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Abstract: Aiming to construct a simple stochastic model able to describe systems alternating due to
state-dependent dichotomous noise, we consider a generalized telegraph process whose sample-paths
fluctuates around the zero state. Indeed, the latter process describes the motion of a particle on the real
line, which is characterized by constant velocities and state-dependent intensities that vanish when the
motion is toward the origin. This assumption allows to adopt an approach based on renewal theory
to obtain formal expressions of the forward and backward transition densities of the process. The
special case when certain random times of the motion possess gamma distribution leads to closed-form
expressions of the transition densities, given in terms of the generalized Mittag-Leffler function. We
also analyze a first-passage-time problem for the considered process in the presence of two constant
boundaries.

Keywords: telegraph process; random motion; intensity function; interarrival times; gamma
distribution; generalized Mittag-Leffler function; first-passage-time problem, constant boundaries

1. Introduction

Formal models in Neuroscience and Physics are often based on stochastic processes subject to fluc-
tuating behavior due to dichotomous noise. See, for instance, the review given in Bena [1] where some
prototypical examples are treated with an emphasis on analytically-solvable cases. An interesting ex-
ample can be found in Li et al. [2], where a detailed analysis is performed on the effect of correlated
dichotomous noises on stochastic resonance in linear systems. See also Jin et al. [3] where a peri-
odic potential driven by multiplicative dichotomous and additive white noise is studied, with special
attention to the analysis of coherence resonance and stochastic resonance.

In Theoretical Neuroscience wide interest is devoted to stochastic neuron models driven by dichoto-
mous noise, which constitutes a Markov process that jumps between two states and is characterized by
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nonvanishing temporal correlations. Recently, various advances have been obtained in this area thanks
to the contributions by Müller-Hansen et al. [4] (on the exact derivation of expressions for the prob-
ability density and the serial correlation coefficient of the interspike interval in the perfect integrate-
and-fire neuron driven by dichotomous noise), by Droste and Lindner [5] (on a thorough analysis of
the firing activity of a general integrate-and-fire neuron driven by asymmetric dichotomous noise), and
by Mankin and Lumi [6] (on the study of the behavior of a stochastic leaky integrate-and-fire neuron
model with temporally correlated input modeled as a colored two-level dichotomous Markovian noise).

A landmark among stochastic processes driven by dichotomous noise is the (integrated) telegraph
process. It is also known as Goldstein-Kac telegraph process after Goldstein [7] and Kac [8]. These
initial contributions were finalized to construct a stochastic model for the motion of a particle that runs
on the real line with constant speed and alternates between two possible directions of motion at random
homogeneous Poisson-paced time instants (see Kolesnik and Ratanov [9], and references therein).
Typical approaches to the determination of the probability distribution of the telegraph process are
analytical or based on transformations (see, e.g. Orsingher [10], Beghin et al. [11], López and Ratanov
[12]). Among the various generalizations proposed in the recent literature we recall the alternating
motion with random delays (cf. Bshouty et al. [13]), and the alternating damped motion studied by
Di Crescenzo and Martinucci [14], and De Gregorio and Macci [15]. Other recent investigations have
been devoted to suitable functionals of telegraph processes (cf. Kolesnik [16] and [17], Martinucci and
Meoli [18]), to dynamics in the presence of an elastic boundary (see Di Crescenzo et al. [19]), and
to level-crossings problems (cf. Pogorui et al. [20]). Moreover, applications of telegraph processes
are found to be useful in the area of financial mathematics, especially when jumps are allowed at the
switching instants (cf. Ratanov [21], for instance). Further studies have been oriented to modeling
random phenomena by means of Brownian motion with drift following the telegraph process (see Di
Crescenzo and Zacks [22] for a case of interest in environmental sciences, and Travaglino et al. [23]
for an application in mathematical geosciences). Recent developments show that a multi-dimensional
version of the telegraph process can be used to construct new efficient and flexible families of Monte
Carlo methods (see Bierkens et al. [24]).

The analysis of the telegraph process and its modifications often involves hyperbolic equations with
constant coefficients. More general instances concerning parameters varying in space and time are
more difficult to be treated. A first contribution in this field is a case of time-dependent rates (cf. Iacus
[25]). Recent advances on state-dependent generalizations of the telegraph process have been provided
by Garra and Orsingher [26]. Nevertheless, state-dependent stochastic processes deserve interest in
neuronal modeling, as for diffusion neuronal models with multiplicative noise (D’Onofrio et al. [27])
and for processes with exponential decay subject to excitatory inputs with state-dependent effects (Di
Crescenzo and Martinucci [28]).

