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Abstract: In this article we conduct an analytical study of a poroviscoelastic mixture model stemming
from the classical Biot’s consolidation model for poroelastic media, comprising a fluid component and
a solid component, coupled with a viscoelastic stress-strain relationship for the total stress tensor. The
poroviscoelastic mixture is studied in the one-dimensional case, corresponding to the experimental
conditions of confined compression. Upon assuming (i) negligible inertial effects in the balance of
linear momentum for the mixture, (ii) a Kelvin-Voigt model for the effective stress tensor and (iii) a
constant hydraulic permeability, we obtain an initial value/boundary value problem of pseudo-parabolic
type for the spatial displacement of the solid component of the mixture. The dimensionless form of the
differential equation is characterized by the presence of two positive parameters γ and η, representing
the contributions of compressibility and structural viscoelasticity, respectively. Explicit solutions are
obtained for different functional forms characterizing the boundary traction. The main result of our
analysis is that the compressibility of the components of a poroviscoelastic mixture does not give rise
to unbounded responses to non-smooth traction data. Interestingly, compressibility allows the system
to store potential energy as its components are elastically compressed, thereby providing an additional
mechanism that limits the maximum of the discharge velocity when the imposed boundary traction is
irregular in time.
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1. Introduction

Poroviscoelastic models of multi-component mixtures are often utilized in biological applications
to describe the flow of fluids within the pores of a deformable solid skeleton, see e.g., [1–4]. Skeleton
viscoelasticity is often due to the complex structures including extracellular matrix, collagen and
elastin that are present in biological tissues. Specifically, our work focuses on the
bio-fluid-mechanical response of poroviscoelastic media to non-smooth data, since this aspect is
crucial in understanding the mechanisms leading to tissue damage in the optic nerve head, and
consequent vision loss, associated with glaucoma [5–8].

In the absence of viscoelasticity, we have recently shown that time irregularities in the volumetric
and/or boundary sources of linear momentum lead to a blow-up in the solution of poroelastic
models [1, 4]. Interestingly, the blow-up can be prevented by including structural viscoelasticity [4].
From the application viewpoint, examples of time-irregularities in the data are discontinuities in
intraocular pressure, which acts as a boundary traction for the optic nerve head tissue, or
discontinuities in the gravitational force, which acts as a volumetric source of linear momentum. The
intraocular pressure exhibits rapid changes every time we rub our eyes or we change posture [9],
whereas rapid changes in the gravitational acceleration are experienced by jet pilots and astronauts
during flights [10, 11]. Since tissue viscoelasticity has been shown to decrease with age and/or disease
conditions, the solution blow-up identified by our theoretical work led to hypothesize that rapid
changes in intraocular pressure and gravitational acceleration, even if within physiological ranges,
could damage the optic nerve head tissue if its viscoelasticity was pathologically reduced.

It is important to emphasize that our previous work was built on the assumption that the
poroviscoelastic medium under consideration was made of incompressible components. The
incompressibility assumption is quite common in biological applications, since tissues are mostly
made of water. However, compressibility is always present in real tissues, and this leads to wonder
whether and to what extent compressibility of the mixture components would affect the tissue
response to non-smooth data. The present work aims at addressing this question.

Proceeding as in [4], we assume: (i) a one-dimensional (1D) geometry; (ii) negligible inertial terms
in the linear momentum balance equation; (iii) a Kelvin-Voigt model for the effective stress tensor and
(iv) a constant hydraulic permeability of the porous medium. Then, we express the fluid pressure and
the solid stress as functions of the sole solid phase displacement, and we obtain an initial-boundary
value problem (IBVP) of pseudo-parabolic type for the solid phase displacement. For this equivalent
formulation we are able to construct an analytical solution and prove the well-posedness of weak
solutions. Moreover, we recover analytical formulas for fluid pressure and discharge velocity, and
discuss their regularity in terms of the regularity of the data. Finally, we analyze the behavior of all
the solutions for various continuous and discontinuous boundary loads, which are of particular interest
in understanding how changes in intraocular pressure would impact the bio-fluid-mechanics of ocular
tissues.

The main conclusion of our analysis is that the compressibility of the components of a
poroviscoelastic mixture does not give rise to unbounded responses to non-smooth traction data.
Interestingly, compressibility provides an additional mechanism that limits the maximum of the
discharge velocity when the imposed boundary traction is irregular in time. This mechanism
originates from the capability of the system to store potential energy as its components are elastically
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compressed, thereby delaying the transmission of irregularities in the linear momentum from the solid
to the fluid. As a result, the fluid has the time to accommodate for sudden changes, resulting in
bounded velocities.

Our results fit well with other poroviscoelastic studies motivated by geomechanical applications,
where viscoelasticity was found to play a crucial role in the response of the medium to impulsive
loads. Specifically, the studies focused on evaluating the consequences that different choices for the
viscoelastic models would have on the medium response to external loads. For example, in [12],
Schanz and Cheng considered a Kelvin-Voigt viscoelastic model and investigated the consequences
of adopting it for the bulk compression modulus, the shear modulus and the compression modulus
of the solid material. In [2, 3], Huang et al. utilized the quasi-linear viscoelastic theory to study the
response of articular cartilage under compression and tension experiments. However, these studies did
not consider how the mechanical responses of the poroviscoelastic mixture would change depending
on the level of compressibility of the mixture components, which is the main focus of the present work.

The outline of this article is as follows. In Section 2 we describe the compressible
poro-visco-elastic model under consideration and discuss the finite compressibility of the components
of the mixture. Section 3 introduces the energy identity associated with the system. In Section 4 we
present an equivalent form of the fluid-solid mixture system, written solely in terms of the solid phase
displacement. To simplify the theoretical analysis, in Section 5 we reduce the poroviscoelastic model
into dimensionless form. Section 6 studies the well-posedness and regularity of solution for the IBVP
introduced in Section 4, and provides analytical formulas for the elastic displacement, fluid pressure
and discharge velocity. In Section 7 we compute and analyze the behavior of the solid displacements,
the fluid pressures and the discharge velocities associated with different continuous and discontinuous
boundary sources. We also display the energies, as well as the dissipation and source terms associated
with the various cases. We conclude the article with Section 9, where we discuss our results and draw
our final conclusions.

2. The compressible poroviscoelastic model

In this paper, we focus on a viscoelastic, compressible Biot model in one spatial dimension. Let
x and t denote the spatial and temporal coordinates, respectively. In the case where inertial terms
are negligible, displacements are infinitesimal and external sources of linear momentum and mass are
absent, the balance equations to be solved in the spatial interval (0, L) and in the temporal observational
interval (0,T ] can be written as:

∂σ

∂x
= 0, (2.1a)

∂ζ

∂t
+
∂v
∂x

= 0, (2.1b)

where σ is the total stress, ζ is the fluid content and v is the discharge velocity. Equations (2.1) are
complemented with the following constitutive laws:

σ = −αp + σ0, (2.2a)

σ0 = θ
∂u
∂x

+ η
∂

∂t

(
∂u
∂x

)
, (2.2b)
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ζ = c0 p + α
∂u
∂x
, (2.2c)

v = −K
∂p
∂x
. (2.2d)

Equation (2.2a) expresses the fact that the total stress is the sum of a contribution due to the interstitial
fluid pressure (or pore pressure) p and one due to the effective stress σ0, which is assumed to be
characterized by viscoelastic behavior of Kelvin-Voigt type (see Eq (2.2b) where u denotes the solid
phase displacement). Equation (2.2c) expresses the fact that the fluid content is altered by changes in
fluid pressure and solid deformation. Equation (2.2d) is Darcy’s law relating the discharge velocity
v with the pressure gradient by means of the hydraulic permeability K . The Biot coefficient α, the
storage coefficient c0, the material parameters θ and η and the permeability K are assumed to be given
positive constants.

In the classical Biot’s theory, the material parameter θ can be expressed as θ = K−(4/3) G, where K
is the drained bulk compression modulus and G is the shear modulus. In the following, we will simply
refer to θ and η as the elastic and viscoelastic parameters, respectively [12]. In addition, we will use
the notation K = K0 to emphasize the fact that the permeability is assumed to be a given constant.

The problem must be equipped with appropriate boundary conditions. In the following, we will
assume that the boundary located at x = 0 is fixed and impermeable, namely:

u(0, t) = 0, (2.3a)
v(0, t) = 0, (2.3b)

and that the boundary located at x = L experiences an external stress P (a compressive stress if P
is positive, a tensile stress if P is negative) that is supported entirely by the solid component of the
mixture (condition of exposed pores [13]), namely:

p(L, t) = 0, (2.3c)
σ(L, t) = −P(t). (2.3d)

Finally, we complete the formulation of the problem by prescribing the following initial conditions:

u(x, 0) = 0, (2.4a)
p(x, 0) = 0. (2.4b)

We notice that (2.4a) and (2.4b) also imply the following initial conditions for the dilation of the solid
material and the discharge velocity, respectively:

∂u
∂x

(x, 0) = 0, (2.5a)

v(x, 0) = 0. (2.5b)

Remark 1. The case of incompressible mixture components can be obtained by setting c0 = 0 and
α = 1 in the model described above, as detailed in [14, 15]. The study of analytical solutions for the
incompressible model was addressed in [1, 4].
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3. Energy identity

The mathematical system described in Section 2 satisfies an energy identity that helps provide a
physical interpretation of the solutions, assuming they exist. To this end, let us multiply (2.1a) by
∂u/∂t ∈ L2(0, L); integrating over (0, L) and using the constitutive laws (2.2a) and (2.2b) and the
boundary conditions (2.3a), (2.3c) and (2.3d),we obtain

−
θ

2
d
dt

∥∥∥∥∥∂u
∂x

∥∥∥∥∥2

L2(0,L)
− η

∥∥∥∥∥∥ ∂2u
∂t∂x

∥∥∥∥∥∥2

L2(0,L)

+ α

∫ L

0
p
∂2u
∂t∂x

dx = P(t)
∂u
∂t

(L, t). (3.6)

Multiplying (2.1b) by p ∈ L2(0, L), integrating over (0, L) and using the constitutive laws (2.2c)
and (2.2d) and the boundary conditions (2.3b) and (2.3c), we obtain

c0

2
d
dt
‖p‖2L2(0,L) +K0

∥∥∥∥∥∂p
∂x

∥∥∥∥∥2

L2(0,L)
+ α

∫ L

0
p
∂2u
∂t∂x

dx = 0. (3.7)

