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Abstract: The distributive sequential n-site phosphorylation/dephosphorylation system is an
important building block in networks of chemical reactions arising in molecular biology, which has
been intensively studied. In the nice paper of Wang and Sontag (2008) it is shown that for certain
choices of the reaction rate constants and total conservation constants, the system can have 2b n

2c + 1
positive steady states (that is, n + 1 positive steady states for n even and n positive steady states for
n odd). In this paper we give open parameter regions in the space of reaction rate constants and
total conservation constants that ensure these number of positive steady states, while assuming in the
modeling that roughly only 1

4 of the intermediates occur in the reaction mechanism. This result is based
on the general framework developed by Bihan, Dickenstein, and Giaroli (2018), which can be applied
to other networks. We also describe how to implement these tools to search for multistationarity regions
in a computer algebra system and present some computer aided results.

Keywords: multistationarity; distributive sequential n-site phosphorylation/dephosphorylation
system; steady states; regions of multistationarity; intermediate species

1. Introduction

Multisite phosphorylation cycles are common in cell regulation systems [1]. The important
distributive sequential n-site phosphorylation network is given by the following reaction scheme:
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S 0 + E
kon0
−−−→
←−−−
koff0

Y0
kcat0
−−−−→ S 1 + E · · · →S n−1 + E

konn−1
−−−−−→
←−−−−−
koffn−1

Yn−1
kcatn−1
−−−−−→ S n + E

S n + F
`onn−1
−−−−−→
←−−−−−
`offn−1

Un−1
`catn−1
−−−−−→ S n−1 + F · · · →S 1 + F

`on0
−−−→
←−−−
`off0

U0
`cat0
−−−→ S 0 + F.

(1)

Arrows correspond to chemical reactions. The labels in the arrows are positive numbers, known as
reaction rate constants. This reaction scheme represents one substrate S 0 that can sequentially acquire
up to n phosphate groups (giving rise to the phosphoforms S 1, . . . , S n) via the action of the kinase
E, and which can be sequentially released via the action of the phosphatase F, in both cases via an
intermediate species (denoted by Y0, Y1, . . . , Yn−1, U0, U1, . . . ,Un−1) formed by the interaction of the
substrate and the enzyme.

The kinetics of this network is deduced by applying the law of mass action to the labeled digraph
of reactions (1), which yields an autonomous polynomial system of ordinary differential equations
depending on the positive reaction rate constants. This system describes the evolution in time of the
concentrations of the different chemical species. We denote with lower case letters the concentrations
of the 3n + 3 species. The derivatives of the concentrations of the substrates satisfy (see e.g. [2] for the
general definition):

ds0

dt
= −kon0 s0e + koff0y0 + `cat0u0,

dsi

dt
= kcati−1yi−1 − koni sie + koffiyi + `catiui − `oni−1 si f + `offi−1ui−1, i = 1, . . . , n − 1,

dsn

dt
= kcatn−1yn−1 − `onn−1 sn f + `offn−1un−1,

the derivatives of the concentrations of the intermediate species satisfy:

dyi

dt
= koni sie − (koffi + kcati)yi, i = 0, . . . , n − 1,

dui

dt
= `oni si+1 f − (`offi + `cati)ui, i = 0, . . . , n − 1,

and de
dt = −

dy0
dt − · · · −

dyn−1
dt , d f

dt = −du0
dt − · · · −

dun
dt , which give two linear conservation relations. Indeed,

there are three linearly independent conservation laws:

n∑
i=0

si +

n−1∑
i=0

yi +

n−1∑
i=0

ui = S tot, e +

n−1∑
i=0

yi = Etot, f +

n−1∑
i=0

ui = Ftot, (2)

where the total conservation constants S tot, Etot, Ftot are positive for any trajectory of the system
intersecting the positive orthant.

A steady state of the system is a common zero of the polynomials in the right-hand side of the
differential equations. There are 6n + 3 parameters: the reaction rate constants and the total
conservation constants (which correspond to points in the positive orthant R6n+3

>0 ). It is known that for
any n ≥ 2, the sequential n-site system shows multistationarity. This means that there exists a choice
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of parameters for which there are at least two positive steady states satisfying moreover the linear
conservation relations (2) for the same S tot, Etot and Ftot. In this case, it is said that the steady states
are stoichiometrically compatible, or that they lie in the same stoichiometric compatibility class. This
is an important notion, because the occurrence of multistationarity allows for different cell responses
with the same total conservation constants (that is, the same total amounts of substrate and enzymes).

The possible number of positive steady states of the n-site phosphorylation system (for fixed total
conservation constants) has been studied in several articles. In the case n = 2, it is a well known fact
that the number of nondegenerate positive steady states is one or three [3,4]. The existence of bistability
is proved in [5]. In [6] and [7], the authors give conditions on the reaction rate constants to guarantee the
existence of three positive steady states based on tools from degree theory, but this approach does not
describe in general the total conservation constants for which there is multistationarity. In [7] Conradi
and Mincheva give a sufficient condition on the reaction rate constants to guarantee multistationarity
for suitable choices of total conservation constants. These total amounts are precisely given in implicit
form. Specifically, after writing S tot, Etot and Ftot in terms of the concentrations at steady state of
E, F and S 0, as in the present paper, the values of total amounts that give rise to multistationarity are
derived from those for which an explicit polynomial becomes negative, which allows to construct as
many witnesses as wished. When n ≥ 3, there could be more than three positive steady states, and our
methods allows us to give lower bounds bigger than three for n > 3.

For an arbitrary number n of phosphorylation sites, it was shown in [4] that the system has at most
2n − 1 positive steady states. In the same article, the authors showed that there exist reaction rate
constants and total conservation constants such that the network has n (resp. n + 1) positive steady
states for n odd (resp. even); that is, there are 2b n

2c + 1 positive steady states for any value of n, where
b.c denotes integer part.

In [8] (see also [9]) the authors showed parameter values such that for n = 3 the system has five
positive steady states, and for n = 4 the system has seven steady states, obtaining the upper bound
given in [4]. In the recent article [10] the authors show that if the n-site phosphorylation system is
multistationary for a choice of rate constants and total conservation constants (S tot, Etot, Ftot) then for
any positive real number c there are rate constants for which the system is multistationary when the
total conservation constants are scaled by c. Concerning the stability, in [11] it is shown evidence that
the system can have 2b n

2c+ 1 positive steady states with b n
2c+ 1 of them being stable. Recently, a proof

of this unlimited multistability was presented in [12], where the authors find a choice of parameters
that gives the result for a smaller system, and then extend this result using techniques from singular
perturbation theory.

In the previous paper [13], open parameter regions on all the parameters are given for the occurrence
of multistationarity for the n-site sequential phosphorylation system, but no more than three positive
steady states are ensured. These conditions are based on a general framework to obtain multistationary
regions jointly in the reaction rate constants and the total conservation constants. The description of
these open sets is explicit on a subset of the reaction rate constants and the total conservation constants,
while some other reaction rate constants can vary in an open set whose form is described but which is
not completely quantified. Our approach in this article uses the systematic technique in [13], which we
briefly summarize in Section 3.

The removal of intermediates was studied in [14]. More specifically, the emergence of
multistationarity of the n-site phosphorylation system with less intermediates was studied in [15]. It is
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known that the n-site phosphorylation network without any intermediates complexes has only one
steady state for any choice of parameters. In [15], the authors showed which are the minimal sets of
intermediates that give rise to a multistationarity system, but they do not give information about how
many positive steady states can occur, and also, they do not describe the parameter regions for which
these subnetworks are multistationary.

In this paper, we work with subnetworks of the sequential n-site phosphorylation system that only
have intermediates in the E component (that is, in the connected component of the network where
the kinase E reacts), see Definition 1. In case of the full mechanism on the E component or if we
only assume that there are intermediate species that are formed between the phosphorylated substrates
with parity equal to n (that is, roughly only 1

4 of the intermediates of the n sequential phosphorylation
cycle), we obtain precise conditions on all the parameters to ensure as many positive steady states as
possible. Indeed, we show in Proposition 7 that the maximum number of complex solutions to the
steady state equations intersected with the linear conservation relations is always n + 1, the maximum
number of real roots is also n + 1, that could be all positive when n is even, while only n of them can
be positive when n is odd, so the maximum number of positive steady states equals 2b n

2c + 1 for any
n. In Theorem 2 and Corollary 5 we describe open regions in all the parameters so that the associated
phosphorylation/dephosphorylation system admits these number of positive steady states. This follows
from Theorem 4. As we pointed out before, we give precise new conditions on some of the parameters,
involving reaction rate constants and total conservation constants, while some other rate constants vary
on open sets defined by inequalities that are not exactly quantified. In order to state these results, we
need to introduce some notations.