Stimulated by the above investigations, hereafter we analyze a modified telegraph process describ-
ing fluctuating behavior with variable trend, where the fluctuations follow a state-dependent alterna-
tion. Specifically, we consider a state-dependent telegraph process with constant opposite velocities,
and with switching intensities that vanish when the motion is directed toward the zero state. In other
terms, if the motion has positive (negative) velocity, then the switch to negative (positive) velocity
may occur -depending on the state- only if the state is positive (negative). This ensures that con-
secutive velocity changes are separated by passages through the zero state. The resulting motion is
thus describing particles that move with alternating constant velocities and fluctuate around the ori-
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gin. Clearly, the considered random motion is governed by the hazard rates of the interarrival times
between consecutive velocity changes. When the hazard rates are not constant, obtaining the solutions
of the resulting partial differential equations for the transition densities becomes difficult. However in
our case, in which the hazard rates depend on both the position and the velocity of the motion, we
adopt a different approach. This is based on renewal theory which has turned out to be useful in some
instances considered in the past (see, e.g., Di Crescenzo [29] for the case of Erlang-distributed random
times separating velocity reversals). The renewal-based approach allows us to determine the formal
expressions of the probability density functions of the motion during suitable time intervals. We also
investigate a special case, in which the interarrival times are related to the gamma distribution so that
the probability density functions can be expressed in closed form. A first-passage-time problem is also
treated when the process is constrained between two boundaries, with an analysis based on a suitable
index taking values in [0, 1], and defined as a ratio of mean values.

It is worth mentioning that the results obtained in this paper can be used in various applied fields,
especially in Biomathematics. Indeed, stochastic processes describing finite-velocity random motions
constitute a valide alternative to diffusion processes since the latter processes exhibit certain features,
such as the unboundedness of the first variation, that are not appropriate to describe real phenomena.
For instance, various stochastic models based on telegraph equations, such as persistent random walks,
are finalized to describe appropriate population dynamics or individual animal movement (for instance,
cf. Alharbi and Petrovskii [30], Angelani and Garra [31], Garcia et al. [32]).

This is the plan of the paper. In Section 2 we describe in detail the state-dependent telegraph
process. We also introduce the forward and backward transition densities of the motion, and the random
variables describing the time intervals during which the motion is forward or backward. Section 3
is centered on the determination of the formal expressions of the transition densities of the process.
In Section 4 we deal with a special case when the interarrival times have gamma distribution. This
instance corresponds to suitable monotonic intensity functions which allow to obtain the transition
densities of the motion in closed form, expressed in terms of the generalized (two-parameter) Mittag-
Leffler function. Section 5 is concerning a first-passage-time problem for the considered process in the
presence of two boundaries. Finally, some concluding remarks are given in Section 6.

2. The stochastic process

We consider a state-dependent telegraph process {X(t), t ≥ 0}, which describes the alternating be-
havior of a suitable stochastic system, such as the motion of a particle running on the real line. The
particle velocity, say V(t), alternates randomly between the fixed values c > 0 and −v < 0. We assume
that the initial position is X(0) = 0 and the initial velocity is V(0) = c.

Let f (x, t) and b(x, t) denote respectively the forward and backward transition densities of the mo-
tion, defined as

f (x, t) :=
∂

∂x
P{X(t) ≤ x,V(t) = c},

b(x, t) :=
∂

∂x
P{X(t) ≤ x,V(t) = −v}.

(2.1)
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For t > 0 and −vt < x < ct, densities (2.1) satisfy the following partial differential equations:
∂

∂t
f (x, t) + c

∂

∂x
f (x, t) = −λ+(x) f (x, t) + λ−(x)b(x, t),

∂

∂t
b(x, t) − v

∂

∂x
b(x, t) = −λ−(x)b(x, t) + λ+(x) f (x, t),

(2.2)

where λ+(x) and λ−(x) are nonnegative functions, for all x ∈ R. The function λ+(x) represents the
intensity of velocity changes when the particle occupies state x with current forward motion, and sim-
ilarly λ−(x) represents the same intensity for the backward motion. Clearly, for the classical telegraph
process the intensity functions λ+(x) and λ−(x) are constant, leading to exponentially distributed inter-
arrival times between consecutive velocity changes. Instead, herein we assume that they depend on the
position x and satisfy the following assumptions: λ+(x) = 0 if x ≤ 0,

λ−(x) = 0 if x ≥ 0,
(2.3)

and ∫ +∞

0
λ±(±x)dx = +∞. (2.4)

The conditions (2.3) express that each instant a velocity change occurs, then the process is forced to
return to the 0 state prior to the subsequent velocity change (see the sample path of X(t) shown in
Figure 1). Specifically, changes from positive to negative velocity occur only if the particle occupies a
positive state x, whereas the opposite velocity changes occur only at negative states. The assumption
(2.4) provide a bona fide condition, whose role will be clarified in the following. Clearly, the given
assumptions imply that consecutive velocity changes of the motion are separated by passages through
the zero state. The resulting state-dependent telegraph process is then useful to describe systems that
alternate randomly around the 0 level.

We remark that other stochastic processes describing alternating motions governed by non-constant
parameters have been treated recently by Garra and Orsingher [26]. Specifically, some cases of space-
varying velocities and time-varying intensity are treated by means of suitable space-time transforma-
tions.

We point out that performing a transformation analogous to Eq. (2.3) of Beghin et al. [11], the
equations (2.2) lead to a system of partial differential equations for the transition density p(x, t) and the
flow function w(x, t) of the process X(t), defined respectively as

p(x, t) :=
∂

∂x
P{X(t) ≤ x} = f (x, t) + b(x, t),

w(x, t) := f (x, t) − b(x, t).
(2.5)

According to Orsingher [10], in a large ensemble of particles moving as specified, the function w(x, t)
can be viewed as a measure of the excess of particles moving forward with respect to those moving
backward near point x at time t.
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Figure 1. A sample path of X(t) with indications of the relevant random variables and the
velocities of the motion.

