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Abstract: Computer-aided detection or diagnosis (CAD) has been a promising area of research over 
the last two decades. Medical image analysis aims to provide a more efficient diagnostic and 
treatment process for the radiologists and clinicians. However, with the development of science and 
technology, data interpretation manually in the conventional CAD systems has gradually become a 
challenging task. Deep learning methods, especially convolutional neural networks (CNNs), are 
successfully used as tools to solve this problem. This includes applications such as breast cancer 
diagnosis, lung nodule detection and prostate cancer localization. In this overview, the current 
state-of-the-art medical image analysis techniques in CAD research are presented, which focus on 
the convolutional neural network (CNN) based methods. The commonly used medical image 
databases in literature are also listed. It is anticipated that this paper can provide researchers in 
radiomics, precision medicine, and imaging grouping with a systematic picture of the CNN-based 
methods used in CAD research. 
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Abbreviations: AUC: Area under the curve; BCDR: Breast Cancer Digital Repository; CAD: 
Computer-aided detection/diagnosis; CADe: Computer-aided detection; CADx: Computer-aided 
diagnosis; CNN(s): Convolutional neural network(s); CT: Computed tomography; DCNN(s): Deep 
convolutional neural network(s); DDSM: Digital Database for Screening Mammography; ILD: 
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Interstitial lung disease; LIDC: Lung Image Database Consortium; LIDC-IDRI: Lung Image Database 
Consortium image collection; LUNA16: Lung Nodule Analysis 2016; MRI: Magnetic resonance 
imaging; MIAS: Mammography Image Analysis Society; NELSON: Nederlands-LeuvensLongkanker 
Screenings Onderzoek; ODNN: Optimal deep neural network; PROMISE12: Prostate MRI Image 
Segmentation 2012; PFMP: Prostate Fused-MRI-Pathology; ROC: Receiver operating characteristic; 
T2W: T2-weighted; WBCD: Wisconsin Breast Cancer Dataset 

1. Introduction 

Medical imaging has become indispensable for the detection or diagnosis of diseases, 
especially for the diagnosis of cancers combined with a biopsy, and gradually become an important 
basis for precision medicine [1,2]. Currently, imaging techniques for medical applications are 
mainly based on X-rays, computed tomography (CT), magnetic resonance imaging (MRI), positron 
emission tomography (PET) and ultrasound [3]. 

However, with the development of science and technology and the promotion of medical imaging 
applications, data interpretation and analysis manually has gradually become a challenging task [4,5]. 
Radiologists may misinterpret diseases because of inexperience or fatigue, leading to missed diagnosis, 
that is, false negative results, non-lesions may be interpreted as lesions, or benign lesions may be 
misinterpreted as malignant, that is, false positive results [6–13]. According to statistics, the 
misdiagnosis rate caused by human in medical image analysis can reach 10–30% [14]. In this 
background, the CAD system can be a great helpful tool for radiologists in medical image analysis. 

The CAD system was originally developed for breast cancer screening from mammograms in 
the 1960s [15,16]. Nowadays, it is one of the most important areas of research in the field of 
medical image analysis and radiomics. There are two important aspects in current CAD research: 
Computer-aided detection (CADe) and computer-aided diagnosis (CADx), respectively [17]. CADe 
takes advantage of the computer output to determine the location of suspicious lesions. CADx, on 
the other hand, gives an output that determines the characterization of lesions. The workflow of a 
typical CAD system (shown in Figure 1) in medical image analysis can be divided into four steps: 
Image pre-processing, segmentation, feature extraction and selection, lesion classification. 

CAD systems are widely used for the detection and diagnosis of diseases in medical image 
analysis, such as breast cancer, lung cancer, prostate cancer, bone suppression, skin lesions, and 
Alzheimer's disease. The application of CAD systems can improve the accuracy of diagnosis, 
reduce time consumption, and optimize the radiologists’ workloads [18–24]. 

Deep learning is a new technique that is overtaking the traditional machine learning techniques 
and is increasingly being used in CAD systems [25]. Generally, features are extracted manually in 
machine learning, while in deep learning, it is a completely automatic process. In addition, simple 
features such as colors, edges, and textures can be obtained in machine learning, while in deep 
learning, some hierarchical or compositional features are accessible during the training process. 

Typically, deep learning methods can be divided into four categories: CNN-based methods, 
restricted Boltzmann machines (RBMs), autoencoders, and sparse coding. Recently, the CNN-based 
methods have attracted more and more attention around the world, which have achieved promising 
results in literature. A typical CNN framework (shown in Figure 2) is composed of one or more 
convolution layers and pooling layers (optional), followed by one or more fully connected layers [26]. 
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Figure 1. Workflow of a typical CAD system. 

Many CNN-based models have been proposed since LeNet-5 [27], such as AlexNet [28], VGG-Net 
(VGG-16 and VGG-19) [29], GoogLeNet [30], ResNet [31], and SPP-Net [32], which focus on 
increasing the network depths and designing more flexible structures. Deep convolutional neural 
network (DCNN), as a newly emerging form of medical image analysis, allows the automatic extraction 
of features and supervised learning of large scale datasets, leading to quantitative clinical decisions. 

The application of CNN-based methods for medical images is quite different from those for 
natural images [33]. On the one hand, a large scale labeled dataset, for example, the ImageNet, is 
required for the training and testing of CNNs. On the other hand, medical images are usually 
grayscale instead of containing RGB channels. However, large scale medical image datasets are not 
always available due to the intensive labeling work and expert experience requirement. 

In this paper, the current state-of-the-art deep learning techniques used in CAD research are 
presented in section 2, which focus on CNN-based methods. A summary of open available medical 
image databases and the most commonly used evaluation metrics in literature is listed in section 3. 
Challenges and future perspectives of CAD systems using CNN-based methods are summarized in 
section 4, followed by a brief conclusion. 

2. CNN-based methods for CAD 

Briefly speaking, conventional CAD systems consist of two different parts: Lesion detection 
and false-positive reduction. Lesion detection is primarily based on algorithms specific to the 
detection task, resulting in many candidate lesions. False-positive reduction is commonly based on 
traditional machine learning methods to reduce the false positive rate. However, even with these 
complicated and sophisticated programs, the general performance of conventional CAD systems is 
not good, thus hampering their widespread usage in clinical practice. 

In contrast, deep learning techniques, particularly CNN-base methods, may provide us a single 
step solution of CAD. Additionally, the unique nature of transfer learning may accelerate the 
development of CAD systems for various diseases and different imaging modalities. 
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Early reports of CNN-based CAD systems for breast cancer [34], lung cancer [35] and 
Alzheimer’s disease [36–38] have shown promising results regarding the performance in detecting 
and diagnosing diseases [39–60]. 

 

Figure 2. A typical CNN framework for image classification. 

2.1. CNN for CADe 

The primary goal of CADe is to increase the detection rate of diseases while reducing the false 
negative rate possibly due to the observers’ mistakes or fatigue. In this overview, medical image 
analysis tasks such as segmentation, identification, localization and detection are considered as 
CADe [39–43,49,50,54,55]. 

In 2019, Fujita et al. designed a novel deep neural network architecture for the detection of 
fibrillations and flutters [39]. As the most common Arrhythmia clinically, fibrillations and flutters 
will increase the risk of heart failure, dementia, and stroke. In their work, the proposed CNN could 
effectively detect Arrhythmias without preprocessing on raw data. 

With the purpose of identifying Parkinson’s disease (PD) automatically, Luis et al. applied the 
recurrence plots to map the motor signals onto the image domain, which were further used to feed a 
CNN [40]. Experimental results showed significant improvement compared to their previous works 
with an average accuracy of over 87%. 

Li et al. proposed an effective knowledge transfer method based on a small dataset from a local 
hospital and a large shared dataset from the Alzheimer’s disease neuroimaging initiative, that is, 
transfer learning [41]. The detection accuracy of Alzheimer’s disease increased by approximately 20% 
compared with that of a model simply based on the original small dataset. Since it is a common 
challenge in medical image analysis, the authors have provided a practical solution to the limited 
training data. 

In 2018, Martin et al. developed a CADe system for the ureteral stones identification in CT 
slice volumes [42]. By using a CNN that worked directly on the high resolution CT volumes, the 
proposed method was evaluated on a large dataset from 465 patients with annotations performed by 
an expert radiologist. Finally, they achieved a sensitivity of 100% and an average of 2.68 false 
positives per patient. 

Sajid et al. presented a DCNN architecture for the brain tumors segmentation in MRI images [43]. 
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The proposed network consisted of multiple neural networks which were connected in sequential 
order with the feeding of convolutional feature maps at the peer level. Experimental results on 
BRATS 2015 benchmark data showed the effectiveness and superiority of their method. 

In 2016, Shin et al. conducted experiments for thoraco-abdominal lymph node detection and to 
explore how the CNN performance changed according to factors of CNN architectures, dataset 
characteristics, and transfer learning [49]. They considered five different CNN architectures, which 
achieved state-of-the-art performances in various computer vision applications. 

In 2015, Ronneberger et al. presented a network and training strategy for the segmentation of 
neuronal structures in electron microscopic stacks, which strongly depended on the data 
augmentation [50]. The proposed network was trained with very few images and superior to the 
previously developed methods in terms of the segmentation performance. 

2.2. CNN for CADx 

CADx not only involves the detection of suspicious lesions, but also the characterization and 
classification of the detected lesions. In this overview, medical image analysis tasks such as classification, 
characterization, recognition and diagnosis are considered as CADx [44,47,48,51–53,56–59]. 

