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Abstract: In this paper we study an SLIR epidemic model with nonmonotonic incidence rate, which
describes the psychological effect of certain serious diseases on the community when the number of
infectives is getting larger. By carrying out a global analysis of the model and studying the stability of
the disease-free equilibrium and the endemic equilibrium, we show that either the number of infective
individuals tends to zero or the disease persists as time evolves. For the stochastic model, we prove the
existence, uniqueness and positivity of the solution of the model. Then, we investigate the stability of
the model and we prove that the infective tends asymptotically to zero exponentially almost surely as
R0 < 1. We also proved that the SLIR model has the ergodic property as the fluctuation is small, where
the positive solution converges weakly to the unique stationary distribution.
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1. Introduction

The incidence of a disease is the number of individuals who become infected per unit of time and
plays an important role in the study of mathematical epidemiology. Generally, incidence rate depends
on both the susceptible and infective classes. In many epidemic models, the bilinear incidence rate is
frequently used [1]. However, in recent years, researchers have taken into account oscillations in
incidence rates and proposed many nonlinear incidence rates. Let S (t) be the number of susceptible
individuals, I(t) be the number of infective individuals, and R(t) be the number of removed
individuals at time t, respectively. After studying the cholera epidemic spread in Bari in 1973,
Capasso and Serio [2] introduced the saturated incidence g(I)S into epidemic models, where g(I) is
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decreasing when I is large enough, i.e.

g(I) =
kI

1 + αI
(1.1)

This incidence rate seems more reasonable than the bilinear incidence rate because it includes the
behavioral change and crowding effect of the infective individuals and prevents the unboundedness of
the contact rate by choosing suitable parameters.

To incorporate the effect of the behavioral changes of the susceptible individuals, Liu et al. [3]
proposed the general incidence rate

g(I) =
kI p

1 + αIq (1.2)

where p and q are positive constants and α is a nonnegative constant. The special cases when p, q
and k take different values have been used by many authors. For example, Ruan and Wang [4] studied
the case when p = 2, q = 2 i.e. g(I) = kI2

1+αI2 and got some complicated dynamics phenomenons,
such as saddle-node bifurcation, Hopf bifurcation, Bogdanov-Takens bifurcation and the existence of
none, one and two limit cycles. Derrick and van den Driessche [5] , Hethcote [6], Alexander and
Moghadas [7], etc. also used the general incidence rate.

If the function g(I) is nonmonotone, that is, g(I) is increasing when I is small and decreasing when
I is large, it can be used to interpret the ’psychological’ effect: for a very large number of infective
individuals the infection force may decrease as the number of infective individuals increases, because
in the presence of large number of infectives the population may tend to reduce the number of contacts
per unit time [8]. To model this phenomenon, Xiao and Ruan [8] proposed a incidence rate

g(I) =
kI

1 + αI2 (1.3)

where kI measures the infection force of the disease and 1/(1 + αI2) describes the psychological or
inhibitory effect from the behavioral change of the susceptible individuals when the number of
infective individuals is very large. This is important because the number of effective contacts between
infective individuals and susceptible individuals decreases at high infective levels due to the crowding
of infective individuals or due to the protection measures by the susceptible individuals. Notice that
when α = 0, the nonmonotone incidence rate (1.3) becomes the bilinear incidence rate [8]. They used
this incidence rate in an SIR model and got the result that this model does not exhibit complicated
dynamics as other epidemic models with other types of incidence rates reported in. In this paper, we
use this incidence rate in an SLIR model.

In fact, epidemic models are inevitably affected by environmental white noise which is an
important component in realism, because it can provide an additional degree of realism in compared
to their deterministic counterparts. Therefore, many stochastic models for the epidemic populations
have been developed. In addition, both from a biological and from a mathematical perspective, there
are different possible approaches to include random effects in the model. Here, we mainly mention
three approaches. The first one is through time Markov chain model to consider environment noise in
HIV epidemic (see, e.g., [9–12]). The second is with parameters perturbation. There is an intensive
literature on this area, such as [13–19]. The last important issue to model stochastic epidemic system
is to robust the positive equilibria of deterministic model. In this situation, it is mainly to investigate
whether the stochastic system preserves the asymptotic stability properties of the positive equilibria of
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deterministic models, see [20–22]. Recently, Yang et.al [19] discusses the stochastic SIR and SEIR
epidemic models with saturated incidence rate βS/(1 + αI). In this paper, we introduce randomness in
the SLIR model with the second approaches as [13] and [15].

The rest of the paper is organized as follows: in Section 2, the deterministic SLIR mathematical
model is formulated, boundedness of solutions and existence of a positively invariant and attracting
set are shown. In Section 3, the basic reproductive number, the conditions to the existence of possible
equilibria of the system and their stability are established. In section 4, we obtain the analytic results
of dynamics of the SDE model. Finally, a brief discussion is given in Section 5.

2. The deterministic model

In this section, we formulate an SLIR model with incidence rate (1.3). Figure 1 shows the model
diagram. The total population at time t, denoted by N(t), is divided into four classes: susceptible (S ),
latent (L), infectious (I) and treatment (R).

Figure 1. The transfer diagram for system (2.1)

All recruitment is into the susceptible class, and occurs at a constant rate Λ. We assume that an
individual may be infected only through contacts with infectious individuals. The natural death rate is
µ. The infectious class has an additional death rate due to the disease with rate constant d. Thus
individuals leave class L for class I at rate k. Latent and Infectious individuals are treated with rate
constant r1 and r2, entering the treatment class,respectively. A fraction p of newly infected individuals
moves to the latent class (L), and the remaining fraction 1 − p, moves to the active class (I). The
incidence rate is g(I) =

βI
1+αI2 . It is assumed that individuals in the latent class do not transmit

infection. Combining all the aforementioned assumptions, the model is given by the following system
of differential equations:

dS
dt

= Λ −
βS I

1 + αI2 − µS ,

dL
dt

= (1 − p)
βS I

1 + αI2 − (µ + k + r1)L,

dI
dt

= p
βS I

1 + αI2 + kL − (µ + d + r2)I,

dR
dt

= r1L + r2I − µR.

(2.1)

By adding all Eq (2.1), the dynamics of the total population N(t) is given by:

dN/dt = Λ − µN − dI. (2.2)
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Since dN/dt < 0 for N > Λ/µ, then, without loss of generality, we can consider only solutions of
(2.1) in the following positively subset of R4:

Ωε = {(S , L, I,R)|S , L, I,R ≥ 0, S + L + I + R ≤
Λ

µ
}.

With respect to model system (2.1), we have the following result:

Proposition 2.1. The compact set Ωε is a positively invariant and absorbing set that attracts all
solutions of Eq (2.1) in R4.

Proof. Define a Lyapunov function as W(t) = S (t) + L(t) + I(t) + R(t), then we have:

dW(t)
dt

= Λ − µW − dI ≤ Λ − µW. (2.3)

Hence, that dW
dt ≤ 0 for W > Λ

µ
. Ωε is a positively invariant set. On the other hand, solving the

differential inequality Eq (2.3) yields:

0 < W(t) <
Λ

µ
+ W(0)e−µt.

W(0) is the initial condition of W(t). Thus, as t → ∞, one has that 0 ≤ W(t) ≤ Λ
µ

. �

To analysis the system (2.1), we notice that the variable R does not participate in the first three
equations. Thus we can consider only the equations for S , L and I, i.e. the following system:

dS
dt

= Λ −
βS I

1 + αI2 − µS ,

dL
dt

= (1 − p)
βS I

1 + αI2 − (µ + k + r1)L,

dI
dt

= p
βS I

1 + αI2 + kL − (µ + d + r2)I.

(2.4)

3. Dynamics of the deterministic model

In this section, the model is analyzed in order to obtain the basic reproduction number, conditions
for the existence and uniqueness of non-trivial equilibria and asymptotic stability of equilibria.

3.1. Basic reproductive number

In this subsection, we define the basic reproduction number R0 of system (2.4). R0 is the average
number of secondary infections that occur when one infective is introduced into a completely
susceptible population [23]. For many deterministic epidemiology models, an infection can get
started in a fully susceptible population if and only if R0 > 1. Thus the basic reproductive number R0

is often considered as the threshold quantity that determines when an infection can invade and persist
in a new host population [1].