Definition 1. For any natural number n, we write In = {0, . . . , n− 1}. Given n ≥ 1, and a subset J ⊂ In,
we denote by GJ the network whose only intermediate complexes are Y j for j ∈ J, and none of the Ui.
It is given by the following reactions:

S j + E
konj
−−−→
←−−−
koffj

Y j

kcatj
−−−→ S j+1 + E, if j ∈ J,

S j + E
τ j
−−→ S j+1 + E, if j < J, (3)

S j+1 + F
ν j
−−→ S j + F, 0 ≤ j ≤ n − 1.

where the labels of the arrows are positive numbers. We will also denote by GJ the associated system
of differential equations with mass-action kinetics.

For all these systems GJ, there are always three linearly independent conservation laws for any
value of n:

n∑
i=0

si +
∑
j∈J

y j = S tot, e +
∑
j∈J

y j = Etot, f = Ftot, (4)

where the total conservation constants S tot, Etot, Ftot are positive for any trajectory of the system of
differential equations which intersects the positive orthant. Note that the concentration of the
phosphatase F is constant, equal to Ftot.

To get lower bounds on the number of positive steady states with fixed positive total conservation
constants, we first consider the network GIn , that is, when all the intermediates in the E component
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appear. It has the following associated digraph:

S 0 + E
kon0
−−−→
←−−−
koff0

Y0
kcat0
−−−−→ S 1 + E · · · →S n−1 + E

konn−1
−−−−−→
←−−−−−
koffn−1

Yn−1
kcatn−1
−−−−−→ S n + E

S n + F
νn−1
−−−−→ S n−1 + F · · · →S 1 + F

ν0
−−→ S 0 + F.

(5)

Theorem 2. Let n ≥ 1. With the previous notation, consider the network GIn in (5), and suppose that
the reaction rate constants kcati and νi, i = 0, . . . , n − 1, satisfy the inequality

max
i even

{
kcati

νi

}
< min

i odd

{
kcati

νi

}
.

For any positive values S tot, Etot and Ftot of the total conservation constants with

S tot > Etot,

verifying the inequalities:

max
i even

{
kcati

νi

}
<

(
S tot

Etot
− 1

)
Ftot < min

i odd

{
kcati

νi

}
, (6)

there exist positive constants B1, . . . , Bn such that for any choice of positive constants λ0, . . . , λn−1

satisfying
λ j

λ j−1
< B j for j = 1, . . . , n − 1,

1
λn−1

< Bn, (7)

rescaling of the given parameters konj by λ j konj , for each j = 0, . . . , n − 1, gives rise to a system with
exactly 2b n

2c + 1 nondegenerate positive steady states.

Remark 3. We will also show in the proof of Theorem 2, that for any reaction rate constants and
total conservation constants satisfying (6), there exist t0 > 0 such that for any value of t ∈ (0, t0), the
system GIn has exactly 2b n

2c + 1 nondegenerate positive steady states after modifying the constants konj

by t j−nkonj for each j = 0, . . . , n − 1.

We now consider subnetworks GJ, with J ⊂ Jn where

Jn := {i ∈ In : (−1)i+n = 1}, for n ≥ 1, (8)

that is, subsets J with indexes that have the same parity as n.

Theorem 4. Let n ≥ 1, and consider a subset J ⊂ Jn. Let GJ be its associated system as in (3). Assume
moreover that

S tot > Etot.

A multistationarity region in the space of all parameters for which the system GJ admits at least 1+2|J|
positive steady states can be described as follows. Given any positive value of Ftot, choose any positive
real numbers kcatj , ν j, with j ∈ J satisfying

max
j∈J

{kcatj

ν j

}
<

(
S tot

Etot
− 1

)
Ftot. (9)
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Then, there exist positive constants B1, . . . , Bn such that for any choice of positive constants λ0, . . . , λn−1

satisfying
λ j

λ j−1
< B j for j = 1, . . . , n − 1,

1
λn−1

< Bn, (10)

rescaling of the given parameters konj by λ j konj , for j ∈ J and τ j by λ jτ j if j < J gives rise to a system
with at least 1 + 2|J| positive steady states.

The following immediate Corollary of Theorem 4 implies that we can obtain a region in parameters
space with b n

2c intermediates, where the associated system has 2b n
2c + 1 positive steady states.

Corollary 5. Let n ≥ 1, and consider the network GJn as in (3), with Jn as in (8). Assume moreover
that

S tot > Etot.

Then, there is a multistationarity region in the space of all parameters for which the network GJn admits
2b n

2c + 1 steady states (with fixed total conservation constants corresponding to the coordinates of a
vector of parameters in this region), described in the statement of Theorem 4.

Similar versions of all our results work if one assumes that some or all of the reverse unbinding
reactions do not occur, so that the rate constants koffi are set to zero (see Remarks 9 and 15). We thank
one of the referees for pointing this out.

We explain in Section 5 the computational approach to find new regions of multistationarity. This
is derived from the framework in [13] that we used to get the previous results. We find new regions
of multistationarity for the cases n = 2, 3, 4 and 5, after some manual organization of the automatic
computations. Our computer aided results are summarized in Propositions 17, 18, 19, 20, 21 and 22.

The paper is organized as follows. In Section 2 we prove Proposition 7 and we show how to lift
regions of multistationarity from the reduced system GJ to the complete sequential n-site
phosphorylation system. We also show in Lemma 8 that even with a single intermediate Y0 it is
possible to make a choice of all parameters such that the system has 2b n

2c + 1 positive steady states.
This result has been independently found by Elisenda Feliu (personal communication). This says that
while Corollary 5 is optimal, the regions obtained for any subset J with indexes of the same parity of
n in Theorem 4 properly contained in Jn, only ensure 2|J| + 1 positive steady states. However, note
that we are able to describe open regions in parameter space and Lemma 8 only allows us to get
choices of parameters.

In Section 3 we briefly recall the framework in [13], which is the basis of our approach. In Section 4
we give the proofs of Theorems 2 and 4. Finally, as we mentioned above, we explain in Section 5
how to implement the computational approach to find new regions of multistationarity. We end with a
discussion where we further compare our detailed results with previous results in the literature.

2. Upper bounds and extension of multistationarity

In this section we collect three results that complete our approach to describe multistationarity
regions giving lower bounds for the number of positive steady states with fixed linear conservation
relations for the systems GJ in Definition 1 for any J ⊂ In. We first show a positive parametrization of
the concentrations at steady state of the species of the systems GJ, which allows us to translate the
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equations defining the steady states in all the concentrations plus the linear conservation relations into
a system of two equations in two variables. In Proposition 7, we prove that any mass-action system
GJ, has at most 2b n

2c + 1 positive steady states. Lemma 8 shows that having a single intermediate is
enough to get that number of positive steady states, for particular choices of the reaction rate
constants. However, this computation by reduction to the univariate case is not systematic as the
general approach from [13] that we use to describe multistationarity regions in Theorems 2 and 4,
which can be applied to study other quite different mechanisms. It is known that if a system GJ has m
nondegenerate positive steady states for a subset J ⊂ In, then it is possible to find parameters for the
whole n-site phosphorylation system that also give at least m positive steady states (see [14]). In
Theorem 10, we give precise conditions on the rate constants to lift the regions of multistationarity for
the reduced networks to regions of multitationarity with 2b n

2c + 1 positive steady states (with fixed
total conservation constants) of the complete n-sequential phosphorylation cycle.

2.1. Parametrizing the steady states

The following lemma gives a positive parametrization of the concentration of the species at steady
state for the systems GJ, in terms of the concentrations of the unphosphorylated substrate S 0 and the
kinase E. It is a direct application of the general procedure presented in Theorem 3.5 in [16], and
generalizes the parametrization given in Section 4 of [13].

