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Abstract: Breast cancer is the second most commonly diagnosed cancer in women worldwide. MCF-
7 cell line is an extensively studied human breast cancer cell line. This cell line expresses estrogen
receptors, and the growth of MCF-7 cells is hormone dependent. In this study, a mathematical model,
which governs MCF-7 cell growth with interaction among tumor cells, estradiol, natural killer (NK)
cells, cytotoxic T lymphocytes (CTLs) or CD8+ T cells, and white blood cells (WBCs), is proposed.
Experimental data are used to determine functional forms and parameter values. Breast tumor growth
is then studied using the mathematical model. The results obtained from numerical simulation are
compared with those from clinical and experimental studies. The system has three coexisting stable
equilibria representing the tumor free state, a microscopic tumor, and a large tumor. Numerical
simulation shows that an immune system is able to eliminate or control a tumor with a restricted
initial size. A healthy immune system is able to effectively eliminate a small tumor or produces long-
term dormancy. An immune system with WBC count at the low parts of the normal ranges or with
temporary low NK cell count is able to eliminate a smaller tumor. The cytotoxicity of CTLs plays
an important role in immune surveillance. The association between the circulating estradiol level and
cancer risk is not significant.

Keywords: breast cancer; MCF-7 cell line; long-term dormancy; mathematical modeling; numerical
simulation

1. Introduction

Breast cancer is the second leading cause of cancer death for women worldwide [1, 2].
Approximately 75% of breast cancer cases are estrogen receptor positive [3]. The MCF-7 cell line is a
common in vitro model used for studies on human breast cancer. The popularity of MCF-7 can be
attributed to its estrogen responsiveness through expression of estrogen receptor, making it an idea
model to study the effect of hormones on cell proliferation and protein synthesis [4–6].
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White blood cells are the cells of the immune system that helps the body fight infectious disease and
foreign invaders. All WBCs are produced in the bone marrow and found in the blood and lymphatic
system [7]. The number of WBCs in the blood is often a marker of disease. A low WBC count may
occur as a result of viral infections, cancer treatment, bone marrow condition, or certain diseases [8].
An individual with a low WBC count may increase frequency of infections and fevers and cause low
immunity [9]. Shankar et al. [10] have found an association between WBC count and cancer mortality.
Other clinical studies have reported that there is no significant association between WBC count and
cancer risk or cancer mortality [11–14].

Natural killer cells are specialized WBCs and form a very important component of the innate
system. They are able to detect early-stage developing tumors and secrete immuno-regulatory
cytokines and numerous chemokines that directly and effectively eliminate tumor cells. This process
is sometimes called immune surveillance, and it is an important process to prevent neoplastic cells
from developing into tumors. Cytotoxic T lymphocytes, which are produced in the bone marrow and
migrate to the thymus for maturation, are key players of adaptive immune system. Upon activation of
CTLs, the T-cell antigen receptors expressed on CTLs allow them to monitor all cells of the body,
ready to destroy infected cells. Cytotoxicity is mediated through Fas or perforin pathways inducing
apoptosis in target cells [15].

Despite the antitumor effect of NK cells and CTLs, there are still neoplastic cells that escape
immune surveillance. However, even a fast growing tumor cannot grow beyond 1-2 mm in diameter
without angiogenesis. At this stage, a balance exists between cell proliferation and apoptosis, and
tumors may maintain dormant for years. Furthermore, clinical evidence has suggested that many of us
have microscopic tumors that remain asymptomatic and never develop and progress to become large
and lethal [16–18]. In fact, it has been estimated that more than one third of middle aged women who
have never been diagnosed with breast cancer throughout their life were found at autopsy with in situ
tumors in their breast [16]. When tumors develop their own vascularization, they can grow much
larger and become lethal.

Mathematical modeling of tumor growth is a powerful tool to understand, predict, and improve the
outcome of a treatment regimen. A mathematical model of tumor growth often includes
tumor-immune interaction which is an important component for the model to produce clinical
phenomena. Most mathematical models for cancer are based on differential equations [19]. While
partial differential equations have been employed to model the spatio-temporal growth and spread of
cancer cells, ordinary differential equations (ODEs) have been used to investigate the interactions
among cancer cells, immune cells, and cytokines [20]. ODE systems with two or three cell
populations, which usually contain tumor cells and effector cells, have been constructed to study the
population dynamics [21–30]. These models are able to capture the essential patterns of tumor growth
and decay: exponential/oscillatory growth or decay of tumor cells. Forys et al. [30] and de Vladar and
González [29] have reported the existence of stable small tumor equilibria in their models. These
dynamics can describe dormant or persistent microscopic tumors. However these results are merely
obtained by mathematical models [29, 30] while the interaction terms and parameter values in the
mathematical models have not been verified by experimental or clinical data.

