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Abstract: Recently, fully convolutional network (FCN) has been successfully used to locate spliced 

regions in synthesized images. However, all the existing FCN-based algorithms use real-valued FCN 

to process each channel separately. As a consequence, they fail to capture the inherent correlation 

between color channels and the integrity of three channels. So, in this paper, quaternion fully 

convolutional network (QFCN) is proposed to generalize FCN to quaternion domain by replacing 

real-valued conventional blocks in FCN with quaternion conventional blocks. In addition, a new 

color image splicing localization algorithm is proposed by combining QFCNs and superpixel 

(SP)-enhanced pairwise conditional random field (CRF). QFCNs consider three different versions 

(QFCN32, QFCN16, and QFCN8) with different up-sampling layers. The SP-enhanced pairwise 

CRF is used to refine the results of QFCNs. Experimental results on three publicly available datasets 

demonstrate that the proposed algorithm outperforms the existing algorithms including some 

conventional algorithms and some deep learning-based algorithms. 
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1. Introduction  

The popularity of cameras and the development of the Internet make digital images widely 

integrated into people's daily life. However, with the rapid development of image editing software 

tools, it is getting easier to edit and tamper images without leaving any obvious visual traces [1,2]. 

Since images can be regarded as evidence or proof in the fields of news, academic, politics, crime 

investigation and insurance claims investigation, malicious forged images may bring many 

considerable adverse problems to the society. For example, Los Angeles Times published a 

synthesized photograph of a British soldier urging Iraqi civilians to seek cover in March 2003, which 

made a 20-year veteran news photographer Brian Walski fired; a forged image of John Kerry and 

Jane Fonda's speeches in an anti-Vietnamese war protests was circulated during the 2004 US 

presidential election, which brought irreparable adverse effects to John Kerry. Image splicing is one 

of the most common types of image forgery. It creates synthesized images by cropping and pasting 

regions from one or more source images carefully. Therefore, it is important to develop reliable 

algorithms for image splicing localization. Image splicing localization endeavors to locate accurate 

regions. It is more difficult than splicing detection that simply distinguishes whether a given image is 

authentic or synthesized. In addition, image splicing localization is different from saliency detection 

or object detection. Image splicing localization does not pay much attention to image content as 

saliency detection and object detection do. Instead, it focuses on detecting traces left by tampering 

operations, such as strong contrast difference, unnatural tampered boundary, sensor noise, 

compression artifacts, and so on.  

Over the years, a variety of algorithms for image splicing localization have been proposed. These 

algorithms rely on an assumption that spliced regions essentially carry information that is in some 

significant aspects different from the rest of the image. There exist some clues that can be used to 

locate the splicing region, such as sensor noise [3–5], color filter array (CFA) artifacts [6–8], 

misaligned JPEG blocks [9–12], compression quantization artifacts [13] and resampling artifacts [14,15]. 

However, all of these conventional algorithms are based on hand-crafted features. It limits these 

algorithms to deal with one or some certain types of forgery. 

So, some recent works have moved away from using prior assumptions and applied 

deep-learning for splicing localization. Li et al. [16] proposed two detectors (a statistical feature 

based detector and a copy-move forgery detector) to analyze the input images and merged detection 

results to generate location maps. Cozzolino et al. [17] showed that residual-based descriptor could 

be regarded as a simple constrained convolutional neural network (CNN) which can conduct forgery 

detection and localization. Liu et al. [18] first utilized CNNs for color patches of different scales to 

generate real-valued tampering possibility maps and then fused the generated maps to get the 

localization map. However, the above-mentioned algorithms are block-based algorithms, accordingly, 

they only provide block-level accuracy. In order to obtain pixel-level accuracy, some methods have 

been proposed. Bappy et al. [19] utilized a long short-term memory (LSTM) based multi-task 

network to learn the labels of small image patches and used pixel-wise segmentation to determine 

each pixel forged or not. Shi et al. [20] designed a dual-domain-based convolutional neural network 

