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Abstract: In this study, we apply the method of singularly perturbed vector field (S PVF) and its
application to the problem of bladder cancer treatment that takes into account the combination of
Bacillus CalmetteGurin vaccine (BCG) and interleukin (IL)-2 immunotherapy (IL − 2). The model is
presented with a hidden hierarchy of time scale of the dynamical variables of the system. By applying
the S PVF, we transform the model to S PS (Singular Perturbed System) form with explicit hierarchy,
i.e., slow and fast sub-systems. The decomposition of the model to fast and slow subsystems, first
of all, reduces significantly the time computer calculations as well as the long and complex algebraic
expressions when investigating the full model. In addition, this decomposition allows us to explore
only the fast subsystem without losing important biological/ mathematical information of the original
system.The main results of the paper were that we obtained explicit expressions of the equilibrium
points of the model and investigated the stability of these points.
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1. Introduction

Biological, chemical, physical and other phenomena with applications to various engineering
science, are described by mathematical models that are described by a large set of complex linear
or non-linear ordinary or partial differential equations. These systems of equations can be solved
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numerically. But one of the main drawbacks of a numerical solution of a system of equations is the loss
of singular points of the system which can be critical for engineering applications. Another drawback
in solving a complete set of equations is the time of computer running. Hence, there are different
methods to reduce the system of the equations without losing information of the original one. These
mathematical models have a number of essentially different time scales (i.e. rates of change) which
correspond to sub-processes. These different time scales, in general, are not explicit for a given models,
i.e., the hierarchy of the model is hidden. Once we expose the hierarchy, we can decompose the system
of equations into fast and slow subsystems, and these decomposition allows one to apply different
asymptotic methods. There are several asymptotic methods and numerical tools that can be applied
to multi-scale systems. For example, the method of integral invariant manifold (MIM) [1, 2, 3, 4],
the iteration method of Fraser and Roussel [5, 6, 7, 8], the computational singular perturbation (CS P)
method [9, 10], geometric singular perturbation theory [11, 12, 13], and the intrinsic low dimensional
method (ILDM) which is a numerical method [14, 15, 16, 17, 18]. Each method has its advantages and
disadvantages. The main disadvantage of all of these methods is that they are based on the fact that the
hierarchy of the set of equations is given, i.e., all these model have the form of singularly perturbed
system (S PS ). According to what we have discussed above, we first need to expose the hierarchy of
the given system. In this paper we introduced and applied a method called Singular Perturbed Vector
Field (S PVF) [19, 20] which is a new version of ILDM method. Since a large number of differential
equations (a mathematical model) is presented in a hidden hierarchy form, no explicit time scale of
the system is known. And hence, our aim is first to expose the time-scale of a given system, and then
apply a reduction method. This is the main result of the S PVF method. The S PVF method transfers
the original system to a form of singularly perturbed system (S PS ), i.e., a system with an explicit hi-
erarchy of the dynamical variables of the model. Once we transfer the system to S PS , the new system
can be treated by the very powerful machinery of the standard S PS theory for model reduction and de-
composition, as we have mentioned above without losing the essential dynamics of the original system.

In addition, exposing the hierarchy of the model and presenting the system of equations in S PS ,
allow one to decompose the model into fast and slow subsystems and hence enables one to investigate
the stability of the reduced model, which in itself is very important in models that describe cancer in
general [21, 22, 23].

In this research, we investigate the model of bladder cancer treatment that takes into account BCG
and IL − 2 treatment presented in [24, 25]. During bladder cancer therapy in the superficial phase the
tumor is amenable to local excision, where small regions of cancerous tissue are surgically resected
by direct inspection through the urethra, in a procedure called transurethral resection (TUR) [26]. To
complete the procedure in the superficial stage, an adjuvant treatment is administered into the cavity
is generally recommended to destroy any malignant cells that remain following the resection. The
two complementary approaches to adjuvant treatment of superficial bladder cancer are the intravesical
chemotherapy and the intravesical application of bacillus Calmette-Guerin (BCG) (immunotherapy).

The mathematical model [24, 25] describes the dynamics of BCG, APC, effector and tumor cells
as a result of BCG and IL − 2 instillations. During this therapy, the dose of BCG and IL − 2 instills
into the bladder via a catheter at every scheduled time. These instillations are described in the model
via a set of Dirac delta functions. The disadvantage of using this function is that it is impossible
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to apply different asymptotic methods, except for solving the model numerically. Hence, we wrote
an explicit function that describes the amount of BCG that is instilled into the bladder and which is
depended on time. An explicit expression of function allowed us to overcome the disadvantages men-
tioned above as well as that we could control the dosages at different periods of BCG and IL−2 pulsing.