Subtracting (3.6) from (3.7) we get the following evolution equation for the total energy stored in the
poroviscoelastic system

d
dt
Etot(t) +D(t) = F (t), t ∈ (0,T ], (3.8)

where the energy functional Etot = Etot(t), the dissipation functional D = D(t) and the force term
F = F (t) are defined as:

Etot (t) :=
c0

2
‖p (·, t)‖2L2(0,L) +

θ

2

∥∥∥∥∥∂u
∂x

(·, t)
∥∥∥∥∥2

L2(0,L)
, (3.9a)

D (t) := K0

∥∥∥∥∥∂p
∂x

(·, t)
∥∥∥∥∥2

L2(0,L)
+ η

∥∥∥∥∥∥ ∂2u
∂t∂x

(·, t)

∥∥∥∥∥∥2

L2(0,L)

, (3.9b)

F (t) := −P(t)
∂u
∂t

(L, t). (3.9c)

Remark 2. The physical units of Etot are Joules per unit area, namely J m−2. This is due to the fact
that we are considering a one-dimensional problem in space and, as a consequence, all the problem
variables are assumed to be constant on every plane perpendicular to the chosen direction x.
Mathematically, Etot is obtained by integrating in x between 0 and L the energy density εtot defined as

εtot(x, t) :=
c0

2
p(x, t)2 +

θ

2

∣∣∣∣∣∂u
∂x

(x, t)
∣∣∣∣∣2 .

The units of εtot are J m−3. Analogously, the units ofD and F are J m−2 s−1.

Since Etot ≥ 0 and D ≥ 0, in absence of forcing terms (i.e., P = 0) the energy decreases in time.
It is important to emphasize that the terms proportional to the storage coefficient c0 and the elastic
parameter θ contribute to the total energy in the form of potential energy, so that we can write

Ec0 (t) :=
c0

2
‖p (·, t)‖2L2(0,L) , Eθ (t) :=

θ

2

∥∥∥∥∥∂u
∂x

(·, t)
∥∥∥∥∥2

L2(0,L)
with Etot = Ec0 + Eθ .

Conversely, the terms proportional toK0 and η contribute to dissipate energy via viscous effects within
the fluid and solid components. We notice that F does not have a definite sign since it depends on the
boundary terms. The energy identity (3.8) will be very useful in interpreting the results presented in
Section 7.
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4. The 1D poroviscoelastic model in displacement form

Now we express problem (2.1)–(2.4) solely in terms of the solid displacement. Combining (2.1a)
and (2.3d), we obtain that the total stress is given by

σ(x, t) = −P(t), for all x ∈ (0, L] and for all t ∈ (0,T ] ,

and, moreover, the fluid pressure p and the discharge velocity v can be written in terms of the solid
displacement u as:

p (x, t) =
1
α

P (t) +
1
α
σ0 (u (x, t)) , (4.10a)

v (x, t) = −
K0

α

∂

∂x
σ0 (u (x, t)) , (4.10b)

where σ0 = σ0 (u (x, t)) is given by (2.2b). Let us now derive the problem satisfied by u. Integrating
Eq (2.1b), where ζ is given by (2.2c), over the space interval [0, x] and taking the boundary
conditions (2.3) into account, yields

c0

∫ x

0

∂p
∂t

dy + α
∂u
∂t

+ v = 0

Now we substitute p and v by expressions (4.10) and note that∫ x

0
σ0dy = θu + η

∂u
∂t

by virtue of (2.3a). Then we obtain

c0xP′ (t) + c0

(
θ
∂u
∂t

+ η
∂2u
∂t2

)
+ α2∂u

∂t
− K0

(
θ
∂2u
∂x2 + η

∂3u
∂t∂x2

)
= 0.

The boundary conditions are (2.3a) and σ0|x=L = −P (t) (coming from (2.3c) and (4.10a)). The initial
conditions are (2.4a) and, on using (2.4b), (4.10a), (2.2b) and (2.5a),

η
∂2u
∂t∂x

(x, 0) = −P (0)

or equivalently
∂u
∂t

(x, 0) = −
1
η

xP(0) + u1

u1 being an arbitrary constant. Note that u1 = 0 if and only if the compatibility condition with (2.3a)

∂u
∂t

(0, 0) = 0 (4.11)

is satisfied. Summing up:

Find u = u (x, t) such that:

c0η
∂2u
∂t2 +

(
α2 + c0θ

) ∂u
∂t
− K0θ

∂2u
∂x2 − K0η

∂3u
∂t∂x2 = −c0xP′ (t) in (0, L) × (0,T ], (4.12a)
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u(0, t) = 0 in (0,T ], (4.12b)

θ
∂u
∂x

(L, t) + η
∂2u
∂t∂x

(L, t) = −P (t) in (0,T ], (4.12c)

u(x, 0) = 0 in (0, L), (4.12d)
∂u
∂t

(x, 0) = −
1
η

xP(0) + u1 in (0, L). (4.12e)

Remark 3. The solution u (x, t) of the problem (4.12) is the sum u1 (x, t) + u0 (x, t) of the solution
u1 (x, t) of (4.12) where P = 0, and of the solution u0 (x, t) of (4.12) where u1 = 0. In the first case,
a perturbation is generated at time zero, with a certain initial velocity of propagation (u1 , 0): then
u1 (x, t) measures how the solid displacement changes through the medium when no disturbance is
created at the boundary (P = 0). On the other hand, if there is no “initial impulse” (i.e., u1 = 0)
and a disturbance is generated at the boundary (P , 0), then the corresponding change of the solid
displacement is represented by u0 (x, t). Therefore, the compatibility condition (4.11) simply means to
consider the response of the system to the sole external stress P.

Remark 4. We assume throughout the article that c0 > 0 and η > 0, i.e. the system is characterized by
finite compressibility and structural viscoelasticity.

Remark 5. The IBVP (4.12) has a markedly different character compared to the linear poroviscoelastic
system studied in [4] because of the second-order time derivative on the left-hand side of (4.12a).

Remark 6. If we define the following quantities:

ρ̃ :=
1
K0

c0η

α2 + c0θ
,

σ̃ :=
1

α2 + c0θ
σ0 −

1
K0

∫ x

0

∂u
∂t

(y, t)dy,

f̃ := −
1
K0

c0

α2 + c0θ
xP′ (t) ,

then the partial differential equation (4.12a) that describes the dynamics of the solid phase
displacement can be written as

ρ̃
∂2u
∂t2 =

∂σ̃

∂x
+ f̃ .

Such an equation can be formally interpreted as a linear momentum balance equation for a single
phase solid material whose dynamics is equivalent to that of the fluid-solid mixture under the
assumptions of Section 2. In particular, we see that the finite compressibility of the mixture
components, corresponding to c0 > 0, provides:

(i) an inertia-like term for the equivalent solid, even though inertial terms were neglected for the
original solid phase within the mixture;

(ii) an additional term in the stress tensor introducing nonlocal effects in space;
(iii) a volumetric forcing term that results from the load applied as a boundary condition.
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5. The linear 1D model in dimensionless form

In order to simplify the theoretical analysis, in this section we reduce the 1D model (4.12) into
dimensionless form. With this aim, for any variable Y , we define the corresponding non-dimensional
variable by

Ŷ :=
Y

[Y]
,

where [Y] is a suitably chosen scaling factor that has the same units as Y . The selection of the scaling
factor is not unique and, in general, not trivial. In this article we generalize the choice made in [4], by
introducing the following scaling factors:

[x] = L, (5.1a)

[t] =
L2

(
α2 + c0θ

)
θK0

, (5.1b)

[η] = θ[t], (5.1c)
[σ] = [σ0] = [P] = Pref, (5.1d)

[u] =
LPref

θ
, (5.1e)

[u1] =
[u]
[t]
, (5.1f)

[v] =
K0Pref

αL
, (5.1g)

[p] =
Pref

α
, (5.1h)

[D] = [F ] =
K0P2

ref

L
(
α2 + c0θ

) , (5.1i)

[Etot] = [Ec0] = [Eθ] = [D][t] =
LP2

ref

θ
. (5.1j)

We also define the non-dimensional quantity

γ :=
c0θ

α2 + c0θ
. (5.2)

Note that 0 < γ < 1. We recover the same definitions of the scaling factors as in [4] by setting α = 1
and c0 = 0 in (5.1).

Remark 7. For notational simplicity we will drop the ‘ ·̂ ’ notation for the dimensionless variables and
instead use the same symbols adopted for the dimensional variables.

The linear 1D model for a poroviscoelastic mixture in dimensionless form reads:

γη
∂2u
∂t2 +

∂u
∂t
−
∂2u
∂x2 − η

∂3u
∂t∂x2 = −γxP′ (t) in (0, 1) × (0,T ], (5.3a)

u(0, t) = 0 in (0,T ], (5.3b)
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∂u
∂x

(1, t) + η
∂2u
∂t∂x

(1, t) = −P (t) in (0,T ], (5.3c)

u(x, 0) = 0 in (0, 1), (5.3d)
∂u
∂t

(x, 0) = −
1
η

xP(0) + u1 in (0, 1). (5.3e)

Once u (x, t) is known, the functions σ, p and v can be computed as follows:

σ (x, t) = −P (t) , (5.4a)

p (x, t) = P (t) +
∂u
∂x

+ η
∂2u
∂t∂x

, (5.4b)

v (x, t) = −

(
∂2u
∂x2 + η

∂3u
∂t∂x2

)
= −

(
γη
∂2u
∂t2 +

∂u
∂t

+ γxP′ (t)
)
. (5.4c)

Lastly, the dimensionless energy equation is written again in the form (3.8) where

Etot (t) = Ec0 (t) + Eθ (t) , (5.5a)

Ec0 (t) =
1
2

γ

1 − γ
‖p (·, t)‖2L2(0,1) , Eθ (t) =

1
2

∥∥∥∥∥∂u
∂x

(·, t)
∥∥∥∥∥2

L2(0,1)
, (5.5b)

D (t) =
1

1 − γ

∥∥∥∥∥∂p
∂x

(·, t)
∥∥∥∥∥2

L2(0,1)
+ η

∥∥∥∥∥∥ ∂2u
∂t∂x

(·, t)

∥∥∥∥∥∥2

L2(0,1)

, (5.5c)

F (t) = −P(t)
∂u
∂t

(1, t). (5.5d)

6. Well-posedness and Regularity of Solution

We make the following assumption on the boundary traction in (5.3).