The disease-free equilibrium of system (2.4) is X0 = (S 0, 0, 0) with S 0 = Λ/µ. In order to compute
the basic reproduction number, it is important to distinguish new infections from all other class
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transitions in the population. The infected classes are L and I. Following Van den Driessche and
Watmough [24], we can rewrite system (2.4) as

ẋ = f (x) = F (x) − V (x) = F (x) − (V −(x) − V +(x)).

where x = (L, I, S ), F is the rate of appearance of new infections in each class, V + is the rate of
transfer into each class by all other means and V − is the rate of transfer out of each class. Hence,

F (x) = ((1 − p)
βS I

1 + αI2 , p
βS I

1 + αI2 , 0)T

and

V (x) =


(µ + k + r1)L

−kL + (µ + d + r2)I
µS +

βS I
1+αI2 − Λ

 .
The jacobian matrices of F and V at the disease-free equilibrium X0 = (0, 0,Λ/µ) can be partitioned
as

DF (X0) =

(
F 0
0 0

)
and DV (X0) =

(
V 0
J1 J2

)
.

where F and V correspond to the derivatives of F and V with respect to the infected classes:

F =

(
0 (1 − p)βS 0

0 pβS 0

)
and V =

(
µ + k + r1 0
−k µ + d + r2

)
.

The basic reproduction number is defined, following Van den Driessche and Watmough [24], as the
spectral radius of the next generation matrix, FV−1:

R0 =
βΛ

µ

k(1 − p) + (µ + k + r1)p
(µ + k + r1)(µ + d + r2)

.

3.2. Stability of the disease-free equilibrium

We have the following result about the global stability of the disease free equilibrium:

Theorem 3.1. When R0 > 1, the disease free equilibrium X0 is unstable.When R0 ≤ 1, the disease free
equilibrium X0 is globally asymptotically stable in Ωε; this implies the global asymptotic stability of
the disease free equilibrium on the nonnegative orthant R3. This means that the disease naturally dies
out.

Proof. The Jacobian matrix of system (2.4) at X0 is

J(X0) =


−µ 0 −βS 0

0 −(µ + k + r1) (1 − p)βS 0

0 k −(µ + d + r2) + pβS 0


and the characteristic equation is

(λ + µ)[λ2 + (µ + k + r1 + µ + d + r2 − pβS 0)λ + (µ + k + r1)(µ + d + r2)(1 − R0)] = (λ + µ) f (λ) = 0.
(3.1)
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From (3.1), we get the discriminant of f (λ) is

∆1 =(µ + k + r1 + µ + d + r2 − pβS 0)2 − 4(µ + k + r1)(µ + d + r2)(1 − R0)
=(µ + k + r1 − µ − d − r2 + pβS 0)2 + 4k(1 − p)βS 0 > 0.

Therefore, (3.1) has three real roots.
If R0 < 1, we have

βS 0 <
(µ + k + r1)(µ + d + r2)
k(1 − p) + (µ + k + r1)p

,

then

µ + k + r1 + µ + d + r2 − pβS 0 >µ + k + r1 + µ + d + r2 − p
(µ + k + r1)(µ + d + r2)
k(1 − p) + (µ + k + r1)p

=µ + k + r1 +
k(1 − p)(µ + d + r2)

k(1 − p) + (µ + k + r1)p
> 0.

(3.1) has three negative real roots and hence X0 is locally stable.
If R0 > 1, (3.1) has at least one positive real root and hence X0 is unstable.
When R0 ≤ 1, we can define the following Lyapunov-LaSalle function

V(t) =
k

k(1 − p) + (µ + k + r1)p
L +

µ + k + r1

k(1 − p) + (µ + k + r1)p
I.

Its time derivative along the trajectories of system (2.4) satisfies

V̇ =
k

k(1 − p) + (µ + k + r1)p
L̇ +

µ + k + r1

k(1 − p) + (µ + k + r1)p
İ

=
βS I

1 + αI2 −
(µ + k + r1)(µ + d + r2)
k(1 − p) + (µ + k + r1)p

I

=βI(
1

1 + αI2 S −
S 0

R0
)

≤βI(S −
S 0

R0
)

Thus R0 ≤ 1 implies that V̇ ≤ 0. By LaSalle’s invariance principle, the largest invariant set in
Ωε contained in {(S , L, I,R) ∈ Ωε, V̇ = 0} is reduced to the disease-free equilibrium X0. This proves
the global asymptotic stability of the disease-free equilibrium on Ωε [25]. Since Ωε is absorbing, this
proves the global asymptotic stability on the nonnegative octant for R0 ≤ 1. It should be stressed
that we need to consider a positively invariant compact set to establish the stability of X0 since V is
not positive definite. Generally, the LaSalle’s invariance principle only proves the attractivity of the
equilibrium. Considering Ωε permits to conclude for the stability [25–27]. This achieves the proof. �

3.3. Existence and uniqueness of endemic equilibrium

To find the positive equilibrium, let

Λ −
βS I

1 + αI2 − µS = 0,
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(1 − p)
βS I

1 + αI2 − (µ + k + r1)L = 0,

p
βS I

1 + αI2 + kL − (µ + d + r2)I = 0,

which yields
µαI2 + βI + µ(1 − R0) = 0

We can see that
(i) there is one positive equilibrium if R0 > 1;
(ii) there is no positive equilibrium if R0 ≤ 1.

Then we have the following result:

Theorem 3.2. When R0 > 1, there exist an unique endemic equilibrium X∗ = (S ∗, L∗, I∗) for the system
(2.4) where S ∗, L∗, and I∗ are defined as in (3.2) which is in the nonnegative octant R3

+.

S ∗ =
1
µ

[
Λ −

(µ + k + r1)(µ + d + r2)
k(1 − p) + (µ + k + r1)p

I∗
]
,

L∗ =
(µ + d + r2)(1 − p)

k(1 − p) + (µ + k + r1)p
I∗,

I∗ =
−β +

√
β2 + 4µ2α(R0 − 1)

2µα
.

(3.2)

3.4. Stability of endemic equilibrium

3.4.1. Locally stability of endemic equilibrium

In this section, we denote µ + k + r1 = A, µ + d + r2 = B for writing convenience.

Theorem 3.3. If R0 > 1, the unique endemic equilibrium X∗ of system (2.4) is locally asymptotically
stable.

Proof. The Jacobian matrix of system (2.4) at endemic equilibrium X∗ = (S ∗, L∗, I∗) is

J(X∗) =


−µ − g(I∗) 0 −g′(I∗)S ∗

(1 − p)g(I∗) −A (1 − p)g′(I∗)S ∗

pg(I∗) k −B + pg′(I∗)S ∗)

 . (3.3)

where

g(I∗) =
βI∗

1 + αI∗2
, g′(I∗) =

β(1 − αI∗2)
(1 + αI∗2)2 =

g(I∗)
I∗
−

2βαI∗2

(1 + αI∗2)2 <
g(I∗)

I∗
.

The characteristic equation of J(X∗) is

λ3 + aλ2 + bλ + c = 0.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5504–5530.



5511

where

a =µ + g(I∗) + A + B − pg′(I∗)S ∗

>µ + g(I∗) + A + B −
pg(I∗)S ∗

I∗

=µ + g(I∗) + A + B − B +
kL∗

I∗
> 0,

b =(µ + g(I∗))A + (µ + g(I∗) + A)(B − pg′(I∗)S ∗) + pg(I∗)g′(I∗)S ∗ − k(1 − p)g′(I∗)S ∗,
c =(µ + g(I∗))A(B − pg′(I∗)S ∗) + pg(I∗)g′(I∗)S ∗A − µk(1 − p)g′(I∗)S ∗ + k(1 − p)g(I∗)g′(I∗)S ∗

=µAB − µApg′(I∗)S ∗ + ABg(I∗) − µk(1 − p)g′(I∗)S ∗ + k(1 − p)g(I∗)g′(I∗)S ∗

>µAB − µA(B −
kL∗

I∗
) + ABg(I∗) − µkA

L∗

I∗
+ k(1 − p)g(I∗)g′(I∗)S ∗

=ABg(I∗) + k(1 − p)g(I∗)g′(I∗)S ∗ > 0

ab − c =[µ + g(I∗) + A + B − pg′(I∗)S ∗][(µ + g(I∗))A + (µ + g(I∗)(B − pg′(I∗)S ∗) + pg(I∗)g′(I∗)S ∗+
A(B − pg′(I∗)S ∗) − k(1 − p)g′(I∗)S ∗] − (µ + g(I∗))A(B − pg′(I∗)S ∗) − k(1 − p)g(I∗)g′(I∗)S ∗−
pg(I∗)g′(I∗)S ∗(A + µk(1 − p)g′(I∗)S ∗

≥(µ + g(I∗) + A)(µ + g(I∗))A + (µ + g(I∗) + A)(µ + g(I∗))(B − pg′(I∗)S ∗) + (µ + g(I∗))pg(I∗)
g′(I∗)S ∗ + (µ + g(I∗))(B − pg′(I∗)S ∗)2 + µk(1 − p)g′(I∗)S ∗ + pg(I∗)g′(I∗)S ∗(B − pg′(I∗)S ∗)−
k(1 − p)g(I∗)g′(I∗)S ∗

≥(µ + g(I∗) + A)(µ + g(I∗))A + (µ + g(I∗))2(B − pg′(I∗)S ∗) + Aµ(B − pg′(I∗)S ∗)+
(µ + g(I∗))pg(I∗)g′(I∗)S ∗ + (µ + g(I∗))(B − pg′(I∗)S ∗)2 + µk(1 − p)g′(I∗)S ∗+
pg(I∗)g′(I∗)S ∗(B − pg′(I∗)S ∗) > 0.