We investigated the mathematical model [24, 25] that contains ten nonlinear ordinary differential
equations by applying the S PVF method and exposing the hierarchy of the system explicitly. We
used the eigenvectors of the system to change the coordinates and to present the model at S PS form
with two fast equations and eighth slow equations. Revealing the hierarchy of the system allowed us
to investigate the fast sub-system of the model, which reduces the complexity of the calculations and
decreases the run-time of the computer. In addition, we presented the stability analysis of the reduced
model. In general, knowledge about global fast manifolds is very important in the stability analysis of
a reduced model described by a slow manifold. Now, depending on the investigated dynamical regime
one can use the fast manifold as a manifold equation for the reduced space that can be represented by
a low-dimensional manifold in the detailed linear vector space, which is given in an explicit form and
proceed with the reduction procedure as projected to the manifold.

2. Mathematical model of bladder cancer

In this section, we present the system of the governing equations (ODE) for bladder cancer
treatment from [24, 25], with BCG and IL − 2 combination therapy. The main assumptions of the
model are as follows: A dose bk of BCG is instilled into the bladder every t days. It is given in
6-weekly intravesical instillations of 2 ·108 c.f.u (colony-forming units, i.e., number of viable bacterial
cells) [28]. After instillation, BCG accumulates close to the bladder wall. Upon binding to wall cells,
BCG is internalized into the bladder and is processed by APCs [29] as well as the BCG binds and
enters into malignant tumor cells [26]. The number of APCs increase as a result of recruitment in the
response to bacterial infection. The bacterial infection stimulates the APCs to produce inflammatory
cytokines such as IL− 2. Simultaneously, bacteria infect the occasional non-visualized residual cancer
cell that remains after [30]. This causes the presentation of bacterial Ag on the tumor cell surface,
which attracts APCs that ingest the entire host. Once a tumor cell has been ingested, tumor Ags are
presented by the APCs. Due to the aforementioned inflammatory environment, created by the bacterial
infection, APCs cause the CT Ls to either mature and track bacteria Ag or mature and capture tumor
cells according to their T AA [31]. This means that two CT L populations can destroy tumor cells either
via the T AA mechanism (uninfected tumor cells) or via bacteria-associated Ag (infected tumor cells).
The addition of exogenous IL − 2 is expected to create an inflammatory environment that stimulates
the maturation of either CT L population and prolongs the life span of CT Ls [32].

We describe the instillation of BCG and IL − 2 into the bladder by a periodic function that at first
time rises very rapidly (as exponentially). This actually describes the rapid instillation of the BCG and
IL−2 into the body, and then the function decreases in the form of decay exponential, which describes
the removal of the BCG from the body. In order to define the function as described above in a periodic
form, we used a variation of the Gamma probability density function in different intervals,then we
summed all these functions.
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In the papers [24, 25], they used the well known Dirac Delta function δ(·) to describe the instillation
of a dose of BCG and IL − 2 into the bladder. Using this function, makes calculations very difficult
and in some cases impossible to implement different asymptotic methods as we mentioned in the
introduction. Hence, we proposed a new function (see Equation (2.11) bellow), instead of the Delta
function, in order to overcome all the drawbacks listed above.
Under the above assumptions and descriptions of the mechanism of the BCG-IL2 immune effect on
the bladder the overall dynamics model and the interactions among ten different biological elements
were presented the form:

dB
dt

= J(t;α, β) − p1AB − p2BTu − µBB ≡ FB(~V), (2.1)

dA
dt

= γ + ηAB − p1AB − µAA − θp3EBTiA ≡ FA(~V), (2.2)

dAB

dt
= p1AB − βAB − µA1 AB ≡ FAB(~V), (2.3)

dAT

dt
= θp3EBTiA −

λATuI2

I2 + gL
− βAT − µA1 AT ≡ FAT (~V), (2.4)

dEB

dt
=

βBABI2

AB + g
− (p3Ti + µE1)EB ≡ FEB(~V), (2.5)

dET

dt
=

βT AT I2

AT + g
− (p3Tu + µE2)ET ≡ FET (~V), (2.6)

dI2

dt
= (AB + AT + EB + ET )

