+

1 , system (2.3) must have an order-1 periodic solution.
Case III: yA+

1
< yA.

In this case, A+
1 is below A, then the successor function of point A is I(A) = yA+

1
− yA < 0. We

select another point D which is the intersection point of phase
∑

N and the x-axis. The trajectory,
which has an initial point D, intersects with the impulse set

∑
M at the point D1, then it runs to the

point D+
1 after impulse effects. We shall get yD+

1
= (1 − q)yD1 > 0 = yD, hence the successor function

I(D) = yD+
1
− yD > 0 is obtained (see Figure 2(c)).

Therefore, there must exist a point T , which makes I(T ) = 0. Considering [51, Lemma 2.3],
System (2.3) has an order-1 periodic solution between the point D and the point A. This proof is
completed.

Theorem 3.2. In case of ξ ≤ min{x∗, ξmax}, α1 · α2 + 1 > α2, (α1α2 + 2)α2 < (βα2 + 1)(α1α2 + 1)2 and
yA+

1
> yA, the order-1 periodic solution of system (2.3) is unique.

Proof. We arbitrarily select two points P and Q in the AA+
1 , where yA < yP < yQ < yA+

1
. We denote

function G(M) = M1 as the trajectory starting from the point M ∈
∑

N and reaching the point M1 ∈
∑

M

in the impulse set
∑

M. Setting G(P) = P1 ∈
∑

M,G(Q) = Q1 ∈
∑

M, thus we have yQ1 < yP1 , and P1,Q1

are mapped to P+
1 ,Q

+
1 ∈

∑
N after impulse effects, respectively, then the successor functions of P,Q

satisfy:
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I(P) − I(Q)
= (yP+

1
− yP) − (yQ+

1
− yQ)

= (yQ − yP) + (yP+
1
− yQ+

1
)

= (yQ − yP) + (1 − q) yP1 + τ − (1 − q) yQ1 − τ

= (yQ − yP) + (1 − q) (yP1 − yQ1) > 0,

The successor function is monotonically increasing in the AA+
1 , thus there is only one point

T ∈ (A, A1) which makes I(T ) = 0, i.e. system (2.3) has a unique order-1 periodic solution. This proof
is completed. �

Theorem 3.3. If conditions α1 ·α2+1 > α2, (α1α2+2)α2 < (βα2+1)(α1α2+1)2 and (1−q) | Θ( f0, g0) |<|
Θ( f1, g1) | hold, then the order-1 periodic solution of System(2.3) is orbitally asymptotically stable,
where Θ(x, y) = 1

y (1 − x − y
α1y+x ).

Proof. We denote that x = f (t), y = g(t) is a T-periodic solution of system (2.3) and f1 = f (T ) = ξ,
g1 = g(T ); f0 = f (0), g0 = g(0); f +

1 = f (T +), g+
1 = g(T +), then we have

f +
1 = f0 = (1 − p)ξ, g+

1 = g0 = (1 − q)g1 + τ.

Let P(x, y) = x− x2−
xy

α1y+x , Q(x, y) = α2βy− βy2

x , Φ(x, y) = −pξx, Ψ(x, y) = −qξy+τξ, Υ(x, y) = x−ξ.
Then ∂Φ

∂x = −p, ∂Ψ
∂x = 0, ∂Φ

∂y = 0, ∂Ψ
∂y = −q, ∂Υ

∂x = 1, ∂Υ
∂y = 0,

∆1 =
P+

(
∂Ψ
∂y

∂Υ
∂x −

∂Ψ
∂x

∂Υ
∂y + ∂Υ

∂x

)
P∂Υ
∂x + Q∂Υ

∂y

+
Q+

(
∂Φ
∂x

∂Υ
∂y −

∂Φ
∂y

∂Υ
∂x + ∂Υ

∂y

)
P∂Υ
∂x + Q∂Υ

∂y

=
P( f +

1 , g
+
1 )(−q × 1 − 0 × 0 + 1)