Assumption 8. P (t) is a piecewise smooth function on [0,T ].

We recall that a function P (t) is piecewise smooth on [0,T ] if both P and its derivative P′ are
continuous on [0,T ], except possibly at a finite number of points in (0,T ), where they have simple
jump discontinuities.

6.1. Auxiliary Problem

Define

U (t) =
1
η

e−t/η ∗ P (t) =
1
η

∫ t

0
exp

(
−

t − s
η

)
P (s) ds. (6.6)

Using Assumption 8 we have that U (t) is absolutely continuous on [0,T ] and

ηU′ (t) = P (t) − U (t) , U (0) = 0, U′ (0) =
P (0)
η

. (6.7)

Now we introduce the change of variable

w (x, t) = u (x, t) + xU (t) , (6.8)
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and note that w solves the following auxiliary IBVP with homogeneous boundary data:

γη
∂2w
∂t2 +

∂w
∂t
−
∂2w
∂x2 − η

∂3w
∂t∂x2 = f (x, t) in (0, 1) × (0,T ], (6.9a)

w(0, t) = 0 in (0,T ], (6.9b)

∂w
∂x

(1, t) + η
∂2w
∂t∂x

(1, t) = 0 in (0,T ], (6.9c)

w(x, 0) = 0 in (0, 1), (6.9d)
∂w
∂t

(x, 0) = ϕ (x) in (0, 1). (6.9e)

where the volumetric source and initial datum are given by:

f (x, t) = (1 − γ) xU′ (t) , (6.10a)
ϕ (x) = u1. (6.10b)

We shall prove the existence and uniqueness of the solution w (x, t) for a very general class of data
f (x, t) and ϕ (x). For sake of exposition we write H = L2 (0, 1), and define the real Hilbert space

V =
{
v ∈ W1,2 (0, 1) : v (0) = 0

}
(6.11)

endowed with the equivalent norm ‖v‖V = ‖∂v/∂x‖L2(0,1), due to Poincaré’s inequality.

Remark 9. Sobolev’s Embedding Theorem gives W1,2 (0, 1) ⊂ C0 [0, 1] so that v (0) = 0 holds in a
strong sense for every v ∈ V.

Now we make the following assumptions on the functions f (x, t) and ϕ (x):

f ∈ L2 (0,T ; H) , ϕ ∈ H (6.12)

and write w (t) = w (·, t), w′ (t) = ∂w (·, t) /∂t, etc. We then define weak solutions of (6.9) as follows.

Definition 10. [Weak solution of problem (6.9)] A function w : [0,T ] → V is a weak solution of the
auxiliary problem (6.9) if:

D1 w ∈ W1,2 (0,T ; V) and w′′ ∈ L2 (0,T ; V ′);

D2 for every v ∈ V and for t pointwise a.e. in (0,T )

γη 〈w′′ (t) , v〉V′×V +
(
w′ (t) , v

)
H +

(
ηw′ (t) + w (t) , v

)
V = ( f (t) , v)H (6.13)

or, equivalently,

d
dt

(
γηw′ (t) + w (t) , v

)
H +

(
ηw′ (t) + w (t) , v

)
V = ( f (t) , v)H ∀v ∈ V; (6.14)

D3 w (0) = 0 and w′ (0) = ϕ.

Remark 11. Condition [D1] implies that w ∈ C0 ([0,T ] ; V) and w′ ∈ C0 ([0,T ] ; H), and thus
condition [D3] is well defined. The Dirichlet boundary condition in (6.9) at x = 0 is included in the
regularity requirement that w (t) ∈ V, whereas the boundary condition at x = 1 is satisfied in a weak
sense.
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6.2. A-priori Estimates

Lemma 12. Let w be a weak solution of (6.9). Then there are constants Ci’s, depending only on γ, η
and T , such that the following estimates hold for t pointwise in [0,T ]:

‖γηw′ (t) + w (t)‖2H ≤ C1

(
‖ϕ‖2H + ‖ f ‖2L2(0,T ;H)

)
, (6.15a)

‖w (t)‖2V ≤ C2

(
‖ϕ‖2H + ‖ f ‖2L2(0,T ;H)

)
, (6.15b)

‖w′ (t)‖2H ≤ C3

(
‖ϕ‖2H + ‖ f ‖2L2(0,T ;H)

)
. (6.15c)

Proof. Using (γηw′ + w) ∈ L2 (0,T ; V) as multiplier in (6.14), we get

d
dt
‖γηw′ + w‖2H +

(
ηw′ + w, γηw′ + w

)
V =

(
f , γηw′ + w

)
H .

Integrating in time over (0, t) and using the given initial conditions, we obtain

‖γηw′ + w‖2H +
η(γ + 1)

2
‖w‖2V +

∫ t

0

(
‖w‖2V + γη2 ‖w′‖2V

)
ds

= γ2η2‖ϕ‖2H +

∫ t

0

(
f , γηw′ + w

)
H ds.

Using Cauchy-Schwarz and Young’s Inequalities for the last term on the right-hand side, we obtain the
following estimate:

‖γηw′ + w‖2H +
η(γ + 1)

2
‖w‖2V +

∫ t

0

(
‖w‖2V + γη2 ‖w′‖2V

)
ds

≤ γ2η2‖ϕ‖2H +
1
2
‖ f ‖2L2(0,T ;H) +

1
2

∫ t

0
‖γηw′ + w‖2H ds. (6.16)

Now, dropping the second and third terms on the left-hand side of (6.16) and using Gronwall’s
Inequality, estimate (6.15a) follows. Similarly, by dropping the first and third terms on the left-hand
side and using (6.15a), we get (6.15b).
Lastly, we use triangle inequality and the embedding V ↪→ H to write

γη ‖w′‖H ≤ ‖γηw′ + w‖H + ‖w‖H

≤ ‖γηw′ (t) + w (t)‖H +
1
√

2
‖w (t)‖V .

Then, estimate (6.15c) follows from (6.15a) and (6.15b). �

Lemma 13. Let w be a weak solution of (6.9). Then there is a constant C, depending only on γ, η and
T , such that

‖w‖L∞(0,T ;V) + ‖w′‖L2(0,T ;V) + ‖w′′‖L2(0,T ;V′) ≤ C
(
‖ϕ‖H + ‖ f ‖L2(0,T ;H)

)
. (6.17)

Proof. From (6.15b) it immediately follows

‖w‖L∞(0,T ;V) ≤
√

C2

(
‖ϕ‖H + ‖ f ‖L2(0,T ;H)

)
.
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In addition, Eqs (6.16) and (6.15a) give

γη2
∫ T

0
‖w′‖2V ds ≤ γ2η2‖ϕ‖2H +

1
2
‖ f ‖2L2(0,T ;H) +

1
2

∫ T

0
‖γηw′ + w‖2H ds

≤

(
γ2η2 +

T
2

C1

)
‖ϕ‖2H +

1
2

(1 + TC1) ‖ f ‖2L2(0,T ;H)

so that
‖w′‖L2(0,T ;V) ≤ C

(
‖ϕ‖H + ‖ f ‖L2(0,T ;H)

)
(6.18)

for a suitable C = C (γ, η,T ).
Lastly, using the definition of a weak solution, we have that for v ∈ V

γη |〈w′′, v〉V′×V | ≤ ‖w′‖H ‖v‖H + ‖ηw′ + w‖V ‖v‖V + ‖ f ‖H ‖v‖H

≤
1
√

2

(
‖w′‖V + ‖ηw′ + w‖V + ‖ f ‖H

)
‖v‖V .

This implies that

‖w′′ (t)‖V′ ≤
η + 1
√

2

(
‖w′‖V + ‖w‖V + ‖ f ‖H

)
from which, using estimates (6.15b) and (6.15a), we obtain

‖w′′‖L2(0,T ;V′) ≤ C
(
‖ϕ‖H + ‖ f ‖L2(0,T ;H)

)
for a suitable C = C (γ, η,T ). �

The following corollary is an immediate consequence of Lemma 13.

Corollary 14. (Uniqueness and continuous dependence on data) The weak solution to problem (6.9)
is unique and depends continuously on the data.

6.3. Existence of Solution

The IBVP (6.9) can be solved formally using separation of variables. If we look for solutions of the
form w(x, t) = T (t)X(x), then the associated regular Sturm-Liouville Problem isX′′ + λX = 0, 0 < x < 1

X(0) = 0, X′(1) = 0,
(6.19)

with eigenvalues and eigenfunctions given by:

λn =

(
nπ +

π

2

)2
, n ≥ 0, (6.20)

Xn (x) = sin
((

nπ +
π

2

)
x
)
, n ≥ 0. (6.21)

Remark 15. The sequence of functions
{√

2Xn (x)
}

forms a Hilbert space basis for H, whereas the

sequence of functions
{√

2
λn

Xn (x)
}

forms a Hilbert space basis for V (see [17]).
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The solution w of (6.9) has the expansion

w (x, t) =

∞∑
n=0

Tn (t) Xn (x) , (6.22)

where Tn(t) can be recovered using the data. Similarly, we use the basis {Xn (x)} to represent ϕ and f
as follows:

ϕ (x) =

∞∑
n=0

ϕnXn (x) , (6.23a)

f (x, t) =

∞∑
n=0

fn (t) Xn (x) , (6.23b)

where ϕn and fn(t) are the Fourier coefficients of ϕ and f (·, t) with respect to Xn(x), respectively.
Parseval’s identity (consequence of Remark 15) provides the following relations:

‖ϕ‖2H =
1
2

∞∑
n=0

ϕ2
n, (6.24)

‖ f (·, t)‖2H =
1
2

∞∑
n=0

| fn (t)|2 , (6.25)

‖ f ‖2L2(0,T ;H) =
1
2

∫ T

0

∞∑
n=0

| fn (t)|2 dt. (6.26)

Note that Tn(t) satisfies the following ordinary differential equation (ODE) for all n ≥ 0:

γηT ′′n (t) + (1 + ηλn) T ′n(t) + λnT (t) = fn(t), (6.27)

and initial conditions
Tn(0) = 0 and T ′n(0) = ϕn. (6.28)

The characteristic equation for the homogeneous counterpart of (6.27) is given by

γηΛ2 + (1 + ηλn) Λ + λn = 0.