(
q1 −

q2I2

I2 + gL

)
+J(t;α, β) − µI2 I2 ≡ FI2(~V), (2.7)

dTi

dt
= p2BTu − p4EBTi ≡ FTi(~V), (2.8)

dTu

dt
= rTu

(
1 −

Tu

k

)
− p2BTu −

−

(
λAT Tu + αET Tu

aT,βFβ + bT,β

Fβ + bT,β

)
·

I2gT

(I2 + gL)(Tu + gT )
≡ FTu(~V),

(2.9)
dFβ

dt
= aT,βTu − µβFβ ≡ FFβ(~V), (2.10)

where J(t) = J(t;α, β) is the sum of variation of Gamma Distributions functions with two free pa-
rameters α and β of the form

J(t;α, β) =
bktα

Γ(α) · β−α

m∑
n=0

e−
β(t−7·n)

α . (2.11)

For more details about the Gamma Distributions functions please refer to the Appendix.

Comment: At equation (2.1) we take into account a combination of different dose of BCG at a
different period of BCG pulsing using the functionJ . At equation (2.7) we used with the same function
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J but only with one form of protocol: same dose of BCG at the same period of BCG pulsing that the
BCG is instilled. From biological point of view, this means that we take into account different dosages
of BGC at different times but IL− 2 is given to the patient at the same time when the BCG is given but
during all the treatment the same dose of IL − 2 is given.

The parameter bk indicates the dose BCG that instilled m times into the bladder inserted through
the urethra every t days-period of BCG pulsing. In our analysis, we take into account different
combinations of the amount of bk instilled into the bladder at different periods of BCG pulsing. Figure
(1.1) present the function J that indicates given the same dose of BCG at the permanent period of
BCG pulsing. Figure (1.2) present the function J that indicate a different dose of BCG at the same
period of BCG pulsing. Figure (1.3) present the function J that indicates given a different dose of
BCG at different periods of BCG pulsing. Figure (1.4) present the function J that indicates given the
same dose of BCG at different periods of BCG pulsing.

The initial conditions of the problem are

B(0) = 0, A(0) = 104cells, AT (0) = AB(0) = EB(0) = ET (0) = 0,
I2(0) = 50 U/day, Ti(0) = 0, Tu(0) = 2 · 106, Fβ(0) = 0.02. (2.12)

Comment : We assume that the tumor cells is an ellipsoid form with one radius of 1 mm [25], hence,

Tu(0) =
4π
3

r1r2, [Tu] = mm3. (2.13)

Each ml contains 109 cells, and 1 ml is 1000 mm3. For example, lesion of tumor 13 × 15 mm in
diameters, i.e. r1 = 6.5, r2 = 7.5, and hence Tu(0) = 204 mm3 or contains about 0.204 × 109 cells.

2.1. Mathematical and biological interpretation of Equations (2.1)–(2.10), [24]

Equation (2.1) describes the dynamical rate of BCG level changes with time. This equation
includes the function J that describes the combination between the different dose of BCG that is
instilled into the bladder via a catheter inserted through the urethra at different periods of BCG pulsing.
In addition this equation comprised of a positive term corresponding to BCG instillations, and of
negative terms corresponding to the elimination of BCG by antigen-presenting cells (APCs) according
to the rate coefficient p1, BCG tumor cell infection at a rate coefficient p2, and bacteria cell death with
rate coefficient µB.

Equation (2.2) is the dynamics of non-activated APCs, as described in B-M et al. [24], it is
governed by two positive terms and three negative terms. The first positive term describes the normal
influx of APCs to the tumor at a constant rate γ. The second positive term describes the recruitment of
APCs due to bacterial infection at a rate coefficient η. The first negative term describes the activation
of APCs by BCG at the rate coefficient p1. The second negative term is natural cell death at the rate
coefficient µA. The last negative term accounts for the two-stages elimination of tumor cells, according
to recent knowledge, first by effector CT L activity upon BCG-infected tumor cells, which leads to
lysis of these cells and flooding of the tumor micro-environment with tumor antigens. The localized
inflammatory response then attracts APCs, such as macrophages, which in turn eliminate uninfected
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tumor cells, according to the rate θp3.

Equation (2.3) describes the dynamics of BCG-activated APCs. It is described by one positive
term and two negative terms. The positive term is proportional to the number of non-activated APCs
as well as BCG bacteria, with rate coefficient p1 (as in Equation (2.1)). The first negative term is the
migration of the infected, activated APCs to the draining lymphoid tissues, at a rate of coefficient β1.
The second negative term is the death of activated APCs at a rate of coefficient µA1 .