Lemma 6. Given n ≥ 1 and a subset J ⊂ In, consider the system GJ as in Definition 1. Denote for
each j ∈ J

K j =
konj

koffj + kcatj
, τ j = kcatj K j, (11)

set T−1 = 1, and for any i = 0, . . . , n − 1:

Ti =

i∏
j=0

τ j

ν j
. (12)

Then, the parametrization of the concentrations of the species at a steady state in terms of s0 and e is
equal to:

si =
Ti−1

(Ftot)i s0ei, i = 1, . . . , n, y j =
K j T j−1

(Ftot) j s0e j+1, j ∈ J, (13)

The inverses K−1
j of the constants K j in (11) in the statement of Lemma 6 are usually called

Michaelis-Menten constants.

Let n ≥ 1 and a subset J ⊂ In. If we substitute the monomial parametrization of the concentration
of the species at steady state (13) into the conservation laws, we obtain a system of two equations in
two variables s0 and e. We have:

s0 +
∑
j∈J

(
T j

(Ftot) j+1 +
K j T j−1

(Ftot) j

)
s0e j+1 +

∑
j<J

T j

(Ftot) j+1 s0e j+1 − S tot = 0, (14)

e +
∑
j∈J

K j T j−1

(Ftot) j s0e j+1 − Etot = 0.
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We can write system (14) in matricial form:

C
(
s0 e s0e s0e2 . . . s0en 1

)t
= 0, (15)

where C ∈ R2×(n+3) is the matrix of coefficients:

C =

(
1 0 T0

Ftot
+ β0

T1
(Ftot)2 + β1 . . . Tn−1

(Ftot)n + βn−1 −S tot

0 1 β0 β1 . . . βn−1 −Etot

)
, (16)

with
β j =

K j T j−1

(Ftot) j for j ∈ J, and β j = 0 if j < J. (17)

Note that if we order the variables s0, e, the support of the system (that is, the exponents of the
monomials that occur) is the following setA:

A = {(1, 0), (0, 1), (1, 1), (1, 2), . . . , (1, n), (0, 0)} ⊂ Z2, (18)

independently of the choice of J ⊂ In.

2.2. Upper bounds on the number of positive steady states

We first recall Kushnirenko Theorem, a fundamental result about sparse systems of polynomial
equations, which gives a bound on the number of complex solutions with nonzero coordinates. Given
a finite point configuration A ⊂ Zd, denote by ch (A) the convex hull of A. We write vol to denote
Euclidean volume, and set C∗ = C \ {0}.

Kushnirenko Theorem [17]: Given a finite point configurationA ⊂ Zd, a sparse system of d Laurent
polynomials in d variables with support A has at most d! vol(ch (A)) isolated solutions in (C∗)d (and
exactly this number if the polynomials have generic coefficients.)

We also recall the classical Descartes rule of signs.

Descartes rule of signs: Let p(x) = c0 + c1x + · · ·+ cmxm be a nonzero univariate real polynomial with
r positive real roots counted with multiplicity. Denote by s the number of sign variations in the ordered
sequence of the signs sign(c0), . . . , sign(cm) of the coefficients, i.e., discard the 0’s in this sequence and
then count the number of times two consecutive signs differ. Then r ≤ s and r and s have the same
parity, which is even if c0cm > 0 and odd if c0cm < 0.

We then have that 2b n
2c+ 1 is an upper bound for the number of positive real solutions of the system

of equations defining the steady states of any system GJ in Definition 1:

Proposition 7. For any choice of rate constants and total conservation constants, the dynamical system
GJ associated with any subset J ⊂ In has at most 2b n

2c + 1 isolated positive steady states. In fact, the
polynomial system of equations defining the steady states of GJ can have at most n+1 isolated solutions
in (C∗)d.

Proof. The number of positive steady states of the subnetwork GJ is the number of positive solutions
of the sparse system (14) of two equations and two variables. The support of the system is (18) whose
convex hull has Euclidean volume equal to n+1

2 . By Kushnirenko Theorem, the number of isolated
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solutions in (C∗)2 is at most 2! (n+1)
2 = n + 1. In particular, the number of isolated positive solutions is

at most n + 1.
Moreover, when all positive solutions are nondegenerate, their number is necessarily odd by

Corollary 2 in [6], which is based on the notion of Brouwer’s degree. Indeed, in our case, we can
bypass the condition of nondegeneracy because we can use Descartes rule of signs in one variable. In
fact, from the first equation of system (14), we can write:

s0 =
S tot

p(e)
, (19)

where p(e) is the following polynomial of degree n on the variable e:

p(e) := 1 +

n−1∑
i=0

(αi + βi)ei+1, (20)

with
αi =

Ti

(Ftot)i+1 , i = 0, . . . , n − 1, (21)

and βi =
K j T j−1

(Ftot) j if j ∈ J or β j = 0 if j < J were defined in (17). Note that for any e > 0 it holds that
p(e) > 0, and so s0 > 0. If we replace (19) in the second equation of (14), we have:

e +

n−1∑
i=0

βi
S tot

p(e)
ei+1 − Etot = 0. (22)

The number of positive solutions of Eq (22) is the same if we multiply by p(e):

q(e) := e p(e) +

n−1∑
i=0

βiS totei+1 − Etot p(e) = 0. (23)

This last polynomial q has degree n + 1, with leading coefficient equal to αn−1 + βn−1 > 0 and constant
coefficient equal to −Etot < 0. The sign variation of the coefficients of q has the same parity as the sign
variation of the leading coefficient and the constant coefficient, which is one. So, by Descartes rule of
signs, as the sign variation is odd, the number of positive solutions is also odd. �

2.3. One intermediate is enough in order to obtain 2b n
2c + 1 positive steady states

As we mentioned in the introduction, the following result has been independently found by Elisenda
Feliu (personal communication).

Lemma 8. If J = {0}, then there exists parameter values such that the system GJ admits 2b n
2c + 1

positive steady states.

Proof. Assume n is even, then n + 1 is odd. As we did in the proof of Proposition 7, the positive
solutions of the system (14) are in bijection with the positive solutions of the polynomial q(e) in (23).
Here β0 = K0 and βi = 0 for i , 0. We will consider the polynomial q̃(e) := q(e)

Etot
, with constant

coefficient equal to −1.
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Consider any polynomial of degree n + 1

cn+1en+1 + cnen + · · · + c1e − 1, (24)

with n + 1 distinct positive roots, and with constant term equal to −1. Then, we have that ci(−1)i+1 > 0,
and in particular, cn+1 > 0.

Our goal is to find reaction rate constants and total conservation constants such that the
polynomial (24) coincides with the polynomial q̃(e). Comparing the coefficient of ei, for
i = 1, . . . , n + 1 in both polynomials, we need to have:

αn−1

Etot
= cn+1,

αi−2

Etot
− αi−1 = ci, for i = 3, . . . , n, (25)

α0 + K0

Etot
− α1 = c2,

1 + S totK0

Etot
− (α0 + K0) = c1.

Keep in mind that the values of ci are given. We may solve (25) in terms of Etot and of the ci, i =

1, . . . , n + 1 :

αn−1−k = Etot

k∑
i=0

cn+1−i (Etot)k−i, for each k = 0, 1, . . . , n − 2,

α0 + K0 = Etot

n−1∑
i=0

cn+1−i (Etot)n−1−i, (26)

1 + S totK0 = Etot

n∑
i=0

cn+1−i (Etot)n−i.

Note that if we take any value for Etot > 0, then the values of αi for i = 1, . . . , n− 1, α0 + K0 and S totK0

are completely determined. So, we find an appropriate value of Etot such that the previous values αi,
K0 and S tot are all positive. For that, we choose K0 = 1, and we take Etot large enough such that

k∑
i=0

cn+1−i (Etot)k−i > 0, for each k ∈ {0, 1, . . . , n − 2} with k odd,

Etot

n−1∑
i=0

cn+1−i (Etot)n−1−i > 1, Etot

n−1∑
i=0

cn+1−i (Etot)n−i > 1.

This is possible since cn+1 > 0 and that imposing the first condition just on k odd is enough to ensure
that it holds for all k ∈ In−1 as well because of the signs of the ci. With these conditions, and using
Eqs (26), the values of αi for each i = 0, . . . , n − 1 and S tot are determined and are all positive.