According to direct calculation we have a, c > 0 and ab > c when R0 > 1 . Therefore the endemic
equilibrium X∗ is locally asymptotically stable in Ωε by Routh-Hurwitz criterion. �

3.4.2. Globally stability of endemic equilibrium

In this section, we briefly outline a general mathematical framework developed in [28] for proving
global stability, which will be used to prove Theorem 3.10. Consider the autonomous dynamical system

x′ = f (x) (3.4)

where f : D → Rn open set and f ∈ C1(D). Let x̄ be an equilibrium of (3.4), i.e. f (x̄) = 0. We recall
that x̄ is said to be globally stable in D if it is locally stable and all trajectories in D converge to x̄.

Assume that the following hypothesis hold:
(H1) D is simply connected;
(H2) There exists a compact absorbing set Γ ⊂ D;
(H3) Eq (3.4) has a unique equilibrium x̄ in D.
The Global Stability Problem arising in [28] is to find conditions under which the global stability of

x with respect to D is implied by its local stability. In [28], the main idea of this geometric approach to
the global stability problem is as follows: Assume that (3.4) satisfies a condition in D, which precludes
the existence of periodic solutions and suppose that this condition is robust, in the sense that it is also
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satisfied by ordinary differential equations that are C1-close to (3.4); Then every nonwandering point
of (3.4) is an equilibrium, as otherwise, by the C1 closing lemma of Pugh [29, 30], we can perturb
(3.4) near such a nonequilibrium nonwandering point to get a periodic solution. As a special case,
every omega limit point of (3.4) is an equilibrium. This implies that x attracts points in D. As a
consequence, its global stability is implied by the local stability. For this purpose, we introduce the
notion of robustness of a Bendixson criterion under local C1 perturbations of f .

Definition 3.4. A point x0 ∈ D is wandering for (3.4) if there exists a neighborhood U of x0 and t∗ > 0
such that U ∩ x(t,U) is empty for all t > t∗.

Thus, for example, any equilibrium, alpha limit point, or omega limit point is nonwandering.

Definition 3.5. A function g ∈ C1(D → Rn) is called a C1 local ε-perturbation of f at x0 ∈ D if there
exists an open neighborhood U of x0 in D such that the support supp( f − g) ⊂ U and | f − g|C1 < ε,
where

| f − g|C1 = sup{| f (x) − g(x)| +
∣∣∣∣∂ f
∂x

(x) −
∂g
∂x

(x)
∣∣∣∣ : x ∈ D}.

and | · | denotes a vector norm on Rn and the operator norm that it induces for linear mappings from Rn

to Rn.

Definition 3.6. A Bendixson Criterion for (3.4) is a condition satisfied by f , which precludes the
existence of nonconstant periodic solutions to (3.4).

Definition 3.7. A Bendixson criterion is said to be robust under C1 local perturbations of f at x0 if,
for each sufficiently small ε > 0 and neighborhood U of x0, it is also satisfied by each C1 local ε-
perturbations g such that supp( f − g) ⊂ U.

The following is the local version of the global-stability principle proved by [28].

Theorem 3.8. Suppose that assumptions (H2) and (H3) hold and that (3.4) satisfies a Bendixson
criterion that is robust under C1 local perturbations of f at all nonequilibrium nonwandering points
for (3.4), then x̄ is globally asymptotically stable with respect to D, provided it is stable.

The following is to introduce the quantity q̄2 given in [28]. Assume that (3.4) has a compact
absorbing set K ⊂ D . Then every solution x(t, x0) of (3.4) exists for any t > 0. The quantity q̄2 is well
defined:

q̄2 = lim sup
t→∞

sup
x0∈K

1
t

∫ t

0
ρ(B(x(s, x0)))ds, (3.5)

where

B = P f P−1 + P
∂ f [2]

∂x
P−1, (3.6)

and x 7→ P(x) is a
( n

2

)
×

( n
2

)
matrix-valued function, which is C1 in D and A f = (DP)( f ) or,

equivalently, P f is the matrix obtained by replacing each entry ai j in P by its directional derivative in
the direction of f , ∂ f

∂x

[2]
is the second additive compound matrix of the Jacobian matrix ∂ f

∂x of f . If | · | is

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5504–5530.



5513

a vector norm on R

(
n
2

)
, then ρ(B) is the Lozinskǐ measure with respect to | · |, which is defined by

ρ(B) = lim
h→0+

|I + hB| − 1
h

.

Under assumptions (H1) and (H2), [28] proved that q̄2 < 0 is a Bendixson criterion for (3.4) and
it is robust under C1 local perturbations of f at all nonequilibrium nonwandering points for (3.4) by
means of the local version of C1 closing lemma of Pugh [29,30]. Then we have the following theorem

Theorem 3.9. Under assumptions (H1), (H2), and (H3), the unique equilibrium x̄ is globally
asymptotically stable in D if q̄2 < 0 .

The criterion q̄2 < 0 provides the flexibility of a choice of
( n

2

)
×

( n
2

)
arbitrary function in

addition to the choice of vector norms | · | in deriving suitable conditions. It has been remarked in [28]
that, under the assumptions of Theorem 3.9, the classical result of Lyapunov, the classical
Bendixson-Dulac condition, and the criterion in [31] are obtained as special cases [28]. In addition, it
has also been stated in [28] that, under the assumptions of Theorem 3.9 the condition q̄2 < 0 also
implies the local stability of the equilibrium x̄, because, assuming the contrary, x̄ is both the alpha and
the omega limit point of a homoclinic orbit that is ruled out by the condition q̄2 < 0.

Global stability of endemic equilibrium.

We will focus on investigating the globally asymptotical stability of the unique endemic equilibrium
X∗(S ∗, L∗, I∗). The main theorem of the method requires the use of Lozinskǐ Logarithmic norm.

Theorem 3.10. Assume that R0 > 1. Then the unique endemic equilibrium X∗ is globally
asymptotically stable in R+

3 .

Proof. We set P as the following diagonal matrix:

P(S , L, I) = diag
(
1,

L
I
,

S
I

)
.

Then P is C1 and nonsingular in
◦

Ωε. Let f denote the vector field of (2.4). Then

P f P−1 = diag
(
0,

L′

L
−

I′

I
,

S ′

S
−

I′

I

)
,

the second compound matrix J[2] of the Jacobian matrix of system (2.4) can be calculated as follows

J[2] =


−A − µ − g(I) (1 − p)g′(I)S g′(I)S

k −µ − g(I) − B + pg′(I)S 0
−pg(I) (1 − p)g(I) −A − B + pg′(I)S

 .
Then the matrix B = P f P−1 + PJ[2]P−1 in (3.6) can be written in matrix form

B =

(
B11 B12

B21 B22

)
.
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where

B11 = − A − µ − g(I),

B12 =

( I
L
· (1 − p)g′(I)S , g′(I)I

)
,

B21 =

(
k ·

L
I
,−pg(I) ·

S
I

)T

,

B22 =

(
−µ − g(I) − B + pg′(I)S + L′

L −
I′
I 0

(1 − p)g(I) S
L −A − B + pg′(I)S

)
Let (u, v,w) denote the vectors in R3, we select a norm in R3 as |(u, v,w)| = max{|u|, |v| + |w|} and let
µ̃ denote the Lozinskǐ measure with respect to this norm. Following the method in [32], we have the
estimate µ̃(B) ≤ sup{g1, g2}, where

g1 = µ̃1(B11) + |B12|, and g2 = |B21| + µ̃(B22)

|B12| and |B21| are matrix norms with respect to the l1 vector norm and µ̃1 denotes the Lozinskǐ measure
with respect to the l1 norm. So

µ̃1(B11) = −A − µ − g(I),

|B12| = max
{ I

L
· (1 − p)g′(I)S , g′(I)I

}
,

|B21| = max
{
k ·

L
I
, pg(I) ·

S
I

}
=

kL
I

To calculate µ̃(B22) we add the absolute value of the off-diagonal elements to the diagonal one in each
column of B22, and then take the maximum of two sums, see [33]. We thus obtain,

µ̃(B22) = − B + pg′(I)S −
I′

I
+ max

{
− µ − g(I) +

L′

L
,−A +

S ′

S
+ (1 − p)g(I)

S
L

}
= − B + pg′(I)S −

I′

I
+

L′

L
+

S ′

S

≤ − (µ + d + r2) +
pg(I)S

I
−

I′

I
+

L′

L
+

S ′

S

=
L′

L
+

S ′

S
−

kL
I
.

