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Abstract: Alzheimer’s disease (AD) is a neurological degenerative disease, which is mainly char-
acterized by the memory loss. As electroencephalogram (EEG) device is relatively cheap, portable
and non-invasive, it has been widely used in AD-related studies. We proposed a method to detect the
differences between healthy subjects and AD patients, which combines classical sample entropy (Sam-
pEn) and surrogate data method. EEGs from 14 AD patients and 20 healthy subjects were analyzed.
The results based on the original data showed that the SampEn of AD patients was significantly de-
creased (p < 0.01) at electrodes c3, f3, o2 and p4, which confirmed that AD could cause complexity
loss. However, using original data could be subject to human judgement, so we generated a series of
surrogate data. We found that, there were significant difference of SampEn between the original time
series and their surrogate data at c3 and o2 electrodes and the differences between healthy subjects
and AD patients can be verified. Our method is capable of distinguishing AD patients from healthy
subjects, which is consistent with the concept of physiologic complexity, and providing insights for
understanding of AD.

Keywords: Alzheimer’s disease; electroencephalogram; sample entropy; surrogate data analysis;
nonlinear time series

1. Introduction

Alzheimer’s disease (AD) is a neurological degenerative disease. As the most common form of
dementia, the major feature of AD is memory decline [1]. Drugs can only delay the deterioration of
AD but cannot cure it. Hematological examination, neurological tests, imaging techniques, etc. are
always combined in a variety of ways to diagnose AD. Some functional imaging techniques, such as
functional magnetic resonance imaging (fMRI) [2, 3], positron emission tomography (PET) [4], and
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single photon emission computed tomography (SPECT), are useful in making objective evaluations
of the severity of dementia. Some disadvantages of these techniques, such as high cost and potential
exposure to radionuclide irradiation could limit their clinical applications [5, 6].

EEG collection equipment is more economical, portable and non-invasive than other imaging tech-
niques that is used in AD diagnosis. Moreover, EEG recording can detect the abnormalities of AD
patients in electrical activities of the brain [7]. Over the past 40 years, a large number of researches
have demonstrated that the alterations of EEG complexity, synchrony, and brain dynamics (the slowing
of alpha rhythm and the diffuse dominance of theta or delta rhythm) in AD [7, 8]. In order to char-
acterize these alterations, researchers have proposed many different features. Relative band power[9],
absolute band power [10], spectral, central tendency [11], mean, variance, and zero-crossing [12], auto
mutual information, mean frequency [11], amplitude modulation [13] are the most frequently extracted
EEG features for AD detection. Temporal-scale-specific fractal dimension [14] and cross-correlation
analysis (DCCA) coefficients [15] are also useful to differentiate AD patients from healthy individuals.
Combined with these features, some new algorithms [16, 17] such as artificial neural network (ANN)
classifier[18], support vector machine classifier [12] have been introduced to identify AD recently.

EEG signals are typical nonlinear time series [19]. A key measure of information is known as
entropy, which has a strong relationship with nonlinear time series and dynamical systems. Entropy
is defined as a measure of uncertainty of information in a statistical description of a system [20].
Permutation entropy [21], Approximate Entropy (ApEn) [22], Sample entropy (SampEn) [11, 23],
Spectral entropy [24], Fuzzy entropy [25] etc. are widely used in nonlinear dynamics and AD detection.
Within the entropy family, approximate entropy and its modified methods have been introduced for
studying regularity and complexity in physiological and biological time-series [26]. ApEn quantifies
the conditional probability that two sequences which are similar for m points (within a given tolerance
of r) remain similar when one consecutive point is included. SampEn is an improved algorithm of
ApEn which avoids the bias caused by self-matching [22, 26]. SampEn has been applied to EEG data
to reveal a loss of complexity and a destruction of nonlinear structures in brain dynamics in AD [25].