P( f1, g1) × 1 + Q( f1, g1) × 0

+
Q( f +

1 , g
+
1 )(−p × 0 − 0 × 1 + 0)

P( f1, g1) × 1 + Q( f1, g1) × 0

=
(1 − q)

[
f0 − f 2

0 −
f0g0

α1g0+ f0

]
f1 − f 2

1 −
f1g1

α1g1+ f1

and ∫ T

0

(
∂P
∂x

+
∂Q
∂y

)
dt

=

∫ T

0

[
1 − x −

y
α1y + x

+ α2β −
βy
x

]
dt

+

∫ T

0

[
−x +

xy
(α1y + x)2 −

βy
x

]
dt

=

∫ T

0

[
ẋ(t)
x(t)

+
ẏ(t)
y(t)

]
dt +

∫ T

0

[
−x +

xy
(α1y + x)2 −

βy
x

]
dt
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= ln
x(T )y(T )
x(0)y(0)

+

∫ T

0

[
−x +

xy
(α1y + x)2 −

βy
x

]
dt

= ln
f1g1

f0g0
+

∫ T

0

[
−x +

xy
(α1y + x)2 −

βy
x

]
dt

Furthermore,

µ2 = ∆1 exp
∫ T

0

[
∂P
∂x

( f (t), g(t)) +
∂Q
∂y

( f (t), g(t))
]

dt,

=
(1 − q) f0

(
1 − f0 −

g0
α1g0+ f0

)
f1

(
1 − f1 −

g1
α1g1+ f1

)
· exp

[
ln

f1g1

f0g0
+

∫ T

0

[
−x +

xy
(α1y + x)2 −

βy
x

]
dt

]
=

(1 − q)g1

(
1 − f0 −

g0
α1g0+ f0

)
g0

(
1 − f1 −

g1
α1g1+ f1

)
· exp

(∫ T

0

[
−x +

xy
(α1y + x)2 −

βy
x

]
dt

)
.

According to biological significance, for any point (x, y) which satisfies 0 < x < ξ < 1, y < ξ(1−ξ)
1−α1+α1ξ

,
then

−x +
xy

(α1y + x)2 −
βy
x
< 0

and due to (1 − q) | Θ( f0, g0) |<| Θ( f1, g1) | , thus we can get∣∣∣∣∣∣∣∣
(1 − q)g1

(
1 − f0 −

g0
α1g0+ f0

)
g0

(
1 − f1 −

g1
α1g1+ f1

)
∣∣∣∣∣∣∣∣ < 1,

Therefore the convergency ratio |µ2| is less than one. Following the analogue of the Poincaré
criterion [52, Theorem 2.3], we know that the order-1 periodic solution of system (2.3) is orbitally
asymptotically stable. According to the above analysis, the conclusion is obtained.

�

3.2. When max{x∗, ξmin} < ξ < 1 holds.

3.2.1. The equilibrium point E∗(x∗, y∗) is a stable focus.

Learning from the fourth equations of system (2.3): ∆y = −qy + τ, there exists three cases in
Figure 3: (1)τ > γ , (2)τ = γ , (3)τ < γ, where γ = yA − (1 − q)yA1 on the bases of value τ. Therefore,
we can get following conclusions:

Theorem 3.4. In case of max{x∗, ξmin} < ξ < 1, α1 ·α2 +1 > α2 and (α1α2 +2)α2 < (βα2 +1)(α1α2 +1)2,
the system (2.3) has order-1 periodic solution.
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Proof. We choose τ < γ as an example to prove(see Figure 3(b)).
In this case, yA+

1
= (1 − q)yA1 + τ < (1 − q)yA1 + yA − (1 − q)yA1 = yA. We denote the isoclinic line

L1 : 1 − x − y
α1y+x = 0 hitting the image set

∑
N at point A. The trajectory starting from the point A

intersects the impulse set
∑

M at the point A1, then runs to the point A+
1 with impulse effects. The point

A+
1 is the successor point of the point A, and A+

1 lies under A, that is yA+
1
< yA, it is easy to verify that

the successor function I(A) = yA+
1
− yA < 0. Denote the intersection point of the image set

∑
N and x

axis as D. The trajectory, which starts from the initial point D, reaches the point D1 in the impulse set∑
M, then runs to the point D+

1 . The point D+
1 is the successor point of the point D, and the point D+

1 is
above the point D, that means yD+

1
> yD, obviously, the successor function I(D) = yD+

1
− yD > 0.

