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Abstract: RNA modification plays an indispensable role in the regulation of organisms. RNA 

modification site prediction offers an insight into diverse cellular processing. Regarding different 

types of RNA modification site prediction, it is difficult to tell the most relevant feature combinations 

from a variant of RNA properties. Thereby, the performance of traditional machine learning based 

predictors relied on the skill of feature engineering. As a data-driven approach, deep learning can 

detect optimal feature patterns to represent input data. In this study, we developed a predictor for 

multiple types of RNA modifications method called DeepMRMP (Multiple Types RNA Modification 

Sites Predictor), which is based on the bidirectional Gated Recurrent Unit (BGRU) and transfer 

learning. DeepMRMP makes full use of multiple RNA site modification data and correlation among 

them to build predictor for different types of RNA modification sites. Through 10-fold 

cross-validation of the RNA sequences of H. sapiens, M. musculus and S. cerevisiae, DeepMRMP 

acted as a reliable computational tool for identifying N
1
-methyladenosine (m

1
A), pseudouridine (Ψ), 

5-methylcytosine (m
5
C) modification sites. 

Keywords: bidirectional gated recurrent unit; transfer learning; N
1
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6232 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6231–6241. 

1. Introduction  

Post-transcriptional modification of RNA plays a crucial role in understanding a variety of 

cellular processes, such as RNA splicing, RNA degradation, protein translation, stability and immune 

tolerance [1]. Among different types of RNA modifications, m
1
A modification is related to gene 

mutation and helps to maintain the stability of mitochondrial tRNA. Pseudouridine modification is 

critical to the stabilization of tRNA structure, and the splice RNA responsible for gene regulation [2–5]. 

M
5
C affects RNA structural stability and translation efficiency [6,7]. N

6
-methyladenosine (m

6
A) 

modification involves a variety of important biological processes such as RNA localization and 

degradation, RNA structural dynamics, cell differentiation and reprogramming [8–11]. The chemical 

structures of m
1
A, pseudouridine and m

5
C modifications are shown in Figure 1 [3,12,13]. Because 

RNA modifications occur on specific nucleotides with functional group changes, to detect RNA 

modification sites via biological experiments would require much time, money and efforts. Among 

all RNA modification data, m6A together with the three types are the most accessible data. 

 

Figure 1. Three RNA modification schematics. 

As an alternative way, computational tools have been published for RNA modification site 

prediction since 2016. They all combined handcrafted features from RNA sequence analysis with 

traditional machine learning methods for prediction. Chen et al. developed a m
1
A prediction tool 

called RAMPred based on RNA Chemical Properties (CPs) and Support Vector Machines (SVM) [14].Combined 

on CPs, Nucleotide chemical (NC) and SVM, Wei Chen et al. released a pseudouridine prediction 

tool called iRNA-PseU [15]. He et al. utilized Dinucleotide Composition (DC), NC, 

Position-Specific Dinucleotide Preferences (PSDP), Position-Specific Nucleotide Preferences 

(PSNP), Pseudouridine Synthase (PUS) and SVM to build a pseudouridine prediction tool called 

PseUI in 2018 [16]. Qiu et al. presented a m
5
C prediction tool called iRNAm5C-PseDNC by 

integrating PseDNC, DC and Random Forest (RF) in 2017 [17]. Li encoded RNA sequences to 

one-hot vectors and used RF to implement m
5
C prediction [18]. These existing RNA modification 

site predictors just focused on a single type of RNA modification site prediction. Meanwhile some 

researchers attempted to develop prediction tools for multiple types of modification sites. Feng et al. 

published iRNA-PseColl tool to predict methylation of m
6
A, m

1
A and m

5
C [19]. Chen et al worked 

out a m
6
A, m

1
A, adenosine to inosine methylation predictor by CP, NC and SVM in 2018 [20]. 

These multiple types of RNA modification site of predictors can provide more comprehensive 

knowledge than single type of predictors. In addition, the performance of traditional machine 

learning methods highly depends on the effectiveness of feature engineering. However, it is difficult 

to tell the most relevant feature combinations for specific RNA modification. Deep learning can skip 



6233 

Mathematical Biosciences and Engineering  Volume 16, Issue 6, 6231–6241. 

handcrafted features and conduct end-to-end prediction. Through multiple neuron layers and activate 

functions, it obtains the capacity of mapping from raw input to latent representation, which is trained 

by labeled data. Under such data-driven model, deep features of RNA sequence related to the 

semantic information of RNA modification sites would come out. Huang et al. have proved that deep 

learning has better effects on predicting m
6
A RNA modification sites [21]. As the preliminary 

attempt of deep learning in multiple types of RNA modification site prediction, we developed a 

model for predicting m
1
A, pseudouridine and m

5
C RNA modification sites. To the best of knowledge, 

this is the first deep learning-based tool for multiple types of RNA modification site prediction. 