(D-CNN) for different kinds of inputs (spatial domain-based and frequency domain-based) and 
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applied two post-processing operations to finalize pixel-wise forged region localization. Salloum et 

al. [21] used multi-task fully convolutional network (MFCN) to learn surface label and edge of the 

spliced regions respectively. Liu et al. [22] utilized three different fully convolutional networks 

(FCNs) to locate spliced regions respectively and then fused the predictions of three FCNs by CRF to 

obtain the final location map. Chen et al. [23] proposed an improved splicing localization algorithm 

to make the work by Liu et al. [22] be an end-to-end learning system. They also utilized region 

proposal network (RPN) to enhance learning ability of object areas because forgery usually happens 

in the object areas. Bappy et al. [24] proposed a two-stream network which exploits the features in 

both frequency domain and spatial domain to locate forged regions by incorporating encoder and 

LSTM network. However, for color forged images, all these deep learning-based methods use 

real-valued CNNs to process each channel separately [25]. As a consequence, they fail to capture the 

inherent correlation between color channels and the integrity of three channels [26].  

The quaternion is an extension of complex number. During the past two decades, it has been 

regarded as a tool of color images processing by encoding their three channels into the imaginary 

parts of the quaternion representation (QR) [2,25–27]. The two main advantages of QR are that: (a) it 

helps capture the inherent correlation between color channels; (b) it treats a color image as a vector 

field. So, using the QR and quaternion algebra, many classical tools developed for gray-scale image 

have been successfully extended to color image processing, such as Fourier transform [26,27], neural 

networks [28], principal component analysis [29], kernel quaternion principal component analysis [30], 

fractional Fourier transform [31], fractional cosine transform [2], and discrete fractional random 

transform [32], etc. Recently, CNN as a powerful feature representation method has achieved fine 

performance in almost all vision tasks [33–37]. So, some researchers also investigated the extensions 

of the CNN in quaternion domain and proposed quaternion CNN (QCNN) model [25,38,39]. QCNN 

model has been shown to achieve better results than the traditional CNN model in both of color 

image classification task [38] and color image segmentation task [39].  

In [21–23], FCN-based algorithms have been shown to outperform some deep learning-based 

algorithms [16–20] and some conventional algorithms [3–15] in image splicing localization. So, in 

this paper, we propose quaternion fully convolutional neural network (QFCN) to generalize FCN to 

quaternion domain. Then, QFCN is used for color image splicing localization by combining with 

superpixel (SP)-enhanced pairwise CRF. SP-enhanced pairwise CRF is used to refine the results 

obtained from QFCN. Similar to [22,23], three different versions of QFCNs (QFCN32, QFCN16, 

and QFCN8) with different up-sampling layers are considered together.  

This paper is organized as follows. In Section 2, we recall quaternion color representation and 

some layers in QFCN. Section 3 describes the proposed color image splicing localization algorithm. 

Experimental results and analysis are provided in Section 4. Finally, Section 5 concludes this paper. 

2. Some preliminaries 

This section recalls QR and some layers in QFCN. 

2.1. Quaternion number and quaternion color representation 

Quaternion numbers are the generalization of complex numbers. A quaternion number has one 

real part and three imaginary parts as 
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q a b c d   i j k ,   (1)  

where a, b, c, and d are four real numbers, and i, j, k are three imaginary units obeying the following 

rules 

2 2 2 1,   ,  

 ,  = = .

      

   

j k ij ji k

jk kj i ki ik j

i
                            (2) 

When the real part a 0, q is called a pure quaternion. The conjugate and modulus of a quaternion 

number are respectively defined as 

q a b c d    i j k ,                                 (3)  

2 2 2 2q a b c d   
.                              

(4)  

Let f (u, v) be an RGB image function, each pixel can be represented as a pure quaternion by the 

QR 

( , ) ( , ) ( , ) ( , )R G Bf u v f u v f u v f u v  i j k ,                (5)  

where fR (u, v), fG (u, v), fB (u, v) are respectively the red, green and blue components of the pixel (u, v). 