Figure 3. Three cases of successor and order-1 periodic solution.(a) τ = γ. (b) τ < γ. (c)
τ > γ.

Therefore, there must exist a point T , which makes I(T ) = 0. Considering [51, Lemma 2.3], the
system (2.3) has an order-1 periodic solution between the point D and the point A. This proof is
done. �

3.2.2. The equilibrium E∗(x∗, y∗) is an unstable focus.

Now, let us consider the following case: if α1α2 + 1 > α2 and (α1α2 + 2) > (βα2 + 1)(α1α2 + 1)2

hold, the positive equilibrium E∗ of System (2.5) is an unstable node or focus, then there must exist an
unique limit cycle [51, Lemma 2.2] of System (2.5). In the following sections, we will mainly discuss
the case that the positive equilibrium E∗ = (x∗, y∗) is an unstable focus.

We denote the limit cycle as L0, then the limit cycle hits the isoclinic line L1 : 1 − x − y
α1y+x = 0 at

the point B0(ξ1, yB0) and the point B(ξ2, yB), where ξ1 < ξ2. Obviously, ξ1 < x∗ < ξ2. We make two
straight lines : l1 : x = ξ1, l2 : x = ξ2, and the limit cycle is sandwiched between l1 and l2.

Case I: min{1, ξmax} > ξ > max{ξ2, ξmin} and (1 − p)ξ > ξ2.
When ξ > max{ξ2, ξmin} holds, then the limit cycle lies on the left of the impulse set

∑
M, we denote

function G(M) = M− as the trajectory starting from the point M ∈
∑

N and hitting the impulse set
∑

M
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at the point M−. Set G(C) = C−, where C− is the intersection of impulse set
∑

M and isoclinic line
L1. Denote C+ as the successor point of point C, there also exists three possible scenarios : yC+ > yC,
yC+ = yC and yC+ < yC (see Figure 4).

Figure 4. When ξ > max{ξ2, ξmin} and (1 − p)ξ > ξ2. (a) yC < y+
C (b) yC = y+

C (c) yC > y+
C.

When yC+ > yC , as is shown in Figure 4(a), then the motion trajectory of system (2.3) will go on for
approaching the limit cycle by the several time pulse; when yC+ = yC or yC+ < yC hold ( see Figure 4(b)
and Figure 4(c), respectively), then system (2.3) has an order-1 periodic solution. Similar to the proof
of Case I and Case III in Theorem 2, we can prove the existence of the order-1 periodic solution.

Therefore, we have the following conclusions:

Theorem 3.5. When α1α2 + 1 > α2, (α1α2 + 2)α2 > (βα2 + 1)(α1α2 + 1)2, ξ > max{ξ2, ξmin} and
(1 − p)ξ > ξ2 hold, if yC+ satisfies yC+ > yC, then the trajectory of system (2.3) will approach to the
limit cycle L0 in the end.

Case II: ξ > max{ξ2, ξmin} and ξ1 < (1 − p)ξ < ξ2.

Theorem 3.6. When α1α2 + 1 > α2, (α1α2 + 2)α2 > (βα2 + 1)(α1α2 + 1)2, ξ > max{ξ2, ξmin} and
ξ1 < (1 − p)ξ < ξ2 hold, then the trajectory of system (2.3) will approach to the limit cycle L0 in the
end.

Proof. The trajectory starting from the point D either intersects with the impulse set
∑

M or disjoins
with the impulse set

∑
M, therefore, we discuss the two cases separately in the following.