More complex models involving more equations are devised to study particular aspects of tumor
biology and have been able to provide significant insights into the mechanisms of tumor-immune
interactions. These models inevitably involve more parameters and thus less well parameterized [20].
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de Boer et al. [31] have considered an ODE system of eleven equations and reported that the cytotoxic
T lymphocyte (CTL) count depends on the time of T helper cell activation. They have also pointed
out that a tumor with strong antigenicity is destroyed by CD8+ T cells while a tumor with weak
antigenicity is destroyed by macrophages. Numerical simulation using an ODE system of six
equations by Cappuccio et al. [32] has suggested that IL-21 can be used to treat non-immunogenic
tumors but not highly immunogenic tumors. Kronik st al. [33] have proposed a model, which includes
gliomas cancer cells, CTLs, MHC class I and II molecules, and two cytokines, to study the effects of
immunotherapy.

Jarrett et al. [34] have proposed a mathematical model of HER2+ breast cancer with immune
response and studied the outcomes of trastuzumab treatment. Annan et al. [35] have constructed an
ODE system describing the interactions between breast cancer cells and immune cells including
CTLs, macrophages, NK cells, and helper T cells. Roe et al. [36] have presented a mathematical
model to study the effect of chemotherapy on breast cancer. Most of the parameter values and the
functional forms in these studies have not been justified by experimental and clinical data. The
purpose of this paper is to build a mathematical model using ODEs which describe MCF-7 breast
tumor growth, tumor-immune interaction, and tumor-estrogen interaction. Experimental data from
several research studies are used to determine the functional responses and parameter values in the
mathematical model. The dynamics produced by the mathematical model are to be compared with
experimental and clinical phenomena. To provide details, the mathematical model is presented in
Section 2. Numerical examples and discussion are given in Section 3. Finally, a brief conclusion is
made in Section 4.

2. Mathematical model

The model considered in this paper consists of five state variables: the MCF-7 tumor population T
(cells), the circulating level of estradiol E (pmol/L), NK cell population N (cells/L), CTL (or CD8+ T)
cell population L (cells/L), and WBC population C (cells/L). The mathematical model is described as
the following ODEs:

dT
dt

= (a + IT E(T, E))T (1 − T/K) − IT N(T,N) − IT L(T, L), (2.1)

dN
dt

= eC − f N − p2NT + INT (T,N), (2.2)

dL
dt

= (p4LN +
p5I

α4 + I
L)(1 − L/KL)

T
α5 + T

− dL, (2.3)

dC
dt

= α − βC, (2.4)

where E(t) is a periodic function and t is in days.
Tumor growth includes an initial exponential growth phase followed by a linear growth phase.

As tumors grow, the availability of resources (nutrients, oxygen, and space) decreases resulting in
deceleration of tumor growth, and the tumor size eventually reaches its maximum value [5, 37]. The
tumor population T is assumed to follow a logistic or sigmoidal curve including three phases: an
exponential phase, a linear phase, and a plateau phase. The parameter a is the intrinsic growth rate,
and K is the carrying capacity of the tumor.
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The proliferation of MCF-7 cells is known to be stimulated by E2. The term IT E(T, E) represents
the interaction between MCF-7 cells and E2. The terms IT N(T,N) and IT L(T, L) represents tumor
lysis by NK cells and CTLs, respectively. The term INT (T,N) represents recruitment of NK cells in the
presence of tumor cells. Because NK cells are a type of WBCs, the growth of NK cells, eC, depends on
the concentration of WBCs. The parameter f represents the death rate of NK cells, and the parameters
α and β represent the birth and death rate of WBCs, respectively. NK cells release perforin, which
forms pores in the cell membrane of the target cell. They also release granzymes, which enter through
these pores, inducing apoptosis. An activated NK cell can kill 4 target cells in 16 hours, and then it
appeared to be exhausted due to significant reduction in perforin and granzyme B content [38,39]. The
term −p2NT , which is adopted from a model of tumor-immune interactions by de Pillis et al. [28],
describes that NK cells become inactivated after some encounters with tumor cells, and the parameter
p2 = 3.42 × 10−6 represents the mean inactivation rate.

A normal range for the WBC count is 4−12×109 cells per liter [40]. Experimental data by [41] have
shown that healthy young individuals have NK cell counts of (3.87 ± 1.64) × 108 cells/L (Mean±SD)
and healthy elderly individuals have NK cell counts of (3.77 ± 2.21) × 108 cells/L. It is known that
approximately 34% of WBCs are lymphocytes in human blood [42]. Pascal et al. have reported 2 to
31% of NK cells within blood lymphocytes in a group of healthy adults [43]. Thus an immune system
with an equilibrium NK cell count of 4 × 108/L and WBC count of 5.7 × 109/L is considered to be a
normal healthy immune system. The equilibrium concentration of WBC is α/βwhich is determined by
Eq (2.4). The parameter value β = 6.3 × 10−3 in a research study by de Pillis [44] is used in this paper.
An equilibrium WBC concentration of 5.7 × 109 cells per liter implies α = 5.7 × 109 × 6.3 × 10−3 =

3.6 × 107. Experimental data from a research study by Zhang et al. [41] have shown that the half-life
of NK cells is about 10 days, and this implies f = 0.0693. An equilibrium NK cell count of 4 × 108/L
in the absence of tumor cells implies e = f N/C = 0.0693×4×108/5.7×109 = 0.00486. Consider that
the size of an MCF-7 cell is 15-25 µm in diameter [45, 46] and a tumor of 2 cm in diameter is within
the diagnostic capabilities [47]. Assuming that an MFC-7 cell is 20 µm in diameter, an MCF-7 tumor
of 2 cm in diameter contains 109 tumor cells. Several research studies [27, 28, 48–51] have also used
109 cells for the carrying capacity K in their mathematical models. In this model, the carrying capacity
K = 109 is used.