Therefore

g1 = − A − µ − g(I) + max
{ I

L
· (1 − p)g′(I)S , g′(I)I

}
, (3.7)

g2 ≤
kL
I

+
L′

L
+

S ′

S
−

kL
I

=
L′

L
+

S ′

S
. (3.8)

From (2.4) we have

−A − µ − g(I) +
I
L
· (1 − p)g′(I)S ≤ − A − µ − g(I) +

I
L
· (1 − p)

g(I)
I

S

= − A − µ − g(I) +
L′

L
+ A =

L′

L
− µ − g(I),

−A − µ − g(I) + g′(I)I ≤ − A − µ − g(I) + g(I) = −A − µ.

(3.9)
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The uniform persistence constant c can be adjusted so that there exists T > 0 independent of
(S (0), L(0), I(0)) ∈ K, the compact absorbing set, such that

I(t) > c, and L(t) > c for t > T. (3.10)

Substituting (3.9) into (3.7) and using (3.10), we obtain, for t > T ,

g1 ≤
L′

L
− µ, (3.11)

Therefore µ̃(B) ≤ L′
L + S ′

S for t > T by (3.8) and (3.11). Along each solution (S (t), L(t), I(t)) to (2.4)
such that (S (0), L(0), I(0)) ∈ K and for t > T , we have

1
t

∫ t

0
µ̃(B)ds ≤

1
t

∫ T

0
µ̃(B)ds +

1
t

log
L(t)
L(T )

+
1
t

log
S (t)
S (T )

,

which implies q̄2 ≤ 0 from (3.5), proving Theorem 3.10.
�

In this section we proposed a nonmonotone and nonlinear incidence rate of the form
βIS/(1 + αI2), which is increasing when I is small and decreasing when I is large. It can be used to
interpret the ’psychological’ effect: the number of effective contacts between infective individuals and
susceptible individuals decreases at high infective levels due to the quarantine of infective individuals
or the protection measures by the susceptible individuals.

Recall that the parameter α describes the psychological effect of the general public toward the
infectives. Though the basic reproduction number R0 does not depend on α explicitly, numerical
simulations indicate that when the disease is endemic, the steady state value I∗ of the infectives
decreases as α increases (see Figure 2). From the steady state expression (3.2) we can see that I∗

approaches zero as α tends to infinity.
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Figure 2. The dependence of I∗ on the parameter α.
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4. Stochastic differential equation model

In this section we consider the stochastic model associated with the deterministic model in (2.1).
We introduce randomness into the model (2.1) by replacing the parameters µ by µ → µ + σidBi(t)(i =

1, 2, 3, 4) with the second approaches as [13] and [15], where Bi(t)(i = 1, 2, 3, 4) are independent
standard Brownian motions with Bi(0) = 0 and σ2

i (i = 1, 2, 3, 4) denote the intensities of the white
noise. Then equation (2.1) becomes

dS =
[
Λ −

βS I
1 + αI2 − µS

]
dt + σ1S dB1(t),

dL =
[
(1 − p)

βS I
1 + αI2 − (µ + k + r1)L

]
dt + σ2LdB2(t),

dI =
[
p

βS I
1 + αI2 + kL − (µ + d + r2)I

]
dt + σ3IdB3(t),

dR = (r1L + r2I − µR)dt + σ4RdB4(t).

(4.1)

Throughout this section, unless otherwise specified, let (Ω,F ,P) be a complete probability space
with a filtration {Ft}t≥0. The Brown motions are defined on the complete probability space (Ω,F ,P).
Denote

Rn
+ = {x ∈ Rn : xi > 0, for all 1 ≤ i ≤ n}.

In general, consider n-dimensional stochastic differential equation [35]:

dx(t) = f̄ (x(t), t)dt + ḡ(x(t), t)dB(t), on t ≥ t0 (4.2)

with initial value x(t0) = x0 ∈ Rn. B(t) denotes n-dimensional standard Brownian motions defined on
the above probability space. Define the differential operator L associated with (4.2) by

L =
∂

∂t
+

n∑
i=1

f̄i(x, t)
∂

∂xi
+

1
2

n∑
i, j=1

[ḡT (x, t)ḡ(x, t)]i j
∂2

∂xi∂x j
.

If L acts on a function V ∈ C2,1(S h × R̄+; R̄+), then

LV(x, t) = Vt(x, t) + Vx(x, t) f̄ (x, t) +
1
2

trace[ḡT (x, t)Vxx(x, t)ḡ(x, t)],

where

Vt =
∂V
∂t
,Vx =

( ∂V
∂x1

, · · · ,
∂V
∂xn

)
, and Vxx =

( ∂2V
∂xi∂x j

)
n×n
.

By Itô’s formula,
dV(x(t), t) = LV(x(t), t)dt + Vx(x(t), t)ḡ(x(t), t)dB(t).

4.1. Existence and uniqueness of the positive solution of (4.1)

In this subsection we first show the solution of system (4.1) is global and positive. In order for
a stochastic differential equation to have a unique global (i.e. no explosion in a finite time) solution
for any given initial value, the coefficients of the equation are generally required to satisfy the linear
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growth condition and local Lipschitz condition [34, 35]. However, the coefficients of system (4.1) do
not satisfy the linear growth condition (as the incidence is nonlinear), so the solution of system (4.1)
may explode at a finite time [34, 35]. In this section, using Lyapunov analysis method (mentioned
in [36]), we show the solution of system (4.1) is positive and global.

Theorem 4.1. There is a unique solution (S (t), L(t), I(t),R(t)) of system (4.1) on t ≥ 0 for any intial
value (S (0), L(0), I(0),R(0)) ∈ R4

+, and the solution will remain in R4
+ with probability 1, namely,

(S (t), L(t), I(t),R(t)) ∈ R4
+ for all t > 0 almost surely.

Proof. Since the coefficients of system (4.1) satisfy the local Lipschitz condition, then for any initial
value (S (0), L(0), I(0),R(0)) ∈ R4

+, there is a unique local solution (S (t), L(t), I(t),R(t)) on [0, τe), where
τe is the explosion time. To show this solution is global, we only need to prove that τe = ∞ a.s. To
this end, let n0 > 0 be sufficiently large for every component of S (0), L(0), I(0),R(0) lying within the
interval [ 1

n0
, n0] × [ 1

n0
, n0] × [ 1

n0
, n0] × [ 1

n0
, n0]. For each integer n > n0, define the following stopping

time
τn = inf

{
t ∈ [0, τe) : min{S (t), L(t), I(t),R(t)} ≤

1
n

or max{S (t), L(t), I(t),R(t)} ≥ n
}

where throughout this paper, we set inf ∅ = ∞(∅ represents the empty set). Obviously, τn is increasing
as n → ∞. Let τ∞ = lim sup

n→∞
τn, then τ∞ ≤ τe a.s. In the following, we need to verify τ∞ = ∞ a.s. If

this assertion is violated, there is a constant K > 0 and an ε ∈ (0, 1) sucn that P{τ∞ ≤ K} > ε. As a
consequence, there exists an integer n1 ≥ n0 such that

P{τn ≤ K} ≥ ε, n ≥ n1.

Define a C2-function V : R4
+ → R+ by

V(S , L, I,R) = (S − 1 − log S ) + (L − 1 − log L) + (I − 1 − log I) + (R − 1 − log R).

Applying the Itô’s formula, we obtain

dV(S , L, I,R) = LVdt + σ1(S − 1)dB1 + σ2(L − 1)dB2 + σ3(I − 1)dB3 + σ4(R − 1)dB4.

where

LV =
(
1 −

1
S

)(
Λ −

βS I
1 + αI2 − µS

)
+

(
1 −

1
L

)( (1 − p)βS I
1 + αI2 − (µ + k + r1)L

)
+

(
1 −

1
I

)
×

( pβS I
1 + αI2 + kL

− (µ + d + r2)I
)

+
(
1 −

1
R

)(
r1L + r2I − µR

)
+
σ2

1 + σ2
2 + σ2

3 + σ2
4

2

=Λ + 4µ + k + r1 + d + r2 − µ(S + L + I + R) − dI −
Λ

S
+

βI
1 + αI2 −

kL
I
−

(1 − p)βS I
L(1 + αI2)

−
pβS

1 + αI2

−
r1L
R
−

r2I
R

+
σ2

1 + σ2
2 + σ2

3 + σ2
4

2

≤Λ + 4µ + k + r1 + d + r2 +
βI

1 + αI2 +
σ2

1 + σ2
2 + σ2

3 + σ2
4

2
:= M.