Since the discriminant of the equation is

(1 + ηλn)2
− 4γηλn = (1 − ηλn)2 + 4 (1 − γ) ηλn > 0,

then for each n ≥ 0 the characteristic equation has two real, negative, distinct roots r1n = −Λ1n and
r2n = −Λ2n, where:

Λ1n =
1

2γη

(
1 + ηλn −

√
(1 + ηλn)2

− 4γηλn

)
, and (6.29a)

Λ2n =
1

2γη

(
1 + ηλn +

√
(1 + ηλn)2

− 4γηλn

)
. (6.29b)
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Remark 16. Λ1n and Λ2n satisfy the following relations:

0 < Λ1n < Λ2n

Λ1n + Λ2n =
1 + ηλn

γη
, Λ1nΛ2n =

λn

γη
, 1 − γ = −γ (ηΛ1n − 1) (ηΛ2n − 1)

Λ1n =
1
η
−

(
1 − γ
η2

)
1
λn

+ O
(

1
λ2

n

)
, Λ2n =

λn

γ
+

1 − γ
γη

+ O
(

1
λn

)
(as n→ ∞)

Λ1n =
λn

1 + ηλn
+ O (γ) , Λ2n =

1 + ηλn

γη
−

λn

1 + ηλn
+ O (γ) (as γ → 0)

Therefore the solution for the homogeneous ODE (6.27) is given by T 0
n (t) = ane−Λ1nt + bne−Λ2nt.

The particular solution is obtained from variation of parameters formula. The Wronskian is given by
W(t) = (Λ2n − Λ1n)e−Λ1nte−Λ2nt, so that the particular solution has the following form

T p
n (t) =

1
γη

∫ t

0

e−Λ1n(t−s) − e−Λ2n(t−s)

Λ2n − Λ1n
f (s) ds. (6.30)

We introduce the following notation

Gn (t) :=
exp (−Λ1nt) − exp (−Λ2nt)

Λ2n − Λ1n
(6.31)

and then write the solution to (6.27) as

Tn(t) = ane−Λ1nt + bne−Λ2nt +
1
γη

(Gn ∗ fn) (t) (6.32)

where we used the following formula for convolution

(Gn ∗ fn) (t) =

∫ t

0
Gn (t − s) fn (s) ds.

Now we use (6.32) back into (6.22) and impose the initial conditions. We have:

w(x, 0) = an + bn = 0, and
wt(x, 0) = −Λ1nan − Λ2nbn = ϕn

which yields an = −bn = ϕn/ (Λ2n − Λ1n). In conclusion, we obtain:

Tn(t) = Gn (t)ϕn +
1
γη

(Gn ∗ fn) (t) , and (6.33a)

w (x, t) =

∞∑
n=0

[
Gn (t)ϕn +

1
γη

(Gn ∗ fn) (t)
]

Xn (x) . (6.33b)

We note that the terms Gn(t) given in (6.31) satisfy the following estimates.

Lemma 17. There exists a constant C > 0 such that for all n ≥ 0 and for all t ∈ [0,T ] we have:

0 ≤ Gn (t) ≤
C
λn
, (6.34a)∣∣∣G′n (t)

∣∣∣ ≤ C. (6.34b)
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Proof. Since 0 < Λ1n < Λ2n, then 0 < exp (−Λ2nt) ≤ exp (−Λ1nt) ≤ 1 and thus for all t ∈ [0,T ] we
have

0 ≤ Gn (t) <
1

Λ2n − Λ1n

and we get (6.34a) since the sequence λn
Λ2n−Λ1n

=
γηλn√

(ηλn+1)2−4γηλn
→ γ as n→ ∞. Moreover, we have that

for all t ∈ [0,T ] ∣∣∣G′n (t)
∣∣∣ =

Λ2n exp (−Λ2nt) − Λ1n exp (−Λ1nt)
Λ2n − Λ1n

≤
2Λ2n

Λ2n − Λ1n

and (6.34b) follows since Λ2n
Λ2n−Λ1n

→ 1 as n→ ∞. �

Now we can state and prove our well-posedness result.

Theorem 18. (Well-posedness of problem (6.9)) For every f ∈ L2(0,T ; H) and ϕ ∈ H there is a unique
weak solution of (6.9), in the sense of Definition 10. Moreover, the solution depends continuously on
the data.

Proof. Uniqueness and continuous dependence of weak solution have already been proved, see
Corollary 14, so that it remains to prove existence, i.e. that w(x, t) given in (6.33b) satisfies conditions
(D1)–(D3) of Definition 10.

(D1) (A) First we show that w ∈ L2 (0,T ; V). For all t ∈ [0,T ], we have

‖w(t)‖2V =
1
2

∞∑
n=0

λnT 2
n (t) ≤

∞∑
n=0

λn |Gn (t)ϕn|
2 +

∞∑
n=0

λn

∣∣∣∣∣∣ 1
γη

∫ t

0
Gn (t − s) fn (s) ds

∣∣∣∣∣∣2 .
Using Lemma 17, we obtain∗

‖w(t)‖2V ≤ C
∞∑

n=0

|ϕn|
2

λn
+ C

∞∑
n=0

1
λn

(∫ t

0
| fn (s)| ds

)2

≤ C
∞∑

n=0

|ϕn|
2 + C

∞∑
n=0

∫ T

0
| fn (s)|2 ds ≤ C

(
‖ϕ‖2H + ‖ f ‖2L2(0,T ;H)

)
. (6.35)

Therefore w ∈ L∞ (0,T ; V) ⊂ L2 (0,T ; V).
(B) The weak derivative of w with respect to time is given by

w′ (t) =

∞∑
n=0

T ′n(t)Xn (x) =

∞∑
n=0

[
G′n (t)ϕn +

1
γη

(G′n ∗ fn) (t)
]

Xn (x) ,

and we obtain the following estimate

‖w′ (t)‖2H =
1
2

∞∑
n=0

(T ′n(t))2 ≤

∞∑
n=0

∣∣∣G′n (t)ϕn

∣∣∣2 +

∞∑
n=0

∣∣∣∣∣∣
∫ t

0
G′n (t − s) fn (s) ds

∣∣∣∣∣∣2 .
∗In what follows, for notational convenience, C will denote possibly different constants depending only on γ, η,T .
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Again by Lemma 17, we obtain

‖w′ (t)‖2H ≤ C
∞∑

n=0

|ϕn|
2 + C

∞∑
n=0

(∫ t

0
| fn (s)| ds

)2

≤ C
∞∑

n=0

|ϕn|
2 + C

∞∑
n=0

∫ T

0
| fn (s)|2 ds

≤ C
(
‖ϕ‖2H + ‖ f ‖2L2(0,T ;H)

)
. (6.36)

Thus w′ ∈ L∞ (0,T ; H) ⊂ L2 (0,T ; H). In order to show that w′ ∈ L2 (0,T ; V), we first use the
Monotone Convergence Theorem to write

‖w′‖2L2(0,T ;V) =
1
2

∫ T

0

∞∑
n=0

λn

∣∣∣T ′n (s)
∣∣∣2 ds =

1
2

∞∑
n=0

∫ T

0
λn

∣∣∣T ′n (s)
∣∣∣2 ds . (6.37)

We use multiplier T ′n in (6.27) and the initial conditions (6.28) and obtain the following estimate:

γηT ′nT ′′n + (1 + ηλn) T ′2n + λnTnT ′n = fnT ′n ⇒

γη

2
d
dt

(T ′n)2 + (T ′n)2 + ηλn(T ′n)2 +
λn

2
d
dt

(Tn)2 = fnT ′n ⇒

γη

2
(T ′n(t))2 −

γη

2
ϕ2

n +

∫ t

0
(T ′n)2 ds +

∫ t

0
ηλn(T ′n)2 ds +

λn

2
(Tn)2 =

∫ t

0
fnT ′n ds ⇒∫ t

0
ηλn(T ′n)2 ds ≤

γη

2
ϕ2

n + +
1
2

∫ T

0
| fn (s)|2 ds +

1
2

∫ T

0

∣∣∣T ′n (s)
∣∣∣2 ds. (6.38)

Now we use (6.38) back into (6.37), and take advantage of estimate (6.36) to obtain

‖w′‖2L2(0,T ;V) ≤ C
∞∑

n=0

ϕ2
n + C

∞∑
n=0

∫ T

0
| fn (s)|2 ds + C

∞∑
n=0

∫ T

0

∣∣∣T ′n (s)
∣∣∣2 ds

= C
{
‖ϕ‖2H + ‖ f ‖2L2(0,T ;H) + ‖w′‖2L2(0,T ;H)

}
≤ C

{
‖ϕ‖2H + ‖ f ‖2L2(0,T ;H)

}
. (6.39)

and this gives the desired conclusion that w′ ∈ L2 (0,T ; V).

(C) Left to show that w′′ ∈ L2 (0,T ; V ′). For any v (x) =
∑∞

n=0 cnXn (x) ∈ V and for t ∈ [0,T ], we
use (6.27) to define the linear functional w′′ (t) as follows

〈w′′ (t) , v〉V′×V =
1
2

∞∑
n=0

cnT ′′n (t)

= −
1

2γη

∞∑
n=0

T ′n (t) cn −
1

2γη

∞∑
n=0

λn
(
ηT ′n (t) + Tn (t)

)
cn +

1
2γη

∞∑
n=0

fn (t) cn

= −
1
γη

(
w′ (t) , v

)
H −

1
γη

(
ηw′ (t) + w (t) , v

)
V +

1
γη

( f (t) , v)H .

Hence, by virtue of the embedding V ↪→ H, we obtain that∣∣∣〈γηw′′ (t) , v〉V′×V

∣∣∣ ≤ ‖w′ (t)‖H ‖v‖H + ‖ηw′ (t) + w (t)‖V ‖v‖V + ‖ f (t)‖H ‖v‖H
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≤ C
{
‖w′ (t)‖V + ‖w (t)‖V + ‖ f (t)‖H

}
‖v‖V .