2.2. Quaternion convolutional neural network layers 

2.2.1. Quaternion convolutional layer 

In the quaternion convolutional layer, convolution is performed by convolving a quaternion 

filter matrix with a quaternion input vector. Let W  W0  W1i  W2j  W3k be a quaternion filter 

matrix and x  x0  x1i  x2j  x3k be a quaternion input vector. The quaternion convolution between 

W and x is given by 
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where  is real-valued convolution. 

2.2.2. Quaternion batch normalization layer 

Batch normalization layer is usually used to speed up training in a real-valued CNN [40]. In 

some cases, batch normalization is essential to train a model. So, quaternion batch normalization 

(QBN) proposed in [39] is also utilized for QCNN. The QBN composes of two steps presented 

in the following. 

Firstly, a whitening approach is used to normalize the input data x. The whitening approach is 
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performed through multiplying 0-centered data (xE[x]) by W 

ˆ ( E[ ]) W x xx ,                                    (7)  

where E[x] is the mean of x and W is the covariance matrix of x. 

Secondly, two learnable parameters are introduced to make sure that the transformation inserted in 

this layer can represent the identity transform. The two learnable parameters β and γ scale and shift the 

normalized value as follow 

ˆBN( ) γ β xx .                                    (8)  

2.2.3. Other layers 

Other layers in QCNN models, such as quaternion activation layers, quaternion pooling layers 

and quaternion dropout layer, are obtained by a so-called split approach [25] from the corresponding 

real-valued layers. Taking quaternion ReLU activation function for example, the quaternion ReLU 

activation function  is obtained by applying separate real-valued ReLU on all four parts of a 

quaternion vector x  x0  x1i  x2j  x3k as follow 

0 1 2 3( ) ( ) ( ) ( ) ( )       x x x x xi j k ,                 (9)  

where  is the real-valued ReLU function. 

3. Proposed algorithm 

In this section, firstly, QFCN is proposed to generalize the real-valued FCN to quaternion field. 

Then, the SP-enhanced pairwise CRF used in the proposed color image splicing localization algorithm 

is described. Finally, the main architecture of the proposed algorithm is presented. 

3.1. Quaternion fully convolutional neural networks(QFCNs) 

FCN [41] is a special type of CNN with only convolutional layers. There are three 

commonly-used versions FCNs (FCN32, FCN16, FCN8) cast from VGG 16 [33] with different 

up-sampling layers. Taking FCN32 for example, the input image is processed by seven convolutional 

blocks to generate feature maps. Then, a 1 × 1 convolutional kernel is considered to predict scores 

for each class. Finally, a deconvolutional layer is used to up-sample coarse outputs to pixel-dense 

predictions. 

It is obvious that the generated feature maps after seven convolutional blocks can affect the final 

results greatly. So, in this paper, the quaternion convolutional blocks given in subsection 2.2.1 are 

used to replace the real-valued convolutional blocks in FCN. In addition, the input image is 

represented by QR. The architectures of the original FCN32 and the proposed QFCN32 are shown in 

Figure 1. Following the construction of QFCN32, QFCN16 and QFCN8 are easy to build. 
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ReLU

Max Pooling

Deconvolution

Quaternion Convolution
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(a) FCN32 
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QR

(b) QFCN32  

Figure 1. Architectures of FCN32 and QFCN32. Numbers in the form m/n refer to the 

kernel size m and the number of kernels n in the convolutional layer. 

3.2. SP-enhanced pairwise CRF 

In [22,23], the pairwise CRF is used to refine the results of FCN. CRF is a probabilistic 

graphical model which formulates label assignment problem as a probabilistic inference problem. It 

assigns similar pixels same label by capturing consistency between pixels. However, the pairwise 

CRF used in [22,23] only considers unary and pairwise potentials. It is not expressive enough to 

model higher level consistency, such as region-level consistency, co-occurrence of objects or 

detector-based cues [42,43].  