If the trajectory disjoins with the impulse set
∑

M, the trajectory must approach to the limit cycle L0

ultimately (See Figure 5(b)).
Now, we will prove the case that the trajectory intersects with the impulse set

∑
M. We define that P

point is the intersection of the image set
∑

N and the limit cycle L0. Take a point P−1 ∈
∑

M which causes
P−1 runs to P after impulse effects, set G(P+

1 ) = P−1 ∈
∑

M which makes P−2 runs to P+
1 after the impulse

effects, then yP > yP+
1
, yP−1

> yP−2
. This process is continuing until there exists a P+

m+k ∈
∑

N satisfying
yP+

m+k
< τ. As a resault, we obtain a sequence {P+

i }i=1,2,··· ,m+k of set
∑

N satisfying G(P+
m+k) = P−m+k and

yP+
m+k

< yP+
m+k−1

. Due to the coincidence of P+
m+k and D, we can get G(D) = P−m+k and yD < yP+

m+k−1
. In
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the following part, we will prove the trajectory of system (2.3) initiating any point of set will go on for
approaching the limit cycle L0 ultimately.

From the vector field of System (2.5), we know the trajectory of System (2.5) initiating any point
above P point of the image set

∑
N will be free from impulse effect and approach the limit cycle L0

ultimately.
For any point is below P point, it must lie between P+

m+k and P+
i−1, where i = 1, 2, · · · ,m + k

and P+
m+k = D. After i times’ impulse effects, the trajectory initiating this point will arrive at some

points of the image set
∑

N and must be above P, and then approach the limit cycle L0 ultimately (See
Figure 5(a)).

According above analysis, we know that the trajectory will tend to the limit cycle L0 ultimately. The
proof has been done.

Figure 5. When ξ > max{ξ2, ξmin} and ξ1 < (1 − p)ξ < ξ2. (a) The trajectory Γ0 can hit the
impulse set ΣM. (b) The trajectory Γ0 can not hit the impulse set ΣM.

�

4. Simulations and optimization

4.1. Numerical simulations

To prove the feasibility of this conclusion, some simple examples are given in this section.
Let α1 = 0.6, α2 = 0.8, β = 1.2 and we shall get the internal equilibrium points of system (2.3) is

E∗ = (0.53, 0.43), where E∗ is a stable node. Let p = 0.65, q = 0.15, τ = 0.2 and we shall get a unique
order-1 periodic solution and it is asymptotically stable (see Figure 6). What’s more, we can get the
period of order-1 periodic solution is T = 5.081.

Let α1 = 0.75, α2 = 0.15, β = 0.05, then we can get the positive equilibrium point is E∗ =
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(0.294, 0.441), and it is a stable focus. When ξ = 0.32, p = 0.4, q = 0.2, τ = 0.1 , and the system (2.3)
has an order-1 periodic solution and the solution is unique and asymptotically stable. What’s more, we
can get the period of order-1 periodic solution is T = 3.9625 (see Figure 7).

Let α1 = 0.75, α2 = 2, and β = 0.05, then we shall get the interval equilibrium point E∗ = (0.2, 0.4)
is a unstable focus, and there exists an unique limit cycle.
(i) Let ξ = 0.2, p = 0.4, q = 0.2, τ = 0.1 and the initial value is (0.15, 0.3), the system (2.3) possesses
order-1 periodic solution (see Figure 8).
(ii) Let ξ = 0.6, p = 0.3, q = 0.2, τ = 0.15 and the initial value is (0.1, 0.18), then the trajectory Γ0 can
not hit the impulse set ΣM, therefore system (2.3) does not possess order-1 periodic solution and the
trajectory Γ0 tend to the limit cycle (see Figure 9).

Figure 6. Numerical simulations when 0 < ξ < min{x∗, ξmin} and (α1α2 + 2) < (βα2 +

1)(α1α2 + 1)2 hold and the initial value is (0.15, 0.2). (a) Phase portrait of x(t) and y(t) on
ξ = 0.4. (b) Time series of x(t). (c) Time series of y(t). The solution of system (2.3) is
presented in blue full line and the solution of free System (2.5) is represented in green dotted
lines.