2.1. Probabilistic structure of the process

In this section we analyze the probabilistic structure of the random variables that describe the up-
ward and downward particle motion.

For every i ∈ N, we denote by Ui (respectively Di) the random duration of the i-th time interval
in which the motion has positive (negative) velocity. For any i ∈ N, we express Ui as the sum of the
random time length U−i during which X(t) < 0, and the random time length U+

i during which X(t) > 0.
Clearly, since the initial velocity is positive, one has

U−1 = 0 and U1 = U+
1 .

Similarly we have (see Figure 1)
Di = D+

i + D−i , i ∈ N.

From the assumptions (2.3) and (2.4) it follows that the passages of X(t) through the 0 state are regen-
erative alternating events, and the dynamics of the velocity changes do not depend on time. Hence, the
sequence {U+

i ; i ∈ N} is formed by independent and identically distributed random variables. The same
conclusion holds for the independent sequence {D−i ; i ∈ N}.

We denote with Zi the i-th random instant in which the process is equal to 0, and with Pi (resp. Ni)
the duration of the i-th time interval in which X(t) is positive (negative), as shown in Figure 1. It is
easy to verify that, for every i ∈ N,  Pi = Z2i−1 − Z2(i−1),

Ni = Z2i − Z2i−1,
(2.6)

where Z0 := 0. From the assumptions on the motion, the following relationships are straightforward
(as shown in Figure 1)

cU+
i − vD+

i = 0, −vD−i + cU−i+1 = 0,
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so that 
Pi = U+

i + D+
i =

c + v
v

U+
i ,

Ni = D−i + U−i+1 =
c + v

c
D−i .

(2.7)

Thus, the sequences {Pi; i ∈ N} and {Ni; i ∈ N} are independent and, clearly, they are formed by
independent and identically distributed random variables.

Since the motion proceeds with constant velocities, and the instants {Z2i; i ∈ N} and {Z2i−1; i ∈ N}
are regenerative, a linear time-transformation allows the functions λ+(x) and λ−(x) in Eqs. (2.2) to
represent the intensities of occurrence of velocity changes along the time axes. Hence, from classical
arguments of renewal theory, it follows that λ+(x) and λ−(−x), for x ≥ 0, are respectively the hazard
rate functions of cU+

i and vD−i at x ≥ 0, i.e.

λ+(x) = lim
h→0+

1
h
P{cU+

i ≤ x + h | cU+
i > x},

λ−(−x) = lim
h→0+

1
h
P{vD−i ≤ x + h | vD−i > x}.

Here and throughout the paper, we denote by FY(x) = P{Y > x} the complementary distribution
function of a random variable Y . We can thus introduce the following expressions, for x ≥ 0,

FcU+
i
(x) = exp

{
−

∫ x

0
λ+(y)dy

}
= e−Λ+(x),

FvD−i (x) = exp
{
−

∫ x

0
λ−(−y)dy

}
= e−Λ−(x),

(2.8)

where
Λ±(x) :=

∫ x

0
λ±(±y)dy, x ≥ 0, (2.9)

constitute the corresponding cumulative hazard rates. Hence, we immediately obtain the probability
density functions of U+

i and D−i , namely

fU+
i
(x) = cλ+(cx)e−Λ+(cx), fD−i (x) = vλ−(−vx)e−Λ−(vx), x > 0.

Consequently, the random variables U+
i and D−i are nonnegative, absolutely continuous, for all i ∈ N,

with distribution functions

FU+
i
(x) = 1 − e−Λ+(cx), FD−i (x) = 1 − e−Λ−(vx), x > 0, (2.10)

respectively. Moreover, due to assumption (2.4), they are honest random variables, in the sense that
they take values over R with probability 1. Finally, the relations (2.7) permit us to express the comple-
mentary distribution functions of Pi and Ni, i ∈ N, as follows, for x ≥ 0,

FPi(x) = exp
{
− Λ+

( cv
c + v

x
)}
, FNi(x) = exp

{
− Λ−

( cv
c + v

x
)}
.

On the ground of the above results, we are now able to express the dependence of the process X(t)
on the regenerative random times Zi. Indeed, if k velocity changes occurred in [0, t], t > 0, then

X(t) = Vk (t − Zk), (2.11)
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where

Vk =

{
c, k even
−v, k odd.

Consequently, the process X(t) can be expressed as

X(t) =

∞∑
k=0

1{C(t)=k}Vk (t − Zk), t > 0,

where 1A is the indicator function of A, i.e. 1A = 1 if A is true, and 1A = 0 otherwise, and where C(t) is
the alternating counting process that counts the number of velocity changes in [0, t], whose interarrival
times are U1,D1,U2,D2, . . .