For ∀I > 0, I
1+αI2 ≤

1
2
√
α
. Hence there exists a suitable constant M > 0 independent of S , L, I,T and t

such that LV ≤ M. The remainder of the proof is similar to Theorem 3.1 of [36] and hence is omitted.
This completes the proof. �
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4.2. Asymptotic behavior around the disease-free equilibrium of the deterministic model (2.1)

Obviously, X0 = (Λ
µ
, 0, 0, 0) is the solution of system (2.1), which is called the disease-free

equilibrium. If R0 < 1, then X0 is globally asymptotically stable, which means the disease will vanish
after some period of time. Therefore, it is interesting to study the disease-free equilibrium for
controlling infectious disease. But, there is no disease-free equilibrium in system (4.1). It is natural to
ask how we can consider the disease will extinct. In this subsection we mainly estimate the average of
oscillation around X0 in time to exhibit whether the disease will die out.

Theorem 4.2. Let (S (t), L(t), I(t),R(t)) be the solution of system (4.1) with initial value
(S (0), L(0), I(0),R(0)) ∈ R4

+. If R0 =
βΛ

µ

k(1−p)+(µ+k+r1)p
(µ+k+r1)(µ+d+r2) ≤ 1, and

( (2µ + k + r1)2

2µ(µ + k + r1)
+

r2k(2µ + d + r2)2

2(2r2k2 + µr2
1)(µ + d + r2)

+
µr2k + 1

2r2k2 + µr2
1

)
σ2

1 < µ +
µ2r2k

2(2r2k2 + µr2
1)
,

σ2
2 < µ + r1, σ2

3 <
d
µ
, σ2

4 < µ,

then

lim sup
t→∞

1
t

E
∫ t

0

{[
µ +

µ2r2k
2(2r2k2 + µr2

1)
−

( (2µ + k + r1)2

2µ(µ + k + r1)
+

r2k(2µ + d + r2)2

2(2r2k2 + µr2
1)(µ + d + r2)

+
µr2k + 1

2r2k2 + µr2
1

)
σ2

1

]
·

(
S −

Λ

µ

)2
+
µ + r1 − σ

2
2

2
L2 +

µr2k(d − µσ2
3)

2(2r2k2 + µr2
1)

I2 +
µ2k(µ − σ2

4)
4(2r2k2 + µr2

1)
R2

}
dr

≤
(
2 +

µ2r2k + µr2
1

2r2k2 + µr2
1

)Λ2σ2
1

µ2 .

Proof. Define C2-function V1,V2 : R+ → R+ and V3,V4,V5 : R2
+ → R+, respectively by

V1(S ) =
(S − Λ

µ
)2

2
, V2(R) =

R2

2
, V3(L, I) = L +

µ + r1 + k
k

I,

V4(S , L) =
(S − Λ

µ
+ L)2

2
, V5(S , I) =

(S − Λ
µ

+ I)2

2
.

Along the trajectories of system (4.1), we have

LV1 =
(
S −

Λ

µ

)(
Λ −

βS I
1 + αI2 − µS

)
+
σ2

1S 2

2
= −µ

(
S −

Λ

µ

)2
−
β(S − Λ

µ
)2I

1 + αI2 −
βΛ(S − Λ

µ
)I

µ(1 + αI2)
+
σ2

1S 2

2

LV2 =r1LR + r2IR − µR2 +
σ2

4R2

2
≤

r2
2I2

µ
−

(µ − σ2
4)R2

2
+

r2
1L2

µ
,

LV3 =
(1 − p)βS I

1 + αI2 +
µ + k + r1

k
pβS I

1 + αI2 −
µ + k + r1

k
(µ + d + r2)I

=
[k(1 − p) + (µ + k + r1)p]β(S − Λ

µ
)I

k(1 + αI2)
+

(µ + k + r1)(µ + d + r2)I
k

( R0

1 + αI2 − 1
)
,

LV4 ≤ − µ
(
S −

Λ

µ

)2
−

pβΛ(S − Λ
µ

)I

µ(1 + αI2)
+

(2µ + k + r1)2

2(µ + k + r1)

(
S −

Λ

µ

)2
−

(µ + k + r1)L2

2
+
σ2

1S 2

2
+
σ2

2L2

2
,
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LV5 ≤ − µ(S −
Λ

µ
)2 −

(1 − p)β(S − Λ
µ

)2I

1 + αI2 −
(1 − p)βΛ(S − Λ

µ
)I

µ(1 + αI2)
+ kL(S −

Λ

µ
) − (2µ + d + r2)(S −

Λ

µ
)I

+ kLI − (µ + d + r2)I2 +
σ2

1S 2

2
+
σ2

3I2

2
Hence

LV1 +
Λk

[k(1 − p) + (µ + k + r1)p]µ
LV3 ≤ − µ

(
S −

Λ

µ

)2
−
β(S − Λ

µ
)2I

1 + αI2 +
σ2

1S 2

2

≤ − (µ − σ2
1)
(
S −

Λ

µ

)2
+
σ2

1Λ
2

µ2

LV4+
pΛk

[k(1 − p) + (µ + k + r1)p]µ
LV3 ≤ −

(
µ −

(2µ + k + r1)2

2(µ + k + r1)

)(
S −

Λ

µ

)2
+
σ2

1S 2

2
+
σ2

2L2

2

≤
( (2µ + k + r1)2

2(µ + k + r1)
− µ + σ2

1

)(
S −

Λ

µ

)2
+
σ2

1Λ
2

µ2 +
σ2

2L2

2
−

(µ + k + r1)L2

2

(4.3)

LV5+
(1 − p)Λk

[k(1 − p) + (µ + k + r1)p]µ
LV3 +

µ

2r2
LV2

≤ − µ
(
S −

Λ

µ

)2

+ kL
(
S −

Λ

µ

)
− (2µ + d + r2)

(
S −

Λ

µ

)
I + kLI − (µ + d + r2)I2 +

σ2
1S 2

2

+
σ2

3I2

2
+

r2

2
I2 +

r2
1

2r2
L2 −

µ(µ − σ2
4)

4r2
R2

≤ − µ
(
S −

Λ

µ

)2

+
k2

µ
L2 +

µ

2

(
S −

Λ

µ
)2 +

(2µ + d + r2)2

2(µ + d + r2)

(
S −

Λ

µ

)2

−
d + r2

2
I2 +

σ2
1S 2

2
+

σ2
3I2

2
+

r2

2
I2 +

r2
1

2r2
L2 −

µ(µ − σ2
4)

4r2
R2

≤

( (2µ + d + r2)2

2(µ + d + r2)
−
µ

2

)(
S −

Λ

µ

)2

+

(k2

µ
+

r2
1

2r2

)
L2 + −

d
2

I2 +
σ2

1S 2

2
+
σ2

3I2

2
−
µ(µ − σ2

4)
4r2

R2

(4.4)

From (4.3) and (4.4) we have

LV4+
pΛk

[k(1 − p) + (µ + k + r1)p]µ
LV3 +

µr2k
2r2k2 + µr2

1

[
LV5 +

(1 − p)Λk
[k(1 − p) + (µ + k + r1)p]µ

LV3 +
µ

2r2
LV2

]
≤ −

(
µ −

(2µ + k + r1)2

2(µ + k + r1)

)(
S −

Λ

µ

)2
+
σ2

1S 2

2
+
σ2

2L2

2
−

µ2r2k
2(2r2k2 + µr2

1)
µ

2

(
S −

Λ

µ

)2
+

µ2r2k
2r2k2 + µr2

1

(k2

µ
+

r2
1

2r2

)
L2 +

µ2r2k
2(2r2k2 + µr2

1)
(2µ + d + r2)2

2(µ + d + r2)

(
S −

Λ

µ

)2
−

µ2r2k
2(2r2k2 + µr2

1)
d
2

I2+

µ2r2k
2(2r2k2 + µr2

1)
σ2

1S 2

2
+

µ2r2k
2(2r2k2 + µr2

1)

σ2
3I2

2
−

µ2k(µ − σ2
4)

4(2r2k2 + µr2
1)

R2

≤
( (2µ + k + r1)2

2(µ + k + r1)
− µ −

µ2r2k
2(2r2k2 + µr2

1)
+

µr2k(2µ + d + r2)2

2(2r2k2 + µr2
1)(µ + d + r2)

)(
S −

Λ

µ

)2
+

( µ2r2k
2r2k2 + µr2

1

+ 1
)

σ2
1S 2

2
+
σ2

2L2

2
−
µ + r1

2
L2 −

dµr2k
2(2r2k2 + µr2

1)
I2 +

µ2r2kσ2
3

2(2r2k2 + µr2
1)

I2 −
µ2k(µ − σ2

4)
4(2r2k2 + µr2

1)
R2
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Considering positive definite C2 function V : R4
+ → R+ such that

V :=
( (2µ + k + r1)2

2µ(µ + k + r1)
+

r2k(2µ + d + r2)2

2(2r2k2 + µr2
1)(µ + d + r2)

)(
V1 +

Λk
k(1 − p) + (µ + k + r1)p

V3

)
+ V4+

pΛk
k(1 − p) + (µ + k + r1)p

V3 +
µr2k

2r2k2 + µr2
1

(
V5 +

(1 − p)Λk
[k(1 − p) + (µ + k + r1)p]µ

V3 +
µ

2r2
V2

)
.