This shows that w′′(t) ∈ V ′ and

‖w′′ (t)‖V′ ≤ C
(
‖w′ (t)‖V + ‖w (t)‖V + ‖ f (t)‖H

)
or, equivalently,

‖w′′ (t)‖2V′ ≤ C
(
‖w′ (t)‖2V + ‖w (t)‖2V + ‖ f (t)‖2H

)
.

In conclusion, using the estimates in part (A) and part (B), we obtain that w′′ ∈ L2 (0,T ; V ′).

(D2) Now we show that w satisfies condition (D2). Since the
{√

2
λn

Xn

}
is a basis in V , it suffices

to consider the test function v = Xn. For t pointwise almost everywhere in (0,T ), we use (6.27) and
obtain

γη 〈w′′ (t) , v〉V′×V +
(
w′ (t) , v

)
H +

(
ηw′ (t) + w (t) , v

)
V

=
γη

2
T ′′n (t) +

1
2

T ′n (t) +
ηλn

2
T ′n (t) +

λn

2
Tn (t) =

1
2

fn(t) = ( f (t) , v)H .

(D3) As stated in Remark 11, condition (D1) implies that w ∈ C0 ([0,T ] ; V) and w′ ∈ C0 ([0,T ] ; H).
Moreover, solution w(x, t) satisfies the initial conditions (D3) of Definition 10 by virtue of (6.28). This
concludes the proof of our well-posedness theorem. �

6.4. Regularity of the Solution

We have established the existence and uniqueness of the weak solution w to the auxiliary
problem (6.9). Now we examine its regularity.

Proposition 19. (Regularity of w and wxx) Under the hypotheses in Theorem 18, the following is true:

w(x, t) ∈ C0(Q), where Q = [0, 1] × [0,T ], (6.40a)
wxx ∈ L∞ (0,T ; H) . (6.40b)

Proof. (A) The result follows from Lemma 17, the fact that |Xn(x)| ≤ 1 and Weierstrass Test. Indeed,
for all x ∈ [0, 1] and t ∈ [0,T ], and every n ≥ 0, we have

|Tn(t)Xn| ≤ |Gn (t)ϕnXn (x)| +
1
γη
|(Gn ∗ fn) (t) Xn (x)| .

Now, due to Lemma 17, we have

∞∑
n=0

|Gn (t)ϕnXn (x)| ≤
∞∑

n=0

|Gn (t)ϕn| ≤ C
∞∑

n=0

1
λn
|ϕn| ≤ C

∞∑
n=0

(
1
λ2

n
+ ϕ2

n

)
= C

 ∞∑
n=0

1
λ2

n
+ ‖ϕ‖2H

 < ∞,
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and
∞∑

n=0

|(Gn ∗ fn) (t) Xn (x)| ≤
∞∑

n=0

|(Gn ∗ fn) (t)| ≤
∞∑

n=0

∫ t

0
|Gn (t − s) fn (s)| ds

≤ C
∞∑

n=0

∫ T

0

1
λn
| fn (s)| ds ≤ C

∞∑
n=0

∫ T

0

(
1
λ2

n
+ | fn (s)|2

)
ds

≤ C

 ∞∑
n=0

1
λ2

n
+ ‖ f ‖2L2(0,T ;H)

 < ∞.
Applying Weierstrass Test, we obtain that the series

∑∞
n=0 Tn(t)Xn (x) converges absolutely and

uniformly in Q = [0, 1] × [0,T ]. Moreover, we note that Gn (t)ϕnXn(x) + 1
γη

(Gn ∗ fn) (t) Xn(x) ∈ C0(Q),
for every n ≥ 0, and thus w(x, t) ∈ C0(Q).

(B) The second order weak derivative in space of w is given by

∂2w
∂x2 = −

∞∑
n=0

Gn (t)ϕnλnXn (x) −
∞∑

n=0

(Gn ∗ fn) (t) λnXn (x) .

Then we use estimate (6.34a) in Lemma 17 and obtain∥∥∥∥∥∥∂2w
∂x2

(·, t)

∥∥∥∥∥∥2

H

≤

∞∑
n=0

|Gn (t)ϕnλn|
2 +

∞∑
n=0

|(Gn ∗ fn) (t) λn|
2

≤ C
∞∑

n=0

ϕ2
n + C

∞∑
n=0

∣∣∣∣∣∣
∫ t

0
| fn (s)| ds

∣∣∣∣∣∣2 ≤ C
∞∑

n=0

ϕ2
n + C

∞∑
n=0

∫ t

0
| fn (s)|2 ds

= C
(
‖ϕ‖2H + ‖ f ‖2L2(0,T ;H)

)
so that wxx ∈ L∞ (0,T ; H). �

If the data are more regular with respect to x the weak solution w(x, t) enjoys stronger regularity
properties.

Proposition 20. (Regularity of wt, wxx and wtxx) In addition to the hypotheses in Theorem 18, we make
the following ones:

f ∈ L2 (0,T ; V) and ϕ ∈ V.

Then the following is true:

wt(x, t) ∈ C0(Q), where Q = [0, 1] × [0,T ], (6.41a)
wxx ∈ L∞ (0,T ; V) , (6.41b)
wtxx ∈ L2 (0,T ; H) . (6.41c)

Proof. (A) For all x ∈ [0, 1] and t ∈ [0,T ], and every n ≥ 0, we have

|T ′n(t)Xn| ≤
∣∣∣G′n (t)ϕnXn (x)

∣∣∣ +
1
γη

∣∣∣(G′n ∗ fn
)

(t) Xn (x)
∣∣∣ .
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Now, due to Lemma 17, we have

∞∑
n=0

∣∣∣G′n (t)ϕnXn (x)
∣∣∣ ≤ ∞∑

n=0

∣∣∣G′n (t)ϕn

∣∣∣ ≤ C
∞∑

n=0

|ϕn| ≤ C
∞∑

n=0

(
1
λn

+ λnϕ
2
n

)
= C

 ∞∑
n=0

1
λn

+ ‖ϕ‖2V

 < ∞,
and

∞∑
n=0

∣∣∣(G′n ∗ fn
)

(t) Xn (x)
∣∣∣ ≤ ∞∑

n=0

∣∣∣(G′n ∗ fn
)

(t)
∣∣∣ ≤ ∞∑

n=0

∫ t

0

∣∣∣G′n (t − s) fn (s)
∣∣∣ ds

≤ C
∞∑

n=0

∫ T

0
| fn (s)| ds ≤ C

∞∑
n=0

∫ T

0

(
1
λn

+ λn | fn (s)|2
)

ds

≤ C

 ∞∑
n=0

1
λn

+ ‖ f ‖2L2(0,T ;V)

 < ∞.
Applying Weierstrass Test, we obtain that the series

∑∞
n=0 T ′n(t)Xn (x) converges absolutely and

uniformly in Q = [0, 1] × [0,T ] hence wt(x, t) ∈ C0(Q).

(B) Like in the proof of (6.40a), we have∥∥∥∥∥∥∂2w
∂x2

(·, t)

∥∥∥∥∥∥2

V

≤

∞∑
n=0

λn |Gn (t)ϕnλn|
2 +

∞∑
n=0

λn |(Gn ∗ fn) (t) λn|
2

≤ C
∞∑

n=0

λnϕ
2
n + C

∞∑
n=0

λn

∣∣∣∣∣∣
∫ t

0
| fn (s)| ds

∣∣∣∣∣∣2 ≤ C
∞∑

n=0

λnϕ
2
n + C

∞∑
n=0

∫ t

0
λn | fn (s)|2 ds

= C
(
‖ϕ‖2V + ‖ f ‖2L2(0,T ;V)

)
so that wxx ∈ L∞ (0,T ; V).

(C) Since the second order weak derivative in space of w′ is given by

∂3w
∂t∂x2

(x, t) = −

∞∑
n=0

T ′n (t) λnXn (x)

then ∥∥∥∥∥∥ ∂3w
∂t∂x2

∥∥∥∥∥∥2

L2(0,T ;H)

=
1
2

∫ T

0

∞∑
n=0

λ2
n

∣∣∣T ′n (s)
∣∣∣2 ds (6.42)

In order to estimate the right hand side, we use multiplier λnT ′n on the ODE (6.27) that Tn solves to
obtain

ηλ2
nT ′2n = −λnT ′2n −

1
2

(
γηλnT ′2n + λ2

nT 2
n

)′
+ λn fn (t) T ′n

≤ −
1
2

(
γηλnT ′2n + λ2

nT 2
n

)′
+ λn fn (t) T ′n.
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Now we integrate from 0 to t and use the initial conditions (6.28), to get

η

∫ t

0
λ2

n

∣∣∣T ′n (s)
∣∣∣2 ds ≤ −

1
2

(
γηλn

∣∣∣T ′n (t)
∣∣∣2 + λ2

n |Tn (t)|2
)

+
1
2
γηλnϕ

2
n +

∫ t

0
λn fn (s) T ′n (s) ds

≤
1
2

(
γηλnϕ

2
n +

∫ t

0
λn | fn (s)|2 ds +

∫ t

0
λn

∣∣∣T ′n (s)
∣∣∣2 ds

)
. (6.43)

Thus, using (6.43) back into (6.42), we obtain∥∥∥∥∥∥ ∂3w
∂t∂x2

∥∥∥∥∥∥2

L2(0,T ;H)

≤ C

 ∞∑
n=0

λnϕ
2
n +

∫ T

0

∞∑
n=0

λn | fn (t)|2 dt +

∫ T

0

∞∑
n=0

λn

∣∣∣T ′n (t)
∣∣∣2 dt


= C

(
‖ϕ‖2V + ‖ f ‖2L2(0,T ;V) + ‖w′‖2L2(0,T ;V)

)
and the assertion follows from estimate (6.17). �

6.5. Analytical formulas for solid displacement and discharge velocity

Now we are in a position to return to our original linear 1D problem (5.3). The solid displacement
solution u (x, t) of (5.3) is the sum

u (x, t) = −xU (t) + w (x, t) (6.44)

where we recall that
U (t) =

1
η

e−t/η ∗ P (t)

and w (x, t) is the unique weak solution of the auxiliary problem (6.9) with special data (6.10). From
the Fourier expansions

∞∑
n=0

1
√
λn

Xn (x) =
1
2
,

∞∑
n=0

(−1)n

λn
Xn (x) =

x
2
, 0 ≤ x ≤ 1,

as well as the Fourier series (6.23) of ϕ and f with respect to the basis {Xn}, their Fourier coefficients
are given by:

ϕn =
2u1
√
λn
, (6.45a)

fn (t) =
2 (−1)n

λn
(1 − γ) U′ (t) . (6.45b)

To summarize, we can write the solution u as a sum

u (x, t) = u1 (x, t) + u0 (x, t) , (6.46)

where:

u1 (x, t) = u1

∞∑
n=0

2
√
λn

Gn (t) Xn (x) , (6.47a)

u0 (x, t) = −xU (t) +
1 − γ
γη

∞∑
n=0

2 (−1)n

λn
Gn (t) ∗ U′ (t) Xn (x) . (6.47b)
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Remark 21. The solid displacement solution u (x, t) ∈ C0 (Q) since the physical data (6.10) satisfy f ∈
L2 (0,T ; V) and ϕ ∈ H. Notice, however, that our special ϕ belongs to V if and only if u1 = 0, i.e. ϕ = 0
and u1 (x, t) ≡ 0.