3. Transition densities

In this section we determine the formal expressions of the probability density functions that de-
scribe the motion during suitable time intervals. Specifically, with reference to the random variables
introduced in Section 2.1, we deal with the following densities, for n ∈ N,

fn(x, t) :=
∂

∂x
P{X(t) ≤ x,Z2(n−1) − U−n ≤ t < Z2(n−1) + U+

n },

bn(x, t) :=
∂

∂x
P{X(t) ≤ x,Z2n−1 − D+

n ≤ t < Z2n−1 + D−n }.
(3.1)

Clearly, for each n ∈ N, fn(x, t) (resp. bn(x, t)) represents the forward (backward) density of the particle
position at time t, during the n-th period in which the motion has positive (negative) velocity. Hence,
the densities defined in (2.1) can be expressed by

f (x, t) =

∞∑
n=1

fn(x, t), b(x, t) =

∞∑
n=1

bn(x, t), (3.2)

provided that the above series are convergent. Before determining the forward densities given in the
first of (3.1) we recall that, since the initial velocity is positive, the state space of the particle position
at time t is (−vt, ct], and the probability law of X(t) has a discrete component at point ct, so that the
density f1(x, t) is degenerate.

Theorem 3.1. The forward probability densities defined in the first of (3.1) can be expressed as follows:

f1(x, t) = FU+
1
(t)δ(ct − x), x ∈ R, t ≥ 0, (3.3)

where δ(x) denotes the Dirac delta function, and, for n = 2, 3, . . . ,

fn(x, t) =


1
c

fZ2(n−1)

(
t −

x
c

)
FU+

n

( x
c

)
, 0 < x < ct,

1
c + v

∫ t+ x
v

0
fD−n−1

(c(t − z) − x
c + v

)
fZ2n−3(z) dz, −vt < x < 0.

(3.4)
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Proof. If t < U+
1 , then no changes of velocity have occurred up to time t, and so X(t) = ct. Thus,

equation (3.3) follows immediately since the relevant distribution has an atom at the point x = ct. Note
that the density f1(x, t) must be intended as a generalized function. It is clear that in the n-th period
in which the velocity is positive X(t) = c(t − Z2(n−1)), as stated in equation (2.11) for k = 2n − 1, and
confirmed by Figure 1. So that, for n > 1 and 0 < x < ct we have

P{X(t) ≤ x,Z2(n−1) < t < Z2(n−1) + U+
n }

= P{c(t − Z2(n−1)) ≤ x,U+
n > t − Z2(n−1),Z2(n−1) < t}

=

∫ t

0
P{c(t − Z2(n−1)) ≤ x,U+

n > t − Z2(n−1)|Z2(n−1) = z}P{Z2(n−1) ∈ dz}

=

∫ t

0
P{c(t − z) ≤ x,U+

n > t − z}P{Z2(n−1) ∈ dz}

=

∫ t

t− x
c

FU+
n (t − z) fZ2(n−1)(z) dz.

(3.5)

Differentiating with respect to x we thus obtain the density (3.4) for 0 < x < ct. Furthermore, for
n = 2, 3, . . . and −vt < x < 0, in the n-th period in which the velocity is positive one has

X(t) = −vD−n−1 + c(t − Z2n−3 − D−n−1)
= ct − cZ2n−3 − (c + v)D−n−1.

So that, similarly to (3.5), we have

P{X(t) ≤ x,Z2(n−1) − U−n ≤ t < Z2(n−1)}

= P
{
X(t) ≤ x,Z2n−3 + D−n−1 ≤ t < Z2n−3 +

c + v
c

D−n−1

}
= P

{
ct − cZ2n−3 − (c + v)D−n−1 ≤ x,D−n−1 ≤ t − Z2n−3 <

c + v
c

D−n−1

}
=

∫ t

0
P
{
c(t − z) − (c + v)D−n−1 ≤ x,D−n−1 ≤ t − z <

c + v
c

D−n−1

}
P{Z2n−3 ∈ dz}

=

∫ t

0
P
{
D−n−1 ≥

c(t − z) − x
c + v

,D−n−1 >
c(t − z)
c + v

,D−n−1 ≤ t − z
}
P{Z2n−3 ∈ dz}

=

∫ t

0
P
{
D−n−1 ≥

c(t − z) − x
c + v

,D−n−1 ≤ t − z
}
P{Z2n−3 ∈ dz}

=

∫ t

0
1
{

c(t−z)−x
c+v ≤t−z}P

{c(t − z) − x
c + v

≤ D−n−1 ≤ t − z
}
P{Z2n−3 ∈ dz}

=

∫ t+ x
v

0

[
FD−n−1

(t − z) − FD−n−1

(c(t − z) − x
c + v

)]
fZ2n−3(z) dz.

Differentiating with respect to x we finally get the density (3.4) for −vt < x < 0. �

A similar result can be obtained for the densities introduced in the second line of (3.1).
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Theorem 3.2. For n ∈ N, the backward probability densities defined in the second of (3.1) can be
expressed as

bn(x, t) =


1
v

fZ2n−1

(
t +

x
v

)
FD−n

(
−

x
v

)
, −vt < x < 0,

1
c + v

∫ t− x
c

0
fU+

n

( x + v(t − z)
c + v

)
fZ2(n−1)(z) dz, 0 < x < ct.