In order to capture region-level consistency, Sulimowicz et al. [44] first introduced SP-enhanced 

pairwise potentials, and then proposed SP-enhanced pairwise CRF by combining conventional 

potentials used in pairwise CRF and their SP-enhanced pairwise potentials. The SP-enhanced pairwise 

potentials incorporate superpixel-based higher-order cues by conditioning on a superpixel segmentation 

image, which is obtained by an unsupervised segmentation algorithm, i.e., mean-shift algorithm. The 

mean-shift algorithm works by clustering pixels on the basis of low level image features [45]. For 

different images, the numbers of superpixels obtained by this algorithm are usually different. 

Furthermore, Sulimowicz et al. [44] proved theoretically that the sum of SP-enhanced pairwise 

potentials inside each superpixel was equal to robust superpixel-based CRF model proposed in [45]. 

Therefore, the SP-enhanced pairwise CRF is also a robust superpixel-based model. Experimental 

results presented in [44] show that the SP-enhanced pairwise CRF achieves a better performance 

than the pairwise CRF. So, in this paper, the SP-enhanced pairwise CRF is also used to refine the 

results of QFCN.  

3.3. Main architecture of the proposed algorithm 

The main architecture of the proposed algorithm is shown in Figure 2. 
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Figure 2. Main architecture of the proposed algorithm. 

The proposed algorithm uses QFCN to predict splicing location map and considers three 

QFCNs with different up-sampling layers: QFCN32, QFCN16 and QFCN8. The reason of 

considering three networks is that one network can be specialized in handling one aspect of the 

whole problem, while the fusion of three networks can deal with different scales of image 

contents [22]. The SP-enhanced pairwise CRF is utilized for all three networks to improve the 

results obtained from QFCNs. In addition, quaternion batch normalization is also used to make the 

network converge easily. Finally, the final location map is obtained by merging the predictions of 

three networks. For each pixel, let y32, y16, and y8 denote the predictions of three networks with the 

value 0 or 1. 0 is for unforged, and 1 is for forged. The final predictions m of this pixel is given by 

8 16 321    2

0    

 y  y y
m

else 

  
 


,                           (10)  
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Eq. (10) shows that a pixel is forged if there are at least two networks predict this pixel as forged. 

The details of the proposed algorithm are as follows： 

(a)  Taking QFCN32 for example, an input image is first represented by QR in Eq. (5). Then, seven 

quaternion convolutional blocks process the quaternionic input to generate feature maps. Both 

of the first two blocks consist of two 3 × 3 quaternion convolutional layers, each of which is 

followed by a quaternion ReLU layer and a quaternion batch normalization layer. The following 

three blocks are similar to the first two but having three 3 × 3 quaternion convolutional layers. 

Moreover, each of the first five blocks is followed by a quaternion pooling layer. The last two 

blocks have a quaternion convolutional layer followed by a quaternion ReLU layer and a 

quaternion dropout layer. The kernel sizes of the last two blocks are 7 × 7 and 1 × 1, 

respectively. In addition, the numbers of kernels in seven blocks are 64, 128, 256, 512, 512, 

4096, and 4096, respectively.  

(b)  The generated maps are fed into a 1 × 1 convolutional layer to predict score for each class. Then 

a deconvolutional layer is used to up-sample the coarse outputs to pixel-dense predictions. 

Finally, a SP-enhanced pairwise CRF layer is used to refine the result. 

(c)  QFCN8 and QFCN16 are similar to QFCN32. The difference is that they have different 

up-sampling layers. QFCN16 fuses the results of the fifth and fourth quaternion pooling layers 

before deconvolutional layer, while QFCN8 combines the results the fifth, fourth and third 

quaternion pooling layers.   

(d)  The final predictions are obtained from three predictions from QFCN8, QFCN16 and QFCN32 

by Eq. (10). 

4. Experimental results and analysis 

In this section, we compare the proposed color image splicing localization algorithm with some 

state-of-the-art algorithms on three publicly available datasets. All the deep learning-based algorithms 

are performed in Keras with 11GB GeForce GTX 1080 Ti, 3.20 GHz i7-6900K CPU, and 65GB RAM. 