In 2019, Ahmad et al. summarized the evidence for clinical applications of CADx and artificial 
intelligence in colonoscopy [51]. Artificial intelligence-based software could analyze video 
colonoscopy in the future only to support lesion detection and characterization, but also to assess 
technical quality. 

Gonz´alez-D´ıaz et al. presented a CAD system called as DermaKNet for skin lesion diagnosis [52]. 
By incorporating the expert knowledge provided by dermatologists into the decision process, the 
authors aimed to overcome the traditional limitation of deep learning regarding the interpretability 
of the results. This work indicated that multi-task losses will allow for fusing segmentation and 
diagnosis networks into end-to-end trainable architectures. 

Jeyaraj et al. developed an automated and computer-aided oral cancer diagnosis system by 
investigating patient’s hyperspectral images [53]. With the application of regression-based 
partitioned algorithm, an accuracy of 94.5%, a sensitivity of 94.0%, and a specificity of 98.0% was 
obtained in their work. Since there was no a necessity of expert knowledge, the proposed system 
was easily developed on simple workbench in practice. 

In 2018, Raghavendra et al. trained an eighteen-layer CNN to extract robust features from the 
digital fundus images for the accurate diagnosis of glaucoma [54]. With a relatively small data set, 
they obtained an accuracy of 98.13%, which demonstrated the robustness of the proposed CAD 
system. Similar to Fujita’s work in [39], the authors also presented a novel CAD system for the 
automatic characterization of heart diseases [55]. The main difference between their works lied in 
the specific approaches that they used for feature extraction or classification. 

Hosseini-Asl et al.proposed a three dimensional CNN (3D-CNN) to improve the prediction of 
Alzheimer’s disease, which could show generic features extracted from brain images, adapt to 
different domain datasets, and accurately classify subjects with improved fine-tuning method [56]. 
Experimental results on the ADNI dataset demonstrated the superior performance compared to other 
CNN-based methods and conventional classifiers. 

Similarly, Farooq et al. used a DCNN-based pipeline for the diagnosis of Alzheimer’s disease 
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from MRI scans [57]. Since it was quite difficult to diagnose Alzheimer’s disease in elderly people 
and required a highly discriminative feature representation for classification, deep learning 
techniques were capable of this work. Experimental results were performed on the ADNI dataset 
with an accuracy of 98.8%. 

In 2017, two optimized massive-training artificial neural network (MTANN) architectures and 
four distinct CNN architectures with different depths were used in [60] for lung nodules detection 
and identification. The results with the sensitivity of 100% and 22.7 false positives per patient 
showed the superior performance of MTANN architectures than compared to CNN architectures. 

In 2016, Anthimopoulos et al. adopted and evaluated a DCNN designed for the classification of 
interstitial lung disease (ILD) patterns [59]. To train and evaluate the scheme, they used a dataset of 
14,696 image patches, derived by 120 CT scans from different scanners and hospitals. In addition, 
their proposed method was the first DCNN designed for a specific medical problem. The 
classification performance with an accuracy of 85.5% indicated that CNNs can be effectively used 
for analyzing lung patterns. 

Some recent applications of CNN-based methods for CAD research are summarized in Table 1. 

2.3. Clinical applications 

To the researchers, CNN-based methods are actively used for tasks such as classification, 
localization, segmentation and registration in medical image analysis. To the clinicians and 
radiologists, it is not the separation or combination of these tasks but the incorporation of them with 
a unified system that plays a significant role in clinical applications, known as the CAD systems. 

According to a recent survey with bibliometric analysis, current CAD researches covered a 
wide range of diseases [16]. In this section, the latest clinical applications of CNN-based methods 
for CAD research are introduced, including breast cancer diagnosis, lung nodule detection and 
prostate cancer localization. 

2.3.1. Breast cancer diagnosis 

Breast cancer is one of the most common cancers for women. Thousands of women suffer from 
breast cancer around the world every year [61]. It was also predicted that there would be 19.3 
million new cancer cases worldwide by 2025 [62]. The early detection and diagnosis can decrease 
the death rate of breast cancer significantly. 

There have been numerous studies investigating the application of CAD systems for breast 
cancer detection and diagnosis, which used various medical imaging modalities and CNN-based 
methods [63–76]. 

In 2019, Chiang et al. proposed a fast and effective breast cancer CAD system based on 
3D-CNN [63]. On evaluation with a test set of 171 tumors, the authors achieved sensitivities of 95%, 
90%, 85% and 80% at 14.03, 6.92, 4.91 and 3.62 false positives per patient (with six passes), 
respectively. The results indicated the feasibility of their methods, however, the number of false 
positives at 100% sensitivity should be further reduced. 

Samala et al. developed a DCNN for the classification of malignant and benign masses in 
digital breast tomosynthesis (DBT) [64]. This work demonstrated that multi-stage transfer learning 
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could take advantage of the knowledge gained through source tasks from unrelated and related 
domains. Also, when the training sample size was limited, an additional stage of transfer learning 
was advantageous. 

Table 1. Recent applications of CNN-based methods for CAD research. 

Reference Year Application Method Dataset Result 

Fujita et al. [39] 2019 
Fibrillations and flutters 

detection 
DCNN 

Physiobank(PTB) 

dataset 

Accuracy: 98.45% 

Sensitvity: 99.87% 

Specificity: 99.27% 

Luis et al. [40] 2019 
Parkinson's disease 

identification 
CNN HandPD dataset Accuracy: 87% 

Gonz´alez-D´ıaz 

et al. [52] 
2019 Skin lesion diagnosis DermaKNet 2017 ISBI Challenge 

Specificity: 95% 

AUC: 0.917 

Jeyaraj et al. [53] 2019 
Oral cancer CAD 

system 
DCNN TCIA,GDC 

Accuracy: 94.5% 

Sensitivity: 94.0% 

Specificity: 98.0% 

Martin et al. [42] 2018 
Ureteral stone 

identification 
CNN Clinical 

Sensitivity: 100% 

FP/scan: 2.68 

Sajid et al. [43] 2018 
Brain tumors 

segmentation 
DCNN BRATS 2015 — 

Hosseini-Asl  

et al. [56] 
2018 

Alzheimer's disease 

diagnosis 
3D-CNN ADNI dataset 

Sensitivity: 76% 

F1-score: 0.75 

Farooq et al. [57] 2017 

Multi-class 

classification of 

Alzheimer's disease 

CNN ADNI dataset Accuracy: 98.88% 

Liao et al. [44] 2017 Lung nodules diagnosis 
A modified 

U-Net 

Kaggle Data Science 

Bowl of 2017 

Accuracy: 81.42% 

Recall: 85.62% 

Tulder et al. [58] 2016 
Lung CT images 

classification 

Convolutional 

RBM 
ILD CT scans Accuracy: 89.0% 

Anthimopoulos 

et al. [59] 
2016 

Lung pattern 

classification 
DCNN ILD CT scans Accuracy: 85.5% 

Pratt et al. [47] 2016 
Diabetic retinopathy 

diagnosis 
CNN 

Kaggle Data Science 

Bowl of 2016 

Accuracy: 75.0% 

Sensitivity: 95.0% 

Gao et al. [48] 2016 
Lung CT attenuation 

patterns classification 
CNN ILD CT scans Accuracy: 87.9% 

Shin et al. [49] 2016 

Thoraco-abdominal 

lymph node(LN) 

detection 

DCNN CT scans AUC: 0.93–0.95 

Ronneberger  

et al. [50] 
2015 

Biomedical image 

segmentation 
CNN ISBI challenge Accuracy: 92.03% 



6543 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6536–6561. 

In 2018, Zhou et al. presented a segmentation-free method to classify benign and malignant 
breast tumors using CNNs [72]. With the proposed model trained on 540 images, an accuracy of 95.8%, 
a sensitivity of 96.2%, and a specificity of 95.7% was obtained, which was a promising result. Besides, 
it was the first attempt that made use of radiomics based on CNN to automatically extract 
high-throughput features from shear-wave elastography (SWE) data to classify breast tumors. 

Gao et al. compared one hand-crafted feature extractor and five transfer learning feature 
extractors based on deep learning for breast cancer histology images classification [73]. The average 
accuracy was improved to 82.90% when using the five transfer learning feature groups. 

In 2017, Li et al. established a 3D-CNN to discriminate between benign and malignant breast 
tumors [74]. The results with an accuracy of 78.1%, a sensitivity of 74.4% and a specificity of 82.3% 
demonstrated that 3D-CNN methods could be a promising technology for breast cancer 
classification without manual feature extraction. 

Kooi et al. provided a head-to-head comparison between the state-of-the-art algorithms in 
mammography CAD systems [75]. A reader study was also performed, indicating that there was no 
significant difference between the proposed network and radiologists in terms of the detection and 
diagnosis accuracy. 

In 2016, Samala et al. designed a DCNN to differentiate microcalcification candidates detected 
during the prescreening stage in a CAD system for clustered microcalcification [76]. As a validation, 
the selected DCNN was compared with their previously designed CNN architectures. The AUC of 
CNN and DCNN was 0.89 and 0.93, respectively (p<0.05, which was statistically significant). 

Some recent applications of CNN-based methods for breast cancer diagnosis are summarized 
in Table 2. 