Thanks to the larger scale data in m
6
A type, some researchers have presented deep learning-based 

predictors to identify this type of RNA modification sites, and achieved excellent improvement.Yet 

the available data of the three types of RNA modification are still too small to build a deep network 

independently. In this work, we took advantages of large-scale m
6
A data to pretrain a deep learning 

model, and then employed transfer learning strategy to fine-tune its network parameters for our 

targeted types of RNA modifications. Further, a multi-type RNA modification predictor on three 

species of H. sapiens, M. musculus and S. cerevisiae named DeepMRMP was carried out. 

2. Materials and method  

2.1. Benchmark datasets 

In this study, all positive samples were extracted from the RMABase 2.0 database [22] , which 

contains ~1373000 N
6
-Methyladenosines, ~5400 N

1
-Methyladenosines, ~9600 pseudouridine 

modifications, ~1000 5-methylcytosine modifications, and other types from 13 species [23]. We 

randomly retrieved m
1
A, pseudouridine and m

5
C data on three species, H. sapiens, M. musculus and 

S. cerevisiae as positive samples and 10 times the number of other RNA gene fragments as negative 

samples. The details of our experimental data is shown in Table 1. 

Table 1. The number of positive samples for all involving RNA modification from three species. 

Modification type H. sapiens M. musculus S. cerevisiae Total 

m
1
A 2574 1052 1220 4819 

pseudouridine 4128 3320 2122 9570 

m
5
C 680 97 211 988 

 

For fair comparisons, we cut each RNA sequence into a length of 41 RNA fragment, which is the 

most adopted length in existing tools. Taking m
1
A as an example, each RNA fragment in these 

datasets can be represented as follows: 

                            (1)  

In which the center X is the targeted site, i.e. A (adenine) for m
1
A, U (Uracil) for pseudouridine, 

and C (cytosine) for m
5
C respectively.    to     represent the upstreaming flank nucleotides 

towards target site while     to     denote its down-streaming flank nucleotides.  

In order to validate the generalization of our model, we divided our dataset into 10 folds by 

random selection. Each fold included training set validation set and testing set with the ratio of 3:1:1. 
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Furthermore, for the purpose of avoiding over-estimation, each fold data was processed by the 

CD-HIT2D-EST tool to remove sequences with high similarity [24,25]. Here we adopted the most 

stringent threshold 0.8 supporting in CD-HIT2D-EST.  

2.2. Encoding of RNA segments 

One-hot encoding is one of the most common and effective encoding ways in sequence 

analysis [26–28], which projects each sequence to a single vector at Euclidean space. In our work, 

each RNA sequence was encoded into one-hot vector for further GRU network modeling. In our 

one-hot encoding, each nucleotide in RNA fragment can be encoded into a four-dimensional matrix 

such as A = [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], U = [0,0,0,1]. 

2.3. Deep network and transfer learning 

2.3.1. Deep network structure 

Recurrent Neural Network (RNN) is a deep architecture in capable of memorizing contextual 

information, which is ideal for biological sequence analysis [29,30]. GRU as a lite version of RNN 

showed its effectiveness in predicting m
6
A modification sites [21]. The bidirectional version of GRU 

extracts sequence embedding representation from sequences to capture the potential motifs around 

the modification sites [31]. In our study, we stacked two bidirectional GRU layer with a unit size of 

64. Following BGRU layers, we added a dense layer with 64 units to fully connect all latent 

representations. The activation function of all layers is Relu, which is in capable of generating sparse 

output and accelerating converge [31]. Adam optimizer and 5e-4 learning rate were employed in 

training procedure [32]. The training procedure would stop if the model kept stable during 

continuous 20 epochs. The details of our deep network can be found in Table 2. 