Now, it remains to show that we can choose reaction rate constants such that the values of αi, i =

0, . . . , n − 1 are the given ones. Recall that αi = Ti
(Ftot)i+1 , where Ti =

∏i
j=0

τ j

ν j
for i = 0, . . . , n − 1 and

T−1 = 1, where τ0 = kcat0 K0 = kcat0 (we have chosen K0 = 1). Take for example Ftot = 1, kon0 = 2,
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koff0 = 1 and kcat0 = 1 (to obtain K0 = 1). Then, τ0 = 1, so we take ν0 = 1
α0

. As αi+1 = αi
τi+1
νi+1

, for
i = 0, . . . , n − 2, we can choose any positive values of τi+1, νi+1 such that τi+1

νi+1
= αi+1

αi , and we are done.
When n is odd, with a similar argument, we can find reaction rate constants and total conservation

constants such that the polynomial q̃(e) gives a polynomial like (24) (but with n distinct positive roots
and one negative root). �

Remark 9. If we assume that koff0 = 0 (so, if there is no reverse unbinding reaction), Lemma 8 is still
true. In this case, it is enough to set K0 =

kon0
kcat0

and then choose kon0 = 1 instead of kon0 = 2 at the end of
the proof.

2.4. Lifting regions of multistationarity

Multistationarity of any of the subsystems GJ can be extended to the full n-site phosphorylation
system (for instance, by Theorem 4 in [14]). We give a precise statement of this result in Theorem 10.

Consider the full n-site phosphorylation network (1), with a given vector of reaction rate constants
κ ∈ R6n:

κ = (kon0 , koff0 , kcat0 , . . . , konn−1 , koffn−1 , kcatn−1 , `on0 , `off0 , `cat0 , . . . , `onn−1 , `offn−1 , `catn−1).

We define the following rational functions of κ:

τ j(κ) = kcatj µ j(κ) if j < J and ν j(κ) = `catj η j(κ) for j = 0, . . . , n − 1, (27)

where µ j(κ) and η j(κ) are in turn the following rational functions:

µ j(κ) =
konj

koffj + kcatj
if j < J and η j(κ) =

`onj

`offj + `catj
for j = 0, . . . , n − 1. (28)

We denote by ϕ : R6n
>0 → R

2n+2|J|
>0 the function that takes κ and gives a vector of (positive) reaction rate

constants with the following order: first, the constants konj , koffj , kcatj , j ∈ J, then τ(κ), j < J, and then
ν j(κ), j = 0, . . . , n − 1.

Given a subset J ⊂ In and a vector of reaction rate constants κ ∈ R6n
>0, we consider the subnetwork

Gϕ(κ)
J as in Definition 1, with rate constants ϕ(κ):

S j + E
konj
−−−→
←−−−
koffj

Y j

kcatj
−−−→ S j+1 + E, if j ∈ J

S j + E
τ j(κ)
−−−−→ S j+1 + E, if j < J (29)

S j+1 + F
ν j(κ)
−−−−→ S j + F, 0 ≤ j ≤ n − 1.

Applying a version of Theorem 4 in [14] that will appear in our forthcoming paper [18], we get the
following lifting result.
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Theorem 10. Consider the full n-site phosphorylation network (1) with fixed reaction rate constants
κ0 and the network Gϕ(κ0)

J , both with total conservation amounts S tot, Etot, Ftot > 0. Suppose that system
Gϕ(κ0)

J admits m nondegenerate positive steady states.
Then, there exists ε0 > 0 such that for any choice of rate constants κ such that ϕ(κ) = ϕ(κ0) and

max
j<J

µ j(κ), max
j∈In

η j(κ) < ε0, (30)

the n-site sequential phosphorylation system admits m positive nondegenerate steady states in the
stoichiometric compatibility class defined by S tot, Etot and Ftot > 0. Moreover, the set of rate constants
κ verifying ϕ(κ) = ϕ(κ0) and (30) is nonempty.

Note that the function ϕ above is surjective, that is, any vector of reaction rate constants for the
reduced network GJ can be obtained as ϕ(κ), for some vector κ of reaction rate constants of the full
n-site phosphorylation network. For instance, given τ j ∈ R>0, we can take konj = 2τ j, koffj = kcatj = 1,
and then τ j(κ) = τ j. Similarly, we can do this for the other reaction rate constants of GJ. Then,
Corollary 10 allows us to obtain multistationary regions for the complete n-site phosphorylation
system, combining the conditions on the parameters given in Theorem 2 and Theorem 4, with
conditions (30) of Corollary 10. In particular, let Jn ⊂ In as in (8). By lifting a multistationarity region
for the system GJn in Corollary 5, we get a multistationarity region of parameters of the n-site
phosphorylation cycle with 2b n

2c + 1 positive steady states in the same stoichiometric compatibility
class.

3. Positive solutions of sparse polynomial systems

As we saw in Subsection 2.1, the steady states of the systems GJ correspond to the positive solutions
of the sparse polynomial system (14) in two variables. In this section, we briefly recall the general
setting from [13, 19] to find lower bounds for sparse polynomial systems, that we will use in the proof
of Theorems 2 and 4 in Section 4 and also in Section 5. For detailed examples of this approach, we
refer the reader to Section 2 in [20].

Consider a finite point configuration A = {a1, . . . , an} ⊂ Z
d, with n ≥ d + 2. A sparse polynomial

system of d Laurent polynomial equations with support A is a system f1(x) = · · · = fd(x) = 0 in d
variables x = (x1, . . . , xd), with

fi(x) =

n∑
j=1

ci j xa j ∈ R[x1, . . . , xd], i = 1, . . . , d, (31)

where the exponents belong toA. We call C = (ci j) ∈ Rd×n the coefficient matrix of the system and we
assume that no column of C is identically zero. Recall that a zero of (31) is nondegenerate when it is
not a zero of the Jacobian determinant of f = ( f1, . . . , fd).

Our method to obtain a lower bound on the number of positive steady states, based on [13, 19], is
to restrict our polynomial system (31) to subsystems which have a positive solution and then extend
these solutions to the total system, via a deformation of the coefficients. The first step is thus to find
conditions in the coefficient matrix C that guarantee a positive solution to each of the subsystems. The
hypothesis of having subsystems supported on simplices of a regular subdivision of a finite point
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configuration A is the key to the existence of an open set in the space of coefficients where all these
solutions can be extended. We recall below only the concepts that we need for our work. A
comprehensive treatment of this subject can be found in [21]. Following Section 3 in [19], we define:

Definition 11. Given a matrix M ∈ Rd×(d+1), we denote by minor(M, i) the determinant of the square
matrix obtained by removing the i-th column of M. The matrix M is called positively spanning if all
the values (−1)i minor(M, i), for i = 1, . . . , d + 1, are nonzero and have the same sign.

Equivalently, a matrix M is positively spanning if all the coordinates of any nonzero vector in
ker(M) are non-zero and have the same sign.

A d-simplex with vertices in a finite point configuration A is a subset of d + 1 points of A which
is affinely independent. By Proposition 3.3 in [19], a system of d polynomial equations in d variables
with a d-simplex as support, has one non-degenerate positive solution if and only if its d × (d + 1)
matrix of coefficients is positively spanning. We further define, following [19]:

Definition 12. Let C ∈ Rd×n and a finite point configuration A = {a1, . . . , an} ⊂ Z
d, with n ≥ d + 2. .

We say that a d-simplex ∆ = {ai1 , . . . , aid+1} is positively decorated by C if the d × (d + 1) submatrix of
C with columns {i1, . . . , id+1} is positively spanning.

Given a finite point configurationA, take a height function

h : A → R, h = (h(a1), . . . , h(an)).

Consider the lower convex hull L of the n lifted points (a j, h(a j)) ∈ Rd+1, j = 1, . . . , n (see Figure 1).
Project to Rd the subsets of points in each of the faces of L. These subsets define a regular
subdivision of A induced by h. When the height vector h is generic, the regular subdivision is a
regular triangulation, in which all the subsets are simplices. For the specifics on this notions we refer
the reader to Section 2.2 of [21].

a
Rd

Rd+1

(a, h(a))

Figure 1. Regular triangulation.

It can be proved that the set of all height vectors inducing a regular subdivision of A that contains
certain d-simplices ∆1, . . . ,∆p is defined by a finite number of linear inequalities, see Chapter 2 of [21].
Thus, this set is a finitely generated convex cone C∆1,...,∆p in Rn with apex at the origin, which can be
obtained as follows. Given a d-simplex ∆ with vertices in A, we consider height vectors h ∈ Rn,
where each coordinate h j of h gives the value of the corresponding lifting function at the point a j ofA.
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Denote by ϕ∆,h the unique affine function that agrees with h on the points of ∆, that is, ϕ∆,h(a j) = h j for
all a j ∈ ∆. We associate with ∆ the following cone:

C∆ = {h = (h1, . . . , hn) ∈ Rn : ϕ∆,h(a j) < h j for all a j < ∆}.