2.3.2. Lung nodule detection 

Lung cancer is one of the most frequent and leading causes to death all over the world. It was 
reported that there were approximately 1.8×106 new cases of lung cancer globally in 2012 [77,78]. 
Early detection of lung cancer, which is typically viewed in the form of lung nodules, is an efficient 
way to improve the survival rate. 

The objectives in literature focusing on lung CAD systems can be divided into two categories: 
Lung nodules detection and classification [79–91]. The Lung Image Database Consortium (LIDC) 
and Lung Image Database Consortium image collection (LIDC-IDRI) are the most commonly used 
databases for the validation of experimental results. 

In 2019, Shi et al. proposed a DCNN-based transfer learning method for the false-positive 
reduction of lung nodules detection [80]. The VGG-16 was adopted to extract discriminative 
features and the SVM was used to classify lung nodules. A sensitivity of 87.2% with 0.39 false 
positives per scan was reached, which was higher than other methods. 

Savitha et al. analyzed the lung CT scan images using the optimal deep neural network (ODNN) 
and linear discriminate analysis (LDA) [83]. To detect and identify the lung cancer, the authors used 
a combination of ODNN and modified gravitational search algorithm (MGSA). An accuracy of 
94.56%, a sensitivity of 96.2% and a specificity of 94.2% was given in the comparative results. 

In 2018, Nishio et al. developed a CADx system to classify lung cancers between benign 
nodule, primary lung cancer, and metastatic lung cancer [84]. The proposed system was validated 
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using different combinations of methods: Conventional machine learning classifiers, DCNN-based 
method with transfer learning, and DCNN-based method without transfer learning. In addition, 
they found that larger image size as input to train a DCNN improved the performance of lung 
nodules classification. 

Table 2. Recent applications of CNN-based methods for breast CAD systems. 

Reference Year Application Method Dataset Result 

Chiang et al. [63] 2019 
Breast ultrasound CAD 

system 
3D-CNN Clinical 

Sensitivity: 95.0% 

FP/scan: 14.03 

Samala et al. [64] 2019 
Breast masses 

classification 

DCNN, transfer 

learning 
DDSM 

AUC: 0.85 ± 0.05 for 

single-stage transfer learning 

AUC: 0.91 ± 0.03 for multi-stage 

transfer learning 

Gao et al. [73] 2018 Breast cancer diagnosis 
Shallow-Deep 

CNN(SD-CNN) 
BCDR Accuracy: 82.9% 

Zhou et al. [72] 2018 
Breast tumors 

classification 
CNN Clinical 

Accuracy: 95.8% 

Sensitivity: 96.2% 

Specificity: 95.7% 

Kooi et al. [75] 2017 
Breast mammography 

CAD system 
CNN Clinical AUC: 0.875–0.941 

Becker et al. [65] 2017 Breast cancer detection ANN Clinical AUC: 0.82 

Li et al. [74] 2017 
Breast tumors 

classification 
3D-CNN Clinical 

Accuracy: 78.1% 

Sensitivity: 74.4% 

Specificity: 82.3% 

AUC: 0.801 

Zhou et al. [66] 2017 
Breast tissue density 

classification 
AlexNet Clinical Accuracy: 76% 

Kooi et al. [67] 2017 Masses discrimination DCNNs WBCD AUC: 0.80 

Ayelet et al. [68] 2016 
Breast tumors detection 

and classification 
Faster R-CNN Clinical 

Accuracy: 77% 

AUC: 0.72 

Posada et al. [69] 2016 
Breast cancer detection 

and diagnosis 

AlexNet, 

VGGNet 
MIAS 

Accuracy: 60.01% and 64.52%, 

respectively 

Samala et al. [70] 2016 

Digital breast 

tomosynthesis(DBT) 

CAD system 

DCNN Clinical AUC: 0.90 

Dhungel et al. [71] 2016 Masses classification CNN DDSM Accuracy: 84.00% ± 4.00% 

Samala et al. [76] 2016 Breast CAD system CNN, DCNN Clinical 
AUC: 0.89 and 0.93, 

respectively 

Dey et al. introduced a lung nodules classification method with high performance, which 
combined a three dimensional DCNN (3D-DCNN) and an ensemble method [89]. Compared to the 
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shallow 3D-CNN architectures used in previous studies, the proposed 3D-DCNN could capture the 
features of spherical-shaped nodules more effectively. 

In 2017, Anton et al. evaluated the effectiveness of a novel DCNN architecture for lung nodule 
malignancy classification [90]. The evaluation was based on the state-of-the-art ResNet architecture in 
their work. Further, the authors explored how the curriculum learning, transfer learning and varying 
network depth influenced the accuracy of malignancy classification. 

In 2016, Li et al. designed a DCNN-based method for lung nodules classification, which had an 
advantage of automatic representation learning and strong generalization ability [91]. The DCNNs were 
trained by 62,492 regions of interests (ROIs) samples including 40,772 nodules and 21,720 non-nodules 
from the LIDC database. 

Some recent applications of CNN-based methods for lung nodules detection are 
summarized in Table 3. 

2.3.3. Prostate cancer localization 

Prostate cancer is the most common malignancies among men and remains a second leading 
cause to deaths in men globally [92,93]. It was predicted that there would be 1.7 million new cancer 
cases by 2030. The early detection and diagnosis of prostate cancer can help to survive nine out of 
10 men for the last five years. 

Since it is a newly emerging area of research, more and more researchers pay attention to 
the prostate cancer detection, localization and diagnosis using CNN-based methods in CAD 
systems [94–107]. 

In 2019, Li et al. showed a new region-based CNN (R-CNN) framework for multi-task 
prediction of prostate cancer using an Epithelial Network Head and a Grading Network Head [95]. 
As a result, they achieved an accuracy of 99.07% and an average AUC of 0.998, which was the 
state-of-the-art performance in epithelial cells detection and Gleason grading tasks simultaneously. 
This work would help the pathologists to make the diagnosis more efficiently in the near future. 

Leng et al. designed a framework for automatic identification of prostate cancer from 
colorimetric analysis of H&E and IHC-stained histopathological specimens [96]. The methods 
introduced in their work could be modularly integrated into digital pathology frameworks for 
detection of prostate cancer on whole slide images of histopathology slides. In addition, the 
proposed methods could be extended naturally to other related cancers as well. 

In 2018, Chen et al. demonstrated that the state-of-the-art deep neural network could be 
retrained quickly with limited data provided by the PROSTATEx challenge [97]. They used 
inception V3 and VGG-16 which were pre-trained on the ImageNet, and obtained an AUC of 0.81 
and 0.83, respectively. Also, compounding results from models trained with different image 
combination could improve the classification performance. 

Song et al. proposed an automatic approach based on DCNN, inspired from VGG-Net, to 
differentiate prostate cancer and noncancerous tissues in multi-parametric MRI images using the 
PROSTATEx database [98].Further, Wang et al. improved this network by modifying a term in the 
loss function during the back-propagation process [99]. 

In 2017, Rampun et al. proposed a prostate cancer CAD system and suggested a set of 
discriminative texture descriptors extracted from T2-weighted (T2W) MRI images [94]. To test and 
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evaluate their method, the authors collected 418 samples from 45 patients using 9-fold cross 
validation approach. Experimental results indicated that it was comparable among existing CAD 
systems using multimodality MRI. 

Table 3. Recent applications of CNN-based methods for lung CAD systems. 

Reference Year Application Method Dataset Result 

Shi et al. [80] 2019 Lung nodules detection VGG-16 CT scans 
Sensitivity: 87.2% 

FP/scan: 0.39 

Savitha et al. [83] 2019 Lung cancers classification 

Optimal deep 

neural 

network(ODNN) 

Clinical 

Accuracy: 94.56% 

Sensitivity: 96.20% 

Specificity: 94.20% 

Zhao et al. [84] 2018 Lung nodules classification LeNet, AlexNet LIDC 
Accuracy: 82.20% 

AUC: 0.877 

Dey et al. [89] 2018 Lung nodules classification 3D-DCNN LUNA16 
Competition performance 

metric(CPM): 0.910 

Nishio et al. [82] 2018 Lung cancer CAD system DCNN Clinical Accuracy: 68% 

Anton et al. [90] 2017 Lung CT CAD system ResNet LIDC-IDRI 
Sensitivity: 91.07% 

Accuracy: 89.90% 

Ding et al. [85] 2017 Lung CAD system DCNNs LUNA16 
Sensitivity: 94.60% 

FROC: 0.893 

Dou et al. [86] 2017 Lung nodules detection 3D-CNN LUNA16 
Sensitivity: 90.50% 

FP/scan: 1.0 

Cheng et al. [87] 2016 Lung lesions classification OverFeat LIDC 
Sensitivity: 90.80% ± 

5.30 

Li et al. [91] 2016 Lung nodules classification DCNN LIDC 
Sensitivity: 87.10% 

FP/scan: 4.62 

Liu et al. [88] 2016 Lung nodules classification 
Multi-view 

CNN(MV-CNN) 
LIDC-IDRI 

Error rate: 5.41% 

Sensitivity: 90.49% 

Specificity: 99.91% 

Hua et al. [79] 2015 Lung nodules classification CNN LIDC 
Sensitivity: 73.30% 

Specificity: 78.7% 

Le et al. presented an automated method based on multimodal CNNs for two prostate cancer 
diagnostic tasks [106]. In the first phase, the proposed network aimed to classify cancerous and 
noncancerous tissues, while in the second phase, it was used for the differentiation between clinically 
significant prostate cancer and indolent prostate cancer. Finally, the authors obtained the promising 
results with a sensitivity of 89.85% and a specificity of 95.83% for prostate tissues classification, as well 
as a sensitivity of 100% and a specificity of 76.92% for prostate cancer characterization, respectively. 