By virtue of (6.46), the discharge velocity (5.4c) is given by

v (x, t) = v1 (x, t) + v0 (x, t) (6.48)

where:

v1 (x, t) = u1

∞∑
n=0

2
√
λn

(
Gn (t) + ηG′n (t)

)
Xn (x) , (6.49a)

v0 (x, t) =
1 − γ
γη

∞∑
n=0

2(−1)n[Gn(t) ∗ U′(t) + η(Gn(t) ∗ U′(t))′]Xn(x). (6.49b)

Remark 22. It should be stressed that the Fourier coefficients of v1 (x, t) are O (n), hence the
component of the discharge velocity due to the presence of an initial impulse u1 always exibits a
blow-up whatever boundary traction P (t) is considered.

7. Continuous vs. discontinuous boundary sources

In this section, we analyze the behavior of the solutions obtained for model (5.3) in the case where
the compatibility conditions are satisfied (i.e., u1 = 0), and the boundary traction P(t) is characterized
by continuous or discontinuous waveforms. To graphically represent the model solutions we proceed
as follows: (1) we define the numerical values of model parameters (in dimensional form) consistently
with the experimental data illustrated in [16]; (2) we perform the non-dimensionalization of the model
equations according to the procedure described in Section 5; (3) we compute the model solutions in
non-dimensional form; (4) we multiply the non-dimensional input data and model solutions by the
scaling factors introduced in (5.1) and plot the obtained results for subsequent analysis. For each
considered waveform of P(t), we provide the non-dimensional expressions of the solutions u, p and
v. These latter expressions allow us to compute the non-dimensional energies Eθ, Ec0 and Etot, the
non-dimensional dissipation functionalD and the non-dimensional force term F using the expressions
(5.5). The resulting non-dimensional energies are then multiplied by the scaling factor [Etot] introduced
in (5.1j) and the same is done for the non-dimensional dissipation and force terms that are multiplied
by the scaling factor [D] introduced in (5.1i).

Table 1 reports the numerical values of model parameters (in dimensional form) that are used in the
next sections. The values for L, T , θ, K0 and Pref have been chosen consistently with the experimental
data illustrated in [16]. To observe the asymptotic behavior of the modeled system, T has been taken
equal to 105 s in the example illustrated in Section 7.1. In this example, the corresponding value of η
is 4.85 · 109 N s m−2. The value of the Biot coefficient α has been set equal to 0.9, whereas in [16] it
was equal to 1 since both mixture components were assumed to be incompressible. The values of the
viscoelastic parameter η and of the compressibility parameter c0 (which were not present in the model
studied in [16]) have been set equal to θτe and 1/Pref, respectively, where τe is an elastic time constant
that has been set equal to T/20.
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Table 1. Numerical values of model parameters utilized in the numerical simulations.

symbol value units
L 0.81 · 10−3 m
T 105, 104 s
θ 0.97 · 106 Nm−2

K0 2.9 · 10−16 m4N−1s−1

Pref 6 · 104 Nm−2

c0 1.67 · 10−5 m2N−1

η 4.85 · 109, 4.85 · 108 N s m−2

The numerical values of the parameters (in dimensionless form) that are used in the computations
discussed in the next sections are reported in Table 2. These values have been obtained by applying
the scaling procedure described in Section 5 to the values in Table 1. With a slight abuse of notation,
the symbols used to denote the dimensionless parameters are the same ones that we used for the
corresponding parameters expressed with their physical units.

Table 2. Numerical values of model parameters in dimensionless form.

symbol value
L 1
T 2.5, 0.25
η 1.26 · 10−1, 1.26 · 10−2

γ 0.95

For convenience, we recall here the formulas that we use to compute the solid displacement, the
fluid pressure and the discharge velocity in dimensionless form:

u0 (x, t) = −xU (t) +
1 − γ
γη

∞∑
n=0

2 (−1)n

λn
Gn (t) ∗ U′ (t) Xn (x) , (7.1a)

p0 (x, t) =

∞∑
n=0

2 (−1)n

λn
Bn(t)X′n (x) , (7.1b)

v0 (x, t) =

∞∑
n=0

2 (−1)n Bn(t)Xn (x) , (7.1c)

where

Bn (t) =
1 − γ
γη

[
(Gn ∗ U′) (t) + η

(
(Gn ∗ U′) (t)

)′] . (7.1d)

Recalling formula (6.31) and using the fact that (Gn ∗ U′)′ = G′n ∗ U′, we obtain the following
simplification for the coefficients Bn (t)

Bn (t) =
1 − γ
γη

(
1 − ηΛ1n

Λ2n − Λ1n
e−Λ1nt ∗ U′ −

1 − ηΛ2n

Λ2n − Λ1n
e−Λ2nt ∗ U′

)
. (7.1e)

Mathematical Biosciences and Engineering Volume 16, Issue 5, 6167–6208.



6189

7.1. The case of step pulse at t = t∗

Let t∗ ∈ [0,T ). We consider the following boundary source

P (t) = H (t − t∗) =

{
0 if t < t∗

1 if t ≥ t∗.
(7.2)

Figure 1 gives a graphical representation of P(t) for t∗ ∈ (0,T ).

Figure 1. The step pulse at t = t∗.

Replacing (7.2) into (6.6) we obtain

U(t) =

0, t < t∗

1 − e−
t−t∗
η , t ≥ t∗

and U′(t) =

0, t < t∗

1
η
e−

t−t∗
η , t ≥ t∗.

(7.3)

We can now compute the convolution needed in (7.1a)

Gn (t) ∗ U′ (t) =


0, t < t∗,

1
η(Λ2n − Λ1n)

[
e−(t−t∗)/η − e−Λ1n(t−t∗)

Λ1n − 1/η

−
e−(t−t∗)/η − e−Λ2n(t−t∗)

Λ2n − 1/η

]
, t ≥ t∗.

(7.4)

We observe that for t ≥ t∗,(
Gn (t) ∗ U′ (t)

)′
=

1
η

(
Gn (t − t∗) − (Gn ∗ U′) (t)

)
,

and therefore the coefficients (7.1d) present in the expansions of pressure and discharge velocity
become

Bn (t) =
1 − γ
γη

Gn (t − t∗) , for any t ≥ t∗.

Then displacement, pressure and discharge velocity are all zero for t < t∗, and have the following
representations for t ≥ t∗:

u(x, t) = −x −
∞∑

n=0

2(−1)n

λn

e−Λ2n(t−t∗)(ηΛ1n − 1) − e−Λ1n(t−t∗)(ηΛ2n − 1)
η(Λ2n − Λ1n)

Xn(x), (7.5a)
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p(x, t) =
1 − γ
γη

∞∑
n=0

2(−1)n

λn
Gn (t − t∗) X′n(x), (7.5b)

v(x, t) =
1 − γ
γη

∞∑
n=0

2(−1)nGn (t − t∗) Xn(x). (7.5c)

Note that all three series in the expressions (7.5) converge absolutely and uniformly on [0, 1]×[t∗,T ],
and therefore p, v ∈ C0([0, 1] × [t∗,T ]). Moreover, we observe that p(x, t) → 0 and v(x, t) → 0, as
t → t∗.

Remark 23. Note that if t∗ = 0, then this is the case of a continuous constant boundary source
P(t) = 1, for all t ≥ 0. Then the solid displacement, the fluid pressure and the discharge velocity have
the following representations for t ≥ 0:

u(x, t) = −x −
∞∑

n=0

2(−1)n

λn

e−Λ2nt(ηΛ1n − 1) − e−Λ1nt(ηΛ2n − 1)
η(Λ2n − Λ1n)

Xn(x), (7.6a)

p(x, t) =
1 − γ
γη

∞∑
n=0

2(−1)n

λn
Gn (t) X′n(x), (7.6b)

v(x, t) =
1 − γ
γη

∞∑
n=0

2(−1)nGn (t) Xn(x) . (7.6c)

All three series in (7.6) converge absolutely and uniformly on [0, 1] × [0,T ], and therefore p, v ∈
C0([0, 1] × [0,T ]).

Figure 2. Left panel: solid displacement u at x = L as a function of t. Middle panel: fluid
pressure p at x = 0 as a function of t. Right panel: discharge velocity v at x = L as a function
of t. The applied boundary traction is a step pulse of amplitude Pre f at t∗ = 0.
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Figure 3. Top panel: solid displacement u as a function of x and t. Middle panel: fluid
pressure p as a function of x and t. Bottom panel: discharge velocity v as a function of x and
t. The applied boundary traction is a step pulse of amplitude Pre f at t∗ = 0.
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7.1.1. The case t∗ = 0

Figure 2 illustrates displacement, fluid pressure and discharge velocity (left, middle and right panel,
respectively) as a function of t. Displacement and velocity are evaluated at x = 1 (right boundary)
whereas the pressure is evaluated at x = 0 (left boundary). Within the observational time interval,
the displacement decreases monotonically till it reaches an asymptotic value of approximately 50 µm.
Conversely, pressure and discharge velocity exhibit a nonmonotonic behaviour, characterized by a
rapid increase, attaining a maximum value of approximately 2.3 kPa and 0.002 µms−1, respectively,
followed by a monotonic decrease that approaches zero asymptotically The behavior of the simulated
solutions are consistent with those reported in [12, 16].