Surrogate data method is a useful technique for nonlinearity hypothesis testing for time series anal-
ysis. Many researches have already proved that the existence of nonlinearity of EEG sequence by using
surrogate data analysis [27]. Nonlinear measures, such as sample entropy, correlation dimension, and
largest Lyapunov exponent, were computed on reconstructed signals of EEG. Nonparametric statisti-
cal tests were performed on the surrogate data to verify that the nonlinear measures are an intrinsic
characteristic of the signals [28]. Moreover, original data always includes human judgment, and sur-
rogate data method can provide a benchmark or control experiment, with which the original data can
be compared [29]. A new method combining generalized sample entropy and surrogate data analy-
sis for complex system analysis was proposed by Silva and Murta Jr. [27]. They analyzed heart rate
variability (HRV) dynamics and calculated the generalized sample entropy of original time series and
surrogate ones. This method was also used to analyze financial time series [30] , stock market data
[31] and traffic signals [32].

Inspired by this method, we proposed a method which combines classical SampEn with surrogate
data, and this method is for the first time used to analyze the differences between normal people and
AD patients. We would introduce three algorithms for generating surrogate data: simply shuffling the
original time series, un-windowed Fourier transform algorithm (FT), and amplitude adjusted Fourier
transform (AAFT) [33]. SampEn, as a complexity measure, was investigated and tested for EEG signal.
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Surrogate data was used to compute entropy differences between original dynamics and surrogate
series.

The outline of the paper is as follows. In section 2, we give an overview of surrogate data and Sam-
pEn, and describe the analysis method to detect the difference of EEG data between AD patients and
normal subjects. In section 3, the results of the method and corresponding explanations are presented.
In section 4, a conclusion is drawn.

2. Materials and method

2.1. EEG recordings

The database used in this study consisted of 34 subjects ( 20 healthy subjects and 14 patients with a
diagnosis of AD ). EEG signals were recorded for the subjects in a relaxed state with eyes closed with
an average recording time of 130 seconds and a frequency of 250 Hz. As shown in Figure 1, o1 and
o2 channels were placed on the occipital region, p3 and p4 channels on the parietal region, t3 and t4
channels on the temporal region, c3 and c4 channels on the central region, and f3 and f4 channels on
the frontal region [34]. This database (20 healthy subjects and 14 AD patients) was also used by other
relevant researches[20, 34, 35].

T3 T4C3 C4

F3 F4

P3 P4

O1 O2

INION

LEFT RIGHT

NASION

Figure 1. The figure shows the different location of the 10 electrodes.

2.2. Definition of sample entropy

SampEn is designed to reduce the bias of ApEn and in closer agreement with theory for datasets
with known probabilistic content. Moreover, SampEn displays the property of relative consistency in
situations where ApEn does not. Increases of SampEn is often associated to increases of complexity.

The calculation of sample entropy is as follows:
Arrange x(1), x(2), ..., x(N) to form an m-dimensional vector.

Xm(i) = [x(i), x(i + 1), ..., x(i + m − 1)]; 1 ≤ i ≤ N − m + 1 (2.1)

Define d[Xm(i), Xm( j)] as the largest distance between Xm(i) and Xm( j).

d[Xm(i), Xm( j)] = max | x(i + k) − x( j + k) | (2.2)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6892–6906.



6895

where 1 ≤ k ≤ m − 1, 1 ≤ i, j ≤ N − m + 1, i , j.
Given a threshold value r(r > 0), for 1 ≤ i ≤ N − m, i , j, define Bm

i (r) as:

Bm
i (r) =

1
N − m − 1

num{d[Xm(i), Xm( j)] < r} (2.3)

We can calculate the average for all of i :

Bm(r) =
1

N − m − 1

N−m∑
i=1

Bm
i (r) (2.4)

For m + 1 ,we have

Am
i (r) =

1
N − m − 1

num{d[Xm+1(i), Xm+1( j)] < r} (2.5)

where 1 ≤ i ≤ N − m, i , j.
The average for all of i is:

Am(r) =
1

N − m − 1

N−m∑
i=1

Am
i (r) (2.6)

Sample entropy can be calculated as:

S ampEn(m, r) = lim
N→∞
{− ln[Am(r)/Bm(r)]} (2.7)

Computation of SampEn depends on three parameters: length of the epoch (N), the number of
previous values used for the prediction of the consequent value (m), and threshold that determines the
similarity of patterns (r). The threshold (r) is defined as relative fraction of the standard deviation (SD)
of the N amplitude values [36].