Yang et al. introduced an automated method for the prostate cancer localization in 
multi-parametric MRI images and assessed the aggressiveness of detected lesions using multimodal 
multi-label CNNs [107]. Comprehensive evaluation demonstrated that the proposed method was 
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superior to other networks in terms of the representative features extraction. 
Some recent applications of CNN-based methods for prostate cancer localization are summarized 

in Table 4. 

Table 4. Recent applications of CNN-based methods for prostate CAD systems. 

Reference Year Application Method Dataset Result 

Li et al. [95] 2019 Prostate cancer grading R-CNN Clinical Accuracy: 89.4% 

Wang et al. [99] 2018 

Clinically significant 

prostate cancer CAD 

system 

Dual-path CNN Clinical 
Sensitivity: 89.78% 

FP/scan: 1 

Ishioka et al. 

[100] 
2018 

Prostate cancer CAD 

system 
DCNN 

Clinical (two training 

datasets: = 301, = 34) 

AUC: 0.645 and 

0.636, respectively 

Song et al. [98] 2018 Prostate cancer CADx DCNN PROSTATEx 

Sensitivity: 87% 

Specificity: 90.6% 

AUC: 0.944 

Chen et al. [97] 2018 

Clinically significant 

prostate cancer 

classification 

Inception V3, 

VGG-16 
PROSTATEx AUC: 0.81 and 0.83 

Kohl et al. [101] 2017 Prostate cancer detection 

Fully 

convolutional 

networks (FCNs) 

Clinical 
Sensitivity: 55% 

Specificity: 98% 

Yang et al. 

[102] 
2017 Prostate cancer detection Co-trained CNNs Clinical 

Sensitivity: 46.00%, 

92.00% and 97.00% 

FP/scan: 0.1, 1 and 10 

Yang et al. 

[107] 
2017 

Prostate cancer 

localization and 

characterization 

Multimodal 

multi-label CNNs 
Clinical 

Sensitivity: 98.6% 

Specificity: 98.3% 

Accuracy: 98.5% 

AUC: 0.998 

Jin et al. [103] 2017 Prostate cancer detection CNN PROMISE12 AUC: 0.974 

Wang et al. 

[104] 
2017 Prostate cancer detection DCNN PFMP AUC: 0.84 

Le et al. [106] 2017 Prostate cancer diagnosis 
Multimodal 

CNNs 
Clinical 

Sensitivity: 89.85% 

Specificity: 95.83% 

Liu et al. [105] 2017 
Prostate cancer lesions 

classification 
XmasNet PROSTATEx AUC: 0.84 

3. Performance evaluation 

3.1. Databases 

A well-characterized repository plays an important role in the performance evaluation of a 
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CAD system [108]. Most of the researchers collect clinical data from different hospitals, which is a 
time-consuming and intensive process. Besides, extra work is required to normalize these images. 
Therefore, it is necessary to develop a standard database for the effective and objective performance 
evaluation among CAD systems [109]. 

In this section, some open available medical image databases are introduced, which are 
commonly used for breast cancer diagnosis, lung nodule detection and prostate cancer localization 
in literature, respectively. 

3.1.1. Breast 

The Mammography Image Analysis Society (MIAS) database contains left and right breast 
images from 161 patients with a total of 322 images, including 208 normal, 63 benign and 51 
malignant (abnormal) cases [110,111]. For each X-ray film, it is associated with some medical 
information like lesion location, image scale, and malignancy annotated by experienced radiologists. 

The Digital Database for Screening Mammography (DDSM) is the largest public breast image 
database, which consists of 2,620 cases with a total of 10,480 images including two images from 
each breast [112,113]. Each case is associated with some patient information, like age at the time of 
examination, subtlety rating for abnormalities and so on. Researchers have got satisfactory results 
using this database [114,115]. 

The Wisconsin Breast Cancer Dataset (WBCD) is publically available from the UCI Machine 
Learning Repository used for the validation of various classification algorithms [116]. There are 569 
instances associated with 32 attributes in this database, which are collected from the Fine Needle 
Aspirates (FNA) of human breast tissues. 

The Breast Cancer Digital Repository (BCDR) is the first Portuguese digital mammogram 
database [117]. It has at present a total of 1,010 cases including digital content (3,703 digitized film 
mammography images) and associated metadata. Precise segmentations of identified lesions 
(manual contours made by medical specialists) are also provided. Currently, two repositories are 
available for public domain: One containing digitalized film mammography, known as the 
BCDR-FM, and the other containing full field digital mammography, known as the BCDR-DM. 
Also, four benchmarking datasets representatives of benign and malignant lesions are available for 
free download to registered users. 

A brief summary of these databases is shown in Table 5. 

3.1.2. Lung 

The LIDC-IDRI database contains 1,018 CT scans from 1,010 patients with a total of 244,527 
images, which includes various imaging modalities like CT, digital radiography (DX), and computed 
radiography (CR) [118,119]. Each scan is associated with a XML file that records the annotations such 
as nodule ID, non-nodule ID, and reading sessions, performed by four expert radiologists. 

The Lung Nodule Analysis 2016 (LUNA16) is one of the most commonly used database for lung 
cancer detection or diagnosis [120]. There are 888 CT scans with a total of 272 lung images in this 
database, and each scan is associated with the location of lesions as well as the image size. It is worth 
mentioning that the CT scans in this database are taken from the LIDC-IDRI database with the tumors 
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smaller than 3mm are removed. 
The Nederlands-LeuvensLongkanker Screenings Onderzoek (NELSON) database is usually 

employed to investigate lung nodule measurement, automatic detection and segmentation [121,122]. 
The ANODE09 database, which originates from the NELSON database, contains 55 anonymized 
thoracic CT scans [123]. 

The Japanese Society of Radiological Technology (JSRT) database has been used for various 
medical applications such as image pre-processing, image compression CAD system as well as picture 
archiving and communication system (PACS). Each sample in this database is associated with some 
clinical information such as patient age, gender, benign or malignant, and degree of subtlety in visual 
detection of nodules. 

A brief summary of these databases is shown in Table 6. 

Table 5. A summary of open available breast image databases. 

Database Image modality 
No. of 

patients 

No. of benign 

samples 

No. of malignant 

samples 

No. of normal 

samples 
Link 

MIAS X-rays 161 63 51 208 
http://www.wiau.man.ac.uk/ser

vices/MIAS/MIASweb.html 

WBCD Mammography 569 357 212 - 
http://marathon.csee.usf.edu/ 

Mammography/Database.html 

DDSM Mammography 2,620 4,044 3,656 2,780 

https://archive.ics.uci.edu/ml/da

tasets/Breast+Cancer+Wisconsi

n+%28Diagnostic%29 

BCDR Ultrasound 1,010 - - 3,703 http://bcdr.inegi.up.pt/ 

Table 6. A summary of open available lung image databases. 

Database 
Image 

modality 
No. of scans No. of slices No. of images Link 

LIDC-IDRI CT, DX, CR 1,018 ─ 244,527 
https://wiki.cancerimagingarchive.net/display

/Public/LIDC-IDRI 

LUNA16 CT 888 1,084 272 https://luna16.grand-challenge.org/download/ 

ANODE09 CT 55 451.5 ─ 

https://www.rug.nl/research/portal/datasets/ne

derlandsleuvens-longkanker-screenings-onder

zoek-nelson.html 

JSRT X-rays ─ ─ 247 http://db.jsrt.or.jp/eng.php 
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3.1.3. Prostate 

The PROSTATEx Challenge focuses on the diagnostic classification of clinically significant 
prostate cancer in a quantitative way [124]. This collection is a retrospective set of prostate MRI 
studies, which include T2W, dynamic contrast enhanced (DCE), and diffusion-weighted (DW) 
imaging. It contains 349 studies from 346 patients with a total of 309,251 images acquired without 
an endorectal coil. 

The Prostate MRI Image Segmentation 2012 (PROMISE12) challenge aims to compare interactive 
and (semi)-automatic segmentation algorithms of the prostate in MRI images. Patients with benign 
diseases, for example, benign prostatic hyperplasia, and prostate cancer are both covered in this database. 
Additionally, data is collected from multiple medical centers with multimodality MRI images for the 
purpose of robustness and generalization testing. 

The Cancer Imaging Archive Prostate Fused-MRI-Pathology (PFMP) dataset comprises a total of 
28 T1-weighted (T1W), T2W, DW, and DCE prostate MRI along with digitized histopathology images 
of corresponding radical prostatectomy specimens, which are acquired on a 3.0T Siemens TrioTim [125]. 
The MRI scans also have a mapping of extent of prostate cancer on them. 

The Prostate-3T dataset provides prostate transversal T2W MRI images acquired on a 3.0T 
Siemens TrioTim using only a pelvic phased-array coil, which is commonly used for prostate cancer 
detection [126]. It was used for TCIA as part of an ISBI challenge competition in 2013. There are 64 
cases with a total of 1,258 images in this dataset. 

A brief summary of these databases is shown in Table 7. 

Table 7. A summary of open available prostate image databases. 