Note that each inequality ϕ∆,h(a j) < h j is linear in h and it can thus be written as 〈m, h〉 > 0, for a
certain vector m that depends on the points in ∆ ( 〈·, ·〉 denotes the standard inner product in Rn). As
C∆1,...,∆p = ∩

p
i=1C∆i , this gives a set of linear inequalities that define the cone C∆1,...,∆p . We refer the

reader to Example 2.5 in [20] for a complete computation. The set of all height vectors inducing a
regular subdivision Γ ofA is a finitely generated convex cone in Rn, which we call CΓ. In particular, if
the simplices ∆1, . . . ,∆p completely determine the regular subdivision Γ, the cone C∆1,...,∆p is equal to
the cone CΓ

Given a finite point configuration A ⊂ Zd, consider a system of sparse real polynomials f1 = f2 =

· · · = fd = 0 as in (31) with support A. Let Γ be a regular subdivision of A and h any height function
that induces Γ. We define the following family of real polynomial systems parametrized by a positive
real number t > 0:

n∑
j=1

ci j th(a j) xa j = 0, i = 1, . . . , d. (32)

We also consider the following family of polynomial systems parametrized by γ ∈ Rn
>0:

n∑
j=1

ci j γ j xa j = 0, i = 1, . . . , d. (33)

Note that each polynomial system in the families (32) and (33) has again supportA.

Theorem 13 (Theorem 3.4 of [19] and Theorem 2.11 of [13]). Consider ∆1, . . . ,∆p d-simplices which
occur in a regular subdivision Γ of a finite point configuration A ⊂ Zd, and which are positively
decorated by a matrix C ∈ Rd×n.

1. Let h be any height function that defines Γ. Then, there exists a positive real number t0 such that
for all 0 < t < t0, the number of nondegenerate positive solutions of (32) is at least p.

2. Let m1 . . . ,m` ∈ R
n be vectors that define a presentation of the cone C∆1,...,∆p :

C∆1,...,∆p = {h ∈ Rn : 〈m j, h〉 > 0, j = 1, . . . , `}.

Then, for any ε ∈ (0, 1)` there exists t0(ε) > 0 such that for any γ in the open set

U = ∪ε∈(0,1)` {γ ∈ R
n
>0 ; γm j < t0(ε)ε j , j = 1 . . . , `},

system (33) has at least p nondegenerate positive solutions.

We remark that in the first item in Theorem 13 (Theorem 3.4 in [19]), we describe a piece of
curve in the space of coefficients as we vary t > 0 where the associated system has at least p positive
solutions, while in the second item in Theorem 13 (Theorem 2.11 in [13]), we describe a subset with
nonempty interior in the space of coefficients where we can bound from below by p the number of
positive solutions of the associated system.
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4. Proofs of Theorems 2 and 4

We start this section with a lemma.

Lemma 14. ConsiderA = {(1, 0), (0, 1), (1, 1), (1, 2), . . . , (1, n), (0, 0)} ⊂ Z2. The triangulation Γ ofA
with the following 2-simplices:

{(1, 0), (1, 1), (0, 0)}, {(1, 1), (1, 2), (0, 0)}, . . . , {(1, n − 1), (1, n), (0, 0)}, {(1, n), (0, 1), (0, 0)}

is regular (see Figure 2).

Figure 2. Triangulation Γ ofA.

Proof. We can take h : A → R, with h(0, 0) = 0, h(0, 1) = n and h(1, j) =
j( j−1)

2 , for j = 0, . . . , n − 1. It
is easy to check h defines a regular triangulation that is equal to Γ.

�

The idea in the proofs of Theorem 2 and Theorem 4 is to detect positively decorated simplices in
the regular triangulation Γ.

Proof of Theorem 2. By Proposition 7, the number of positive solutions of the system GIn is at most
2bn

2c + 1. So, it is enough to prove that this number is also a lower bound.
The number of positive steady states of the system GIn is the number of positive solutions of the

system (14). As we saw before, the support of this last system is

A = {(1, 0), (0, 1), (1, 1), (1, 2), . . . , (1, n), (0, 0)} ⊂ Z2,

with coefficient matrix C (16). Note that if one multiplies a column of C by a positive number, then a
simplex is positively decorated by C if and only if it is positively decorated by the new matrix. After
multiplying the columns by convenient positive numbers, we obtain the following matrix from C:

Csimple =

(
1 0 M0 . . . Mn−1 −S tot

0 1 1 . . . 1 −Etot

)
,

where Mi =
kcati
νiFtot

+ 1, for each i = 0, . . . , n − 1. We will work with this new matrix Csimple.
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We consider the regular triangulation Γ in Lemma 14. The simplex {(1, 0), (1, 1), (0, 0)} of Γ is
positively decorated by Csimple if and only if EtotM0 − S tot < 0. The simplex {(1, j), (1, j + 1), (0, 0)},
for j = 1, . . . , n − 1, corresponds to the submatrix

Csimple j =

(
M j−1 M j −S tot

1 1 −Etot

)
,

and it is positively decorated by Csimple if and only if EtotM j−1 − S tot and EtotM j − S tot have opposite
signs. The last simplex {(0, 1), (1, n), (0, 0)} is positively decorated by Csimple if and only if EtotMn−1−

S tot > 0.
Therefore we always have at least n positively decorated simplices using all simplices of Γ but the

last one, just by imposing

(EtotMi − S tot)(−1)i < 0, for i = 0, . . . , n − 1. (34)

We can include the last simplex if and only if n is even (because otherwise the inequalities are not
compatible), and in this case we have at least n + 1 positively decorated simplices. We can obtain
2b n

2c + 1 positively decorated simplices if the inequalities (34) are satisfied. These inequalities are
equivalent to the inequalities (6) in the statement.

Assume (6) holds. Given any height function h inducing the triangulation Γ, by item (1) in
Theorem 13 there exists t0 in R>0 such that for all 0 < t < t0, the number of positive nondegenerate
solutions of the deformed system as in (32) with support A and coefficient matrix Ct, with
(Ct)i j = th(α j)ci j (with α j ∈ A, C = (ci j)), is at least 2b n

2c + 1. In particular if we choose h as in the
proof of Lemma 14, there exists t0 in R>0, such that for all 0 < t < t0, the system

s0 +

n−1∑
j=0

(
T j

(Ftot) j+1 +
K j T j−1

(Ftot) j

)
t

j( j+1)
2 s0e j+1 − S tot = 0, (35)

tne +

n−1∑
j=0

K j T j−1

(Ftot) j t
j( j+1)

2 s0e j+1 − Etot = 0,

has at least 2b n
2c + 1 positive solutions. If we change the variable ē = tne, we get the following system:

s0 +

n−1∑
j=0

(
T j

(Ftot) j+1 +
K j T j−1

(Ftot) j

)
t( j+1)( j

2−n)s0ē j+1 − S tot = 0, (36)

ē +

n−1∑
j=0

K j T j−1

(Ftot) j t( j+1)( j
2−n)s0ē j+1 − Etot = 0.

It is straightforward to check that if we scale the constants K j by

t j−nK j, j = 0, . . . , n − 1, (37)

while keeping fixed the values of the constants kcatj , ν j for j = 0, . . . , n − 1 and the values of the total
conservation constants Etot, Ftot and S tot (assuming that condition (6) holds), the intersection of the
steady state variety and the linear conservation equations of the corresponding network is described by

Mathematical Biosciences and Engineering Volume 16, Issue 6, 7589–7615.