A is the self-similar probability of time series when the dimension is m. When the dimension is
m + 1, the self-similar probability of time series is B. We can infer that CP = A/B. Obviously,
SampEn(m, r, N) is precisely the negative natural logarithm of the CP. A dataset of length N, having
repeated itself within a tolerance r for m points, will also repeat itself for m−1 points, without allowing
self-matches. SampEn does not use a template wise approach, and A and B accrue for all the templates
[36].

According to other studies and theoretical consideration, the parameters set m = 2, and r = 0.20∗S D
are used in this study.

2.3. Surrogate data generation

In the surrogate data method, a null hypothesis is first proposed (for example, assuming that the
original data is linear), and then, surrogate data is generated by different algorithms such as FT or
simply shuffling the original time series. Different surrogate data retain different characteristics of
original data.

The first algorithm we will use is simply shuffling the time-order of the original time series. The
surrogate data is obviously guaranteed to have the same amplitude distribution as the original data, but
any temporal correlations that may exist in the original data are destroyed.
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The surrogate data generated by FT algorithm is constructed to keep the same Fourier spectrum as
the original data. The Fourier transform has a complex amplitude at each frequency as we all know.
First, to randomize the phases, we multiply each complex amplitude by eiφ, in which φ is independently
chosen for each frequency from the interval [0, 2π]. We must ensure that φ(− f ) = −φ( f ), so that the
inverse Fourier transform can be real (no imaginary components). Finally, the inverse Fourier transform
is the surrogate data [29]. For AAFT algorithm, the idea is to first rescale the values in the original
time series so that they are gaussian. Then the FT or WFT algorithm can be used to make surrogate
time series which have the same Fourier spectrum as the rescaled data. Finally, the gaussian surrogate
is then rescaled back to have the same amplitude distribution as the original time series.

After that, the statistic feature of the original data and the surrogate data are separately calculated.
Theiler considered that there is a great deal of flexibility in the selection of statistics. The statistical
test method as shown in the equation below is used to compare the difference between the original data
and the surrogate data.

Let Qorig denote the statistic computed for the original time series, and Qsurri for the ith surrogate
data generated under the null hypothesis. Let µsurr and σsurr denote the mean and standard deviation of
the distribution of Qsurri .

We define the significance as:

S =
|Qorig − µsurr|

σsurr
(2.8)

If the distribution of the statistic is gaussian (and numerical experiments indicate that this is often a
reasonable approximation), then the p-value is given by p = er f c(S/

√
2).

We often use Kolmogorov-Smirnov or Mann-Whitney test to compare the full distributions of the
observed data and the surrogate data directly. Student-t test only compare their means. For the present
purposes, we use a kind of t-test.

2.4. Analysis methods

We studied 20 healthy subjects and 14 AD patients who were in relaxed and eye-closed state. Orig-
inal EEG data covered 10 electrodes: c3, c4, f3, f4, o1, o2, p3, p4, t3, t4.

Preliminarily, we calculated SampEn of the original EEG data of 34 subjects at each electrodes.
Then we chose to calculate the SampEn of surrogate data at c3, o2, o1, f3 electrodes. The choice
of these four electrodes was based on the consequences of the last step and previous studies [20].
There were approximately 32,720 samples collected for each time series in the study. To evaluated
the influence of the entropic index of SampEn, we calculated the difference between SampEn of the
original time series and average SampEn of their surrogate data. At first, for each given time series, 300
surrogate series were generated respectively by three different algorithms that we mentioned before.
That means, for each given original series, 900 surrogate series were generated. SampEn for each
surrogate series and the mean SampEn (qsurr) of the 300 surrogate series were calculated. SampEn was
also calculated for original time series (qorig). qS D was defined as: qS D = |qsurr − qorig|.