The matured T cells are considered as naive T cells as they have not encounter appropriate antigen.
The number of mature T cells increases progressively during young life and then remains relatively
constant during adulthood [52]. An activation of naive CD8+ T cells requires two signals. The first
signal occurs when a naive CD8+ T cell encounters and interacts with an antigen presenting cell, such
as a dendritic cell and a macrophages, through the T cell receptor (TCR) binding to MHC molecules.
The second signal, the co-stimulatory signal, is provided by interaction between CD28 and B7 on the
membrane of the T cell and APC, respectively [15]. Once activated, CD8+ T cells undergoes clonal
expansion with interleukin-2 (IL-2) stimulation [53]. At the end of immune response, CD8+ T cells
undergo a contraction phase during which about 90% of CD8+ T cells die. The cells that survive
apoptosis become memory cells for a rapid secondary response to antigen [54].

The term T/(α5 + T ) is used to model the phenomenon that CTLs are activated in the presence of
tumor cells and undergo apoptosis at the end of immune response. The constant α5 is assumed to be
a relatively small number compared with the carrying capacity, K, of tumor cells. In this paper, α5 =

1000 is assumed. From the clinical data by Gruber et al. [55] in a study of relationship between tumor
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cells and T lymphocytes in breast cancer patients, the patients had CTL counts of 365 ± 194 cells/µL
(Mean±SD) and naive CTL counts of 237 ± 112 cells/µL. The constant LN in Eq (2.3) represents the
number of naive CTLs, and LN = 2.3×108 cells/L is assumed in this paper. The constant KL represents
the carrying capacity of CTLs and KL = 8 × 108 cells/L, which is about mean+2SD, is assumed.
Homann et al. [56] have reported that during primary immune response CTLs have a doubling time
of 6-10 hours between days 5 and 7 and 24–36 hours between days 7 and 9. The number of CTL
population reaches its peak on day 8. De Boer et al. [57] have reported that the half life of CTLs
is approximately 41 hours (about 1.7 days) during the contraction phase. This gives a death rate of
d = ln2/1.7 = 0.41 in Eq (2.3). The term p5I

α4+I L represents proliferation of CTLs, where I represents
the concentration of IL-2 (g/L). Assume that the average of doubling time during the expansion phase
is 8 hours. This gives a growth rate of p5I

α4+I = 3ln2 = 2.07. To estimate the parameter value for p4,
assume that T/(α5 + T ) ≈ 1 in the presence of tumor during the expansion phase, and the number
of CTL population reaches a level at 90% of its carrying capacity KL, which is 7.2 × 108 on day 8.
Equation (2.3) is reduced to

dL
dt

= (p4LN +
p5I

α4 + I
L)(1 − L/KL) − dL, (2.5)

with conditions L(0) = 0 and L(8) = 7.2×108. Solving for p4 in the above equation gives p4 = 9×10−5.
The interactions between immune cells and tumor cells are usually described by functional

responses of the predator-prey type [20]. The typical forms of the predator-prey type are based on
Lotka Volterra, Holling type II, or Holling type III [58]. These forms with predator interference can
be sumarised as Ixy(x, y) = p̄xλ1yλ2/(1 + ᾱxλ1 + β̄yλ2). For example, the interaction term Ixy is Lotka
Volterra functional response if λ1 = λ2 = 1 and ᾱ = β̄ = 0, and Ixy is of Holling type II with predator
interference if λ1 = λ2 = 1. The functional responses with λ1 = 1 or 2 and λ2 = 1 or 2 will be
considered in this paper.

2.1. MCF-7 cells growth and the effect of E2

Let Td be the doubling time of the MCF-7 cell population. Then a = ln2/Td. It has been found that
the growth of MCF-7 cells in vitro varies over a large range in the absence of estrogens. Experimental
data have shown that the population doubling time ranges between 30 hours and several days [59–61].
A doubling time of 30 hours is corresponding to a = ln2/(30/24) = 0.55 whereas a doubling time of
10 days is corresponding to a = ln2/10 = 0.069. A value falls in the range 0.069-0.55 is considered a
reasonable parameter value for a. MCF-7 cells contain estrogen receptors and are estrogen responsive.
Consider the following functional response for IT E(T, E):

IT E(T, E) =
cEλ1T λ2−1

1 + α1Eλ1 + β1T λ2
. (2.6)

The parameters λ1 = 1 or 2, and λ2 = 1 or 2. Parameters α1 and β1 are positive constants. The MCF-7
growth in the presence of E2 becomes

dT
dt

= (a +
cEλ1T λ2−1

1 + α1Eλ1 + β1T λ2
)T (1 − T/K). (2.7)