(3.6)

Proof. The proof is omitted, being very similar to that of the previous theorem. �

Let us define the ‘n-th cycle’ as the random interval formed by the n-th period when the particle has
positive velocity and the n-th period when the particle has negative velocity. Clearly,

pn(x, t) :=
∂

∂x
P{X(t) ≤ x,Z2(n−1) − U−n ≤ t < Z2n−1 + D−n } (3.7)

is the density of the particle position at time t during the n-th cycle. Due to (3.1), the density (3.7) can
be easily obtained from Theorem 3.1 and Theorem 3.2, being

pn(x, t) = fn(x, t) + bn(x, t).

As a consequence, the transition density introduced in the first of (2.5) can be also expressed as

p(x, t) =

∞∑
n=1

pn(x, t),

provided that the above series is convergent.

4. Interarrival times with gamma distribution

The aim of this section is to analyze in detail the case in which the upward and downward dis-
placements performed by the particle after passages though the zero state have gamma distribution.
Specifically, we assume that the random variables cU+

i and vD−i , i ∈ N, are gamma distributed with
shape parameters α and α∗, respectively, and equal rate parameters β, say

cU+
i ∼ Gamma(α, β), vD−i ∼ Gamma(α∗, β), (4.1)

where α, α∗, β > 0. We recall that the telegraph process with gamma-distributed intertimes between
velocity changes has been analyzed in Di Crescenzo and Martinucci [33], whereas some suitable mul-
tidimensional random motions with step lengths having gamma distribution have been investigated in
Le Caër [34] and Pogorui and Rodrı́guez-Dagnino [35], for instance.

Clearly, the assumptions (4.1) correspond to the case in which the intensity functions λ+(x) and
λ−(x) are given by

λ+(x) =
βαxα−1e−βx

Γ(α, βx)
, λ−(−x) =

βα
∗

xα
∗−1e−βx

Γ(α∗, βx)
, x > 0, (4.2)

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6386–6405.
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Figure 2. Intensity function λ+(x) given in (4.2), with β = 1 and α = 0.1, 0.5, 1, 2, 3, 4, 5,
from top to bottom (left plot), α = 0.5 and β = 1, 2, 3, 4, 5, from bottom to top (central plot),
α = 2 and β = 1, 2, 3, 4, 5, from bottom to top (right plot).

where Γ(·, ·) denotes the upper incomplete gamma function. We remark that such intensity functions
are strictly decreasing (increasing) in |x| if 0 < α < 1 (α > 1), and are constant if α = 1, with

lim
x→0+

λ+(x) =


+∞, 0 < α < 1,
β, α = 1,
0, α > 1,

lim
x→+∞

λ+(x) = β,

with analogous limits holding for λ−(x). See Figure 2 for some plots of λ+(x). We remark that, from
the assumptions given in (4.1), one also has

U+
i ∼ Gamma(α, cβ), D−i ∼ Gamma(α∗, vβ). (4.3)

In the following theorems we obtain the forward and backward transition densities (2.1) in a special
case. Such densities will be expressed in terms of the generalized (two-parameter) Mittag-Leffler
function, defined as

Ea,b(z) :=
∞∑

n=0

zn

Γ(an + b)
. (4.4)

Properties and results on such Mittag-Leffler function can be found, for instance, in Gorenflo et al.
[36], Haubold et al. [37] and references therein. We recall that function (4.4) has been used recently
in the analysis of probability distributions of some birth-death type processes in Alipour et al. [38], Di
Crescenzo et al. [39] and Orsingher and Polito [40].

Theorem 4.1. Let {X(t), t ≥ 0} be the state-dependent telegraph process with intensity functions spec-
ified in (4.2). For t > 0, the forward transition density is given by

f (x, t) =
Γ(α, βct)

Γ(α)
δ(ct − x) +

Γ(α, βx)
Γ(α)

1
ct − x

( (ct − x)vβ
c + v

)α+α∗

× exp
{
−

(ct − x)vβ
c + v

}
Eα+α∗,α+α∗

(( (ct − x)vβ
c + v

)α+α∗
)
1{x<ct}, 0 < x ≤ ct,

(4.5)

f (x, t) =
cα

Γ(α∗)

( vβ
c + v

)α+α∗

exp
{
−

vβ(ct − x)
c + v

}
×

∫ t+ x
v

0
(c(t − z) − x)α

∗−1zα−1Eα+α∗,α

(( cvβz
c + v

)α+α∗
)

dz, −vt < x < 0.
(4.6)
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Proof. From (3.2), (3.3), the first case of (3.4) and (4.3) we easily obtain, for 0 < x ≤ ct,

f (x, t) =
Γ(α, βct)

Γ(α)
δ(ct − x) +

Γ(α, βx)
Γ(α)

1
c

∞∑
n=2

fZ2(n−1)

(
t −

x
c

)
. (4.7)

In order to analyze the distribution of Z2(n−1) we note that, from the relationships (2.7), one has

Pi ∼ Gamma
(
α,

cv
c + v

β
)
, Ni ∼ Gamma

(
α∗,

cv
c + v

β
)
,

and thus
n∑

i=1

Pi ∼ Gamma
(
nα,

cv
c + v

β
)
,

n∑
i=1

Ni ∼ Gamma
(
nα∗,

cv
c + v

β
)
. (4.8)

We point out that, due to (2.6), for the regenerative random times Zi one has

Z2n =

n∑
i=1

(Pi + Ni), Z2n−1 = Z2(n−1) + Pn, n ∈ N.