7605

system (36). It is easy to check that in order to get the scaling in (37), it is sufficient to rescale only the
original constants konj as follows: t j−nkonj , for j = 0, . . . , n− 1. Then, for these choices of constants, the
system has at least 2b n

2c + 1 positive steady states.
Now, we will show how to obtain the more general rescaling in the statement. The existence of the

positive constants B1, . . . , Bn follows from the inequalities that define the cone CΓ of heights inducing
the regular triangulation Γ and item (2) in Theorem 13. For instance, we can check that CΓ is defined
by n inequalities:

CΓ = {h = (h1, . . . , hn+3) ∈ Rn+3 : 〈m j, h〉 > 0, j = 1, . . . , n},

where m1 = e1−2e3+e4, m j = e j+1−2e j+2+e j+3, for j = 2, . . . , n−1 and mn = e2+en+1−en+2−en+3, where
ei denotes the i-th canonical vector of Rn+3. Fix ε ∈ (0, 1)n+3. As (6) holds, item (2) in Theorem 13
says that there exist positive numbers B j for j = 1, . . . , n (depending on ε), such that the system

γ1s0 +

n−1∑
j=0

(
T j

(Ftot) j+1 +
K j T j−1

(Ftot) j

)
γ j+3s0e j+1 − γn+3S tot = 0, (38)

γ2e +

n−1∑
j=0

K j T j−1

(Ftot) j γ j+3s0e j+1 − γn+3Etot = 0,

has at least 2b n
2c + 1 nondegenerate positive solutions, for any vector γ ∈ Rn+3 satisfying γm j < B j, for

all j = 1, . . . , n. In particular, this holds if we take γ1 = γ2 = γn+3 = 1 and

γ−2
3 γ4 < B1, γ j+1γ

−2
j+2γ j+3 < B j, for j = 2, . . . , n − 1, γn+1γ

−1
n+2 < Bn. (39)

If we call λ0 = γ3 and λ j =
γ j+3

γ j+2
for j = 1, . . . , n − 1, the inequalities in (39) are equivalent to the

conditions (7). Then, if λ j, j = 0, . . . , n − 1, satisfy these inequalities, the rescaling of the given
parameters konj by λ jkonj for j = 0, . . . , n−1, gives rise to a system with exactly 2b n

2c+1 positive steady
states. �

The proof of Theorem 4 is similar to the previous one.

Proof of Theorem 4. Again, the number of positive steady states of our system is equal to the number
of positive solutions of the system (14). Recall that the support of the system is

A = {(1, 0), (0, 1), (1, 1), (1, 2), . . . , (1, n), (0, 0)} ⊂ Z2.

In this case, the coefficient matrix C (16) is equal, after multiplying the columns by convenient positive
numbers, to the matrix

Csimple =

(
1 0 M0 . . . Mn−1 −S tot

0 1 D0 . . . Dn−1 −Etot

)
,

where Mi =
kcati
νiFtot

+ 1 and Di = 1, for each i ∈ J, and Mi = 1 and Di = 0, for each i < J.
We consider again the regular triangulation Γ in Lemma 14. Recall that J ⊂ Jn, see (8), and therefore

each j ∈ J has the same parity as n, in particular 0 ≤ j ≤ n − 2. For each j ∈ J, consider the simplices
∆ j = {(1, j), (1, j + 1), (0, 0)} and ∆ j+1 = {(1, j + 1), (1, j + 2), (0, 0)}. Note that if j , j′ then {∆ j,∆ j+1}

and {∆ j′ ,∆ j′+1} are disjoint since j, j′ and n have the same parity.
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The simplices are positively decorated by Csimple (and then by C) if and only if the submatrices

Csimple j =

(
1 M j −S tot

0 1 −Etot

)
, Csimple j+1 =

(
M j 1 −S tot

1 0 −Etot

)
,

are positively spanning, and this happens if and only if EtotM j − S tot < 0, where M j =
kcatj

ν jFtot
+ 1,

since j ∈ J. The simplex ∆n = {(0, 1), (1, n), (0, 0)} is trivially positively decorated by Csimple. Then,
by imposing the inequalities EtotM j − S tot < 0 for j ∈ J, which are equivalent to the ones in the
statement (9), we can obtain 2|J| + 1 positively decorated simplices.

Assume (9) holds. Given any height function h inducing the triangulation Γ, by item (1) in
Theorem 13 there exists t0 in R>0, such that for all 0 < t < t0, the number of positive nondegenerate
solutions of the deformed system with supportA and coefficient matrix Ct, with (Ct)i j = th(α j)ci j (with
α j ∈ A, C = (ci j)) is at least 2|J| + 1. In particular if we choose h as in the proof of Lemma 14, there
exists t0 in R>0, such that for all 0 < t < t0, the system

s0 +
∑
j∈J

(
T j

(Ftot) j+1 +
K j T j−1

(Ftot) j

)
t

j( j+1)
2 s0e j+1 +

∑
j<J

T j

(Ftot) j+1 t
j( j+1)

2 s0e j+1 − S tot = 0, (40)

tne +
∑
j∈J

K j T j−1

(Ftot) j t
j( j+1)

2 s0e j+1 − Etot = 0,

has at least 2|J| + 1 positive solutions. If we change the variable ē = tne, we get the following system:

s0 +
∑
j∈J

(
T j

(Ftot) j+1 +
K j T j−1

(Ftot) j

)
t( j+1)( j

2−n)s0ē j+1 +
∑
j<J

T j

(Ftot) j+1 t( j+1)( j
2−n)s0ē j+1 − S tot = 0,

ē +
∑
j∈J

K j T j−1

(Ftot) j t( j+1)( j
2−n)s0ē j+1 − Etot = 0. (41)

Similarly as we did in the previous proof, if we scale the original parameters konj , for j ∈ J, and
τ j if j < J by

t j−nkonj if j ∈ J, t j−nτ j if j < J, (42)

respectively, and if we keep fixed the values of the remaining rate constants and the values of the
total conservation constants Etot, Ftot and S tot, the intersection of the steady state variety and the linear
conservation relations is described by system (41). Then, for these choices of constants the system GJ

has at least 2|J| + 1 positive steady states. The general rescaling that appears in the statement can be
obtained in a similar way as we did in the proof of Theorem 2. �

Remark 15. If some or all rate constants koffi are zero (so, if the corresponding reactions are not
assumed to happen), Theorems 2 and 4 hold. The proofs are very similar, except that if koffi = 0, the
constant Ki is equal to Ki =

koni
kcati

.

5. Computer aided results

In this section we explore a computational approach to the multistationarity problem, more
precisely we find new regions of mulstistationarity. The idea is to find good regular triangulations of
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the point configuration corresponding to the exponents of the polynomial system given by the steady
state equations and conservation laws, and deduce from them some regions of multistationarity. We
first give the idea and then apply it for the n-site phosphorylation system for n = 2, 3, 4, and 5, where
we have successfully found several regions of multistationarity. This approach can be, in principle,
applied to other systems if they satisfy certain hypotheses, see [13, Theorem 5.4], and are sufficiently
small in order for the computations to be done in a reasonable amount of time.

The strategy is the following. Given a polynomial system with supportA and matrix of coefficients
C, one first computes all possible regular triangulations of A with the aid of a computer. The number
of such triangulations can be very large depending on the size of A, thus the next step is to discard
in each such triangulation the simplices that obviously will not be positively decorated by C. With
the reduced number of triangulations one can now search through all of them for the ones giving
the biggest number of simultaneously positively decorated simplices. Each set of k simultaneously
positively decorated simplices gives a candidate for a region of multistationarity with k positive steady
states. If one finds m of such sets, then it is possible to have up to m such regions. Have in mind,
however, that among these regions can be repetitions.

Next we apply this to the n-site phosphorylation system with all intermediates and explain more
concretely this procedure in this case.

In Corollary 5 we obtained regions of multistationarity with 2b n
2c + 1 positive steady states each

using only 1/4 of the intermediates, our objective now is to understand if it is possible to find more
such regions with more intermediates. Consider the network G of the n-site phosphorylation system
with all possible intermediates:

S 0 + E
kon0
−−−→
←−−−
koff0

Y0
kcat0
−−−−→ S 1 + E · · · →S n−1 + E

konn−1
−−−−−→
←−−−−−
koffn−1

Yn−1
kcatn−1
−−−−−→ S n + E

S n + F
`onn−1
−−−−−→
←−−−−−
`offn−1

Un−1
`catn−1
−−−−−→ S n−1 + F · · · →S 1 + F

`on0
−−−→
←−−−
`off0

U0
`cat0
−−−→ S 0 + F

In Section 4 of [13], the concentration at steady state of all species are given in terms of the species
s0, e, f :

si = Ti−1
s0ei

f i , i = 1, . . . , n,

yi = Ki Ti−1
s0ei+1

f i , i = 0, . . . , n − 1,

ui = Li Ti
s0ei+1

f i , i = 0, . . . , n − 1,

where Ki =
koni

koffi +kcati
, Li =

`oni
`offi +`cati

,Ti =
∏i

j=0
τ j

ν j
for each i = 0, . . . , n − 1 (recall that K−1

i and L−1
i are

usually called Michaelis-Menten constants) and T−1 = 1, where τi = kcati Ki and νi = `cati Li, for each
i = 0, . . . , n − 1.