Equation (2.4) describes the tumor-Ag-activated APC (T AA − APC) dynamics. It is comprised of
one positive term and three negative terms. The positive term describes the APCs which were activated
by tumor antigen. The first negative term represents the tumor-Ag-activated APCs cells which destroy
the uninfected tumor cells, with a rate coefficient λ. This term is multiplied by an IL − 2 dependent
parameter with a saturation constant gL, to propose that in the absence of IL− 2, AT production ceases,
while in the presence of external IL − 2, the production term is close to 1. The second negative term
describes the migration of T AA − APC to the draining lymphoid tissues at a rate of coefficient β1. The
third negative term denotes the natural death of T AA − APC at a rate coefficient µA1 .

Equation (2.5) describes the dynamics of effector CT Ls that react to BCG infection. It is comprised
of their migration rate, determined by their creation in the lymph nodes and subsequent migration to
the bladder, inactivation rate, and their death rate. The migration element is proportional to AB and
IL − 2, with a maximal rate of coefficient βB. This rate is brought to saturation by large numbers of
AB, using a Michaelis-Menten saturation function, with Michaelis parameter g. The first negative term
is the inactivation of effector CT Ls via their encounter with infected tumor cells (Ti) at a success rate
coefficient p3. The second negative term corresponds to the BCG-effector CT L (EB) cells’ natural
death rate µE1 .

Equation (2.6) describes the dynamics of effector cells reacting to tumor Ag. It is comprised of
their migration rate, inactivation rate, and death rate. The migration element is proportional to AT

and IL − 2 with a maximal rate coefficient βT . This rate is brought to saturation by large numbers of
AT using a Michaelis-Menten saturation function, with Michaelis parameter g (as in Equation (2.5)).
The first negative term describes the inactivation of effector CT Ls via their encounter with uninfected
tumor cells (Tu), at success rate coefficient p3. The second negative term describes the ET natural
death rate, with a rate coefficient µE2 .

Equation (2.7) describes the IL − 2 dynamics. It is driven by a natural source, an external source,
as well as sinking and degradation sources. The first two processes are positive and the last two are
negative. They assume equal expression at the constant rate coefficient q1. This equation includes
the function J as we described in Equation (2.1). I2 is consumed by APCs and CT Ls. They assume
that the rate of consumption is similar for both types of cells and denote its coefficient by q2. The
consumption depends on I2 and is limited in a Michaelis-Menten fashion, with the Michaelis constant
gL. They also introduce µI2 , the I2 degradation rate coefficient.

Equation (2.8) describes the dynamics of infected tumor cells depended on two mechanisms. The
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first corresponds only to the rate of bacterial infection of uninfected tumor cells, (Tu), according to
rate coefficient p2. The second mechanism is the elimination of infected tumor cells (Ti) by their
interaction with BCG −CT L effector cells (represented by EB), at rate coefficient p4.

Equation (2.9) describes the dynamics of uninfected tumor cells. It is comprised of three processes:
one positive term, corresponding to natural tumor growth and two negative terms, corresponding to
tumor infection by bacteria and tumor elimination by immune cells. The natural tumor growth is
characterized by a maximal growth rate coefficient, r, which is limited by the maximal tumor cell
number, k. The first negative term, due to bacterial infection, is characterized by a coefficient rate of
p2. The second negative term is attributed both to the capture and elimination of Tu cells by APCs
cells, which were activated by tumor-Ag at rate coefficient λ, and to the activity of T AA − CT L
effectors, (ET ), which destroy uninfected tumor cells, (Tu), at a rate coefficient α. The dependence in
the equation of Tu on Fβ is decreasing from 1 to aT,β with Michaelis constant bT,β [33]. And then, there
is a multiplication of those terms by an I2-dependent Michaelis Menten term, with Michaelis parameter
gT , to propose that in the absence of I2, Tu cellular death does not occur. Since the tumor produces a
variety of mechanisms in the biological settings that curtail the success of effector cell activity, they
multiply I2/(I2 + gL) by gT/(Tu + gT ), to denote the inversely proportional reduction in effector cell
activity rate, such that when Tu = 0 the term is equal to 1 and when limTu→∞ gT/(Tu + gT ) = 0. Note
that although this factor can, in principle, nullify the efficacy of CT Ls, this is not observed in cases of
interest because Tu ≤ k [24].

Equation (2.10) describes the dynamics of a transforming growth factor-beta (TGF-β, Fβ), as
proportional to the tumor cell population, Tu, with aβ,T as a proportion coefficient and is destroyed at a
rate of µβ proportional to Fβ.