Hence, since the gamma-distributed random variables in (4.8) have identical rates, we get

Z2n ∼ Gamma
(
n(α + α∗),

cv
c + v

β
)
,

Z2n−1 ∼ Gamma
(
(n − 1)(α + α∗) + α,

cv
c + v

β
)
.

Such relations, thanks to (4.4), allow to compute the following sum:

1
c

∞∑
n=2

fZ2(n−1)

(
t −

x
c

)

=
1
c

exp
{
−

(ct − x)vβ
c + v

} ∞∑
n=2

(
cvβ
c+v

)(n−2)(α+α∗)+(α+α∗)

Γ((n − 2)(α + α∗) + (α + α∗))

(
t −

x
c

)(n−2)(α+α∗)+(α+α∗)−1

=
1

ct − x
exp

{
−

(ct − x)vβ
c + v

}( (ct − x)vβ
c + v

)α+α∗ ∞∑
n=0

((
(ct−x)vβ

c+v

)α+α∗)n

Γ(n(α + α∗) + (α + α∗))

=
1

ct − x
exp

{
−

(ct − x)vβ
c + v

}( (ct − x)vβ
c + v

)α+α∗

Eα+α∗,α+α∗

(( (ct − x)vβ
c + v

)α+α∗
)
.

(4.9)

Substituting (4.9) in (4.7) we finally obtain (4.5). Similarly, from (3.2) and the second of (3.4) we
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obtain, for −vt < x < 0,

f (x, t) =
1

c + v

∫ t+ x
v

0

∞∑
n=2

fD−n−1

(c(t − z) − x
c + v

)
fZ2n−3(z) dz

=
1

c + v

∫ t+ x
v

0
fD−1

(c(t − z) − x
c + v

) ∞∑
n=0

fZ2n+1(z) dz

=
1

c + v
(vβ)α

∗

Γ(α∗)

∫ t+ x
v

0

(c(t − z) − x
c + v

)α∗−1

exp
{
−

vβ(c(t − z) − x)
c + v

}

× exp
{
−

cvβz
c + v

} ∞∑
n=0

(
cvβ
c+v

)n(α+α∗)+α

Γ(n(α + α∗) + α)
zn(α+α∗)+α−1 dz

=
1

Γ(α∗)

( vβ
c + v

)α∗
exp

{
−

vβ(ct − x)
c + v

}

×

∫ t+ x
v

0
(c(t − z) − x)α

∗−1
( cvβz
c + v

)α1
z

∞∑
n=0

((
cvβz
c+v

)α+α∗
)n

Γ(n(α + α∗) + α)
dz

=
cα

Γ(α∗)

( vβ
c + v

)α+α∗

exp
{
−

vβ(ct − x)
c + v

}
×

∫ t+ x
v

0
(c(t − z) − x)α

∗−1zα−1Eα+α∗,α

(( cvβz
c + v

)α+α∗
)

dz,

(4.10)

which finally gives Eq. (4.6). �

The following theorem is a companion of Theorem 4.1.

Theorem 4.2. Let {X(t), t ≥ 0} be the state-dependent telegraph process with intensity functions spec-
ified in (4.2). For t > 0, the backward transition density is:

b(x, t) =
Γ(α∗,−βx)

Γ(α∗)
1

vt + x

(c(vt + x)β
c + v

)α
× exp

{
−

c(vt + x)β
c + v

}
Eα+α∗,α

((c(vt + x)β
c + v

)α+α∗
)
, −vt < x < 0,

(4.11)

b(x, t) =
vα+α∗

Γ(α)

( cβ
c + v

)2α+α∗

exp
{
−

cβ(x + vt)
c + v

}
×

∫ t− x
c

0
(x + v(t − z))α−1zα+α∗−1Eα+α∗,α+α∗

(( cvβz
c + v

)α+α∗
)

dz, 0 < x < ct.
(4.12)

Proof. The proof is omitted, being similar to that of Theorem 4.1. �

Combining the results of the previous theorems with relationships (2.5) one can easily calculate the
transition density and the flow function of the process X(t).

As example, in Figure 3 and 4 we show some plots of the (absolutely continuous component) of
densities f (x, t) and b(x, t).
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Figure 3. Absolutely continuous component of the densities obtained in Theorem 4.1 for
−vt < x < ct, with t = 2, α = 2, α∗ = 1, β = 1, c = 2, v = 2.

Figure 4. As for Figure 3, with α∗ = 2.

Unfortunately, obtaining approximate results from Theorems 4.1 and 4.2 by means of asymptotic
expansions of the Mittag-Leffler function seems to be not fruitful, since the available expressions are
quite cumbersome (see, for instance, Haubold et al. [37]).

If α = α∗ = 1, then the intensity rates (4.2) are constants and thus the corresponding cumulative
hazard rates (2.9) are linear in x, i.e. the random times U+

i and D−i are exponentially distributed. This
special case leads to simpler closed-form results, as shown hereafter.