This looks very similar to (13), where Ftot is replaced by f , which is now a variable, and so we
need to work in dimension 3. The main difference is that the networks GJ considered in the previous
sections have intermediates only in the E component and the network G we consider in this section has
all intermediates.

Note from (2) that the support A of this system, which has 2n + 4 elements, ordering the variables
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as s0, e, f , is given by the columns of the following matrix

A =


1 0 0 1 . . . 1 1 1 . . . 1 0
0 1 0 1 . . . n 1 2 . . . n 0
0 0 1 −1 . . . −n 0 −1 . . . 1 − n 0

 ,
and the corresponding matrix of coefficients for the system is

C =


1 0 0 T0 . . . Tn−1 K0 + L0T0 K1T0 + L1T1 . . . Kn−1Tn−2 + Ln−1Tn−1 −S tot

0 1 0 0 . . . 0 K0 K1T0 . . . Kn−1Tn−2 −Etot

0 0 1 0 . . . 0 L0T0 L1T1 . . . Ln−1Tn−1 −Ftot

 .
Recall that if one multiplies a column of a matrix C by a positive number, then a simplex is positively

decorated by C if and only if it is positively decorated by the modified matrix. So, in order to test
whether a simplex with vertices in A is positively decorated by C is enough to test if it is positively
decorated by the following matrix

Csimple =


1 0 0 1 . . . 1 1 1 . . . 1 −S tot

0 1 0 0 . . . 0 N0 N1 . . . Nn−1 −Etot

0 0 1 0 . . . 0 1 − N0 1 − N1 . . . 1 − Nn−1 −Ftot

 ,
where 0 < Ni =

KiTi−1

KiTi−1 + LiTi
=

(
1 +

kcati

lcati

)−1

< 1 for i = 0, 1, . . . , n − 1. Here the matrix Csimple is

obtained by dividing the fourth until the last column by its first entry.
Now we compute all possible regular triangulations of A and search through them looking for the

ones with the maximal possible number of simplices simultaneously positively decorated by Csimple.
Since the number of such triangulations grows very fast with n we approach it with the following
strategy:

Algorithm 16. 1. Compute L1 := {all possible triangulations ofA}.∗

2. With L1 compute L2 by discarding all simplices which do not have the last vertex (0, 0, 0). In fact
we only need these simplices since a simplex not containing the last vertex cannot be positively
decorated, because the corresponding coefficients of Csimple will be all positive.

3. Compute L3 from L2 by removing all simplices with the corresponding 3×4 submatrix of Csimple
having a zero 3 × 3 minor. The reason for this is clear, such simplices will never be positively
decorated by Csimple.

4. Compute L4 from L3 using the symmetry of Csimple. More precisely, change any index
4, 5, . . . , n + 3 on the simplex to 1 because on Csimple they yield the same column. Here we are
using the easy-to-check fact that changing the order of indexes does not change the conditions
for a simplex to be positively decorated.

5. Compute L5 from L4 removing all T ∈ L4 such that there is another T ′ ∈ L4 with T ⊂ T ′.
∗We are calling L1, . . . , L7 the sets defined in Algorithm 16. They are completely unrelated to the rational functions of the rate

constants denoted with the same letters.
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6. For each T ∈ L5 and each set S ⊂T of simplices check if there is viable N0, . . . ,Nn−1 such that all
∆ ∈ S are positively decorated by Csimple at the same time. Call L6 the list of such S ′s.

7. If the maximum size of an element in L6 is k, set L7 := {T ∈ L6 : #T = k}. This k is the number
of positive steady states and m := #L7 is the number of candidates for regions of multistationarity.

Step (1) can be done with the package TOPCOM inside SAGE [22], the other steps are quite simple
to implement, for instance in MAPLE [23]. We show in Table 1 the number of elements in some of the
lists and an approximation of the computation time for small values of n.

Table 1. Computation time and size of some lists while running Algorithm 16 .

n #L1 #L2 #L3 #L4 #L5 #L7 k regions of multistationarity computation time
2 44 25 15 7 6 1 3 1 negligible
3 649 260 100 21 18 6 3 6 about 1 sec
4 9094 2728 682 62 53 5 5 4 about 2 min
5 122835 28044 4560 177 149 23 5 15 about 3 hours

The most computationally expensive part is to compute all regular triangulations, taking at least
90% of the time. These computations were done in a Linux virtual machine with 4 MB of RAM and
with 4 cores of 3.2 GHz of processing. With a faster computer or more time one probably can do n = 6
or even n = 7 but probably not much more than this. For n = 5 just the file for the raw list L1 of regular
triangulations already has 10Mb.

An alternative path to Steps (6) and (7) is to set a number k and look for sets T ∈ L5 and S ⊂ T with
#S ≥ k such that there is viable N0, . . . ,Nn−1 such that all ∆ ∈ S are positively decorated by Csimple
at the same time. We actually used this with k = 2b n

2c + 1. This other route depends upon a good guess
one may previously have at how many positive steady states to expect.

After Step (7) one has to determine if there are any repetitions among the candidates for regions of
multistationarity in L7 and also if there are any superfluous candidates of regions, that is conditions C1

and C2 such that C1 implies C2. In our case we did it by hand since the #L7 was quite small.
Once Step (7) is done, one has a list of inequalities for each element S of L7. These come from the

conditions imposing that the simplices in S are positively decorated by Csimple. We are going to use
these conditions to describe the regions of mulstistationarity. Because of the uniformity of Csimple
the only kind of conditions that appear are

(I)i,j Ni − N j > 0

(II)i S totNi − Etot > 0

(III)i EtotNi + FtotNi − Etot > 0

(IV)i −S totNi − Ftot + S tot > 0

(V) S tot > Etot + Ftot,

or the opposite inequalities, and these translate from the Ni to the kcati , `cati as follows
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(I)′i,j
kcatj

`catj
>

kcati

`cati

(II)′i
S tot − Etot

Etot
>

kcati

`cati

(III)′i
Ftot

Etot
>

kcati

`cati

(IV)′i
Ftot

S tot − Ftot
<

kcati

`cati
.

Note that

• conditions (III)i and (V) together imply (II)i;

• the opposite of condition (II)i together with condition (V) imply the opposite of (III)i;

• the opposite of condition (III)i together with condition (V) imply (IV)i;

• the opposite of condition (IV)i together with condition (V) imply (III)i;

• condition (III)i and the opposite of (III)j together imply (I)i,j.

Using these properties it is easy to describe in a nice manner the regions of multistationarity and
discard the repeated and superfluous ones. We sum up our findings on the following results which
are proved in the same fashion as Theorems 2 and 4, once you have the regular triangulation obtained
with the computer script. In the following propositions we describe the regions of multistationarity for
n = 2, 3, 4 and 5. Note that we are not describing the precise rescalings; they are potentially different
for different rate constants and similar to those in (7) and (10).

Proposition 17. Let n = 2. Assume that S tot > Etot + Ftot. Then there is a choice of reaction rate
constants for which the distributive sequential 2-site phosphorylation system admits 3 positive steady
states. More explicitly, given rate constants and total concentrations such that

kcat0

`cat0
<

Ftot

Etot
<

kcat1

`cat1
, (43)

after rescaling of the kon’s and `on’s the distributive sequential 2-site phosphorylation system has 3
positive steady states.

Proposition 18. Let n = 3. Assume that S tot > Etot + Ftot. Then, there is a choice of rate constants for
which the distributive sequential 3-site phosphorylation system admits at least 3 positive steady states.
More explicitly, if the rate constants and total concentrations are in one of the regions described below

(R3.1)
kcat0

`cat0
<

Ftot

Etot
<

kcat1

`cat1
,

(R3.2)
kcat0

`cat0
<

Ftot

Etot
<

kcat2

`cat2
,

(R3.3)
kcat1

`cat1
<

Ftot

Etot
<

kcat2

`cat2
,
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then after rescaling of the kon’s and `on’s the distributive sequential 3-site phosphorylation system has
at least 3 positive steady states.