The conventional algorithms are in Matlab. 

4.1. Experimental datasets 

In this paper, in order to evaluate the performance of the proposed algorithm, three datasets are 

considered: CASIA v1.0, CASIA v2.0 [46], and Columbia color DVMM [47]. CASIA v1.0 is a 

forgery dataset which focuses on color image splicing. The tampered regions are carefully selected 

and some post-processing operations are also applied. This dataset is composed of 1721 images with 

384 × 256 or 256 × 384 resolution. The number of authentic and forged images is 183 and 180, 

respectively. CASIA v2.0 is an extended version of CASIA v1.0 with more forged images and more 

post-processing operations. It contains 7491 authentic images and 5123 spliced images with the 

resolution from 240 × 160 to 900 × 600. DVMM is the first publicly available color image dataset 

for image forgery detection and localization without editing or post-processing. This dataset contains 

183 authentic images and 180 spliced images with the resolution from 757 × 568 to 1152 × 768. 

Notice that CASIA v1.0 and CASIA v2.0 do not provide ground truth masks. So, we use Adobe 

Photoshop software to generate the ground truth masks from the corresponding host images. Some 
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forged images and their corresponding ground truth masks are illustrated in Figure 3. 

 

Figure 3. Some examples of three datasets and their corresponding ground truth masks. 

(a) and (b) are from DVMM dataset, (c) and (d) from CASIA v1.0 dataset, (e) and (f) 

from CASIA v2.0 dataset. 

4.2. Evaluation metric 

The accuracy of splicing localization is evaluated by the following per-pixel metric F-measure  

2 ,
Precision Recall

F
Precision Recall


 


 (11)  

Here Precision means the probability that a detected forgery is truly forged, while Recall represents 

the probability that a forgery is detected. They are defined by 

,   and  .P P

P P P N

T T
Precision Recall

T F T F
 

 
 (12)  

where TP is the number of correctly detected pixels, FN means the number of missed forged pixels, 

and FP represents the number of pixels erroneously detected as forged. 

4.3. Experimental results and analysis 

In order to evaluate the efficiency of the proposed QFCNs over the conventional real-valued 

FCNs, the first experiment directly trains three QFCNs (QFCN32, QFCN16 and QFCN8) and FCNs 

(FCN32, FCN16 and FCN8) respectively for splicing localization on CASIA v2.0 dataset. Notice 

that the SP-enhanced pairwise CRF is not considered in this experiment because we want to compare 

QFCNs and FCNs directly. In the experiment, we randomly select 5/6 spliced images to train the 

models and use the remaining images to evaluate the models. The average F-measure values of three 

QFCN-based algorithms and three FCN-based ones are given in Figure 4. It can be observed from 

Figure 4 that all the QFCN-based algorithms are superior to their corresponding FCN-based 

algorithms with same up-sampling layers. This is because the quaternion convolution can obtain 

more representative features than the conventional real-valued convolution [38]. 
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Figure 4. Comparison of QFCNs and FCNs in CASIA v2.0. 

The second experiment is to test the influence of the parameters of mean-shift algorithm in the 

SP-enhanced pairwise CRF. In detail, kernel bandwidth parameter h = (hs, hr) in the mean-shift 

algorithm has been considered. Here, hs is the kernel bandwidth for spatial domain, and hr is for 

range domain. The same experimental dataset used in the previous experiment is considered. The 

average F-measure values of the proposed algorithm with different parameters are given in Table 1. 

The results in Table 1 show that the kernel bandwidth parameter has little influence on the proposed 

algorithm and the optimal parameter is (8, 8) among ten compared parameters. So, the parameter (8, 

8) is considered in the following experiments. 

Table 1. Comparison of the proposed algorithm with different parameters in CASIA v2.0. 