Corollary 4.1. Let {X(t), t ≥ 0} be the state-dependent telegraph process with intensity functions
λ+(x) = λ−(−x) = β, x > 0. For t > 0, the forward and backward transition density are:

f (x, t) =


e−βctδ(ct − x) + 1

2e−βx vβ
c + v

(
1 − exp

{
−

2(ct − x)vβ
c + v

})
1{x<ct}, 0 < x ≤ ct,

1
2

eβx vβ
c + v

(
1 − exp

{
−

2c(vt + x)β
c + v

})
, −vt < x < 0,

(4.13)

b(x, t) =


1
2

e−βx cβ
c + v

(
1 − exp

{
−

(ct − x)vβ
c + v

})2

, 0 < x < ct,

1
2

eβx cβ
c + v

(
1 + exp

{
−

2c(vt + x)β
c + v

})
, −vt < x < 0.

(4.14)

Proof. The proof follows from Theorems 4.1 and 4.2 after some calculations, and noting that E2,1(z) =

cosh(
√

z) and E2,2(z) = sinh(
√

z)/
√

(z). �

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6386–6405.



6399

We remark that the results obtained so far are concerning the case with positive initial velocity,
i.e. V(0) = c. However, the case V(0) = −v can be treated in a similar way, by exploting suitable
symmetries. Specifically, the probability law of X(t) conditional on V(0) = −v can be obtained from
the above results by interchanging the forward density with the backward one, the distribution of U±i
with that of D∓i , c with v, and x with −x. Clearly, this allows us to analyze more general situations, in
which the initial velocity is random, i.e. P{V(0) = c} = θ and P{V(0) = −v} = 1 − θ, 0 ≤ θ ≤ 1, when
the distributions of interest are expressed as suitable mixtures.

5. A first-passage-time problem

This section is devoted to a first-passage-time problem for the process X(t), assuming the presence
of two boundaries, say η > 0 and −ξ < 0. Hereafter we thoroughly assume that, in addition to
assumptions (2.3) and (2.4), the intensity functions λ+(x) and λ−(x) satisfy the following condition:∫ t

0
λ±(±x)dx < +∞ for any t > 0. (5.1)

With reference with the notions introduced in Section 2.1, we denote by

M+(t) =

∞∑
n=0

1{Z2n≤t}

the right-continuous counting process whose increments occur at the random instants 0 = Z0,Z2,Z4, . . .,
so that

M+(Z2n) = n + 1, n ∈ N0.

We denote by
Tζ = inf{t > 0 : X(t) = ζ}, ζ , 0

the first-passage time of X(t) through the boundary ζ , 0. Then we introduce the integer-valued
random variable M+(Tη). Recalling that the i-th time interval in which the motion has positive velocity
(upward period, say) has random duration Ui, i ∈ N, let M+(Tη) denote the ordinal number of the first
of such upward periods in which X(t) crosses the boundary η > 0. Clearly, due to the first of (2.10) we
have

P{M+(Tη) = k} = P{cU+
1 < η, . . . , cU+

k−1 < η, cU+
k ≥ η} =

k−1∏
i=1

FU+
i

(
η

c

)
FU+

k

(
η

c

)
=

(
1 − e−Λ+(η)

)k−1

e−Λ+(η), k ∈ N.

(5.2)

Hence, M+(Tη) has geometric distribution with parameter e−Λ+(η), where Λ+(x) is defined in (2.9). It
thus follows that

E
[
M+(Tη)

]
= eΛ+(η). (5.3)

Similarly,

M−(t) =

∞∑
n=0

1{Z2n+1≤t}
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is the right-continuous counting process whose increments occur at the random instants Z1,Z3,Z5, . . .,
and thus

M−(Z2n+1) = n + 1, n ∈ N0.

For ξ > 0, we can thus introduce the integer-valued random variable M−(T−ξ). In analogy with M+(Tη),
we assume that M−(T−ξ) gives the ordinal number of the first downward period in which X(t) crosses
the boundary −ξ < 0. Similarly as in (5.2), M−(T−ξ) has geometric distribution with parameter e−Λ−(ξ),
so that its expectation is

E
[
M−(T−ξ)

]
= eΛ−(ξ). (5.4)

Let us now consider the first-passage-time problem in the presence of two boundaries. We consider the
random variable

M(−ξ, η) := min{M+(Tη),M−(T−ξ)}. (5.5)

Since, for k ∈ N,

P{M(−ξ, η) = k} = P{cU+
1 < η, vD−1 < ξ, . . . , cU+

k−1 < η, vD−k−1 < ξ, cU+
k ≥ η}

+ P{cU+
1 < η, vD−1 < ξ, . . . , cU+

k−1 < η, vD−k−1 < ξ, cU+
k < η, vD−k ≥ ξ}

=

(
1 − e−Λ+(η)

)k−1(
1 − e−Λ−(ξ)

)k−1{
e−Λ+(η) +

(
1 − e−Λ+(η)

)
e−Λ−(ξ)

}
=

(
1 − e−Λ+(η) − e−Λ−(ξ) + e−Λ+(η)e−Λ−(ξ)

)k−1{
e−Λ+(η) + e−Λ−(ξ) − e−Λ+(η)e−Λ−(ξ)

}
,

it follows that M(−ξ, η) has geometric distribution with parameter e−Λ+(η) + e−Λ−(ξ) − e−Λ+(η)e−Λ−(ξ) and
expectation

E
[
M(−ξ, η)

]
=

1
e−Λ+(η) + e−Λ−(ξ) − e−Λ+(η)e−Λ−(ξ) . (5.6)

We remark that the assumption (5.1) ensures that the expectations given in (5.3), (5.4) and (5.6) are
finite.