2.2. The effect of the function J on the bladder cancer model

In this section, we present the effect of the function J on the model presented by [24].

Figures (1) present the different combinations of BCG at different times.

Figures (2)-(11) present the solution profiles of the model for different combinations of the BCG
doses and periods of BCG pulsing (different/equal doses of BCG, different/ equal periods of BCG
pulsing that the BCG introduced into the bladder).
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Figure 1. The function described different/ same amount of bk instilled into the bladder at
different/ same times.

Figure (2) presents the dynamical change of BCG in time. As we can see from the solution profiles
of BCG for different combinations of BGC and time, the graphs behave in a wavy manner. This wavy
behavior is due to the periodic function J(t) that takes into account different/ equal dose of BGC at
different/ equal period of BCG pulsing. At the first stage, before the treatment, a patient is uninfected
by BCG then B(0) = 0. Then after the BCG instillation into the bladder and via a catheter inserted
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through the urethra. The BCG stimulates the body’s immune system to destroy cancer cells, and then
it leaves the body (by antigen-presenting cells (APCs), in addition BCG concentration decreases as a
result of natural decay) in an exponential manner and repeat the process several times. Figure (2.1)
refers to the solution profile of BCG with respect to the same amount at the same time. The BCG
decreases to zero at the same rate of amount and time. Figure (2.2) refers to the solution profile of
BCG with respect to different BCG but at the same time. At the beginning of treatment, the range of
change of BCG is very large, and after that this range decreases to zero with respect to the same time.
Figure (2.3) refers to the solution profile of BCG with different amounts at different time. According to
this figure one can see that the quantities of BCG are change with time and reduced to zero according
to the varying of the amount of BCG. Figure (2.4) refers to the solution profile of BCG with the same
quantities of BCGat different time. It can be seen from this graph that indeed the BCG is reduced to
zero but the amounts of the BCG are approximately the same with respect to time.

1 2

3 4

B B

B

B

0 20 40 60 80 100
t
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t

5.0×107
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1.5×108

2.0×108

t (days)

Figure 2. The solutions profiles of B. 1 same amount of BCG at the permanent times, 2
different amount of BCG at the permanent times, 3 different amount of BCG at the different
times, 4 same amount of BCG at the different times.

Figure (3) presents the dynamics of non-activated APCs denoted by A. In all possible combinations
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of amount of BCG and time, we see that A, which starts from the initial condition 104, decreases very
fast, but after that A increases and decreases periodically throughout the treatment and finally stabilized.
The biological explanation for the reduction of the variable A from the initial condition is as follow:
the activation of APCs by BCG that described by the term p1AB, and the capture of uninfected tumour
cells (Tu) by APCs as well as the natural cell death of A, all these terms are very dominant compared
to the sum of the term ηAB, which describes the recruitment of APC due to bacterial infection, and the
parameter γ, we obtain that the dynamical variable is decreasing to its stable value.

A A
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t

0.5
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1 2

3 4

A

t (days)

Figure 3. The solutions profiles of A. 1 same amount of BCG at the permanent times, 2
different amount of BCG at the permanent times, 3 different amount of BCG at the different
times, 4 same amount of BCG at the different times.

Figure (4) presents the dynamics of the variable AB the (APCs) cells that are activated by BCG. At
the beginning of the process, there is a very large activity and interaction that behave exponentially
and then a decrease of the activity as a result of the decline of the APC as seen from the graph (3). In
addition, there is a decrease in activity as a result of migration of the infected and activated APCs to
the draining lymphoid tissues, as well as the death of activated APCs, but this activity does not cause
the variable to change. On the contrary, AB stabilizes at some constant value.
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Figure 4. The solutions profiles of AB. 1 same amount of BCG at the permanent times, 2
different amount of BCG at the permanent times, 3 different amount of BCG at the different
times, 4 same amount of BCG at the different times.

Figure (5) presents the dynamics and interaction of Tumor Associated Antigen (T AA) with APCs

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5346–5379



5357

cells. In general, T cells are activated by the link between TCR (T -Cell Receptor) and the tumor asso-
ciated tumor (T AA) associated with the MHC (Major Histocompatibility Complex) which is presented
by the Antigen (APC Presenting Cell), which is the initial ”signal” of the T cell. The biological dynam-
ics of this variable include a ”competition” between the interaction of non-activated APCs, uninfected
tumor cells and IL − 2 to the migration of the T AA − APC to the draining lymphoid tissues, and the
natural death of T AA−APC. At first stage, the interaction T AA−APC− IL−2 overcomes to migration
of the T AA − APC and the natural death of T AA − APC and after that, the process is reversed and AT

decrease.
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Figure 5. The solutions profiles of AT . 1 same amount of BCG at the permanent times, 2
different amount of BCG at the permanent times, 3 different amount of BCG at the different
times, 4 same amount of BCG at the different times.