Figure 3 illustrates displacement, fluid pressure and discharge velocity (left, middle and right
panel, respectively) as a function of x and t. We see that, after an initial transient due to structural
viscoelasticity, the solid displacement tends to a linear behavior along the domain length, being
maximum (in absolute value) at x = L. Mathematically, this behavior is due to the fact that, for long
times, the viscoelastic terms in the series in (7.6a) become negligible with respect to the linear elastic
component. Both pressure and discharge velocity distributions decrease as time→ +∞, in agreement
with the fact that definition (6.31) implies that lim

t→+∞
Gn(t) = 0 for all n ≥ 0.

Figure 4 illustrates the energies per unit area Eθ, Ec0 and Etot (left, middle and right panels,
respectively) as a function of t. In agreement with the previous analysis for the displacement and
pressure profiles, we see that Eθ tends to a constant value as time increases because the deformation of
the mixture tends to become uniform in all the domain. At the same time, Ec0 decreases in time
following the decrease of the pressure, being significant only during the initial transient. As a result,
the total potential energy Etot of the mixture tends to coincide with Eθ, as demonstrated by the right
panel of Figure 4.

Figure 4. Simulated profiles of Eθ (left), Ec0 (middle) and Etot as a function of t. The applied
boundary traction is a step pulse of amplitude Pre f at t∗ = 0.
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Figure 5 illustrates the dissipation D and force term F (left and right panel, respectively) as a
function of t. The temporal profiles of both functions rapidly decay to zero as time increases. This is
consistent with the fact that the domain of the mixture tends to deform in a uniform manner as time
gets large so that its time variation becomes rapidly negligible.

Figure 5. Left panel: dissipation as a function of t. Right panel: force term as a function of
t. The applied boundary traction is a step pulse of amplitude Pre f at t∗ = 0.

Figure 6. Left panel: solid displacement u at x = L as a function of t. Middle panel: fluid
pressure p at x = 0 as a function of t. Right panel: discharge velocity v at x = L as a function
of t. The applied boundary traction is a step pulse of amplitude Pre f at t∗ = 0.25T .

7.1.2. The case t∗ > 0

We assume that the external traction applied at the right boundary x = L has a jump discontinuity
at t∗ = 0.25T .

Figure 6 illustrates the computed displacement, fluid pressure and discharge velocity (left, middle
and right panel, respectively) as a function of t. Displacement and velocity are evaluated at x = L (right
boundary) whereas the pressure is evaluated at x = 0 (left boundary). We notice that the three graphs
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are the translation of the corresponding graphs in Figure 2. In particular, we see that u, p and v are
continuous at t = t∗, where their value is equal to zero.

Figure 7 illustrates the displacement, fluid pressure and discharge velocity (left, middle and right
panel, respectively) as a function of x and t.

Figure 7. Top panel: solid displacement u as a function of x and t. Middle panel: fluid
pressure p as a function of x and t. Bottom panel: discharge velocity v as a function of x and
t. The applied boundary traction is a step pulse of amplitude Pre f at t∗ = 0.25T .
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Figure 8 illustrates the energies per unit area Eθ, Ec0 and Etot (left, middle and right panels,
respectively) as a function of t.

Figure 9 illustrates the dissipation D and force term F (left and right panel, respectively) as a
function of t. We notice that both D and F are discontinuous at t = t∗ where they experience a finite
jump.

Figure 8. Simulated profiles of Eθ (left), Ec0 (middle) and Etot as a function of t. The applied
boundary traction is a step pulse of amplitude Pre f at t∗ = 0.25T .

Figure 9. Left panel: dissipation as a function of t. Right panel: force term as a function of
t. The applied boundary traction is a step pulse of amplitude Pre f at t∗ = 0.25T .
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7.2. The case of unbounded ramp pulse

Let P (t) be the dimensionless unbounded ramp pulse of unit-slope starting at t = 0, represented in
Figure 10

P (t) = tH (t) = t, t ≥ 0. (7.7)

In this case, we have

U(t) = t − η
(
1 − e−

t
η

)
and U′(t) = 1 − e−

t
η , t ≥ 0, (7.8)

so that:

Gn (t) ∗ 1 =
1

(Λ2n − Λ1n)

[
1 − e−Λ1nt

Λ1n
−

1 − e−Λ2nt

Λ2n

]
, t ≥ 0, (7.9a)

Gn (t) ∗ e−
t
η =

1
(Λ2n − Λ1n)

[
e−t/η − e−Λ1nt

Λ1n − 1/η
−

e−t/η − e−Λ2nt

Λ2n − 1/η

]
, t ≥ 0. (7.9b)

Summing the two above expressions we obtain

Gn (t) ∗ U′(t) =
1

(Λ2n − Λ1n)

[
1 − e−Λ1nt

Λ1n
−

1 − e−Λ2nt

Λ2n
−

e−t/η − e−Λ1nt

Λ1n − 1/η
+

e−t/η − e−Λ2nt

Λ2n − 1/η

]
, t ≥ 0. (7.10)

Note that the above expression can be rewritten as

Gn (t) ∗ U′(t) =
1

Λ1nΛ2n
+

1
(Λ2n − Λ1n)

( e−Λ1nt

Λ1n(ηΛ1n − 1)
−

e−Λ2nt

Λ2n(ηΛ2n − 1)

)
+

η2γ

1 − γ
e−

t
η .

The time derivative of expression (7.10) is given by: for t ≥ 0,

(
Gn (t) ∗ U′ (t)

)′
=

1
(Λ2n − Λ1n)

(
e−Λ1nt − e−Λ2nt

+
(1/η)e−t/η − Λ1ne−Λ1nt

Λ1n − 1/η
−

(1/η)e−t/η − Λ2ne−Λ2nt

Λ2n − 1/η

)
=

1
(Λ2n − Λ1n)

( −e−Λ1nt

ηΛ1n − 1
+

e−Λ2nt

ηΛ2n − 1

)
−

ηγ

1 − γ
e−

t
η . (7.11)

Note that

η
(
Gn (t) ∗ U′ (t)

)′
= Gn (t) ∗ exp (−t/η) = Gn (t) ∗ 1 −Gn (t) ∗ U′ (t) ,

and the coefficients Bn(t) become

Bn (t) =
1 − γ
γη

Gn (t) ∗ 1 =
1 − γ
γη

∫ t

0
Gn (s) ds. (7.12)

Then the displacement, the pressure and the discharge velocity have the following representations for
t ≥ 0:
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u0(x, t) = −x(t − η) +
1 − γ
γη

∞∑
n=0

2(−1)n

λn

[
1

Λ1nΛ2n

+
1

Λ2n − Λ1n

(
e−Λ1nt

Λ1n(ηΛ1n − 1)
−

e−Λ2nt

Λ2n(ηΛ2n − 1)

)]
Xn(x), (7.13a)

p0(x, t) =
1 − γ
γη

∞∑
n=0

2(−1)n

λn

1
(Λ2n − Λ1n)

[
1 − e−Λ1nt

Λ1n
−

1 − e−Λ2nt

Λ2n

]
X′n(x), (7.13b)

v0(x, t) =
1 − γ
γη

∞∑
n=0

2(−1)n 1
(Λ2n − Λ1n)

[
1 − e−Λ1nt

Λ1n
−

1 − e−Λ2nt

Λ2n

]
Xn(x). (7.13c)

Figure 10. The unbounded ramp pulse.

Figure 11. Left panel: solid displacement u at x = L as a function of t. Middle panel: fluid
pressure p at x = 0 as a function of t. Right panel: discharge velocity v at x = L as a function
of t. The applied boundary traction is an unbounded ramp pulse.

Figure 11 illustrates the displacement, fluid pressure and discharge velocity (left, middle and right
panel, respectively) as a function of t. Displacement and velocity are evaluated at x = L (right
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boundary) whereas the pressure is evaluated at x = 0 (left boundary). Unlike the case presented in
Section 7.1, here the external pressure load continues to increase linearly with time, thereby inducing
a continuous increase in displacement, pressure and velocity as time goes by. Over the observational
time interval, the magnitude of the external load is smaller than what considered in Section 7.1 and
this leads to a smaller (absolute) value of the maximum displacement, which is about 10 µm in this
case.

Figure 12. Top panel: solid displacement u as a function of x and t. Middle panel: fluid
pressure p as a function of x and t. Bottom panel: discharge velocity v as a function of x and
t. The applied boundary traction is an unbounded ramp pulse.
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Figure 12 illustrates the displacement, fluid pressure and discharge velocity (left, middle and right
panel, respectively) as a function of x and t. The displacement profile exhibits an approximately
bilinear variation with respect to temporal and spatial coordinates, whereas pressure and velocity
display a nonlinear behavior in the space-time domain. All dependent variables tend to increase in
magnitude as a function of time at any spatial position of the mixture, the discharge velocity being
closer to reach a stationary condition than the pressure.

Figure 13 illustrates the energies per unit area Eθ, Ec0 and Etot (left, middle and right panels,
respectively) as a function of t. Interestingly, Eθ exhibits a nonlinear increase with respect to time in
accordance with the fact that deformation is not constant in space. Ec0 follows a similar pattern
because of the nonlinear trend of the pressure, but has a much smaller value, so that the Etot almost
coincides with Eθ for all times.

Figure 13. Simulated profiles of Eθ (left), Ec0 (middle) and Etot as a function of t. The applied
boundary traction is an unbounded ramp pulse.

Figure 14 illustrates the dissipation D and forcing term F (left and right panel, respectively) as a
function of t. Dissipation increase with time is characterized by two markedly different slopes. In a first
time interval, approximately equal to T/5, dissipation increases rapidly and is mainly determined by
the fluid component of the mixture. In the remaining part of the observational time interval, dissipation
increases less rapidly and is mainly determined by the structural viscoelasticity of the mixture. The
forcing term increases linearly with time in accordance with the trend of the temporal variation of solid
displacement at the right boundary of the domain, as shown in Figure 12.

7.3. The case of bounded ramp pulse

Let P(ε) (t) be the dimensionless ramp pulse of unit amplitude and finite rise time (= ε > 0) starting
at t = 0

P(ε) (t) =
1
ε

[tH (t) − (t − ε) H (t − ε)] =


0 if t ≤ 0
t/ε if 0 < t ≤ ε
1 if t > ε,

(7.14)

represented graphically in Figure 15.
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Figure 14. Left panel: dissipation as a function of t. Right panel: force term as a function of
t. The applied boundary traction is an unbounded ramp pulse.