Equation (2.7) is used to fit the experimental data by Nawata et al. [59], where the E2 concentration
is 10−8M. Figure 1 shows the experimental data and the fitting curve. The experimental data show
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that a population level of 4 × 106 cells is at the log growth phase. Therefore, K = 107 and E2 =

10000 (pmol/L) are used in this fitting. Let xi, i = 0, 1, · · · , 4 be the number of tumor cells from
experimental data shown in Figure 1 . The parameters a, c, α1, and β1 are to be found for minimizing√∑4

i=0((Ti − xi)/xi)2, where Ti = T (3i) is the solution of Eq (2.7) with initial condition T (0) = 2× 104.
Different sets of (λ1, λ2) values are fitted separatedly. The Nelder Mead simplex method is employed
to solve the least square error of the fitting. The ODE solver is the Runge Kuta method. The Matlab
build-in functions fminsearch and ode45 can also fulfill the tasks. Figure 1 shows that λ1 = 1 and
λ2 = 2 can best fit Eq (2.7) to the data with the parameter values a = 0.3, c = 1.93 × 10−6, α1 = 0.507,
and β1 = 7.08 × 10−8.
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Figure 1. Curve fitting for IT E and parameter values a, c, α1, and β1.

2.2. Tumor lysis by NK cells

The term IT N(T,N) representing cytolysis of NK cells is modeled as follows:

IT N(T,N) =
p1T λ1 Nλ2

1 + α2T λ1 + β2Nλ2
. (2.8)

Parameter p1, α1, and β1 are positive constants to be determined by experimental data. The interaction
between NK cells and tumor cells includes IT N(T,N) and −p2NT , where p2 = 3.42 × 10−6. Consider
the following equations:

dT
dt

= −
p1T λ1 Nλ2

1 + α2T λ1 + β2Nλ2
, (2.9)

dN
dt

= −p2NT. (2.10)

The experimental data used in this fitting were provided by Caragine et al. [62], and 4-hour chromium-
51 release assays were used in the cytolysis assays. Note that the experiment has been conducted
to study MFC-7 tumor cell lysis by NK cells. Figure 2 shows the experimental data and the fitting
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curve. Let xi, i = 0, 1, 2, 3 be the experimental data points in Figure 2 and yi = (T (0) − T (4/24))/T (0),
where T (4/24) is the solution to Eqs (2.9) and (2.10) with T (0) = 106 given in [62] and N(0) = Ni,
where N0 = 0, N1 = 25T (0), N2 = 50T (0), and N3 = 100T (0). The fitting process is formed using
different sets of (λ1, λ2). The parameter values for p1, α2, and β2 are to be determined for minimizing√∑3

i=0(yi − xi)2. It has been found that λ1 = 1 and λ2 = 2 can best fit Eqs. (2.9) and (2.10) to the data,
with the parameter values p1 = 8.7 × 10−4, α2 = 7 × 106, β2 = 5.4 × 10−5.
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Figure 2. Curve fitting for IT N and parameter values p1, α2, and β2.

2.3. Tumor lysis by CLTs

The term IT L(T, L) representing cytolysis by CTLs is modeled as follows:

IT L(T, L) =
p6T λ1 Lλ2

1 + α6T λ1 + β6Lλ2
. (2.11)

The fitting process is similar to that in Section 2.2. Using the experimental data in [63], (λ1, λ2) = (1, 1)
or (2,1) can better fit Eq (2.11) to the data than (λ1, λ2) = (1, 2). Note that the experiment has been
conducted to study MFC-7 tumor cell lysis by CLTs. The parameter values p6 = 2.36 × 10−4, α6 = 0,
β6 = 6.04 × 10−5 are determined for (λ1, λ2) = (1, 1) and p6 = 2.38 × 10−8, α6 = 0, β6 = 4.3 × 10−5 are
determined for (λ1, λ2) = (2, 1). Figure 3 shows the experimental data and the fitting curve.

2.4. Recruitment of NK cells

The term INT (T,N) represents the recruitment of NK cells to the tumor site. To model the
recruitment of NK cells, consider the following equations:

dT
dt

= aT (1 − T/K) −
p1T N2

1 + α2T + β2N2 −
p6T 2L

1 + α6T 2 + β6L
, (2.12)
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dN
dt

= eC − f N − p2NT +
p3T λ1 Nλ2

1 + α3T λ1 + β3Nλ2
, (2.13)

dL
dt

= (p4LN +
p5I

α4 + I
L)(1 − L/KL)

T
α5 + T

− dL. (2.14)
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Figure 3. Curve fitting for IT L and parameter values p6, α6, and β6.