Database Image modality No. of cases No. of images Link 

PROSTATEx MRI 346 309,251 
https://wiki.cancerimagingarchive.net/display/Public/SPIE-

AAPM-NCI+PROSTATEx+Challenges 

PFMP MRI 28 32,508 https://pathology.cancerimagingarchive.net/pathdata/ 

PROMISE12 MRI 50 ─ https://promise12.grand-challenge.org/Download/ 

Prostate-3T MRI 64 1,258 
https://wiki.cancerimagingarchive.net/display/Public/Prosta

te-3T 

3.2. Evaluation metrics 

The CAD system performance is evaluated by various metrics such as accuracy, precision, 
sensitivity, specificity, F1-score, recall, true positive rate (TPR), false positive rate (FPR), 
dice-coefficient, receiver operating characteristic (ROC) curve and area under the curve (AUC), etc.. 
The calculation formula of the most commonly used evaluation metrics in literature are summarized 
in Table 8. 
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Table 8. Commonly used evaluation metrics in CAD systems. 

Metric Calculation Formula  

accuracy  ( )
( )

TP TNaccuracy
TP TN FP FN

+
=

+ + +
 Eq 1 

precision  
( )

TPprecision
TP FP

=
+

 Eq 2 

sensitivity  
( )

TPsensitivity
TP FN

=
+

 Eq 3 

specificity  
( )

TNspecificity
TN FP

=
+

 Eq 4 

1F score−  
( )1 2
( )

precision recallF score
precision recall

×
− = ×

+
 Eq 5 

TPR  ( )
TPTPR

TP FN
=

+
 Eq 6 

FPR  
( )

FPFPR
TN FP

=
+

 Eq 7 

dice coefficient−  
2 | |
| | | |

P GTdice coefficient
P GT
× ∩

− =
+

 Eq 8 

4. Discussion 

4.1. Medical imaging CAD systems 

Recently, more and more CAD systems have been developed for various diseases in medical 
image analysis. However, due to the complex structure of medical images and difficulty in 
establishing a standard library of biomedical signs, there are challenges in CAD research. 

Firstly, the sample size with valid annotation is too small. On the one hand, it is of high cost 
and time consuming for radiologists or clinicians to label the medical images. On the other hand, the 
coverage of existed image libraries is not comprehensive. Secondly, the standardization of datasets 
and evaluation metrics is needed. Currently, most CAD systems are proposed based on various open 
available medical image databases, and there is no a standard for the performance evaluation. 
Obviously, it is very difficult to make a correct and reliable comparison among these systems. 
Thirdly, there are many difficulties in applying CAD systems to clinical use. Since the daily tasks of 
radiologists or clinicians are heavy, and the interface of the medical imaging system is not open to 
the public, it seems unpractical for the developed CAD systems to integrate seamlessly with other 
systems used in hospitals. 

4.2. CNN architectures 

Many different CNN architectures have been proposed or adopted for medical image analysis, 
typically for image segmentation and classification tasks [127,128]. 

In [129], Chen et al. proposed a 2D bridged U-Net for the prostate segmentation. As a modified 
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U-Net, the exponential ReLU, as an alternative of ReLU, and the Dice loss, as one of the pervasive 
loss functions, was adopted. In [130], Milletari et al. developed a V-Net for volumetric medical 
image segmentation. Despite the popularity of CNN-based methods, they could only be used for 2D 
images processing while most medical image data used in clinical practice consisted of 3D volumes. 

In [131], Hussain et al. implemented an automated brain tumor segmentation algorithm using 
DCNN. The state-of-the-art neural network optimization strategies, such as dropout and batch 
normalization, are used in their work. Besides, the authors adopted the non-linear activation and 
inception module to build a new ILinear nexus architecture. 

Generally, these architectures mainly focus on reducing the parameter space, saving 
computational time and dealing with 3D modalities. How to choose a more suited network 
architecture according to various medical image analysis tasks needs further research. 

4.3. Limited data for training 

As it is known to all, deep learning architectures require a large amount of training data. Besides, 
most deep learning techniques, for example, CNN-based methods, require labeled data for supervised 
learning, which is difficult and time-consuming clinically. How to take the best advantage of limited 
data for training and how to train deeper networks effectively remains to be addressed. 

There are two widely used solutions in literature that can partially deal with the mentioned 
problem. The first one is data augmentation, which uses the affine transformations such as 
translation, rotation, and scaling to generate more data from the existed data. The other is transfer 
learning, which has achieved promising results in medical image analysis [132,133]. The workflow 
of transfer learning is composed of two parts: Pre-trained on a large labeled dataset (such as 
ImageNet) and fine-tuning on the target dataset. 

4.4. Future perspectives 

Despite the challenges associated with the introduction of deep learning methods and CAD 
systems in clinical settings, the promising results that are too valuable to discard. 

Deep learning techniques extract knowledge from big data and produce an output that can be 
used for personalized treatment, which promotes the development of precision medicine. Unlike the 
conventional medical treatment, in precision medicine, the examination will go deep into the 
smallest molecular and genomic information, and medical staff will make the diagnostic decision 
according to the subtle differences among patients. 

With the development of big data and medical imaging, radiomics comes into being [134]. By 
using a large number of medical images and feature-related algorithms, it aims to transform the region 
of interests into feature maps with high resolution. The standardized image acquisition, automated 
image analysis, radiomics of molecular images, and prognostic response evaluation are the key points 
in radiomics. At present, radiomics has been applied to the diagnosis, treatment, and prognosis of 
cancers, such as breast cancer and lung cancer, and has achieved promising results in literature. 

In the future, medical image data will be linked more readily to non-imaging data in electronic 
medical records, such as gender, age, medical history and so on, known as imaging grouping. Deep 
learning techniques, when applied to electronic medical records, can help derive patient representations 
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that may lead to predictions and augmentations of clinical decision support systems [135]. 
With the current rapid development of deep learning techniques, and CNN-based methods in 

particular, there are prospects for a more widespread application of CNN-based CAD systems in 
clinical practice. These techniques are not expected to replace the radiologists in the foreseeable 
future, but potentially facilitate the routine workflow, improve detection and diagnosis accuracy, 
reduce the probability of mistake and error, and enhance patients’ satisfaction. 

5. Conclusion 

In this paper, an overview on CNN-based methods and their application in the field of CAD 
research is presented. It is concluded that CNN-based methods are increasingly being used in all 
sub-fields of medical image analysis, such as lesion segmentation, detection and classification. 
Despite the restrictions associated with data augmentation and transfer learning, they can be 
effectively used to deal with limited training data. Recent studies demonstrate that CNN-based 
methods in CAD research would greatly benefit the development of medical image analysis, and the 
future directions may towards radiomics, precision medicine and imaging grouping. This paper can 
provide researchers in medical image analysis with a systematic picture of the CNN-based methods 
used in CAD research. 

Acknowledgements 

This work was supported in part by grants from National Natural Science Foundation of China 
(Grant No. 61303099). 

Conflict of interest 

All authors declare no conflict of interest in this paper. 

References 

1. G. J. Tearney, M. E. Brezinski and B. E. Bouma, In vivo endoscopic optical biopsy with optical 
coherence tomography, Science, 276 (1997), 2037–2039. 

2. R. William and Hendee, The impact of future technology on oncologic diagnosis: Oncologic 
imaging and diagnosis, Int. J. Radiat. Oncol. Biol. Phys., 9 (1983), 1851–1865. 

3. A. Heidenreich, F. Desgrandschamps and F. Terrier, Modern approach of diagnosis and 
management of acute flank pain: Review of all imaging modalities, Eur. Urol., 41 (2002), 351–362. 

4. R. E. Bunge and C. L. Herman, Usage of diagnostic imaging procedures: A nationwide hospital 
study, Radiology, 163 (1987), 569–573. 

5. G. B. A. Quekel, G. H. Kessels and R. Goei, Miss rate of lung cancer on the chest radiograph in 
clinical practice, Chest, 115 (1999), 720–724. 

6. F. Li, S. Shusuke and A. Hiroyuki, Lung cancers missed at low-dose helical CT screening in a 
general population: Comparison of clinical, histopathologic, and imaging findings, Radiology, 
225 (2002), 673–683. 



6554 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6536–6561. 

7. Q. Li, F. Li and S. Kenji, Computer-aided diagnosis in thoracic CT, Semin. Ultrasound. Ct Mr, 
26 (2005), 357–363. 

8. K. Suzuki, I. Sheu, M. Epstein, et al., An MTANN CAD for detection of polyps in 
false-negative CT colonography cases in a large multicenter clinical trial: Preliminary results, 
in Medical Imaging 2008: Computer-Aided Diagnosis, Med. Imaging. Int. Soc. Opt. 
Photonics., (2008). 

9. L. Ralph, Attempts to use computers as diagnostic aids in medical decision making: A 
thirty-year experience, Perspect. Biol. Med., 35(1992), 207–219. 

10. K. Doi, Current status and future potential of computer-aided diagnosis in medical imaging, Br. 
J. Radiol., 78(2005), S3–S19. 

11. K. Doi, Computer-aided diagnosis in medical imaging: Historical review, current status and 
future potential, Comput. Med. Imaging Graph., 31 (2007), 198–211. 

12. L. G. Maryellen, P. C. Heang and B. John, Anniversary paper: History and status of CAD and 
quantitative image analysis: The role of Medical Physics and AAPM, Med. Phys., 35 (2008), 
5799–5820. 

13. K. Doi, H. Macmahon, S. Katsuragawa, et al., Computer-aided diagnosis in radiology: Potential 
and pitfalls, Eur. J. Radiol., 31 (1999), 97–109. 