At last, the t-test which is based on double sample heteroscedasticity hypothesis was used to test
the significance of difference between healthy subjects and AD patients. The analysis tool was applied
to two samples which are from different populations, which assumes that the variance is unequal and
unknown, to test whether there is a significant difference between the means of two samples. If the
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two-tailed truncation probability (p-value) is greater than 0.01, then the null hypothesis will not be
rejected, which means there is no significant difference between the means of two samples.

3. Results and discussion

3.1. SampEn of original data

We calculated the mean and variance of SampEn of 34 subjects (20 healthy subjects and 14 AD
patients) at each electrodes. The results were respectively shown in Table 1, and we can infer that the
SampEn of healthy subjects was larger than that of AD patients. However, the details of the datasets
may be lost when we averaged the data. We then plotted the SampEn of 20 healthy subjects (left) and
14 AD patients (right) as Figure 2 showed. A decagon represented a person, and one vertex of the
decagon represented the value of SampEn at each electrodes. For most of the 14 AD patients, the value
of SampEn was less than 3.00, while a part of healthy subjects were larger than 3.00 on the contrary. As
our mentioned above, increases of SampEn were often associated to increases of complexity generally,
and thus it could be confirmed that suffering from AD would cause complexity loss. However, there
was a partial overlap between (a) and (b), in which SampEn of healthy subjects was slightly larger
than that of AD patients. The main reason was probably the individual difference. SampEn of healthy
subjects was obviously larger than AD patients at t3 electrode which is close to the brain areas of
memory functions.

T -test, based on double-sample-heteroscedasticity hypothesis, was performed to test the signif-
icance of difference between healthy subjects and AD patients. Statistically speaking, SampEn of
healthy subjects was different from AD patients at electrodes c3, c4, f3, f4, o1, o2, p4, t3 (p < 0.05) ,
and significantly different (p < 0.01) at electrodes c3, f3, o2, p4.

However, we have no idea how accurate the original data is. Furthermore, repeating the experiments
is time consuming and will bring into some exogenous variables. The time series requires a sufficient
number of samples to achieve statistical test of time series analysis. Sample acquisition can be done
by the method called surrogate data, which can directly construct the time series itself and can save
time. Surrogate data have to make itself random but retain the characters of original data (including
amplitude distribution, autocorrelation functions, etc.).

Table 1. The mean and variance (var) of SampEn in each electrodes for 20 healthy subjects
and 14 AD patients. Red number denotes p < 0.01, blue number denotes p < 0.05.
Group mean and var c3 c4 f3 f4 o1 o2 p3 p4 t3 t4

healthy subjects mean 2.7464 2.7556 2.7181 2.7321 2.9439 3.0126 2.7928 2.8819 2.9060 2.8513
var 0.0715 0.0485 0.0361 0.0399 0.0186 0.0674 0.0113 0.0117 0.3242 0.0742

AD patients mean 2.5493 2.5961 2.5874 2.6022 2.8268 2.7734 2.6903 2.6959 2.5652 2.6797
var 0.0131 0.0304 0.0056 0.0080 0.0160 0.0286 0.0481 0.0468 0.0356 0.0529

p-value 0.0067 0.0252 0.0098 0.0160 0.0156 0.0027 0.1235 0.0082 0.0198 0.0563
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Figure 2. (a) SampEn of original data for 20 healthy subjects. (b) SampEn of original data
for 14 AD patients. A decagon represents a person, one vertex of the decagon represents the
value of SampEn at each electrodes.

3.2. SampEn and surrogate data analysis

It has been confirmed that, as a chaotic time series, EEG data has a number of characteristics of
nonlinear dynamics. Therefore, chaotic time series analysis methods can be applied to analyze EEG
signals. Surrogate data analysis, an indirect method, cannot only analyze chaotic time series, but
also can deepen the understanding of related knowledge. Moreover, there is always room for human
judgment with real data. Theiler argued that besides formally rejecting a null hypothesis, the method
of surrogate data can also be used to in an informal way, provide a benchmark or control experiment,
with which the actual data can be compared [29].