By computation,

LV ≤ −
[
µ +

µ2r2k
2(2r2k2 + µr2

1)
−

( (2µ + k + r1)2

2µ(µ + k + r1)
+

r2k(2µ + d + r2)2

2(2r2k2 + µr2
1)(µ + d + r2)

+
µr2k + 1

2r2k2 + µr2
1

)
σ2

1

](
S −

Λ

µ

)2

−
µ + r1 − σ

2
2

2
L2 −

µr2k(d − µσ2
3)

2(2r2k2 + µr2
1)

I2 −
µ2k(µ − σ2

4)
4(2r2k2 + µr2

1)
R2 +

(
2 +

µ2r2k + µr2
1

2r2k2 + µr2
1

)Λ2σ2
1

µ2

(4.5)

Taking expectation above, (4.5) yields

EV(t)−EV(0) =

∫ t

0
ELV(r)dr ≤ −

[
µ +

µ2r2k
2(2r2k2 + µr2

1)
−

( (2µ + k + r1)2

2µ(µ + k + r1)
+

µr2k + 1
2r2k2 + µr2

1

+
r2k(2µ + d + r2)2

2(2r2k2 + µr2
1)(µ + d + r2)

)
σ2

1

] ∫ t

0

(
S (r) −

Λ

µ

)2

dr −
µ + r1 − σ

2
2

2

∫ t

0
L2(r)dr

−
µr2k(d − µσ2

3)

2(2r2k2 + µr2
1)

∫ t

0
I2(r)dr −

µ2k(µ − σ2
4)

4(2r2k2 + µr2
1)

∫ t

0
R2(r)dr +

(
2 +

µ2r2k + µr2
1

2r2k2 + µr2
1

)Λ2σ2
1

µ2 t

Hence

lim sup
t→∞

1
t

E
∫ t

0

{[
µ +

µ2r2k
2(2r2k2 + µr2

1)
−

( (2µ + k + r1)2

2µ(µ + k + r1)
+

r2k(2µ + d + r2)2

2(2r2k2 + µr2
1)(µ + d + r2)

+
µr2k + 1

2r2k2 + µr2
1

)
σ2

1

]
·
(
S −

Λ

µ

)2
+
µ + r1 − σ

2
2

2
L2 +

µr2k(d − µσ2
3)

2(2r2k2 + µr2
1)

I2 +
µ2k(µ − σ2

4)
4(2r2k2 + µr2

1)
R2

}
dr

≤
(
2 +

µ2r2k + µr2
1

2r2k2 + µr2
1

)Λ2σ2
1

µ2 .

This complete the proof. �

4.3. Asymptotic behavior around the endemic equilibrium of the deterministic model (2.4)

In this section, we will show there is a unique distribution for system (4.1) instead of asymptotically
stable equilibrium(see [37]). We only consider the first three equation of system (4.1) because the
variable R does not participate in the first three equations. Before giving the main theorem, we first
give a lemma (see [38]).

Let X(t) be a regular temporally homogeneous Markov process in El ⊂ Rl described by the
stochastic differential equation:

dX(t) = b(X)t +

k∑
r=1

σr(X)dBr(t),
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and the diffusion matrix is defined as follows

A(x) = (ai, j(x)), ai, j(x) =

k∑
r=1

σi
r(x)σ j

r(x).

Lemma 4.3. (see [38]) We assume that there exists a bounded domain U ⊂ El with regular boundary,
having the following properties:

• In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix
A(x) is bounded away from zero.

• If x ∈ El\U, the mean time τ at which a path issuing from x reaches the set U is finite,and
supx∈K Exτ < ∞ for every compact subsect K ⊂ El.

then, the Markov process X(t) has a stationary distribution µ(·) with density in El such that for any
Borel set B ⊂ El,

lim
t→∞

P(t, x,B) = µ̆(B),

and

Px

{
lim
T→∞

1
T

∫ T

0
f (x(t))dt =

∫
El

f (x)µ̆(dx)
}

= 1,

for all x ∈ El and f (x) being a function integrable with respect to the measure µ̆.

Theorem 4.4. Let (S (t), L(t), I(t)) be the solution of system (4.1) with initial value (S (0), L(0), I(0)) ∈
R3

+. If R0 =
βΛ

µ

k(1−p)+(µ+k+r1)p
(µ+k+r1)(µ+d+r2) ≤ 1, and the following conditions are satisfied:

(i)

ρ1 =
(
µ +

(2µ + d + r2 + r1)µ
βS ∗

−
(2µ + r1)2

2(µ + r1)
−

(2µ + d + r2 + r1 + βS ∗)σ2
1

βS ∗
−

(2µ + d + r2)2

4αk2(µ + d + r2)

)
∨

(
µ +

(2µ + d + r2 + r1)p
√
αI∗

−
(2µ + r1)2

2(µ + r1)
−

(2µ + d + r2)2

2(µ + d + r2)
−

((2µ + d + r2 + r1)p +
√
αI∗)σ2

1
√
αI∗

)
> 0

ρ2 =
µ + r1

2
− σ2

2 > 0, ρ3 =
µ + d + r2

2
− σ2

3 > 0;

(ii) δ < min{ρ1S ∗2, ρ2L∗2, ρ3I∗2}, where S ∗, L∗, I∗ are difined as in (3.2) and

δ =
[ (2µ + d + r2 + r1)p +

√
αI∗

√
αI∗

∨
2µ + d + r2 + r1 + βS ∗

βS ∗
]
σ2

1S ∗2 + σ2
2L∗2 + σ2

3I∗2

then we have

lim
t→∞

1
t

E
∫ t

0
[ρ1(S (r) − S ∗)2 + ρ2(L(r) − L∗)2 + ρ3(I(r) − I∗)2]dr ≤ δ.

Proof. As R0 > 1,there is a unique endemic equilibrium X∗ = (S ∗, L∗, I∗) such that

Λ =
βS ∗I∗

1 + αI∗2
+ µS ∗,

(1 − p)βS ∗I∗

1 + αI∗2
= (µ + k + r1)L∗,

pβS ∗I∗

1 + αI∗2
= (µ + d + r2)I∗ − kL∗. (4.6)
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Define C2 functions as follows:

V1(S , L, I) =
S − S ∗ + L − L∗ + I − I∗

2
, V2(I) = I − I∗ − I∗ log

I
I∗
, V3(S ) =

(S − S ∗)2

2
.

By computation, we have

LV1 =(S − S ∗ + L − L∗ + I − I∗)(−µ(S − S ∗) − (µ + r1)(L − L∗) − (µ + d + r2)(I − I∗)) +
σ2

1S 2

2
+

σ2
2L2

2
+
σ2

3I2

2
= − µ(S − S ∗)2 − (µ + r1)(L − L∗)2 − (µ + d + r2)(I − I∗)2 − (2µ + r1)(S − S ∗)(L − L∗)−

(2µ + d + r2)(S − S ∗)(I − I∗) − (2µ + d + r2 + r1)(L − L∗)(I − I∗) +
σ2

1S 2

2
+
σ2

2L2

2
+
σ2

3I2

2

LV2 =(1 −
I∗

I
)(

pβS I
1 + αI2 + kL − (µ + d + r2)I)

=pβ(I − I∗)(
S

1 + αI2 −
S ∗

1 + αI∗2
) +

k(I − I∗)(L − L∗)
I∗

−
kL(I − I∗)2

II∗

≤
pβ

1 + αI∗2
(S − S ∗)(I − I∗) +

k(I − I∗)(L − L∗)
I∗

LV3 =(S − S ∗)(Λ −
βS I

1 + αI2 − µS ) +
σ2

1S 2

2

= − µ(S − S ∗)2 −
βS ∗(αII∗ − 1)

(1 + αI∗2)(1 + αI2)
(S − S ∗)(I − I∗) +

σ2
1S 2

2

We discuss the follow prove in two cases: (S − S ∗)(I − I∗) ≥ 0 or (S − S ∗)(I − I∗) < 0.
1). If (S − S ∗)(I − I∗) ≥ 0, define

V(S , L, I) = V1 +
(2µ + d + r2 + r1)I∗

k
V2 +

2µ + d + r2 + r1

βS ∗
V3

By computation, we have

LV ≤ − µ(S − S ∗)2 − (µ + r1)(L − L∗)2 − (µ + d + r2)(I − I∗)2 − (2µ + r1)(S − S ∗)(L − L∗)+