14. K. Kerlikowske, P. A. Carney, B. Geller, et al., Performance of screening mammography among 
women with and without a first-degree relative with breast cancer, Ann. Intern. Med., 133 (2000), 
855–863. 

15. H. Sittek, K. Herrmann, C. Perlet, et al., Computer-aided diagnosis in mammography, Der 
Radiologe, 37 (1997), 610–616. 

16. R. Takahashi and Y. Kajikawa, Computer-aided diagnosis: A survey with bibliometric analysis, 
Int. J. Med. Inf., 101 (2017), 58–67. 

17. A. Mansoor, U. Bagci, B. Foster, et al., Segmentation and image analysis of abnormal lungs at 
CT: Current approaches, challenges, and future trends, Radiographics, 35 (2015), 1056–1076. 

18. S. Kenji, Computer-aided detection of lung cancer, in image-based computer-assisted radiation 
therapy, Springer, (2017), 9–40. 

19. A. El-Baz, G. M. Beache, G. Gimel'Farb, et al., Computer-aided diagnosis systems for lung 
cancer: Challenges and methodologies, Int. J. Biomed. Imaging, 2013 (2013), 1–46. 

20. M. Nishio and C. Nagashima, Computer-aided diagnosis for lung cancer: Usefulness of nodule 
heterogeneity, Acad. Radiol., 24 (2017), 328–336. 

21. M. Kawagishi, B. Chen, D. Furukawa, et al., A study of computer-aided diagnosis for pulmonary 
nodule: Comparison between classification accuracies using calculated image features and imaging 
findings annotated by radiologists, Int. J. Comput. Assist. Radiol. Surg., 12 (2017), 1–10. 

22. A. O. D. C. Filho, A. C. Silva, A. C. D. Paiva, et al., Computer-aided diagnosis of lung nodules 
in computed tomography by using phylogenetic diversity, genetic algorithm, and SVM, J. Digit. 
Imaging, 30 (2017), 812–822. 

23. Y. Nomura, T. Higaki, M. Fujita, et al., Effects of iterative reconstruction algorithms on 
computer-assisted detection (CAD) software for lung nodules in ultra-low-dose CT for lung 
cancer screening, Acad. Radiol., 24 (2017), 124–130. 

24. M. Liang, W. Tang, D. M. Xu, et al., Low-dose CT screening for lung cancer: Computer-aided 
detection of missed lung cancers, Radiology, 281 (2016), 279–288. 



6555 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6536–6561. 

25. D. Shen, G. Wu and H. I. Suk, Deep learning in medical image analysis, Annu. Rev. Biomed. 
Eng., 19 (2017), 221–248. 

26. Q. Song, L. Zhao, X. Luo, et al., Using deep learning for classification of lung nodules on 
computed tomography images, J. Healthcare Eng., 2017 (2017), 1–7. 

27. Y. Lecun, L. Bottou, Y. Bengio, et al., Gradient-based learning applied to document 
recognition, Proc. IEEE, 86 (1998), 2278–2324. 

28. K. Alex, S. Ilya and E. H. Geoffrey, ImageNet classification with deep convolution 
neural networks, 25th International Conference on Neural Information Processing Sys
tems, Curran Associates Inc., (2012), 1097–1105. Available from: https://dl.acm.org/ci
tation.cfm?id=2999257. 

29. T. Xiao, J. X. Zhang, K. Y. Yang, et al., Error-driven Incremental learning in deep 
convolutional neural network for large-scale image classification, ACM Multimedia, (2014), 
177–186.  

30. C. Szegedy, W. Liu, Y. Q. Jia, et al., Going Deeper with Convolutions, 2015 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2015), 1–9. 
Available from: https://ieeexplore.ieee.org/document/7298594. 

31. S. T. Wu, S. H. Zhong and Y. Liu, Deep residual learning for image steganalysis, 
Multimedia. Tools. Appl., 77 (2017), 10437–10453. 

32. K. M. He, X. Y. Zhang, S. Q. Ren, et al., Spatial Pyramid Pooling in Deep Convolutional 
Networks for Visual Recognition, in European Conference on Computer Vision (ECCV) 
2014, Springer, (2014), 346–361. 

33. H. Greenspan, B. V. Ginneken and R. M. Summers, Guest Editorial Deep Learning in 
Medical Imaging: Overview and Future Promise of an Exciting New Technique, IEEE Trans. 
Med. Imaging, 35 (2016), 1153–1159. 

34. D. Wang, A. Khosla, R. Gargeya, et al., Deep Learning for Identifying Metastatic Breast 
Cancer, ArXiv 2016, (2016). 

35. D. Kumar, A. Wong and D. A. Clausi, Lung Nodule Classification Using Deep Features in 
CT Images, 12th Conference on Computer and Robot Vision, IEEE, (2015), 133–138. 
Available from: https://ieeexplore.ieee.org/document/7158331. 

36. F. Liu, C. Y. Wee, H. Chen, et al., Inter-modality relationship constrained multi-modality 
multi-task feature selection for Alzheimer's Disease and mild cognitive impairment 
identification, Neuroimage, 84 (2014), 466–475. 

37. H. I. Suk, S. W. Lee and D. Shen, Hierarchical feature representation and multimodal fusion 
with deep learning for AD/MCI diagnosis, Neuroimage, 101 (2014), 569–582. 

38. S. Liu, S. D. Liu, W. D. Cai, et al., Early diagnosis of Alzheimer's disease with deep 
learning, 11th International Symposium on Biomedical Imaging (ISBI), IEEE, (2014), 
1015–1018. Available from: https://ieeexplore.ieee.org/abstract/document/6868045. 

39. H. Fujita and D. Cimr, Computer Aided detection for fibrillations and flutters using deep 
convolutional neural network, Inf. Sci., 486 (2019), 231–239. 

40. L. C. S. Afonso, G. H. Rosa, C. R. Pereira, et al., A recurrence plot-based approach for 
Parkinson’s disease identification, Future Gener. Comput. Syst., 94 (2019), 282–292. 

41. W. Li, Y. Zhao, X. Chen, et al., Detecting Alzheimer's Disease on Small Dataset: A 
Knowledge Transfer Perspective, IEEE J. Biomed. Health. Inf., 23 (2019), 1234–1242. 



6556 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6536–6561. 

42. L. Martin, J. Jendeberg, P. Thunberg, et al., Computer aided detection of ureteral stones in 
thin slice computed tomography volumes using Convolutional Neural Networks, Comput. 
Biol. Med., 97 (2018), 153–160. 

43. I. Sajid, M. U. Ghani, T. Saba, et al., Brain tumor segmentation in multi-spectral MRI using 
convolutional neural networks (CNN), Microsc. Res. Tech., 81 (2018), 419–427. 

44. F. Z. Liao, L. Ming, L. Zhe, et al., Evaluate the Malignancy of Pulmonary Nodules Using the 
3D Deep Leaky Noisy-or Network, IEEE Trans. Neural Netw. Learn. Syst., 14 (2017), 1–12. 

45. A. Rajkomar, S. Lingam, A. G. Taylor, et al., High-throughput classification of radiographs 
using deep convolutional neural networks, J. Digit. Imaging, 30 (2017), 95–101. 

46. Z. N. Yan, Y. Q. Zhan, Z. G. Peng, et al., Multi-Instance Deep Learning: Discover 
Discriminative Local Anatomies for Bodypart Recognition, IEEE Trans. Med. Imaging, 35 
(2016), 1332–1343. 

47. H. Pratt, F. Coenen, D. M. Broadbent, et al., Convolutional Neural Networks for Diabetic 
Retinopathy, Procedia. Comput. Sci., 90 (2016), 200–205. 

48. M. Gao, U. Bagci, L. Lu, et al., Holistic classification of CT attenuation patterns for interstitial 
lung diseases via deep convolutional neural networks, Comput. Methods Biomech. Biomed. Eng. 
Imaging Vis., 6 (2016), 1–6. 

49. H. C. Shin, H. R. Roth, M. Gao, et al., Deep Convolutional Neural Networks for 
Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning, 
IEEE Trans. Med. Imaging, 35 (2016), 1285–1298. 

50. O. Ronneberger, P. Fischer and T. Brox, U-Net: Convolutional Networks for Biomedical Image 
Segmentation, in MICCAI 2015, Springer, (2015), 234–241. 

51. O. F. Ahmad, A. Soares, E. B. Mazomenos, et al., Artificial intelligence and computer-aided 
diagnosis in colonoscopy: Current evidence and future directions, Lancet. Gastroenterol. 
Hepatol., 41 (2019), 71–80. 

52. I. González-Díaz, DermaKNet: Incorporating the Knowledge of Dermatologists to 
Convolutional Neural Networks for Skin Lesion Diagnosis, IEEE J. Biomed. Health. Inf., 23 
(2019), 547–559. 

53. P. R. Jeyaraj, E. R. J. J. o. C. R. Samuel Nadar and C. Oncology, Computer-assisted medical 
image classification for early diagnosis of oral cancer employing deep learning algorithm, J. 
Cancer Res. Clin. Oncol., 145 (2019), 829–837. 

54. U. Raghavendra, H. Fujita, S. V. Bhandary, et al., Deep convolution neural network for accurate 
diagnosis of glaucoma using digital fundus images, Inf. Sci., 441 (2018), 41–49. 

55. U. Raghavendra, H. Fujita, A. Gudigar, et al., Automated technique for coronary artery disease 
characterization and classification using DD-DTDWT in ultrasound images, Biomed. Signal 
Process Control, 40 (2018), 324–334. 