Figure (6) presents the dynamical interaction of BCG and CT L effector cells. The biological dy-
namics of this variable EB is not like the normal dynamics of increase and decrease smoothly and
continuously, but during the treatment, the interaction between BCG and CT L increases and decreases
alternately until this interaction decreases. Since the main interaction depends on the migration rate that
is determined by the creation in the lymph node and migration to the bladder, inactivation rate and their
death rate. The term that causes to the variable EB to grow is an expression obeying Michaelis−Menten
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saturated function’s. This expression depends directly on AB, IL−2 and Michaelis−Menten constant g.
The parameter g appears in the denominator of that expression. The numerator of this expression con-
taining the rate coefficient βB ≈ 108. This ratio between these two parameters, makes this expression
very small relative to the (two) other terms of the equation that appear in it with a negative sign, what
causes the derivative of EB to be negative and positive in certain points. As we will see later of the
analysis of the results, the biological dynamics of IL−2 rise and fall in a wave manner with a relatively
small wavelength and very big amplitude. This amplitude is the main cause of the oscillations of the
variable EB. The same behavior can be seen in AT ’s graph but in a much less prominent way. When we
reduced the resolution of this graph we did see wavy behavior but with a very small wavelength and
a very small amplitude. This is because of the interaction between BCG and CT L, where BCG have
also a wavy behavior.
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Figure 6. The solutions profiles of EB. 1 same amount of BCG at the permanent times, 2
different amount of BCG at the permanent times, 3 different amount of BCG at the different
times, 4 same amount of BCG at the different times.
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The wavelength and amplitude of graphs (6.3) and (6.4) which refer to different doses of BCG at
different periods of BCG pulsing and the same dose of BCG at permanent periods of BCG pulsing
respectively, are more prominent compared to the other combinations of BCG and time, where the
amplitude there and wavelength are smaller. In addition, the amplitude and wavelength of these graph
are stabilized approximately to a certain value. In Figure (6.1) which refers to same dose of BCG at
different periods of BCG pulsing, EB increases periodically very fast, then it is stabilized to a constant
value, finally it decreases to zero very fast. The graph (6.2), which refers to the different dose of BCG
at the same period of BCG pulsing, is on a rise in cycles and does not decrease. The explanation for
this behavior is clear because during the treatment the interaction of BCG and CT L grows and goes
down due to BCG’s periodicity.
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Figure 7. The solutions profiles of ET .. 1 same amount of BCG at the permanent times, 2
different amount of BCG at the permanent times, 3 different amount of BCG at the different
times, 4 same amount of BCG at the different times.

Figure (7) presents the solution profile of the variable ET which describes the Tumor-effector CT Ls
interactions. The dynamics of ET are comprised of their migration rate, inactivation rate and death
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rate. The behavior of this variable is analogous to variables that periodically cycle through growth and
decline. ET in Figures (7.2 − 4) behaves almost similarly. The different graph is the first one (7.2 − 4)
which refers to same amount of BCG at the same time. The amplitude, as well as the wavelength of
this graph, are smaller and denser than other graphs. Then drop fast rather than cyclic to zero as the
others graphs.
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Figure 8. The solutions profiles of I2. 1 same amount of BCG at the permanent times, 2
different amount of BCG at the permanent times, 3 different amount of BCG at the different
times, 4 same amount of BCG at the different times.

Figure (8) presents the dynamics of the variable interleukin (IL − 2). IL−2 is a lymphokine that
induces the proliferation of responsive T cells. In addition, it acts on some B cells, via receptor-specific
binding as a growth factor and antibody production stimulant. The main aim of IL−2 is the importance
in stimulation of the adaptive immune system. In the equation of IL − 2 we insert the function J(t)
that indicate different combination of BCG doses and periods of BCG pulsing. The natural sources
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of IL − 2 are the immune cells, i.e., the activated APCs and CT Ls. In this work, an external source
have been added to the treatment using the function J(t). In our numerical simulaiton we used with
the same coefficient bk (which indicates the amount of external source) for both BCG and IL − 2.
IL − 2 is injected into the bladder and modeled in the same manner as for BCG instillations. Graphs
(7.1) and (7.4) behave the same (except the wavelength), a constant increase and decrease throughout
the treatment until a final reduction at the end of the process. Graphs (7.2) and (7.3) also behave the
same with the similar amplitude and wavelength. IL − 2 increases linearly during the treatment in
periodically manner. The optimal solution for effective treatment is the growth of IL − 2 in controlled
form. I.e., growth and stabilizing at a certain stage. As we can see, there is no graph solutions for an
optimal behave of IL−2. Because there are graphs that only rise and on the other hand there are graphs
that only stabilize. Hence, by applying the S PVF method we obtain the optimal linear combinations
of the dynamical variables of the system for an optimal treatment.