Let us now consider the special case of interarrival times having gamma distribution like in Section
4.

Proposition 5.1. Let {X(t), t ≥ 0} be the state-dependent telegraph process with intensity functions
specified in (4.2). Then, the expectations of M+(Tη) and M−(T−ξ) are expressed as

E
[
M+(Tη)

]
=

Γ(α)
Γ(α, ηβ)

, E
[
M−(T−ξ)

]
=

Γ(α∗)
Γ(α∗, ξβ)

. (5.7)

Hence, the expectation of (5.5) is

E
[
M(−ξ, η)

]
=

Γ(α)Γ(α∗)
Γ(α, ηβ)Γ(α∗) + Γ(α∗, ξβ)Γ(α) − Γ(α, ηβ)Γ(α∗, ξβ)

. (5.8)

Proof. The results immediately follow from Eqs. (5.3), (5.4), (5.6), and (2.8), by taking into account
that for a Gamma(α, β)-distributed random variable the complementary distribution function at x > 0
is Γ(α, βx)/Γ(α). �
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Figure 5. Plots of the ratio of mean values (5.10) for 0 ≤ η ≤ 14, with β = 1, ξ = 1, 2, 3, 4, 5
(from bottom to top) and (i) α = 2, α∗ = 1, (ii) α = 2, α∗ = 5, (iii) α = 5, α∗ = 1, (iv) α = 5,
α∗ = 5.

Recalling Eqs. (5.3) and (5.6), we can now introduce the following function:

R(−ξ, η) :=
E
[
M(−ξ, η)

]
E
[
M+(Tη)

] =
1

1 + eΛ+(η)e−Λ−(ξ) − e−Λ−(ξ) . (5.9)

Clearly, since M(−ξ, η) is stochastically smaller than M+(Tη), and both such random variables have
finite means, from (5.9) we have

0 ≤ R(−ξ, η) ≤ 1.

For the first-passage-time problem in the presence of the boundaries η and −ξ, the ratio of mean values
introduced in (5.9) is a measure of the relevance of the boundary η with respect to the boundary −ξ, in
the sense that R(−ξ, η) is close to 1 (0) if the first passage through the upper boundary η is expected
much more (less) earlier than the first passage through −ξ.

Under the assumptions of Proposition 5.1, the ratio of mean values (5.9) becomes

R(−ξ, η) =
Γ(α, ηβ)Γ(α∗)

Γ(α, ηβ)Γ(α∗) + Γ(α∗, ξβ)Γ(α) − Γ(α, ηβ)Γ(α∗, ξβ)
. (5.10)

In Figures 5 and 6 some plots of R(−ξ, η) are shown for β equal to 1 and 2, respectively, for ξ = 5 and
for different choices of the parameters α and α∗. As can be expected, the plots shows that R(−ξ, η) is
decreasing in η and α∗, increasing in ξ and α. Recall that the mean of U+

i and D−i is proportional to α
and α∗, respectively.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 6386–6405.



6402

Figure 6. Plots of the ratio (5.10) for 0 ≤ η ≤ 14, with β = 2 and the same values of the
other parameters of Figure 5.

6. Conclusion

Among the generalizations of the classical telegraph process, the state-dependent versions are quite
difficult to be treated. Differently from the analytical or transformation-based approaches adopted by
various authors in the recent past, in this paper we exploited arguments of renewal theory to study the
transition densities of a suitable family of state-dependent telegraph processes. We treated in detail
the special case when certain random times of the motion have gamma distribution. This leads to
an effective and treatable stochastic model. A specific feature is that consecutive velocity changes
are separated by passages through the zero state. Such property yields that the considered process
is suitable to describe fluctuating phenomena, such as the motion of particles that have alternating
constant velocities and fluctuate around the origin. This can be a starting point toward the construction
of more sophisticated models of interest in Neuroscience and in Biomathematics, which are based on
stochastic processes whose sample-paths fluctuate around a time-varying signal or trend. Namely, a
prototype stochastic model in this area can be expressed as

Y(t) = s(t) + X(t), t ≥ 0,

where s(t) describes a suitable trend, such as a deterministic mean population growth, and X(t) is the
stochastic component of the model that accounts for the fluctuations around the trend. The model of
state-dependent fluctuations described in this paper can be adopted to deal with cases in which the
system under investigation depends on the distance from the time-varying trend. Specific applications
of this family of models will be the object of future investigation. Furthermore, possible future de-
velopments will be oriented to the construction of suitable tractable models in this area, also aiming
to investigate the optimum signal determination with respect to the noise characteristics, by adopting
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suitable criteria as those exploited by Lansky et al. [41].
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