The form and parameter values of the functional response for recruitment of NK cells are to be
determined using the experimental data from a research study by Chen et al. [64]. The experiment
has been conducted to study and compare different treatment starting after 7 weeks of the presence of
MCF-7 breast cancer in ovariectomized nude mice. Therefore, the term IT E is dropped out of Eq (2.12).
The experimental data set used in this fitting is the one without treatment. It is assumed that the CTL
and NK counts have reached high levels after 7 weeks of the presence of tumor cells, and thus the initial
conditions of Eqs (2.12)–(2.14) are given by T (0) = 5.7×106, N(0) = 2×108, and L(0) = 3×108. The
proliferation of CTLs slows down to a doubling time of 24–36 hours after reaching the peak level [56].
Using an average doubling time of 30 hours, 1.25 days, gives p5I/(α4 + I) = ln2/1.25 = 0.55 in this
fitting. Other experimental data have shown WBC counts of (4.3 ± 0.8) × 103 cells/µL in mice [65].
The concentration of WBC is assumed to remain an equilibrium concentration C = 4.3× 109 cells/L in
this fitting. The other parameter values have been determined in the previous subsections. The fitting
process is similar to that in Section 2.1, where p3, α3, and β3 are unknown parameters. Figure 4 shows
the experimental data and the fitting curve for all sets of (λ1, λ2) values.

Figure 4 also shows that the model, Eqs (2.12)–(2.14), with the parameter values determined in the
previous subsections gives strong cytotoxic function that cannot well fit the in vivo data. The fitting
process is repeated using (λ1, λ2) = (1, 1) and unknown parameters p3, α3, β3, p6, α6, and β6. It has
been found that the result of the fitting is satisfactory, Figure 5 shows the experimental data and the
fitting curve, and the parameter values p3 = 1.87 × 10−8, α3 = 1.6 × 10−5, β3 = 3.27, p6 = 2.04 × 10−3,
α6 = 0.268 × 10−6, and β6 = 4343 are determined.
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Figure 5. Curve fitting for INT and parameter values p3, α3, β3, p6, α6, and β6.

2.5. E2 concentration

Finally, the blood content of estradiol provided by Wu et al. [66] is used for the periodical function
E(t). Let τ = 29 be the period of E(t), and Ẽ(t), t ∈ [0, τ) be the function whose graph is shown in
Figure 6. Then E(t) = Ẽ(t − nτ) for t ∈ [nτ, (n + 1)τ).
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2.6. ODE model and parameter values

Using the specific forms for Eqs (2.1)–(2.4) leads to the following equations:

dT
dt

= T (a +
cET

1 + α1E + β1T 2 )(1 − T/K) −
p1T N2

1 + α2T + β2N2 (2.15)

−
p6T 2L

1 + α6T 2 + β6L
, (2.16)

dN
dt

= eC − f N − p2NT +
p3NT

1 + α3T + β3N
, (2.17)

dL
dt

= (p4LN +
p5I

α4 + I
L)(1 − L/KL)

T
α5 + T

− dL, (2.18)

dC
dt

= α − βC, (2.19)

E(t) = Ẽ(t − nτ), t ∈ [nτ, (n + 1)τ). (2.20)

A simulation study by Nikolopoulou et al. [67] have reported that the IL-2 density is not very dynamic
and the equilibrium density of IL-2 is about 2.37 × 10−8g/L which is also the value for half saturation
constant α4. This assumption gives p5 = 4.14 since p5I

α4+I = 2.07. The parameter values are summarized
and shown in Table 1.
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Figure 6. Estradiol levels across the menstrual cycle.

3. Numerical simulations and discussion

In this section, the dynamics of the model, Eqs (2.16)–(2.20), with parameter values shown in
Table 1 are to be studied. For the tumor free case, Eqs (2.16)–(2.20) with parameter values shown in
Table 1 give that an immune system has equilibrium levels of NK cell population and WBC population
are 4 × 108 cells/L and 5.7 × 109 cells/L, respectively.
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Table 1. Parameter values in Eqs (2.16)–(2.20).

Parameter Value Units Reference
a 0.3 Day−1 fitted with data [59]
c 1.93 × 10−6 L Cell−1 Day−1 pmol−1 fitted with data [59]
α1 0.507 L pmol−1 fitted with data [59]
β1 7.08 × 10−8 Cell−1 fitted with data [59]
K 109 Cell [27, 28, 48–51]
p1 8.7 × 10−4 L2 Cell−2 Day−1 fitted with data [62]
α2 7 × 106 Cell−1 fitted with data [62]
β2 5.4 × 10−5 L2 Cell−2 fitted with data [62]
β 6.3 × 10−3 Day−1 [44]
α 3.6 × 107 Cell L−1 Day−1 Estimated within bounds [40]
e 0.00486 Day−1 Estimated within bounds [41]
f 0.0693 Day−1 Estimated from data [41]

p2 3.42 × 10−6 Cell Day−1 [28, 100]
p3 1.87 × 10−8 Cell −1 Day−1 fitted with data [62]
α3 1.6 × 10−5 Cell−1 fitted with data [62]
β3 3.27 L Cell−1 fitted with data [62]
p6 2.04 × 10−3 L Cell−2 Day−1 fitted with data [62]
α6 0.268 Cell−2 fitted with data [62]
β6 4343 L Cell−1 fitted with data [62]
LN 2.3 × 108 Cell L−1 Estimated from data [55]
KL 8 × 108 Cell L−1 Estimated from data [55]
p4 9 × 10−5 Day−1 Estimated from data [55, 56]
I 2.3 × 10−11 g L−1 [67, 107]
α4 2.3 × 10−11 g L−1 [67, 107]
p5 4.14 × 10−3 L Cell−2 Day−1 Estimated from data [56]
d 0.41 Day−1 Estimated from data [57]
α5 1000 Cell Assumed