We generated 900 different sets of surrogate data using three different algorithms (shuffling: 300
sets of surrogate data; FT: 300 sets of surrogate data; AAFT: 300 sets of surrogate data) for each set
of original data at electrodes c3, o2, o1, f3. Among these four electrodes, c3, f3, o2 were selected due
to the consequence of original data, o1 was selected as a contrast. And then the mean and standard
deviation (SD) of the 300 SampEn (for 300 series of surrogate data generated by one algorithm) were
calculated. We selected an AD patient at o2 electrode and drew a frequency histogram of 300 SampEn
for three different algorithms. Figure 3 showed that the frequency histograms of 300 SampEn of
surrogate data for an AD patient. The origin of the x-axis was the value of SampEn of original data.
The curve on the left was the distribution of SampEn for 300 sets of AAFT surrogate data; the middle
one was for FT surrogate data; the right one was for simply shuffling the original time series. The
curves were far away from each other and there was no overlap among them, in which the value of
SampEn for shuffling was maximal. The surrogate data had a higher SampEn comparison with original
time series. Values of p < 0.01 were considered to indicate there is highly significant difference. Then
the null hypothesis was rejected, which means EEG signals are nonlinear time series [37].
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Figure 3. The curve on the left indicates the distribution of 300 SampEn for 300 series of
AAFT surrogate data, and the middle is for FT surrogate data, and the right is for simply
shuffling the original time series.

Table 2. Results of SampEn (mean ± SD) for three surrogate data algorithms at electrodes
c3, o2, f3, o1.

electrodes data healthy subjects AD patient p-value
c3 original 2.7464 ± 0.0715 2.5493 ± 0.0131 0.007

shuffling 5.4949 ± 0.1575 5.6821 ± 0.1068 0.226
FT 3.8067 ± 0.0973 3.7685 ± 0.1031 0.732

AAFT 2.8655 ± 0.0904 2.8044 ± 0.0787 0.549
o2 original 3.0126 ± 0.0674 2.7734 ± 0.0286 0.003

shuffling 5.4126 ± 0.1317 5.5975 ± 0.2119 0.306
FT 4.0612 ± 0.0669 3.8688 ± 0.0660 0.046

AAFT 3.1240 ± 0.0641 2.9242 ± 0.0526 0.023
f3 original 2.7181 ± 0.0361 2.5874 ± 0.0056 0.009

shuffling 5.6923 ± 0.0770 5.7800 ± 0.0609 0.419
FT 3.8337 ± 0.0673 3.7833 ± 0.0699 0.586

AAFT 2.8774 ± 0.0559 2.8121 ± 0.0479 0.414
o1 original 2.9439 ± 0.0186 2.8268 ± 0.0160 0.016

shuffling 5.4751 ± 0.1949 5.3209 ± 0.0895 0.330
FT 4.0046 ± 0.0499 3.9206 ± 0.0826 0.369

AAFT 3.0381 ± 0.0244 2.9379 ± 0.0508 0.164

Table 3. Characteristics of surrogate data generated by three different algorithms.

shuffling FT AAFT
amplitude distribution X X

the first-order characteristics X X
Fourier spectrum X X

autocorrelation function X X
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Table 2 shows the results of SampEn at electrodes c3, o2, o1, f3. Corresponding to the Figure 3,
SampEn of surrogate data generated by three algorithms are all larger than that of original data, in
which shuffling is maximal, and this consequence may be related to the various surrogate data algo-
rithms. It has been clearly shown in Table 3 that different surrogate data retain different characteristics
of original data. Surrogate data generated by shuffling the time-order of the original time series is
obviously guaranteed to have the same amplitude distribution as the original data, but any temporal
correlations that may exit in the data are destroyed. The FT surrogate data are constructed to have the
same Fourier spectrum and autocorrelation function as the original data, but randomize the phases of
a Fourier transform, and the first-order characteristics (mean, SD, etc.) are preserved [38]. AAFT al-
gorithm, as an improved algorithm based on FT, provides a surrogate of the original time series which
retains its amplitude distribution, the first-order characteristics, and autocorrelation function [39]. The
surrogate data generated by AAFT algorithm keeps the characteristics of original data mostly, so that
the value of SampEn is closest to original data. There is no highly significant difference (p > 0.01)
in SampEn between normal people and AD patients for surrogate data, and the reason why surrogate
data cannot tell the difference is that other characteristics of original data may be dropped. To fix this
problem, in this paper, we defined qS D = |qsurr − qorig| ( qsurr is the mean of 300 SampEn; qorig is
SampEn of original data).