Table 2. Detailed of our deep network. 

Layer Hyper-parameters 

 Activation function units Dropout 

GRU Relu 64 0.2 

GRU Relu 64 0.2 

Dense Relu 64 0.2 

Dense Softmax 2 0 

2.3.2. Transfer learning strategy 

Large scale data is required to understand the latent patterns in modeling a deep network [33]. 

For the situation of relative small data, transfer learning is a promising strategy to span the data gap. 

It delivers the knowledge from the source domain to the target domain by relaxing the assumption 

that the training data and the test data must be independent and identically distributed [34,35]. We 

hypothesized some potential motifs distributed cross different types of RNA modification sites, so 

that we chose to use m
6
A data for per-training to detect such general sequence motif patterns, and 

then fine-tuned the deep model by the m
1
A, pseudouridine, m

5
C methylation data for the 

corresponding predictors. When fine-tuning the trained model, we set the learning rate to 5e-5, but 
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increased the patient parameter in earlystop operation In doing so, we can make full use of relative 

small scale data of m
1
A, pseudouridine and m

5
C to generate their specific deep features on the basis 

of the general pretrained model. 

2.3.3. Evaluation indicators 

In recent studies, four evaluation parameters, Accuracy (Acc), Sensitivity (Sn), Specificity (Sp), 

and the Matthews correlation coefficient (MCC) have been frequently used to measure the 

predictor’s quality. In this study we also used ROC (receiver operating characteristic) curve, PR 

(precision-recall) curve and F1 score, which are less affected by the unbalanced data set, to evaluate 

the performance of predictors. ROC curve reflects the overall relationship between sensitivity and 

specificity when different thresholds are applied. PRC curve and F1 score reflects the overall 

relationship between precision and recall. 
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where TP, TN, FP and FN represent the number of true positive, true negative, false positive and 

false negative samples, respectively. The larger the area under the AUC and PRC curve, the higher 

the prediction performance. 

Moreover, we used the independent dataset measure the predictive performance of the predictor. 

The procedure of this validation method is briefly described as follows. First, we train our model by 

selecting a previously partitioned set of training and validation. This process is repeated 10 times, 

with each of the 10 subsets used exactly once as the validation data. Last, the 10 results are averaged 

to obtain a final prediction estimation. 

3. Results 

3.1. Compare models with and without transfer learning 

  To measure the effectiveness of the underlying transfer learning, we compared the performance 

with and without transfer learning. For fair comparison, all classifiers were used under equal 

conditions, modeling with the same dataset and feature extraction method. Algorithm performance is 

presented in Figure 2. As shown in Figure 2, when the transfer learning was used, we found that the 

performance improved significantly. Therefore, transfer learning is used in our predictive model. 
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Figure 2. ROC and PRC curves of the three RNA modification with and without transfer 

learning. 

 

Figure 3. Four types of modifications WebLogo map. 

WebLogo is a commonly used sequence feature analysis tool [36,37]. Each logo consists of 

stacks of symbols, one stack for each position in the sequence. The overall height of the stack 

indicates the sequence conservation at that position, while the height of symbols within the stack 

indicates the relative frequency of each amino or nucleic acid at that position. 

The modification site of m
6
A, m

1
A, pseudouridine and m

5
C is at A, A, T and C. When we drew, 

the fixed position is removed to magnify the surrounding features. After truncation, the first 10 sites 

of the x-axis are the sequences before the modification sites, and the 11–20 sites of the x-axis are the 

sequences after the modification sites. As seen in Figure 3, the characteristics of the m
6
A data used in 

the pre-training are obvious in the ninth to twelfth. The features of m
1
A and the pseudouridine 

datasets are also concentrated in the ninth to twelfth positions, which is consistent with the 

assumption of transfer learning algorithm. For the case that the WebLogo map of m
5
C is distributed 

uniformly, we have two assumptions: (1) The motif of m
5
C are relatively dispersed. (2) 988 m

5
C data 

are insufficient to extract the features of m
5
C. After experimentation, we found that the AUC of m

5
C 

model increased by 0.16 after using transfer learning. The results of this experiment show that the 

features of m
5
C are similar to those of the other three modifications. It is difficult to effectively 
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identify features with 988 m
5
C data using WebLogo. 