3.1. Normal immune system

Vacca et al. have reported that the immune system is able to eliminate tumors at initial stages [68],
and it has been demonstrated that most tumor cells entering the circulation are destroyed during the first
24 hours [69–71]. In the first numerical experiment, an initial tumor burden of 106 cells, T (0) = 106,
is considered. In this case, it is assumed that the tumor has escaped immune surveillance and grown to
reach a population level of 106 cells. Note that a tumor of 106 cells has a size about 2 mm in diameter
and is clinically undetectable. Furthermore, assume that this is the first immune response against the
cancer so no effector CTL is present initially. That is L(0) = 0. While the activation of CTLs requires
some time, Figure 7(a) shows that NK cells provide the first line of defense against cancer and are able
to quickly eliminate the tumor.
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Suppose that the immune system fails to become activated against a tumor so the tumor grows to a
population level of 2 × 106 cells. A tumor of 2 × 106 cells has a size of less than 3 mm in diameter.
Figure 7(b) shows that a healthy immune system is able to control but not able to completely eliminate
this tumor. The size of the tumor decreases to a population level of about 6 × 105 cells and has a
size of less than 2 mm in diameter. Then the tumor remains small and stable. Evidence suggests that
many microscopic tumors never progress to become invasive, a phenomenon termed “cancer without
disease” [16–18,72]. At this stage, a balance between immune response and tumor growth could result
in long-term persistence of tumor dormancy. Figure 7(c) shows that a healthy immune system is not
able to control a tumor of 4× 106 cells, which has a size of 3.2 mm in diameter. The tumor grows to its
carrying capacity eventually. The NK cell population remains at a low population level after the tumor
reaches its carrying capacity.

Clinical and experimental observations have demonstrated the existence of immunosurveillance
process that can destroy cancer cells or prevent primary tumor growth. The cancer immunoediting
hypothesis has been developed based on these findings. Cancer immunoediting, which describes the
relation between the tumor cells and the immune system, is composed of elimination, equilibrium,
and escape phases [73, 74]. Elimination is refered to as classical concept of immunosurveillance.
Equilibrium occurs when the immune system fails to completely eliminate the tumor but is able to
control the tumor leading to long term dormancy. Escape refers to the tumor outgrowth. Figs. 7(a)-(c)
show that the system has three locally stable equilibria: the tumor free equilibrium, the equilibrium
representing a microscopic tumor, and the equilibrium representing a large tumor.

During the contraction phase, 5-10% of CTLs differentiate into memory T cells [56]. Memory T
cells can be immediately activated and trigger the second immune response when the individual is
exposed to the same pathogen the next time. Figs. 7(b) and (c) shows that the CTL population reaches
a high level of 6.4 × 108 cells/L after the expansion phase. Assume T (0) = 4 × 107 which is about 6%
of the CTL population at the peak level. Figure 7(d) shows that the second immune response is able to
eliminate a tumor of 2 × 106 cells which is larger than the tumor that an immune system can eliminate
in the first response. A tumor of 4×106 cells grows to its carrying capacity during the second response
(the graph is not shown). Note that although the solutions shown in Figs. 7(a)-(c) appear to approach
equilibria, these solutions oscillate with very small amplitudes since E(t) is periodic. These periodic
solutions are referred to as equilibria throughout the paper for convenience because their oscillation
amplitudes are too small to be seen.

3.2. The effect of CTL cytotoxicity

Recall that the parameter values fitted to the in vitro data, Figure 3, gives relatively strong
cytotoxicity of CTLs against tumor cells compared to the in vivo data. Tumors may secrete molecules
that weaken and inhibit CTL functions [75] or express molecules that directly inhibit the killing
ability of CTLs such as immune checkpoint molecules CD80 or PD-L1 [76]. Adoptive cell transfer
(ACT) therapy can produce highly active CTLs which give strong immune response [77]. Immune
checkpoint therapy using checkpoint inhibitor antibodies, such as anti PD-1, anti PD-L1, or anti
CTLA-4, can overcome tumor-induced immune dysfunction and enhance immune response against
cancer [78].

The parameter p6, which is related to the killing activity of CTLs, can be used as an indicator of
the strength of cytotoxicity of CTLs. Let p6 = 4 × 10−3 which is twice the cytotoxic strength used in
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Figure 7. A healthy normal immune system using parameter values listed in Table 1
with initial conditions (a) (T (0),N(0),C(0), L(0)) = (106, 4 × 108, 4 × 109, 0) and (b)
(T (0),N(0),C(0), L(0)) = (2 × 106, 4 × 108, 4 × 109, 0), (c) (T (0),N(0),C(0), L(0)) =

(4×106, 4×108, 4×109, 0), and (d) (T (0),N(0),C(0), L(0)) = (2×106, 4×108, 4×109, 4×107).