56. E. Hosseini-Asl, M. Ghazal, A. Mahmoud, et al., Alzheimer's disease diagnostics by a 3D 
deeply supervised adaptable convolutional network, Front Biosci (Landmark Ed), 23 (2018), 
584–596. 

57. A. Farooq, S. M. Anwar, M. Awais, et al., A deep CNN based multi-class classification
of Alzheimer's disease using MRI, 2017 IEEE International Conference on Imaging System 
and Techniques (IST), IEEE, (2018), 182–187. Available from: https://ieeexplore.ieee.org
/document/8261460. 



6557 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6536–6561. 

58. G. V. Tulder and M. D. Bruijne, Combining Generative and Discriminative Representation 
Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines, IEEE 
Trans. Med. Imaging, 35 (2016), 1262–1272. 

59. M. Anthimopoulos, S. Christodoulidis, L. Ebner, et al., Lung Pattern Classification for 
Interstitial Lung Diseases Using a Deep Convolutional Neural Network, IEEE Trans. Med. 
Imaging, 35 (2016), 1207–1216. 

60. A. Jalalian, S. Mashohor, R. Mahmud, et al., Foundation and methodologies in computer-aided 
diagnosis systems for breast cancer detection, EXCLI J, 16 (2017), 113–137. 

61. M. L. Giger, N. Karssemeijer and J. A. Schnabel, Breast image analysis for risk assessment, 
detection, diagnosis, and treatment of cancer, Annu. Rev. Biomed. Eng., 15 (2013), 327–357. 

62. Q. H. Huang, F. B. Yang, L. Z. Liu, et al., Automatic segmentation of breast lesions for 
interaction in ultrasonic computer-aided diagnosis, Inf. Sci., 314 (2015), 293–310. 

63. T. C. Chiang, Y. S. Huang, R. T. Chen, et al., Tumor Detection in Automated Breast Ultrasound 
Using 3-D CNN and Prioritized Candidate Aggregation, IEEE Trans. Med. Imaging, 38 (2018), 
240–249. 

64. R. K. Samala, H. Chan, L. Hadjiiski, et al., Breast Cancer Diagnosis in Digital Breast 
Tomosynthesis: Effects of Training Sample Size on Multi-Stage Transfer Learning Using Deep 
Neural Nets, IEEE Trans. Med. Imaging, 38 (2019), 686–696. 

65. A. S. Becker, M. Marcon, S. Ghafoor, et al., Deep Learning in Mammography: Diagnostic 
Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer, Invest. 
Radiol., 52 (2017), 434–440. 

66. X. R. Zhou, T. Kano, H. Koyasu, et al., Automated assessment of breast tissue density in 
non-contrast 3D CT images without image segmentation based on a deep CNN, in Medical 
Imaging 2017: Computer-Aided Diagnosis, Proc. SPIE, (2017). 

67. T. Kooi, G. B. Van, N. Karssemeijer, et al., Discriminating Solitary Cysts from Soft Tissue 
Lesions in Mammography using a Pretrained Deep Convolutional Neural Network, Med. Phys., 
44 (2017), 1017–1027. 

68. A. B. Ayelet, L. Karlinsky, S. Alpert, et al., A Region Based Convolutional Network for Tumor 
Detection and Classification in Breast Mammography, in Deep Learning and Data Labeling for 
Medical Applications, Springer, (2016), 197–205. 

69. J. G. Posada, D. M. Zapata and O. L. Q. Montoya, Detection and Diagnosis of Breast 
Tumors using Deep Convolutional Neural Networks, Conference Proceedings of the XVI
I Latin American Conference on Automatic Control (2016), 11-17. Available from: http
s://pdfs.semanticscholar.org/9566/d1f27a0e5f926827d3eaf8546dab51e40e21.pdf. 

70. R. K. Samala, H. P. Chan, L. Hadjiiski, et al., Mass detection in digital breast tomosynthesis: 
Deep convolutional neural network with transfer learning from mammography, Med. Phys., 43 
(2016), 6654. 

71. N. Dhungel, G. Carneiro and A. P. Bradley, The Automated Learning of Deep Features for 
Breast Mass Classification from Mammograms, in MICCAI 2016,Springer, (2016), 106–114. 

72. Y. J. Zhou, J. X. Xu, Q. G. Liu, et al., A Radiomics Approach with CNN for Shear-wave 
Elastography Breast Tumor Classification, IEEE Trans. Biomed. Eng., 65 (2018), 1935–1942. 

73. F. Gao, T. Wu, J. Li, et al., SD-CNN: A Shallow-Deep CNN for Improved Breast Cancer 
Diagnosis, Comput Med Imaging Graph, 70 (2018), 53–62. 



6558 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6536–6561. 

74. J. Li, M. Fan, J. Zhang, et al., Discriminating between benign and malignant breast tumors 
using 3D convolutional neural network in dynamic contrast enhanced MR images, in Medical 
Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications, Proc. SPIE, 
(2017). 

75. T. Kooi, G. Litjens, B. V. Ginneken, et al., Large scale deep learning for computer aided 
detection of mammographic lesions, Med. Image. Anal., 35 (2017), 303–312. 

76. R. Samala, H. P. Chan, L. Hadjiiski, et al., Deep-learning convolution neural network for 
computer-aided detection of microcalcifications in digital breast tomosynthesis, in Medical 
Imaging 2016: Computer-Aided Diagnosis, Proc. SPIE, (2016). 

77. D. M. Parkin, Global cancer statistics in the year 2000, Lancet Oncol., 2 (2001), 533–543. 
78. A. Motohiro, H. Ueda, H. Komatsu, et al., Prognosis of non-surgically treated, clinical stage I 

lung cancer patients in Japan, Lung Cancer, 36 (2002), 65–69. 
79. K. L. Hua, C. H. Hsu, S. C. Hidayati, et al., Computer-aided classification of lung nodules on 

computed tomography images via deep learning technique, Onco. Targets Ther., 8 (2015), 
2015–2022. 

80. Z. H. Shi, H. Hao, M. H. Zhao, et al., A deep CNN based transfer learning method for false 
positive reduction, Multimed. Tools Appl., 78 (2018), 1017–1033. 

81. F. Ciompi, B. D. Hoop, S. J. V. Riel, et al., Automatic classification of pulmonary peri-fissural 
nodules in computed tomography using an ensemble of 2D views and a convolutional neural 
network out-of-the-box, Med. ImageAnal., 26 (2015), 195–202. 

82. M. Nishio, O. Sugiyama, M. Yakami, et al., Computer-aided diagnosis of lung nodule 
classification between benign nodule, primary lung cancer, and metastatic lung cancer at 
different image size using deep convolutional neural network with transfer learning, PLoS One, 
13 (2018), e0200721. 

83. G. Savitha and P. Jidesh, Lung Nodule Identification and Classification from Distorted CT 
Images for Diagnosis and Detection of Lung Cancer, in Machine Intelligence and Signal 
Analysis, Springer, (2019), 11–23.  

84. X. Z. Zhao, L. Y. Liu, S. Qi, et al., Agile convolutional neural network for pulmonary nodule 
classification using CT images, Int. J. Comput. Assist Radiol. Surg., 13 (2018), 585–595. 

85. J. Ding, A. Li, Z. Q. Hu, et al., Accurate Pulmonary Nodule Detection in Computed 
Tomography Images Using Deep Convolutional Neural Networks, in MICCAI 2017,Springer, 
(2017), 559–567. 

86. Q. Dou, H. Chen, Y. M. Jin, et al., Automated Pulmonary Nodule Detection via 3D ConvNets 
with Online Sample Filtering and Hybrid-Loss Residual Learning, in MICCAI 2017,Springer, 
(2017), 630–638. 

87. J. Z. Cheng, D. Ni, Y. H. Chou, et al., Computer-Aided Diagnosis with Deep Learning 
Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT 
Scans, Sci. Rep., 6 (2016), 24454. 

88. K. Liu and G. Kang, 3D multi-view convolutional neural networks for lung nodule 
classification, PLoS One, 12 (2017), e0188290. 

89. R. Dey, Z. J. Lu and H. Yi, Diagnostic Classification Of Lung Nodules Using 3D Neural 
Networks, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI), IEEE, 
(2018), 774–778. Available from: https://ieeexplore.ieee.org/document/8363687. 



6559 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6536–6561. 

90. D. Anton, K. Ramil, K. Adil, et al., Large Residual Multiple View 3D CNN for False Positive 
Reduction in Pulmonary Nodule Detection, 2017 IEEE Conference on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB), IEEE, (2017). Available 
from: https://ieeexplore.ieee.org/document/8058549. 

91. W. Li, P. Cao, D. Z. Zhao, et al., Pulmonary Nodule Classification with Deep Convolutional 
Neural Networks on Computed Tomography Images, Comput. Math. Method. Med., 2016 
(2016), 1–7. 

92. R. L. Siegel, K. D. Miller and A. Jemal, Cancer Statistics, 2017, CA Cancer J. Clin., 67 (2017), 
7–30. 

93. R. Chou, J. M. Croswell, D. Tracy, et al., Screening for prostate cancer: A review of the 
evidence for the U.S. Preventive Services Task Force, Ann. Intern. Med., 137 (2011), 55–73. 

94. A. Rampun, L. Zheng, P. Malcolm, et al., Computer-aided detection of prostate cancer in 
T2-weighted MRI within the peripheral zone, Phys. Med. Biol., 61 (2016), 4796–4825. 