(hs, hr) (8, 4) (8, 8) (8, 16) (16, 4) (16, 8) (16, 16) (32, 4) (32, 8) (32, 16) (32, 32) 

F-measure value 0.678 0.690 0.680 0.689 0.683 0.677 0.687 0.682 0.682 0.680 

 

The third experiment is to evaluate the localization ability of the proposed algorithm based on 

QFCNs and SP-enhanced pairwise CRF. The same experimental dataset considered in the first 

experiment is used for this experiment. We compare the proposed algorithm with some existing 

algorithms, including eight conventional algorithms and five deep learning-based algorithms. Eight 

conventional algorithms contain NOI1 [4], NOI2 [5], CFA1 [6], CFA2 [7], ADQ [9], NADQ [10], 

DCT [11] and BLK [12]. They are implemented through a publicly available Matlab toolbox written 

by Zampoglou et al. and Xiao et al. [48,49]. Five deep learning-based algorithms are FCN+CRF [22], 

MFCN [21], QFCN+CRF, FCN+ResNet+CRF and LSTM+EnDec [24], respectively. QFCN+CRF 

uses QFCN to replace FCN in the work FCN+CRF [22]. The main objective of the comparison 

between FCN+CRF and QFCN+CRF is to show the improvement by using QFCN. 

FCN+ResNet+CRF combines ResNet [37] with the work FCN+CRF [22]. The comparison of these 

fourteen algorithms by average F-measure values are given in Figure 5. It can be seen from Figure 5 

that: (a) all the deep learning-based algorithms outperform all the conventional algorithms. It is 

owing to the fact that the deep learning-based algorithms learn the feature automatically and 

expectedly; (b) among six deep learning-based algorithms, the proposed algorithm achieves the best 

performance. It is better than QFCN+CRF because the SP-enhanced pairwise CRF used in the 

proposed algorithm is more effective than the CRF in enforcing long-range consistency in pixel-wise 
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labeling problems [44]. The proposed algorithm performs better than FCN+CRF [22] due to the use 

of quaternion-based method and SP-enhanced pairwise CRF. MFCN [21] is superior to FCN+CRF [22] 

and QFCN+CRF because the boundaries of spliced regions are also trained.  

 

Figure 5. Comparison of localization ability in CASIA v2.0. 

The fourth experiment is to evaluate the generalization ability of the proposed algorithm. In this 

experiment, all spliced images in CASI v2.0 dataset are used for training, while CASIA v1.0 dataset 

and DVMM dataset are for testing. Figure 6 shows the average F-measure values of all the algorithms. 

It can be observed from Figure 6 that the proposed algorithm and FCN+ResNet+CRF achieve the best 

performance in both datasets. In addition, some conventional algorithms also have a good performance 

in DVMM dataset. The main reason is that the DVMM dataset does not perform post-processing after 

being tampered and does not contain small spliced regions. 

 

Figure 6. Comparison of generalization ability in CASIA v1.0 and DVMM. 
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The last experiment is to evaluate the robustness against JPEG compression, Gaussian blur and 

Gaussian noise. Same as the previous experiment, all spliced images in CASIA v2.0 dataset are utilized 

for training, while all spliced images in CASIA v1.0 dataset are used for testing. For the JPEG 

compression, the quality factors are set to two levels: QF = 50 and QF = 70. For Gaussian blur 

operation, the Gaussian smoothing kernel (σ) varies from 0.5 to 2.0 with a step size of 0.5. For 

Gaussian noise addition, the SNR value varies from 25 db to 15 db with a step size of −5. The 

comparison results by average F-measure values for three attacks are given in Table 2. The results in 

Table 2 show that, similar to the previous two experiments, the proposed algorithm performs best 

among fourteen compared algorithms in all the three types of attacks with different levels. In addition, 

the performance of all algorithms decreases with the increase of attack intensity. 

Table 2. Comparison of robustness against three types of attacks in CASIA v1.0. 