Figure (9). Ti is the infected (or ”marked” by the activation of APC (A), BCG − APC (AB), and
BCG−CT L (EB)) tumor cells. At the beginning of the BCG treatment, there are no infected tumor cells
and hence Ti = 0. After that, the number of marked cells increases because the cancer cells are marked
by the others dynamics variables of the system. On the other hand, the cells Ti are eliminated due to
the interaction with BCG − CT L effector cells, and hence the graph of Ti decreases. The solutions
profiles of (9.2)-(9.4) are optimal solutions since Ti cells decrease to zero. The solution of Ti, which
refers to same amount of BCG at different times is not optimal, on the contrary, is worse for the patient.
Because at some stage, although the tumor does not increase, it stabilizes, what can develop the disease
and the recurrence of the tumor cells.
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Figure 9. The solutions profiles of Ti. 1 same amount of BCG at the permanent times, 2
different amount of BCG at the permanent times, 3 different amount of BCG at the different
times, 4 same amount of BCG at the different times.

Figure (10) is the solution of uninfected tumor cells. At the beginning of the treatment (t = 0) the
initial number of uninfected tumor cells in the urothelium before BCG treatment taken to be Tu(0) =
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2 · 106. After that Tu decreases as expected to zero. The number of uninfected cells is decreasing
and they become infected cells because of the interaction with the BCG, i.e., there is a transitions of
cells from Tu to Ti by BCG action/ interaction. The growth of Tu is due to the natural tumor growth
that proportional to T 2

u and Tu according to logistic tumor growth rate. According to [24], the number
of Tu cells is limited by the tumor cell maximal number K = 1011. Our simulation results show that
Tu = 2 · 106 << k. The decrease of Tu is due to the tumor infection by bacteria as well as tumor
elimination by immune system cells. The interactions and activations of the dynamical variables of the
system such as APC (A), T AA − CT L effectors (ET ), IL − 2 that dependent Michaelis-Menten term
with a Michaelis parameter gL cause the decrease of Tu.
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Figure 10. The solutions profiles of Tu. 1 same amount of BCG at the permanent times, 2
different amount of BCG at the permanent times, 3 different amount of BCG at the different
times, 4 same amount of BCG at the different times.

Figure (11) describes the dynamics of a transforming growth factor-beta which behaves as the vari-
able Tu, i.e., growth very fast and decrease to zero.
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General comment: The model’s solutions in the new coordinates are irrelevant and biologically
insignificant. What matters is the exposing of the system hierarchy and hence the decomposition of
the model into fast and slow subsystems. And hence, the recipient of the linear combination of the
variables of the (old) system with appropriate coefficients.

As we can see from the above analysis of the results, one can not obtain the optimal treatment
for the Bladder cancer (It is not known what combination of quantities with different or equal period
of BCG and IL2 pulsing). Therefore, according to the S PVF method one can extract the optimal
combination between the variables of the (old) system to achieve the maximal effect of the treatment
and cause the elimination of the cancer cells.
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Figure 11. The solutions profiles of Fβ. 1 same amount of BCG at the permanent times, 2
different amount of BCG at the permanent times, 3 different amount of BCG at the different
times, 4 same amount of BCG at the different times.

3. Analysis and results

In this section we apply the Singular Perturbed Vector Field (S PVF) method to the bladder cancer
model (2.1)-(2.10). The algorithm of the S PVF method can be found in paper [20].

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5346–5379



5364

3.1. The application of the S PVF method

According to S PVF method the eigenvalues received by the algorithm of the S PVF

λ1 = 6.386 · 1019,

λ2 = 8.173 · 1016,

λ3 = 985564.546,
λ4 = 757899.292,
λ5 = 665907.657, (3.1)
λ6 = 68785.561,
λ7 = 5678.919,
λ8 = 232.656,
λ9 = 0.517,
λ10 = 0.067.