Figure 15. Bounded ramp pulse.

Using the linear superposition principle, the solid displacement, fluid pressure, and discharge
velocity are given by:

uε0 (x, t) =


1
ε

u0 (x, t) if 0 ≤ t ≤ ε

1
ε

[u0 (x, t) − u0 (x, t − ε)] if t > ε

(7.15a)

pε0 (x, t) =


1
ε

p0 (x, t) if 0 ≤ t ≤ ε

1
ε

[
p0 (x, t) − p0 (x, t − ε)

]
if t > ε.

(7.15b)
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vε0 (x, t) =


1
ε

v0 (x, t) if 0 ≤ t ≤ ε

1
ε

[v0 (x, t) − v0 (x, t − ε)] if t > ε.

(7.15c)

where the expressions of u0 (x, t), p0 (x, t) and v0 (x, t) are given by (7.13).

Notice that pε0 (x, t) , vε0 (x, t) ∈ C0 (Q) since p0 (x, t) , v0 (x, t) ∈ C0 (Q) and p0 (x, 0) = v0 (x, 0) = 0.

Figure 16 illustrates the displacement, fluid pressure and discharge velocity (left, middle and right
panel, respectively) as a function of t. Displacement and velocity are evaluated at x = L (right
boundary) whereas the pressure is evaluated at x = 0 (left boundary). We see that the displacement
increases in magnitude almost linearly during the increase in time of the externally applied pressure.
Then, it rapidly tends to stationary conditions once the external applied pressure becomes constant.
The asymptotic value of the displacement is the same as in the case of the step pulse illustrated in
Section 7.1. The profile of fluid pressure increases in time and the externally applied pressure
increases; once the solid deformation attains stationary conditions, the fluid pressure decreases. A
similar trend is shown by the discharge velocity. The maximum value of pressure is the same as in the
case of a step pulse external pressure whereas the maximum value of the discharge velocity is slightly
smaller and coincides with the value of the velocity at t = T/2 that is obtained in the case of an
unbounded ramp external pressure (cf. Figure 11, right panel).

Figure 16. Left panel: solid displacement u at x = L as a function of t. Middle panel: fluid
pressure p at x = 0 as a function of t. Right panel: discharge velocity v at x = L as a function
of t. The applied boundary traction is a bounded ramp pulse with ε = 0.5T .

Figure 17 illustrates the displacement, fluid pressure and discharge velocity (left, middle and right
panel, respectively) as a function of x and t. The spatial variation of the displacement becomes linear
after the external pressure ceases to increase, whereas, in the same time interval, both fluid pressure
and discharge velocity exhibit a spatial decrease.
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Figure 17. Top panel: solid displacement u as a function of x and t. Middle panel: fluid
pressure p as a function of x and t. Bottom panel: discharge velocity v as a function of x and
t. The applied boundary traction is a bounded ramp pulse with ε = 0.5T .
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Figure 18 illustrates the energies per unit area Eθ, Ec0 and Etot (left, middle and right panels,
respectively) as a function of t. Both Eθ and Ec0 increase in time until the external pressure increases.
Then, Eθ becomes constant since deformation is constant in time, whereas Ec0 decreases because of
the decrease of fluid pressure. As in all previously considered examples, the contribution of Ec0 is
much smaller than that of Eθ so that the Etot almost coincides with Eθ.

Figure 18. Simulated profiles of Eθ (left), Ec0 (middle) and Etot as a function of t. The applied
boundary traction is a bounded ramp pulse with ε = 0.5T ,

Figure 19. Left panel: dissipation as a function of t. Right panel: force term as a function of
t. The applied boundary traction is a bounded ramp pulse with ε = 0.5T ,
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Figure 19 illustrates the dissipation D and forcing term F (left and right panel, respectively) as a
function of t. Both terms exhibit an increase with respect to time during the increase of the externally
applied pressure. Then, they both experience a sudden decay once the externally applied pressure
becomes constant. Dissipation tends to an asymptotic value that is much smaller than the value attained
at t = T/2 whereas the force term tends to zero since the boundary displacement is almost constant in
time after t = T/2.

8. Dependence of the solution on compressibility

In this section we investigate the dependence of the solution of model (4.12) on the compressibility
parameter c0. In terms of the dimensionless equation system (5.3), this amounts to analyzing the
solutions as a function of the quantity γ defined in (5.2). We denote by c0,re f = 1.67 · 10−5m2N−1 the
reference value of the compressibility parameter. This value has been used in all the computations
illustrated in Section 7. Then, we let c0 assume the following values:

c0 = [0.001, 0.01, 0.1, 1, 10 100, 1000] c0,re f

and we compute the solid displacement and discharge velocity at x = L, the fluid pressure at x = 0 and
the energies Eθ, Ec0 and Etot, as functions of time in the interval [0, T ], T = 10000s being the width of
the observational window considered in Section 7. All the other model parameters have been set equal
to the values adopted in Section 7. The applied boundary traction is a step pulse of amplitude Pre f at
t∗ = 0.

Figure 20. Left panel: solid displacement u at x = L as a function of t. Middle panel:
fluid pressure p at x = 0 as a function of t. Right panel: discharge velocity v at x = L as a
function of t. The applied boundary traction is a step pulse of amplitude Pre f at t∗ = 0. The
compressibility parameter c0 varies in the range [10−3, 103]c0,re f , where the reference value
c0,re f is set equal to 1.67 · 10−5m2N−1 as in all the computations illustrated in Section 7.
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Figure 20 shows the profiles of solid displacement (left panel), fluid pressure (middle panel) and
discharge velocity (right panel) as functions of time and of the compressibility parameter c0. We
notice that compressibility has a significant impact on the quantitative values attained by the solution
variables. In particular we see that increasing c0 gives rise to:

• an increase of the magnitude of the solid displacement;
• a decrease of pressure and velocity;
• a right shift of the peak of pressure and velocity.

These behaviors are indicative of the fact that the compressibility of the mixture components allows
the body to deform more under the same pressure load, thereby reducing the internal level of fluid
pressure and limiting the impact on the fluid velocity. We also notice that decreasing c0 has a much
more significant impact than increasing c0 on solution range variation. From the theoretical viewpoint,
this is due to the fact that γ → 1− for large values of c0 and, as a consequence, the ratio (1−γ)/(γη), that
characterizes the mathematical form of the solution expressions (7.5), tends to 0. From the physical
viewpoint, decreasing the value of c0 implies that the body cannot significantly deform upon applying
a pressure load, thereby inducing higher levels of fluid pressure whose gradients lead to larger fluid
velocities.

Figure 21. Discharge velocity v at x = L as a function of t. The applied boundary traction is
a step pulse of amplitude Pre f at t∗ = 0. The compressibility parameter c0 varies in the range
[10−3, 103]c0,re f , where the reference value c0,re f is set equal to 1.67 · 10−5m2N−1 as in all the
computations illustrated in Section 7. The black solid line represents the discharge velocity
computed by the model studied in [4].

Figure 21 illustrates the discharge velocity computed by the model studied in this work and the
discharge velocity computed by the model studied in [4]. The principal difference between the two
models is that no compressibility was included in [4]. We see that:
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• the velocity predicted by the model of [4] is a (very sharp) upper bound for all the velocities
predicted by the model studied in the present work, when c0 → 0+;
• for increasing values of c0, the velocities predicted by the present model differ substantially from

the upper bound velocity yielded by the model in [4]. In particular, we see that increasing c0 gives
rise to a decrease and to a right shift of the peak in the velocity profile.

Figure 22. Simulated profiles of Eθ (left), Ec0 (middle) and Etot as a function of t. The
applied boundary traction is a step pulse of amplitude Pre f at t∗ = 0. The compressibility
parameter c0 varies in the range [10−3, 103]c0,re f , where the reference value c0,re f is set equal
to 1.67 · 10−5m2N−1 as in all the computations illustrated in Section 7.

Figure 22 shows the profiles of Eθ, Ec0 and Etot as a function of t and of c0. We see that increasing
c0 has the effect of increasing substantially and monotonically the magnitude of Eθ because the
deformation profile gets larger as the components become more compressible, in accordance with
Figure 20, left panel. On the contrary, Ec0 exhibits a nonmonotonic dependence on c0. Specifically,
for c0 < c0,re f we see that increasing c0 gives rise to an increase of Ec0 with a right shift of its peak;
then, for c0 ≥ c0,re f , we see that increasing c0 leads to a significant monotonic decrease of Ec0 . For the
theoretical viewpoint, this is due to the fact that the ratio γ/(1 − γ) → +∞ as c0 → +∞ and the
pressure profile tends to decrease in accordance with Figure 20, middle panel. The physical meaning
of these results can be appreciated by observing that the predicted total energy is mainly determined
by Eθ for large values of c0, since larger deformations can occur for more compressible components,
whereas the contribution to the total energy given by Ec0 becomes more significant for smaller values
of c0, since larger pressures develop for less compressible components.

9. Conclusions

The analysis presented in this work shows that the solutions of a poroviscoelastic model with
compressible components remain bounded even in the case when the imposed boundary traction is
irregular in time. In particular, given a certain functional form for the boundary traction and a certain
level of structural viscoelasticity, the discharge velocity attains a maximum value that is lower when
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compressibility is higher. By investigating the dynamics of the energy functionals characterizing the
system, we showed that this limiting effect is due to the capability of the system to store potential
energy as its components are elastically compressed, thereby delaying the transmission of
irregularities in the linear momentum from the solid to the fluid. As a result, the fluid has the time to
accommodate for sudden changes, resulting in bounded velocities. This mechanism is very different
from that provided by structural viscoelasticity, whose limiting effect on the discharge velocity is due
to increased viscous dissipation, as shown in [4].

Ultimately, this work elucidates the specific role that compressibility plays in the control of fluid
flow through complex deformable porous structure, which finds numerous applications in science and
engineering. The work presented here offers many future directions of research. For example, it
would be very interesting to investigate how the findings concerning the role of compressibility would
translate to a more realistic three-dimensional setting. Furthermore, different viscoelastic models could
be considered and the specific roles of fluid and solid viscosities could be investigated and compared.
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