Section 3.1. Figure 8(a) shows that the immune system is able to eliminate a tumor of 4 × 106 cells.
When the immune system detects the presence of the tumor, the NK cells fight against the tumor cells
during the activation phase, where CTLs are at a low population level. The tumor continues to grow
during the activation and expansion phases. After the expansion phase, CTLs are able to control the
growth of the tumor and then eliminate the tumor. It is followed by a contraction phase at the end of
the immune response. Figure 8(b) shows this immune system is able to eliminate a tumor of 3 × 107

cells, which has a size of 6 mm in diameter, when p6 = 2.04 × 10−2. The population level of NK cells
decreases initially when the immune system is fighting against the tumor. After the tumor has been
killed, the immune system starts to recover and strengthen.

3.3. NK cell lymphopenia

The dynamical system, Eqs (2.16)–(2.20), with parameter values listed in Table 1 exhibits
multistability. The asymptotic behavior of a solution depends on its initial conditions, which are the
initial level of tumor cell population T (0), the initial NK cell count N(0), the initial NK cell count
N(0), and the initial WBC count, C(0). Lymphopenia is the condition of having an abnormally low
lymphocyte count in the bloodstream. Ebbo et al. [79] have studied the impact of low circulating NK
cell counts and found a correlation between NK cell lymphopenia and invasive bacterial infections.
Patients with severe NK cell lymphopenia have higher incidence of invasive bacterial infections.
Although the experimental data in their study have shown negative association between cancer risk
and the NK cell count, the correlation is not significant.
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Figure 8. A immune system parameter values listed in Table 1 and different p6 values and
initial conditions, (a) p6 = 4×10−3 and (T (0),N(0),C(0), L(0)) = (4×106, 4×108, 4×109, 0)
and (b) p6 = 2.04 × 10−2 and (T (0),N(0),C(0), L(0)) = (3 × 107, 4 × 108, 4 × 109, 0).

An individual with severe or mild NK cell lymphopenia has an NK cell count of < 5×107cells/L or
5 − 9 × 107cells/L, respectively [79]. In a cohort of 457 common variable immunodeficiency patients,
21.7% of the patients have severe NK cell lymphopenia, 25.8% of the patients have mild NK cell
lymphopenia, and 52.5% of the patients have normal NK cell counts. In a cohort of 145 healthy adults,
5% of theses healthy controls have NK cell counts below 63 × 106 NK cells/L (Figure S1 of [79])
indicating that a healthy individual may have severe NK cell lymphopenia. Suppose that a low NK
cell count is temporary. The case of persistent lymphopenia will be discussed in the next subsection.
Figure 9(a) shows that an individual with mild NK cell lymphopenia, where N(0) = 8×107, can rapidly
eliminate a tumor of 2 × 105 cells, which has a size of 1 mm in diameter. Figure 9(b) shows that the
immune system is able to control a tumor of 106 cells but is not able to completely eliminate the tumor
which a heathy immune system can effectively eliminate.

When an individual suffers from severe NK cell lymphopenia, where N(0) = 2 × 107, Figure 9(c)
show that the immune system is able to eliminate a tumor of 1 mm in diameter after the CTL population
is expanded. Figure 9(a)–(c) show that an individual with severe or mild NK cell lymphopenia can
eliminate a tumor of 2 × 105 cells but is not able to completely eliminate a tumor of 106 cells which a
heathy immune system can effectively eliminate.

3.4. Weakened immune system

Low WBC counts weaken the immune system and increase the risk of bacteria and virus infection.
Some studies have suggested correlation between WBC count and coronary heart disease, stroke, and
cancer mortality [80–82]. Other studies have reported that impact of the WBC count on cardiovascular
disease is inconsistent [83, 84]. Clinical studies have found that a weakened immune system may
increase risk of new cases of cancer in immunocompromised populations [11, 85–87]. Jee et al. [80]
have shown that patients with WBC counts of < 5×109 have higher cancer mortality than patients with
WBC counts of 5− 8× 109 do. Nevertheless Kim et al. [11] have reported that the association between
cancer risk and WBC count is inconsistent.

Conditions, such as infectious diseases, chemotherapy, drugs, anemia, splenic dysplasia, birth
disorders, or damaging the bone marrow can lead to a low WBC count [88]. In this subsection, a
system with an eqilibrium WBC count and an eqilibrium NK cell count lower than the normal ranges
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Figure 9. Immune systems with NK lymphopenia using parameter values listed in Table
1 with initial conditions (a) (T (0),N(0),C(0), L(0)) = (2 × 105, 8 × 107, 4 × 109, 0), (b)
(T (0),N(0),C(0), L(0)) = (106, 8 × 107, 4 × 109, 0), and (c) (T (0),N(0),C(0), L(0)) =

(2 × 105, 2 × 107, 4 × 109, 0).

is considered. The parameter α is related to the production rate of while blood cells. A lower
production rate of WBCs corresponds to a smaller α value. An individual with α = 1.575 × 107 has an
equilibrium WBC count of α/β = 2.5 × 109, where clinical studies consider 2.5 × 109 cells/L as a low
WBC count [89–92]. Let e = 8.32 × 10−4, and the equilibrium NK cell count in the absence of a
tumor becomes 5 × 107 cells/L which is lower than the normal values. Furthermore, let p4 = 3 × 10−5

indicating a lower activation in CTL immune response. All other parameter values are listed in
Table 1. Figure 10 shows the ability of an immune system, with a low WBC count and a low NK cell
count, to fight a cancer. The immune system is able to effectively eliminate a tumor of 2 × 105 cells as
shown in Figure 10(a). Figure 10(b) shows that the immune system is able to control a tumor with an
initial population level of 106 cells, and Figure 10(c) shows that a tumor with an initial population
level of 2 × 106 cells will eventually grow to its carrying capacity.