Figure 7. Numerical simulations when max{x∗, ξmax} < ξ < 1, (α1α2 + 2) < (βα2 + 1)(α1α2 +

1)2 hold and the initial value is (0.25, 0.3). (a) Phase portrait of x(t) and y(t) on ξ = 0.32. (b)
Time series of x(t). (c) Time series of y(t). The solution of system (2.3) is presented in blue
full line and the solution of free System (2.5) is represented in green dotted lines.
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Figure 8. Numerical simulations E∗ is an unstable focus and the trajectory Γ0 can hit the
impulse set ΣM. (a) phase diagram. (b) Time series of x(t). (c) Time series of y(t). The
solution of system (2.3) is presented in blue full line and the solution of free System (2.5) is
represented in green dotted lines.

Figure 9. Numerical simulations E∗ is an unstable focus and the trajectory Γ0 can not hit
the impulse set ΣM. (a) phase diagram. (b) Time series of x(t). (c) Time series of y(t). The
solution of system (2.3) is presented in blue full line and the solution of free System (2.5) is
represented in green dotted lines.

4.2. Determination of optimal threshold ξ

The practical significance of the research of order-1 periodic solution is that it provides a possibility
to determine the adding rate of beneficial insects and insect pest eradication rate, this makes the pulse
control no longer the real-time monitor of agricultural production, but a cyclical. To maintain the
balance of ecological agriculture, to further determine the optimal replenishment of beneficial insects
rate and the rate of eliminating most pests, and to ensure the longest administer interval period, the
lowest cost, we study the following optimization problem to find the optimal threshold ξ.

We define s1 as the unit cost of supplementary natural enemies including the cost of processing
agricultural environment, and denote s2 as the unit cost of insecticide spraying. Our goal is to minimize
costs this process. Vcost is defined as the total cost in under the control of threshold ξ one period of
model (2.3), and it is a function about the rate τ of natural enemies replenishment and the rate p of
killed pest, that means Vcost(ξ) = s1τ(ξ) + s2 p(ξ). Therefore, we formulated the optimization model as
minVcost(ξ)

T (ξ) ,
s.t. ξmin < ξ < ξmax.
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Table 1. Value of parameters of Figure 10.

ξ p q τ T Vcost
T

0.15 0.094 0.038 0.886 18.723 105.0
0.20 0.186 0.075 0.775 19.345 99.0
0.25 0.281 0.113 0.663 19.735 96.0
0.33 0.431 0.173 0.483 19.967 91.4
0.35 0.469 0.188 0.438 19.867 91.7
0.40 0.563 0.225 0.325 19.500 92.0
0.45 0.656 0.263 0.213 18.720 92.8

We solve the optimization problem to obtain the optimal threshold ξo, and we get the optimal
replenishment rate of natural enemy τo = τ(ξo), , the optimal chemical control strength po = p(ξo)
and the optimal impulse period T o = T (τo, po).

Let α1 = 0.75, α2 = 1.5, β = 0.05, ξmin = 0.1, ξmax = 0.5, τmin = 0.1, τmax = 1, pmax = 0.75,
qmax = 0.3, taking these parameters into system (2.3) and system (2.4), we shall get the following
equations 

x
′

(t) = x(t) − x2(t) −
x(t)y(t)

0.75y(t) + x(t)
,

y
′

(t) = 0.075y(t) −
0.05y2(t)

x(t)
.

(4.1)


p(x) = 0.9375(x − 0.1),
τ(x) = 0.8 − x,

q(x) = 0.25(x − 0.1).