Algorithms JPEG compression  Gaussian blur  Gaussian noise 

 QF=70 QF=50  σ =0.5 σ =1.0 σ =1.5 σ =2.0  SNR=25dB SNR=20dB SNR=15dB 

NOI1[4] 0.237 0.241  0.260 0.253 0.248 0.248  0.233 0.229 0.216 

NOI2[5] 0.212 0.206  0.228 0.226 0.223 0.219  0.228 0.219 0.221 

CFA1[6] 0.200 0.198  0.205 0.200 0.200 0.199  0.206 0.198 0.204 

CFA2[7] 0.196 0.204  0.210 0.208 0.208 0.207  0.182 0.185 0.184 

ADQ [9] 0.199 0.196  0.204 0.198 0.192 0.157  0.205 0.199 0.201 

NADQ [10] 0.180 0.170  0.175 0.153 0.154 0.150  0.170 0.168 0.150 

DCT[11] 0.312 0.326  0.300 0.296 0.298 0.286  0.288 0.298 0.287 

BLK[12] 0.216 0.220  0.231 0.229 0.229 0.229  0.226 0.227 0.213 

FCN+CRF[22] 0.484 0.481  0.484 0.482 0.478 0.475  0.482 0.482 0.471 

MFCN[21] 0.541 0.532  0.538 0.537 0.535 0.524  0.541 0.530 0.524 

QFCN+CRF 0.504 0.502  0.504 0.502 0.498 0.494  0.502 0.500 0.493 

FCN+ResNet+CRF 0.557 0.546  0.551 0.550 0.543  0.542  0.560 0.556 0.546 

LSTM+EnDec[24] 0.430 0.408  0.450 0.436 0.425 0.401  0.409 0.401 0.394 

Proposed 0.568 0.566  0.569 0.565 0.560 0.555  0.562 0.559 0.553 

 

In order to better show the superior performance of the proposed algorithm, Figure 7 presents 

the visual results and their corresponding F-measure values of the proposed algorithm and the other 

five deep learning-based algorithms. These results are corresponding to the forged images given in 

Figure 3. It can be observed from Figure 7 that: (a) the visual comparison is basically in keeping with 

the F-measure value comparison presented in Figure 5, Figure 6 and Table 2; (b) the proposed 

algorithm locates the forged regions more accurate, especially for CASIA v1.0 and CASIA v2.0 

datasets. For example, the proposed algorithm can detect the legs of animals accurately for the forged 

images Figure 3 (c) in CASIA v1.0 and Figure 3 (e) in CASIA v2.0. While it is not the case for other 

algorithms, which can only get the rough results; (c) the difference among six compared algorithms 

on DVMM dataset is relatively small. Because the DVMM dataset does not perform post-processing 

and the splicing areas are usually not small ones. So, the proposed algorithm outperforms other 

algorithms both in F-measure values and visual results. 
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Figure 7. Visual comparison of four deep learning-based algorithms. For rows, from top 

to down, the results for Figure 3 (a)-(f). For columns, from left to right, spliced image, 

ground truth mask, localization results for FCN+CRF [22], QFCN+CRF, MFCN [21], 

FCN+ResNet+CRF, LSTM+EnDec [24] and the proposed algorithm. 

5. Conclusions 

In this paper, QFCNs are proposed to extend real-valued FCNs to quaternion field. In addition, a 

color image splicing localization algorithm based on QFCNs and SP-enhanced pairwise CRF is 

proposed. The proposed algorithm is superior to some existing algorithms for the following reasons: (a) 

compared with the conventional algorithms without deep learning, the proposed algorithm is a deep 

learning-based algorithm. It integrates feature extraction and localization map generation into the 

network for end-to-end training. In addition, it learns effective features automatically during the 

training; (b) compared with other deep learning-based algorithms, the proposed algorithm uses the 

quaternion-based color image processing method to capture the integrity of three channels and the 

inherent correlation between color channels; (c) SP-enhanced pairwise CRF is used to refine the results 

obtained by QFCNs. For the future work, we will try to construct a network to model sensor noise well 

and then use it for image splicing localization. 
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