3.5. Effect of E2

Experimental and clinical data support that circulating estradiol is positively associated with breast
cancer risk in postmenopausal women [93–96]. However, in premenopausal women, most prospective
studies found no significant association between breast cancer risk and estrogens [96–99]. The
numerical simulation using parameter values in Table 1 with a 10-fold increase in the circulating
estradiol level shows that the immune system is able to effectively eliminate a tumor of 106 cells and
control a tumor of 2 × 106 cells. A tumor of 4 × 106 cells grows to its carrying capacity. In the case of
a 100-fold increase in the circulating estradiol level, the numerical simulation shows that the immune
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Figure 10. A weakened immune system using parameter values α = 1.575× 107, e = 8.32×
10−4, p4 = 3 × 10−5, and all other parameter values listed in Table 1 with initial conditions
(a) (T (0),N(0),C(0),T (0), L(0)) = (2×105, 5×107, 4×109, 0), (b) (T (0),N(0),C(0), L(0)) =

(106, 5 × 107, 2.5 × 109, 0), and (c) (T (0),N(0),C(0), L(0)) = (2 × 106, 5 × 107, 2.5 × 109, 0)

response against cancer is similar to the case of a 10-fold increase. Figures of numerical simulation in
this subsection are not shown because the figures resemble those that appear in the previous
subsections. The numerical results suggest that an increase in the circulating estradiol level does not
show a significant increase in cancer risk.

4. Conclusion

A review of previously published mathematical models of tumor-immune interactions [20] has
pointed out that most of these studies present the results derived from mathematical models and very
few experimental or clinical results have been compared with these results obtained with
mathematical models. Moreover, many of these models have not considered a specific cancer type or
justified the functional forms using clinical or experimental data. In this paper, a mathematical model
for the growth of breast tumors of MCF-7 cell line is constructed. All the parameter values (except for
p2, β, and α5) as well as the forms of functional responses for the effect of estradiol, tumor lysis by
NK cells, and recruitment for NK cells have been estimated using experimental
data [40, 41, 45, 46, 55–57, 59–64, 66]. The parameter values for the mean inactivation rate for NK
cells p2 and the death rate of WBCs β can be found in the study by de Pillis et al. [28, 44, 100]. The
results of the fitting procedures are shown in Figures 1–6.

Numerical simulation shows that a healthy normal immune system exhibits multistability where the
tumor free, microscopic tumor, and large tumor equilibria are stable. The phenomena resemble the 3
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E’s of cancer immunoediting [73, 74]. The immune system is able to rapidly eliminate a tumor with a
restricted initial size and the critical size of a tumor that the immune system can eliminate is about 2
mm in diameter (Figure 7). Several experimental studies have demonstrated that NK cells can rapidly
eliminate a tumor at initial stages [68, 101–103]. A healthy normal immune system may also produce
long-term dormancy (Figure 7(b)). The tumor does not grow to become large or lethal and remains
at an equilibrium size of less than 2 mm in diameter. This phenomenon has been widely observed in
clinical studies [16–18, 72]. Clinical and experimental studies have suggested that an immune system
may increase its antitumor effect by enhancing the cytotoxicity of CTLs using ACT therapy, tumor
vaccines, or checkpoint antibodies [104–106]. Numerical simulation shows that an immune system
with a stronger killing activity, a larger p6 value, can eliminate a larger tumor (Figure 8).

An individual suffering from temporary NK cell lymphopenia has a low NK cell count. Numerical
simulation demonstrates that there is a positive association between the size of a tumor which an
immune system is able to effectively eliminate and the initial NK cell count. Although an immune
system with NK cell lymphopenia is not able to effectively eliminate a tumor that a healthy normal
immune system is able to (Figure 7(b)), it can rapidly eliminate a smaller tumor (Figure 9(a)). This
also suggests that a lower NK cell count may increase cancer risk but the relationship is not significant.
Clinical data [79] have shown a similar result that the group with lower NK cell counts has higher
tumor incidence rate but the association is not significant.

Immune system strength is important in determining whether or not an immune system is able to
eliminate a small tumor. Leukopenia, a low WBC count, is associated with several clinical disorders
[88]. Numerical simulation shows that a weakened immune system with persistently low NK cell and
WBC counts and a slower activation of CTL immune response may fail to control the growth of a
tumor which a healthy immune system is able to control (Figures 7(b) and 10(c)). Finally, numerical
simulation also shows that the effect of the estradiol concentration E2 on formation of a tumor is not
significant which agrees with observations by previous research studies [96–99].
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29. H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of
immunological activity and therapy, J. Theor. Biol., 227 (2004), 335–348.
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