(4.2)

Bringing the values of parameter ξ into system (4.2) can calculate the values of parameters p, q, τ.
The period T can be obtained by numerical simulation. Therefore, the relationship between impulse
period T and the threshold ξ is obtained in Figure 10(a) (the relevant dates in figure are shown in
Table 1). Set s1 = 2000, s2 = 2000, by calculation we can get the value of Vcost/T . The relationship
between the cost per unit time Vcost/T and the threshold ξ is shown in Figure 10(b) (the relevant dates in
figure are shown in Table 1). As is shown in Figure 10, we can obtain the optimal threshold ξo = 0.33,
the optimum yield of releases of the natural enemies is τo = 0.483, the optimal killing rate of natural
enemies is po = 0.431, and the optimal impulse period is T o = 19.967. Therefore, the control measures
are adopted when the density of pests ξ reaches 0.33. Furthermore, it should be noted that the optimum
pest control level ξo is dependent on the ratio of ω = s2

s1
, as illustrated in Figure 11 (the relevant dates

in figure are shown in Table 2).

5. Conclusion

This paper puts forward a kind of ratio dependence and double pulse control feeding system,
which is more practical than continuous single pulse control strategy. At the same time, we obtain the
following conclusions:
(1) When α1 · α2 + 1 > α2, (α1α2 + 2)α2 < (βα2 + 1)(α1α2 + 1)2 and (1 − q) | Θ( f0, g0) |<| Θ( f1, g1) |,
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Figure 10. (a) The period T of the order-1 periodic solution varies with the threshold ξ.
(b) The cost per unit time Vcost/T on the threshold ξ.

Table 2. Value of parameters of Figure 11.

ξ Vcost
T ( s2

s1
= 1

2 ) Vcost
T ( s2

s1
= 1) Vcost

T ( s2
s1

= 2) Vcost
T ( s2

s1
= 5)

0.15 99.7 105.0 57.0 72.4
0.2 89.7 99.0 59.3 88.1
0.25 81.4 96.0 62.1 104.8
0.33 70.0 91.4 67.4 132.1
0.35 67.7 91.7 69.3 140.0
0.4 62.2 92.0 74.0 161.0
0.45 57.8 92.8 81.5 187.0
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Figure 11. The change in the cost per unit time Vcost
T on the pest control level ξ for ω =

1/2, 1, 2, 5.
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we can obtain the existence, uniqueness and orbital asymptotical stability of the order-1 periodic
solution for system (2.3).
(2) When max{x∗, ξmin} < ξ < 1, α1 · α2 + 1 > α2 and (α1α2 + 2)α2 < (βα2 + 1)(α1α2 + 1)2, the
system (2.3) has order-1 periodic solution.
(3) When the equilibrium E∗(x∗, y∗) is an unstable focus and conditions α1α2 + 1 > α2,
(α1α2 + 2)α2 > (βα2 + 1)(α1α2 + 1)2, ξ > max{ξ2, ξmin}, ξ1 < (1 − p)ξ and yC+ > yC hold, the trajectory
of system (2.3) will approach to the limit cycle L0 in the end.
(4) We formulate the optimization mode and obtain optimal threshold, optimal replenishment rate of
natural enemies and optimal chemical control strength. In the example in Section 4.2, we get the
optimal threshold, the optimum yield of releases of the natural enemies, the optimal killing rate of
natural enemies and the optimal impulse period are 0.33, 0.483, 0.431 and 19.967, respectively. In the
end, we can minimize the cost of controlling pests.

Our results show that under certain conditions, pest population can be controlled within the
threshold, while pests and natural enemies change periodically. Further, we propose the optimal
control strategy of pests, which provides a theoretical basis for production labor.

Compared with the literature [48], this paper adds impulse feedback control to the model, so this
paper is a further study of [48]. Literature [46] and [51] proposed Leslie-Gower prey-predator models
with different impulse feedback controls and discussed the existence, uniqueness and stability of
order-1 periodic solution. Based on this, this paper further studies the optimal control strategy of pest
management.

In real life, the optimization of plague control is also a hot topic for some scholars [53]. We will
further improve the optimization control strategy to make our research work more realistic and
meaningful.
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