Proposition 19. Let n = 3. If the rate constants and total concentrations are in one of the regions
described below

(R3.4) max
{

Ftot

Etot
,

Ftot

S tot − Ftot

}
< min

{
kcat0

`cat0
,

kcat2

`cat2

}
, S tot > Ftot,

(R3.5) max
{

Ftot

Etot
,

Ftot

S tot − Ftot

}
< min

{
kcat1

`cat1
,

kcat2

`cat2

}
, S tot > Ftot,

(R3.6) min
{

Ftot

Etot
,

S tot − Etot

Etot

}
> max

{
kcat1

`cat1
,

kcat2

`cat2

}
, S tot > Etot,

then after rescaling of the kon’s and `on’s the distributive sequential 3-site phosphorylation system has
at least 3 positive steady states.

Proposition 20. Let n = 4. Assume that S tot > Etot + Ftot. Then, there is a choice of rate constants
for which the distributive sequential 4-site phosphorylation system has at least 5 steady states. More
explicitly, if the rate constants and total concentrations are in one of the regions described below

(R4.1)
kcat2

`cat2
<

Ftot

Etot
< min

{
kcat1

`cat1
,

kcat3

`cat3

}
,

(R4.2)
kcat0

`cat0
<

Ftot

Etot
< min

{
kcat1

`cat1
,

kcat3

`cat3

}
,

(R4.3) max
{

kcat0

`cat0
,

kcat2

`cat2

}
<

Ftot

Etot
<

kcat3

`cat3
,

(R4.4) max
{

kcat0

`cat0
,

kcat2

`cat2

}
<

Ftot

Etot
<

kcat1

`cat1
,

then after rescaling of the kon’s and `on’s the distributive sequential 4-site phosphorylation system has
at least 5 steady states.

Proposition 21. Let n = 5. Assume that S tot > Etot + Ftot. Then, there is a choice of rate constants
for which the distributive sequential 5-site phosphorylation system has at least 5 steady states. More
explicitly, if the rate constants and total concentrations are in one of the 13 regions described below

(R5.(I,J)) max
i∈I

{
kcati

`cati

}
<

Ftot

Etot
< min

j∈J

{kcatj

`catj

}
,

with (I, J) in the following list (where we write e.g. 14 instead of {1, 4}):

(0, 14), (0, 24), (1, 24), (2, 13), (2, 14), (3, 14), (3, 024), (02, 3), (02, 4), (03, 1), (03, 2), (13, 2), (13, 4),

then after rescaling of the kon’s and `on’s the distributive sequential 5-site phosphorylation system has
at least 5 steady states.
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Proposition 22. Let n = 5. If the rate constants and total concentrations are in one of the regions
described below

(R5.1) max
{

Ftot

Etot
,

Ftot

S tot − Ftot

}
< min

{
kcat1

`cat1
,

kcat2

`cat2
,

kcat4

`cat4

}
, S tot > Ftot,

(R5.2) min
{

Ftot

Etot
,

S tot − Etot

Etot

}
> max

{
kcat0

`cat0
,

kcat2

`cat2
,

kcat3

`cat3

}
, S tot > Etot,

then after rescaling of the kon’s and `on’s the distributive sequential 5-site phosphorylation system has
at least 5 positive steady states.

Note that the conditions in this section describe different regions from the ones described by the
inequalities in Theorem 2 and Theorem 4. For instance, in Propositions 17, 18, 20, 21 the inequalities
between the reaction rate constants and total conservations constants do not involve the value of S tot.
In Propositions 19 and 22, the conditions onse the total conservation constants are also different (e.g.
on Ftot

Etot
and S tot

Etot
− 1 instead of the product Ftot( S tot

Etot
− 1)). The inequalities in Theorem 2 and Theorem 4

hold for reactions rate constants of a reduced system GJ, but if we use Theorem 10 to extrapolate these
conditions to the full n-site phosphorylation network, the regions are different as well.

6. Discussion

The problem of finding multistationarity regions for chemical reaction networks is in theory
effectively computable but it is both hard to compute and to describe such regions in a useful fashion.
It is well known than even for small systems, where multistationarity regions can be explicitly found,
the expressions are very complex. So, partial approaches that give sufficient conditions on a subset of
parameters are useful and relevant.

We developed in this paper both the theoretical setting based on [13, 19] and the algorithmic
approach that follows from it, to describe multistationarity regions in the space of all parameters for
subnetworks of the n-site sequential phosphorylation cycle, where there are up to 2b n

2c + 1 positive
steady states with fixed total conservation constants. We chose to assume that the subnetworks we
consider have intermediate species only in the E component, but of course there is a symmetry in the
network interchanging E with F, each S i with S n−i, the corresponding intermediates and rate
constants, and completely similar results hold if we assume that there are only intermediates in the F
component. These regions can be lifted to regions of multistationarity with at least these number of
stoichiometrically compatible positive steady states of the full n-site sequential phosphorylation cycle.
The main feature of our polyhedral approach is that it gives a systematic method applicable to other
networks (for instance, to enzymatic cascades [20]), and it provides open conditions and not only
choices of parameter values where high multistationarity occurs. Moreover, we show that it can be
algorithmically implemented. However, as we have already remarked in the Introduction, the
inequalities on some of the reaction rate constants are not completely explicit. Instead, they point out
“directions” in which these parameters have to be scaled.

Theorem 1 in [4] states that for any positive values of S tot, Etot and Ftot, there exists ε0 > 0 such
that if Etot

S tot
< ε0, then there exists a choice of rate constants such that the system admits 2b n

2c + 1
positive steady states. Also, in the recent paper [12], the authors prove the existence of parameters for
which there are 2b n

2c + 1 positive steady states and nearly half of them are stable and the other half
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unstable, using a different degeneration of the full network. However, the maximum expected number
of stoichiometrically compatible steady states for the n-site system is equal to 2n − 1 (this is an upper
bound by [4]), which has been verified for n = 3 and 4 in [8]. Probably, it is not possible to find a
region in parameter space with this number of positive steady states using degeneration techniques.

In [7] and [6] it is proved that if kcat0/`cat0 < kcat1/`cat1 then there exist constants Etot, Ftot, S tot such
that the distributive sequential 2-site phosphorylation presents multistationarity. In [24] the author
gives new regions of multistationarity for n = 2, more precisely it is shown in Theorem 1 that given
parameters K1, L0, L1, kcat0 , kcat1 , `cat0 , `cat1 , for any K0 small enough there exist constants Etot, Ftot, S tot

such that the distributive sequential 2-site phosphorylation presents multistationarity. How small K0

has to be taken is explicitly given in terms of the other parameters by a rather involved equation (a
similar result is obtained interchanging K0 and L1). Our Proposition 17 gives a similar result.

Proposition 17 is in agreement with [10, Corollary 4.11] which establishes that in order for the
distributive sequential 2-site phosphorylation to present multistationarity the total concentration of the
substrate needs to be larger than either the concentration of the kinase or the phosphatase (S tot > Ftot

or S tot > Etot). In the regions of multistationarity we found for n = 3, 4 and 5 this is the case as
well. Propositions 17, 18, 19, 20, 21 and 22 are of the same flavor as Theorems 2 and 4, in the
sense that all of them give sufficient conditions on the rate constants and total conservation constants
such that after rescaling of the kon’s and `on’s, the distributive sequential n-site phosphorylation system
is multistationary. Note that most of the conditions for multistationarity we found can be given a
biochemical interpretation in terms of the different Michaelis-Menten maximal velocities V i

max(E) =

kcati Etot,V i
max(F) = `cati Ftot for each independent phosphorylation/dephosphorylation step [25]. For

instance, inequalities (43) in Proposition 17 can be written in classical biochemical terms as:

V0
max(E) < V0

max(F), V1
max(F) < V1

max(E).

The computational approach described in Section 5 can be used for other networks of moderate size.
In conclusion, to the best of our knowledge other results (for instance [6], [7] and [24]) only give

precise regions of multistationarity for the distributive sequential 2-site phosphorylation system. The
present work gives new regions of multistationarity for the distributive sequential n-site
phosphorylation system for any n, providing lower bounds in the number of positive steady states in
such regions which are greater than three when n > 3. For small n we give several distinct regions of
multistationarity computed via a Computer Algebra System basic implementation. Moreover, our
approach is easily applicable to other networks, both analytically and computationally.
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