(2µ + d + r2 + r1)pβI∗

k(1 + αI∗2)
(S − S ∗)(I − I∗) −

(2µ + d + r2 + r1)µ
βS ∗

(S − S ∗)2 +
σ2

1S 2

2
+
σ2

2L2

2
+

σ2
3I2

2
+

2µ + d + r2 + r1

βS ∗
σ2

1S 2

2

≤ −
(
µ +

(2µ + d + r2 + r1)µ
βS ∗

−
(2µ + r1)2

2(µ + r1)
−

(2µ + d + r2)2

4αk2(µ + d + r2)

)
(S − S ∗)2 −

µ + r1

2
(L − L∗)2−

µ + d + r2

2
(I − I∗)2 +

2µ + d + r2 + r1 + βS ∗

βS ∗
σ2

1S 2

2
+
σ2

2L2

2
+
σ2

3I2

2

2). If (S − S ∗)(I − I∗) < 0, define

V(S , L, I) = V1 +
(2µ + d + r2 + r1)I∗

k
V2 +

(2µ + d + r2 + r1)p
√
αI∗

V3
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By computation, we have

LV ≤ − µ(S − S ∗)2 − (µ + r1)(L − L∗)2 − (µ + d + r2)(I − I∗)2 − (2µ + r1)(S − S ∗)(L − L∗)−

(2µ + d + r2)(S − S ∗)(I − I∗) −
(2µ + d + r2 + r1)µp

√
αI∗

(S − S ∗)2 +
σ2

1S 2

2
+
σ2

2L2

2
+
σ2

3I2

2
+

(2µ + d + r2 + r1)µp
√
αI∗

σ2
1S 2

2

≤ −
(
µ +

(2µ + d + r2 + r1)p
√
αI∗

−
(2µ + r1)2

2(µ + r1)
−

(2µ + d + r2)2

2(µ + d + r2)

)
(S − S ∗)2 −

µ + r1

2
(L − L∗)2−

µ + d + r2

2
(I − I∗)2 +

(2µ + d + r2 + r1)p +
√
αI∗

√
αI∗

σ2
1S 2

2
+
σ2

2L2

2
+
σ2

3I2

2

Over all we have

LV ≤ −ρ1(S − S ∗)2 − ρ2(L − L∗)2 − ρ3(I − I∗)2 + δ (4.7)

where

ρ1 =
(
µ +

(2µ + d + r2 + r1)µ
βS ∗

−
(2µ + r1)2

2(µ + r1)
−

(2µ + d + r2 + r1 + βS ∗)σ2
1

βS ∗
−

(2µ + d + r2)2

4αk2(µ + d + r2)

)
∨

(
µ +

(2µ + d + r2 + r1)p
√
αI∗

−
(2µ + r1)2

2(µ + r1)
−

(2µ + d + r2)2

2(µ + d + r2)
−

((2µ + d + r2 + r1)p +
√
αI∗)σ2

1
√
αI∗

)
ρ2 =

µ + r1

2
− σ2

2, ρ3 =
µ + d + r2

2
− σ2

3,

δ =
[ (2µ + d + r2 + r1)p +

√
αI∗

√
αI∗

∨
2µ + d + r2 + r1 + βS ∗

βS ∗
]
σ2

1S ∗2 + σ2
2L∗2 + σ2

3I∗2

If δ < min{ρ1S ∗2, ρ2L∗2, ρ3I∗2}, then the ellipsoid

ρ1(S − S ∗)2 + ρ2(L − L∗)2 + ρ3(I − I∗)2 = δ

lies entirely R3
+. We can take U as any neighborhood of the ellipsoid such that U ∈ R3

+, where U is the
closure of U. Thus, we have LV < 0 which implies the second condition in Lemma 4.3 is satisfied.
Besides, there is Q > 0 such that

n∑
i, j=1

( n∑
k=1

aik(x)a jk(x)
)
ξiξ j = σ2

1x2
1ξ

2
1 + σ2

2x2
2ξ

2
2 + σ2

3x2
3ξ

2
3 ≥ Q|ξ|2, for allx ∈ U, ξ ∈ R3

Applying Rayleigh’s principle (see [39], p. 349), the first condition in Lemma 4.3 is satisfied.
Therefore, the stochastic system (4.1) has a unique stationary distribution µ(·) and it is ergodic. �
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4.4. Exponential stability of system (4.1)

In this section, we investigate the exponential decay of the global solution of system (4.1) as the
intensity of white noise is great. It can be shown below, even if the endemic equilibrium exists in the
system (2.1), the stochastic effect may make washout more likely in system (4.1).

Theorem 4.5. Let (S (t), L(t), I(t),R(t)) be the solution of system (4.1) with any initial value
(S (0), L(0), I(0),R(0)) ∈ R4

+. If Λβ(µ+k+r1)
µk < (σ

2
3

2 + µ + d + r2) ∧ (σ
2
2

2 ) then,

lim sup
t→∞

1
t

log
[
L +

µ + k + r1

k
I
]
≤

Λβk
µ(µ + k + r1)

−
( k
µ + k + r1

)2[
(
σ2

3

2
+ µ + d + r2) ∧ (

σ2
2

2
)
]

lim sup
t→∞

1
t

log R(t) ≤
{
(r1 ∨ r2) ·

{[
−

(
µ +

σ2
4

2

)]
∨ ζ

}}
lim sup

t→∞

1
t

∫ t

0
S (u)du =

Λ

µ
, a.e. S (t)→ω ν, as t → ∞,

where →ω means the convergence in distribution and ν is a probability measure in R1
+ such that∫ ∞

0
xν(dx) = Λ

µ
. In particularly, ν has density (Aσ2

1x2 p(x))−1, where A is a normal constant,

p(x) = exp
(
−

2Λ

σ2
1

)
x

2µ
σ2

1 exp
( 2Λ

σ2
1x

)
, x > 0.

Proof. By comparison theorem, we see that S (t) ≤ X(t), where X(t) is the global solution of the
following stochastic system with initial value X(0) = S (0):

dX = (Λ − µX)dt + σ1XdB1(t) (4.8)

Obviously, (4.8) is a diffusion process lying in R1
+.

Firstly,we show (4.8) is stable in distribution and ergodic. Let Y(t) = X(t) − Λ
µ

, then Y(t) satisfies

dY = −µYdt + σ1(Y +
Λ

µ
)dB1(t). (4.9)

Theorem 2.1(a) in [40] with C = 1 implies that the diffusion process Y(t) is stable in distribution as
t → ∞, so does X(t).

To prove the ergodicity of X(t), we difine

p(x) = exp
(
− 2

∫ x

0

Λ − µy
σ2

1y2
dy

)
= exp

(
−

2Λ

σ2
1

)
x

2µ
σ2

1 exp
( 2Λ

σ2
1x

)
and it is noted that for each integer n ≥ 1, there exist positive constants C1(n),C2(n) and M(n) such
that

p(x) ≥ C1(n)x
2µ
σ2

1
−n
, as 0 < x <

1
M(n)

, p(x) ≥ C2(n)x
2µ
σ2

1 , as x >
1

M(n)
. (4.10)

Therefore, together with (4.10) we see∫ ∞

1
p(x)dx = ∞,

∫ 1

0
p(x)dx = ∞,

∫ ∞

0

dx
σ2

1 p(x)x2
< ∞.
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So X(t) is ergodic (Theorem 1.16 in [41]), and with respect to the Lebesgue measure its invariant
measure ν has density (Aσ2

1 p(x)x2)−1, where A is a normal constant.
Now, we show that f (t) := EXp(t) is uniformly bounded for some p > 1 determined later. Applying

Itô’s formula to Xp, we have

dXp =
(
pΛXp−1 − pµXp +

σ2
1 p(p − 1)Xp

2

)
dt + pσ1XpdB1(t).

Taking expectation of equation above, and using the fact a
1
p b

p−1
p ≤ a

p +
b(p−1)

p , a, b > 0,

f ′(t) ≤
Λp

εp−1 +
pε

p − 1
f (t) − p

[
µ −

σ2
1(p − 1)

2

]
f (t) ≤

Λp

εp−1 + p
[ ε

p − 1
− (µ −

σ2
1(p − 1)

2
)
]
f (t).

Choosing ε > 0 sufficiently small and p > 1 closely enough to 1 such that

µ −
σ2

1(p − 1)
2

< 0,
ε

p − 1
− (µ −

σ2
1(p − 1)

2
) < 0.