3.2. Compare models using different networks 

To measure the effectiveness of the underlying GRU network, we compared its performance 

with other two commonly used deep learning algorithms, such as CNN network and CNN and 

network that use both CNN and GRU. For fair comparison, all classifiers were used under equal 

conditions, modeling with the same dataset and feature extraction method. Three algorithms 

performances are presented in Figure 4.  

 

Figure 4. ROC and PRC curves of the three RNA modification under different model. 
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In order to compare the ROC and PRC curves of each of the three RNA modification prediction 

models more clearly, we enlarged the image of the m
1
A data. As shown in Figure 4, we have a good 

performance in m
1
A dataset with all three models (AUC = 0.99 and PRC = 0.99). The GRU model 

achieved a batter performance in ROC and PRC curve compared with the CNN model and 

CNN-GUR hybrid model. The CNN model has a better effect than the GRU and CNN-GRU hybrid 

model in m5C dataset. The AUC and PRC of the CNN network, the GRU network and the 

CNN-GRU hybrid network were 0.79, 0.73, 0.71 and 0.75, 0.72, 0.71 respectively. CNN works 

better with fewer samples. But when the sample is sufficient, the GRU performance is higher. 

According to our analysis, CNN networks perform better in small samples because of their simple 

structure. Due to the large number of memory units, GRU networks need more samples to achieve 

better performance. The CNN-GRU hybrid model requires the largest number of samples. With the 

accumulation of m
5
C samples, our model will become more and more reliable. 

3.3. Comparison with other tools 

In order to further prove its superiority, the predictive results of the proposed method were also 

compared with the prediction results of the classifiers released in 2018, i.e., iRNA-3typeA, PseUI 

and RNAm5Cfinder. Table 3 shows the predictive performance of our tool and the performance of 

the three tools mentioned above when using the same independent test set. 

Table 3. Comparison DeepMRMP with other tools. 

Types tools Acc precision recall SP F1 score MCC 

M
1
A iRNA-3typeA[20] 0.5119 0.5060 0.9979 0.0258 0.6715 0.1012 

 DeepMRMP 0.9927 0.9887 0.9969 0.9886 0.9928 0.9856 

pseudouridine PseUI[16] 0.6018 0.5989 0.6165 0.5872 0.6076 0.2038 

 DeepMRMP 0.6264 0.6675 0.5036 0.7492 0.5741 0.2608 

M
5
C RNAm5Cfinder[18] 0.6326 0.7954 0.3571 0.9081 0.4929 0.3179 

 DeepMRMP 0.6632 0.7580 0.4795 0.8469 0.5874 0.3510 

As seen in Table 3, among the two m
1
A prediction tools, the DeepMRMP outperforms the m

1
A 

predictor in iRNA-3typeA. To be specific, the Acc, precision, recall, Sp, F1 score and MCC of the 

DeepMRMP are 0.9927, 0.9887, 0.9969, 0.9886, 0.9928 and 0.9856, respectively. All the metrics are 

higher than m
1
A predictor in iRNA-3typeA. When compared with the PseUI, our model showed 

improvements of 0.0246 of the Acc, 0.0686 of the precision, 0.1620 of the Sp and 0.057 of the MCC 

on the independent test sets. Our model has four metrics (Acc, recall, F1 score and MCC) higher than 

RNAm5Cfinder. A higher F1 score and MCC mean that our model is better, and higher recall means 

that our predicted results contain more positive samples. Our model allows researchers to pre-screen 

more likely samples before biological experiments, thus saving manpower and material resources. 

4. Conclusion 

In this study, we proposed a model, DeepMRMP, for accurately and efficiently identifying m
1
A, 

pseudouridine and m
5
C sites in RNA sequences. We compared our model DeepMRMP with the latest 

m
1
A, pseudouridine and m

5
C site prediction model by using independent tests. The results showed 
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that our predictor performed strong robustness and generalization than those of other predictors. 

Further comparative experiments also exhibited that the outperformance might benefit from our deep 

network and transfer learning strategy. We believe that DeepMRMP has great potentials and with 

more data become available, the performance of DeepMRMP could be further improved. The source 

code of DeepMRMP is available at https://github.com/Chenyb939/DeepMRMP 
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