Surrogate data were used here to compute entropy differences between original dynamics and surro-
gate series. The ability to differentiate situations of low-dimensional deterministic chaos from stochas-
tic processes is due to the use of surrogate data series [27]. SampEn, as a visualized statistics, indicated
the difference of healthy subjects and AD patients. We used three different algorithms to calculate the
qS D.

Table 4 shows the results of qS D. The significance of values for these groups was tested with t-
test. Comparing healthy subjects with AD patients at c3, o2, f3, o1 electrodes for shuffling algorithm,
p = 0.023, p = 0.032, p = 0.763, p = 0.072 were obtained respectively. Only at c3, o2 electrodes,
p < 0.05 was found, which means the significant difference between AD patients and healthy subjects
in c3, o2 electrodes.

Table 4. qS D (mean± SD) under three different algorithm.

algorithm Group c3 o2 f3 o1
AAFT healthy subjects 0.1245 ± 0.0154 0.1148 ± 0.0069 0.1665 ± 0.0219 0.0963 ± 0.0031

AD patients 0.2552 ± 0.0464 0.1526 ± 0.0227 0.2247 ± 0.0357 0.1111 ± 0.0175
p-value 0.055 0.403 0.345 0.687

FT healthy subjects 1.0604 ± 0.0199 1.0486 ± 0.0128 1.1156 ± 0.0268 1.0606 ± 0.0226
AD patients 1.2193 ± 0.0688 1.1509 ± 0.0766 1.1960 ± 0.0580 1.0937 ± 0.0508

p-value 0.053 0.208 0.290 0.636
shuffling healthy subjects 2.7797 ± 0.1929 2.3945 ± 0.2570 2.9510 ± 0.1129 2.5810 ± 0.1965

AD patients 3.1755 ± 0.1149 2.8545 ± 0.2152 3.2052 ± 0.0755 2.5364 ± 0.0658
p-value 0.023 0.032 0.763 0.072
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Figure 4. The distribution of 300 SampEn for surrogate data generated by AAFT algorithm.
(a) the results of six healthy subjects (b) the results of six AD patients. All of these are under
o2 electrode.
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Figure 5. Probability plot for Normal distribution for (a) six healthy subjects (b) six AD
patients.

The reason why there was no significant difference between healthy subjects and AD patients for
FT and AAFT algorithms is probably that the common feature between surrogate data and original
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data has been eliminated by subtraction operation, and the differences remained may be weakened.
That means, the more details were surrogated by FT and AAFT algorithms from original data, the less
information will be reserved in calculating qS D. On the contrary, surrogate data generated by shuffling
algorithm is guaranteed to have the same amplitude distribution as the original data, so the subtraction
operation have less impact on the statistical test. In other words, shuffling algorithm here can detect
the significant difference much better.

We selected six healthy subjects and six AD patients at o2 electrode and try to find the difference
of the frequency histogram of 300 SampEn between two groups. Figure 4 showed the distribution of
300 SampEn for surrogate data generated by AAFT algorithm. Although the distribution of the data
can be immediately seen from the frequency histogram, it is not a good way to identify whether the
distribution of data comes from a specific distribution. Normal probability plots are widely used as
a statistical tool for assessing whether an observed simple random sample is drawn from a normally
distributed population [40]. Figure 5, corresponding to Figure 4, showed the probability plot for normal
distribution which compares the distribution of the data to the normal distribution. The plot included
a reference line, which is useful for judging whether the data follows a normal distribution. A single
small graph represented the SampEn distribution of one person. One-sixth of healthy subjects had a
positive skew distribution which is u-shaped, while half of AD patients had that distribution. The most
probable conclusion of the phenomenon was that more positive skew distribution of SampEn would
exist in AD patients. This way can give us another perspective to visualize the distribution of data.