Hence, supt≥0 EXp(t) = supt≥0 f (t) < ∞, implying that
∫ ∞

0
xpν(dx) < ∞. Together with its ergodicity

we have

px

{
lim
T→∞

1
T

∫ T

0
X(t)dt =

∫ ∞

0
xν(dx)

}
= 1. (4.11)

for all x ∈ R1
+. On the other hand, Jensen’s inequality yields

E
[ 1
T

∫ T

0
X(t)dt

]p
≤ E

1
T

∫ T

0
Xp(t)dt ≤ sup

t≥0
EXp(t) < ∞,

therefore, { 1
T

∫ T

0
X(t)dt, t ≥ 0} is uniformly integrable. Together with (4.11), we have

E
1
T

∫ T

0
Xp(t)dt →

∫ ∞

0
xν(dx). (4.12)

Taking expectation of (4.8), we have

EX(t)
t

= Λ −
µ

t
E

∫ t

0
X(s)ds.

Let t → ∞, taking (4.12) into account, then we have
∫ ∞

0
xν(dx) = Λ

µ
.

We shall eventually show that S (t) is stable in distribution . To do this, as in [15], we introduce
a new stochastic process S ε(t) which is defined by initial condition S ε(0) = S (0) and the stochastic
differential equation

dS ε = [Λ − (µ + ε)S ε]dt + σ1S εdB1(t).

We prove that
lim
t→∞

(S (t) − S ε(t)) ≥ 0, a.e. (4.13)
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Therefore consider

d(S − S ε) =
[(
ε −

βI
1 + αI2

)
S − (µ + ε)(S − S ε)

]
dt + σ1(S − S ε)dB1(t).

The solution is given by

S (t) − S ε(t) =exp
{
−

(
µ + ε +

σ2
1

2

)
t + σ1B1(t)

} ∫ t

0
exp

{(
µ + ε +

σ2
1

2

)
− σ1B1(s)

}
·
(
ε −

βI(s)
1 + αI2(s)

)
S (s)ds.

For almost ω ∈ Ω,∃T = T (ω) such that ε > βI(t)
1+αI2(t) , ∀t > T .

Hence as the proof of Theorem 5.2 in [15] for almost ω ∈ Ω, for any t > T ,

S (t) − S ε(t) ≥exp
{
−

(
µ + ε +

σ2
1

2

)
t + σ1B1(t)

} ∫ T

0
exp

{(
µ + ε +

σ2
1

2

)
− σ1B1(s)

}
·
(
ε −

βI(s)
1 + αI2(s)

)
S (s)ds.

Therefore, lim inf
t→∞

(S (t) − S ε(t) ≥ 0, a.e. Next,it is noted that

d(X − S ε) = [εS ε − µ(X − S ε)]dt + σ1(X − S ε)dB1(t).

Taking the expectation of above equation, we see

E|X(t) − S ε(t)| =
∫ t

0
[εS ε(u) − µ(X(u) − S ε(u))]du ≤

∫ t

0
[εX(u) − µ|X(u) − S ε(u)|]du

where the last inequality is using the fact that S ε(t) ≤ X(t). Hence we have

E|X(t) − S ε(t)| ≤
ε supu≥0 EXu

µ
(1 − exp(−µt)).

This implies that
lim inf
ε→0

lim
t→∞

E|X(t) − S ε(t)| = 0. (4.14)

Combining (4.13),(4.14) and the fact that S (t) ≤ X(t), we have

lim
t→∞

(X(t) − S (T )) = 0, in probability.

It has been shown that X(t) converges weakly to distribution ν, so does S (t) as t → ∞.
Secondly, using Itô’s formula to log[L +

µ+k+r1
k I] and the fact that S (t) ≤ X(t) show

d log
[
L +

µ + k + r1

k
I
]

=
(k(1 − p) + (µ + k + r1)p)βS I

k(1 + αI2)(L +
µ+k+r1

k I)
−

1

(L +
µ+k+r1

k I)2

[(σ2
3

2
+ µ + d + r2

)(µ + k + r1

k

)2
I2

+
σ2

2L2

2

]
dt +

σ2L

L +
µ+k+r1

k I
dB2(t) +

σ3(µ + k + r1)I

k(L +
µ+k+r1

k I)
dB3(t)

≤
(k(1 − p) + (µ + k + r1)p)βkX

µ + k + r1
−

( k
µ + k + r1

)2[
(
σ2

3

2
+ µ + d + r2) ∧ (

σ2
2

2
)
]
dt+

σ2L

L +
µ+k+r1

k I
dB2(t) +

σ3(µ + k + r1)I

k(L +
µ+k+r1

k I)
dB3(t)

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5504–5530.



5527

Integrating the above inequality from 0 to t, together with (4.11) and the fact that limt→∞
|Bi(t)|

t = 0, i =

2, 3 [35], yields

lim sup
t→∞

1
t

log
[
L +

µ + k + r1

k
I
]
≤

Λβk
µ(µ + k + r1)

−
( k
µ + k + r1

)2[
(
σ2

3

2
+ µ+ d + r2)∧ (

σ2
2

2
)
]

=: ζ (4.15)

To help with the proof we introduce another diffusion process R̃(t) which is defined by the initial
condition R̃(0) = R(0) and the stochastic differential equation

dR̃ = −µR̃(t)dt + σ4R̃dB4(t).

Then consider
d(R − R̃) = (r1L + r2I − µ(R − R̃))dt + σ4(R − R̃)dB4(t).

The solution is given by

R(t) − R̃(t) = exp
{
−

(
µ +

σ2
4

2

)
t + σ4B4(t)

} ∫ t

0
exp

{(
µ +

σ2
4

2

)
s − σ4B4(s)

}
(r1L(s) + r2I(s))ds.

By (4.15) and the fact that lim
t→∞

|B4(t)|
t = 0, it has been shown that, for any ε̃ > 0 and almost ω ∈ Ω,∃T =

T (ω) such that

r1L(t) + r2I(t) ≤(r1 ∨ r2)(L(t) + I(t)) ≤ (r1 ∨ r2)L(t) +
µ + k + r1

k
I(t) ≤ (r1 ∨ r2)exp((ζ + ε̃)t), ∀t ≥ T,

where ζ is defined in (4.15). Hence for all ω ∈ Ω, if t > T (ω), then

|R(t) − R̃(t)| ≤exp
{
−

(
µ +

σ2
4

2

)
t + σ4B4(t)

} ∫ T

0
exp

{(
µ +

σ2
4

2

)
s − σ4B4(s)

}
(r1L(s) + r2I(s))ds+

(r1 ∨ r2)exp
{
−

(
µ +

σ2
4

2

)
t + σ4B4(t) + σ4 max

s≤t
|B4(t)|

} ∫ t

T
exp

{(
µ +

σ2
4

2
+ ζ + ε̃

)
s
}
ds

Therefore,

lim sup
t→∞

1
t

log |R(t) − R̃(t)| ≤ (r1 ∨ r2) ·
{[
−

(
µ +

σ2
4

2

)]
∨ [ζ + ε̃]

}
, a.e.

Let ε̃→ 0, we get lim sup
t→∞

1
t log |R(t) − R̃(t)| ≤ (r1 ∨ r2) · {[−(µ +

σ2
4

2 )] ∨ ζ}, a.e. On the other hand,

R̃(t) = R(0)exp
{
−

(
µ +

σ2
4

2

)
t + σ4B4(t)

}
and hence, lim sup

t→∞

1
t log R̃(t) = −(µ +

σ2
4

2 ), Therefore

lim sup
t→∞

1
t

log R(t) ≤
{
(r1 ∨ r2) ·

{[
−

(
µ +

σ2
4

2

)]
∨ ζ

}}
.

�
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5. Discussion

Based on the model proposed in Xiao and Ruan [8], we proposed an SLIR model with a
nonmonotone and nonlinear incidence rate of the form βIS/(1 + αI2) which is increasing when I is
small and decreasing when I is large. It can be used to interpret the ’psychological’ effect: the number
of effective contacts between infective individuals and susceptible individuals decreases at high
infective levels due to the quarantine of infective individuals or the protection measures by the
susceptible individuals.

We have provided a complete description of the asymptotic behaviour of the solutions of the
deterministic model (2.1) and (2.4). Interestingly, this model does not exhibit complicated dynamics
as other epidemic models with other types of incidence rates reported in [1, 3–6, 8]. In terms of the
basic reproduction number R0 =

βΛ

µ

k(1−p)+(µ+k+r1)p
(µ+k+r1)(µ+d+r2) , our main results indicate that when R0 < 1, the

disease-free equilibrium is globally attractive. When R0 > 1, the endemic equilibrium exists and is
globally stable.

A stochastic differential equation (SDE) is formulated for describing the disease in this case. We
prove the existence and uniqueness of the solution of this SDE. We proved the positivity of the
solutions. Then, we investigate the stability of the model. We illustrated the dynamical behavior of
the SLIR model according to R0 < 1. We proved that the infective tends asymptotically to zero
exponentially almost surely as R0 < 1. We also proved that the SLIR model has the ergodic property
as the fluctuation is small, where the positive solution converges weakly to the unique stationary
distribution.
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