95. W. Li, J. Li, K. V. Sarma, et al., Path R-CNN for Prostate Cancer Diagnosis and Gleason 
Grading of Histological Images, IEEE Trans. Med. Imaging, 38 (2018), 945–954. 

96. E. Leng, J. C. Henriksen, A. E. Rizzardi, et al., Signature maps for automatic identification of 
prostate cancer from colorimetric analysis of H&E and IHC-stained histopathological 
specimens, Sci. Rep., 9 (2019), 6992. 

97. Q. Chen, X. Xu, S. L. Hu, et al., A transfer learning approach for classification of clinical 
significant prostate cancers from mpMRI scans, in Medical Imaging 2017: Computer-Aided 
Diagnosis, Proc. SPIE, (2017). 

98. Y. Song, Y. D. Zhang, X. Yan, et al., Computer-aided diagnosis of prostate cancer using a deep 
convolutional neural network from multiparametric MRI, J. Magn. Reson. Imaging, 48 (2018), 
1570–1577. 

99. Z. Wang, C. Liu, D. Cheng, et al., Automated Detection of Clinically Significant Prostate 
Cancer in mp-MRI Images Based on an End-to-End Deep Neural Network, IEEE Trans. Med. 
Imaging, 37 (2018), 1127–1139. 

100. J. Ishioka, Y. Matsuoka, S. Uehara, et al., Computer-aided diagnosis of prostate cancer on 
magnetic resonance imaging using a convolutional neural network algorithm, BJU Int., 122 
(2018), 411–417. 

101. S. Kohl, D. Bonekamp, H.P. Schlemmer, et al., Adversarial Networks for the Detection of 
Aggressive Prostate Cancer, in ArXiv, (2017). Available from: https://arxiv.org/abs/17
02.08014. 

102. X. Yang, C. Y. Liu, Z. W. Wang, et al., Co-trained convolutional neural networks for 
automated detection of prostate cancer in multi-parametric MRI, Med. Image Anal., 42 
(2017), 212–227. 

103. T. K. Jin and S. M. Hewitt, Nuclear Architecture Analysis of Prostate Cancer via Convolutional 
Neural Networks, IEEE Access, 5 (2017), 18526–18533. 

104. X. Wang, W. Yang, J. Weinreb, et al., Searching for prostate cancer by fully automated 
magnetic resonance imaging classification: Deep learning versus non-deep learning, Sci. Rep., 
7 (2017), 15415. 

105. S. F. Liu, H. X. Zheng, Y. Feng, et al., Prostate Cancer Diagnosis using Deep Learning with 3D 
Multiparametric MRI, in Medical Imaging 2017: Computer-Aided Diagnosis, Proc. SPIE, (2017). 



6560 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6536–6561. 

106. M. H. Le, J. Y. Chen, L. Wang, et al., Automated diagnosis of prostate cancer in 
multi-parametric MRI based on multimodal convolutional neural networks, Phys. Med. Biol., 
62 (2017), 6497–6514. 

107. X. Yang, Z. W. Wang, C. Y. Liu, et al., Joint Detection and Diagnosis of Prostate Cancer in 
Multi-parametric MRI Based on Multimodal Convolutional Neural Networks, in MICCAI 
2017,Springer, (2017), 426–434. 

108. M. F. McNitt-Gray, S. G. Armato, C. R. Meyer, et al., The Lung Image Database Consortium 
(LIDC) data collection process for nodule detection and annotation, Acad. Radiol., 14 (2007), 
1464–1474. 

109. A. P. Reeves, A. M. Biancardi, D. Yankelevitz, et al., A public image database to support 
research in computer aided diagnosis, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2009(2009), 
3715–3718. 

110. K. S. Man, C. Ramachandran, A. Yianni, et al., Automatic pectoral muscle segmentation on 
mediolateral oblique view mammograms, IEEE Trans. Med. Imaging, 23 (2004), 
1129–1140. 

111. D. Saraswathi and E. Srinivasan, An ensemble approach to diagnose breast cancer using fully 
complex-valued relaxation neural network classifier, Int. J. Biomed. Eng. Technol., 15 (2014), 
243–260. 

112. M. Lamard, G. Cazuguel, G. Quellec, et al., Content Based Image Retrieval based on Wavelet 
Transform coefficients distribution, 2007 29th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, IEEE, (2007). Available from: 
https://ieeexplore.ieee.org/document/4353347. 

113. G. D. Tourassi, in Intelligent Paradigms for Healthcare Enterprises, Current Status of 
Computerized Decision Support Systems in Mammography, Springer, (2005), 173–208. 

114. R. M. Rangayyan, F. J. Ayres and J. E. L. Desautels, A review of computer-aided diagnosis of 
breast cancer: Toward the detection of subtle signs, J. Franklin Inst., 344 (2007), 312–348. 

115. M. Sundaram, K. Ramar, N. Arumugam, et al., Histogram Modified Local Contrast 
Enhancement for mammogram images, Appl. Soft. Comput., 11 (2011), 5809–5816. 

116. P. M. Bolton, S. L. James, J. M. Davidson, et al., Proceedings: Diagnostic and prognostic 
significance of immune competence testing in patients with breast cancer, Br. J. Surg., 61 
(1974), 325–326. 

117. N. Pérez, M. A. Guevara and A. Silva, Improving Breast Cancer Classification with 
Mammography, supported on an appropriate Variable Selection Analysis, in Medical Imaging 
2013: Computer-Aided Diagnosis, Proc. SPIE, (2013). 

118. T. Messay, R. C. Hardie and T. R. Tuinstra, Segmentation of pulmonary nodules in computed 
tomography using a regression neural network approach and its application to the Lung Image 
Database Consortium and Image Database Resource Initiative dataset, Med. Image Anal., 22 
(2015), 48–62. 

119. W. S. Wang, J. W. Luo, X. D. Yang, et al., Data analysis of the Lung Imaging Database 
Consortium and Image Database Resource Initiative, Acad. Radiol., 22 (2015), 488–495. 

120. Y. Rowena, C. I. Henschke, D. F. Yankelevitz, et al., CT screening for lung cancer: Alternative 
definitions of positive test result based on the national lung screening trial and international 
early lung cancer action program databases, Radiology, 273 (2014), 591–596. 



6561 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6536–6561. 

121. M. Oudkerk and M. A. Heuvelmans, Screening for lung cancer by imaging: The Nelson study, 
JBR-BTR, 96 (2013), 163–166. 

122.Z. Y. Ru, X. Xie, H. J. d. Koning, et al., NELSON lung cancer screening study, Cancer Imaging, 
11 (2011), S79–S84. 

123. G. B. Van, A. V. D. Van, T. Duindam, et al., Comparing and combining algorithms for 
computer-aided detection of pulmonary nodules in computed tomography scans: The 
ANODE09 study, Med. Image Anal., 14 (2010), 707–722. 

124. L. Geert, D. Oscar, B. Jelle, et al., Computer-aided detection of prostate cancer in MRI, IEEE 
Trans. Med. Imaging, 33 (2014), 1083–1092. 

125. K. W. Clark, B. A. Vendt, K. E. Smith, et al., The Cancer Imaging Archive (TCIA): 
Maintaining and Operating a Public Information Repository, J. Digit. Imaging, 26 (2013), 
1045–1057. 

126. V. M. Gonçalves, M. E. Delamaro and F. L. S. Nunes, A systematic review on the evaluation 
and characteristics of computer-aided diagnosis systems, Rev. Bras. Eng. Bioméd., 30 (2014), 
355–383. 

127. J. Ma, F. Wu, J. Zhu, et al., A pre-trained convolutional neural network based method for 
thyroid nodule diagnosis, Ultrasonics, 73 (2017), 221–230. 

128. W. Sun, T. B. Tseng, J. Zhang, et al., Enhancing deep convolutional neural network scheme for 
breast cancer diagnosis with unlabeled data, Comput. Med. Imaging Graph., 57 (2017), 4–9. 

129. W. L. Chen, Y. Zhang, J. J. He, et al., Prostate Segmentation using 2D Bridged U-net, ArXiv 
2018, (2018). 

130. F. Milletari, N. Navab and S. A. Ahmadi, V-Net: Fully Convolutional Neural Networks for 
Volumetric Medical Image Segmentation, 2016 Fourth International Conference on 3D Vision 
(3DV), IEEE, (2016). Available from: https://ieeexplore.ieee.org/document/7785132. 

131. S. Hussain, S. M. Anwar and M. Majid, Segmentation of glioma tumors in brain using deep 
convolutional neural network, Neurocomputing, 282 (2017), 248–261. 

132. R. Caruana, in Machine Learning, Multitask Learning, Springer, (1997), 41–75. 
133. I. Guyon, G. Dror, V. Lemaire, et al., Unsupervised and transfer learning challenge, The 2011 

International Joint Conference on Neural Networks, IEEE, (2011).Available from: 
https://ieeexplore.ieee.org/document/6033302. 

134. R. J. Gillies, P. E. Kinahan and H. Hricak, Radiomics: Images Are More than Pictures, They 
Are Data, Radiology, 278 (2016), 563–577. 

135. T. Tran and R. Kavuluru, Predicting Mental Conditions Based on “History of Present Illness” in 
Psychiatric Notes with Deep Neural Networks, J. Biomed. Inf., 75 (2017), S138–S148. 

©2019 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