A relevant study using this same database revealed a significant reduction in complexity in AD, as
measured with the ApEn mean, at electrodes c3 and o2 [20]. Other previous studies using ApEn [41],
SampEn [42], and Fuzzy entropy analyzed different database. Although, it was found that ApEn and
SampEn were significantly lower in AD patients than in healthy subjects at electrodes p3, p4, o1, and
o2, the classification accuracy obtained with receiver operating characteristic (ROC) curves at all of
those electrodes between them is different [22, 25, 43]. SampEn showed the superior discriminating
power when compared to ApEn which could arise from the fact that SampEn is an improvement of
ApEn. Besides, ApEn results should be interpreted with great care, as this is a biased entropy estimator
and not as reliable as other algorithms [25]. These results are also supported by recent findings with
Fuzzy entropy [25]. All of these results support that EEG activity of AD patients is significantly more
regular (less complex) than in a normal brain in the parietal and occipital regions. Our study proved
that c3 electrode also showed less complex activity and indicated that the parietal regions may also be
affected.

4. Conclusion

A large number of researches have demonstrated the alterations of EEG complexity, synchrony, and
brain dynamics in AD. Many different features of EEG series were extracted for AD detection [7, 8]. A
key measure of time series is known as entropy [22]. We proposed a method which combined SampEn
with surrogate data to analyze the differences between healthy subjects and AD patients. The value of
SampEn is often associated to complexity, AD could cause complexity loss, which thus give rise to the
smaller values of SampEn. The method of surrogate data was used here as control experiment, with
which the actual data can be compared.

We observed the SampEn of each electrode for 20 healthy subjects and 14 AD patients. As the re-
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sults showed, SampEn were different (p < 0.01) between AD patients and healthy subjects at electrodes
c3, f3, o2, p4. We then introduced three surrogate algorithms to calculated qS D = |qsurr − qorig| ( qsurr

is the mean of 300 SampEn, qorig is SampEn of original data) for four electrodes: c3, f3, o2, o1, and
performed a t-test which is based on double sample heteroscedasticity hypothesis for each electrode.
Results showed that there was significant difference between the healthy subjects and AD patients at
c3, o2 electrodes for shuffling algorithm. This approach is first used to analyze the differences between
healthy subjects and AD patients from a different perspective. Other studies using this same database
found the significant reduction in complexity at c3 and o2 electrodes, their consequences are consistent
with our study [20]. Meanwhile, our result showed EEG signals were nonlinear time series. It means
that our method is feasible.

However, we didn’t find the complexity loss at p3 and p4 electrodes. There are several possible
reasons for this. The surrogate data had a higher SampEn than original time series. Values of p <

0.01 were considered significant, and then the null hypothesis can be rejected, which means EEG
signals are nonlinear time series. As stated above, this is the disadvantage of SampEn, because an
uncorrelated version of the signals cannot be more complex than the original ones [27]. However, the
values of SampEn can reflect some information in a sense. Some improved methods such as Modified
generalized multiscale sample entropy [30, 31], generalized sample entropy [27, 32] can be used to
analysis EEG signals.

In order to obtain adequate samples to achieve statistical test of time series analysis, and realize
reproduction of experiments in a way, we adopted surrogate data method. Combined with character-
istics of surrogate data, different information can be extracted from the original data, so that we can
achieve many different purposes. The nonlinearity existed on EEG signal, SampEn with surrogate data
can identified the nonlinear feature from the data effectively. Our method is capable of distinguishing
AD patients from healthy subjects, and can provide insights for the understanding of AD. We don’t
have more information about the patients (such as age and gender), so that the analysis of the differ-
ences between AD patients and normal people cannot be more detailed. We will continue to have more
investigations on this method in the future using more datasets with detailed information.
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