According to the algorithm of the S PVF, the maximum gap is gapmaxi = λ2
λ3

= 8.292 · 1010. This
means that the original system of equations can be decomposed into fast and slow subsystems, where
the fast directions of the system are in the directions of the eigenvectors ~v1 and ~v2 that corresponds to
the eigenvalues λ1 and λ2.
The corresponds eigenvectors are

~v1 =



0.419
0.805
−0.419

−1.959 · 10−5

−1.758 · 10−5

1.034 · 10−7

5.102 · 10−8

−5.153 · 10−9

6.705 · 10−10

1.032 · 10−9



,~v2 =



0.569
−1.592
−1.569

2.880 · 10−7

2.025 · 10−9

−4.451 · 10−9

6.08 · 10−8

−7.596 · 10−11

5.070 · 10−8

−6.377 · 10−9



,~v3 =



0.017
−3.626 · 10−6

0.017
−0.156
−0.101
−0.004
0.088

−1.238 · 10−6

1.609 · 10−8

0.978



,~v4 =



−0.004
−5.072 · 10−7

−0.004
−1.208
1.722
−0.745
−0.5755

2.726 · 10−7

−1.758 · 10−5

−0.899



, (3.2)

~v5 =



0.024
−4.707 · 10−7

0.940
−0.740
−0.897
−0.630
0.877

5.444 · 10−4

−2.6147 · 10−5

−0.182



,~v6 =



0.9763
2.134 · 10−7

0.957
0.877
−0.562
0.883
−0.401
−0.087
0.087
−0.213



,~v7 =



−0.158
7.092 · 10−8

−2.683
0.028
−0.098
−4.0196
−0.07
−7.005
0.000
0.000



,~v8 =



−0.09
−5.525 · 10−8

−0.036
−0.068
0.055
0.988
0.015
−0.019
0.954
0.335



(3.3)
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,

~v9 =



0.001
−4.741 · 10−10

0.000
−8.787 · 10−4

0.002
−0.966
0.906
−0.9813

0.046
−3.736 · 10−4



,~v10 =



−0.004
−7.831 · 10−12

−0.000
3.189 · 10−5

−0.007
−0.796

−8.275 · 10−6

0.944
0.474

3.076 · 10−7



(3.4)

The above results show clearly the hierarchy of the given system in the new coordinates presen-
tation. The fast direction of the system is in a parallel direction to the eigenvector ~v1. Then the less
fast direction of the system is in a parallel direction to the eigenvector ~v2 and so on according to the
descending order of eigenvalues since λ1 >> λ2 >>, ..., >> λ10. The slow directions of the system
are in parallel directions to the eigenvectors ~v3, ~v4,...,~v10 in descending order, where ~v10 is the slowest
direction of the system.

The next step of the S PVF method is transforming the model (2.1)-(2.10) using the above eigen-
vectors, hence using matrix in a form we write



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10



=



...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

~vt
1 ~vt

2 ~vt
3 ~vt

4 ~vt
5 ~vt

6 ~vt
7 ~vt

8 ~vt
9 ~vt

10

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...



·



B
A
AB

AT

EB

ET

I2

Ti

Tu

Fβ



(3.5)

where t refers to the transpose operation, i,e., it means that each eigenvector is placed in a row in the
above matrix.

For the convenience of the reader, we define the above system as matrix form hence,
we denote the above matrix as A, the vectors of the variables of the original system
as ~V =

(
B, A, AB, AT , EB, ET , I2,Ti,Tu, Fβ

)
, and the vector of the new variables as ~U =

(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10). Hence, the system (3.5) can be rewritten as

~U = A~V . (3.6)
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The next step is expressing the old variables of the system as a function of the new variables. For this
aim, we multiply the set of equations (3.6) by the inverse matrix ofA

~V = A−1 ~U. (3.7)

In order to write the system of the ODE’s model in the new coordinate, we take the derivative of the
system (3.6) with respect to time, i.e.,

d ~U
dt

= A
d~V
dt
, (3.8)

and substitute the expressions of the RHS (right hand side) from the system (2.1)-(2.10) instead of d~V
dt

in (3.8). In details

d ~U
dt

= A
d~V
dt

= A ~F(~V) (3.9)

where

~F(~V) =



FB(~V)
FA(~V)
FAB(~V)
FAT (~V)
FEB(~V)
FET (~V)
FI2(~V)
FTi(~V)
FTu(~V)
FFβ(~V)



. (3.10)

is the RHS of the system (2.1)-(2.10). Substitute Equation (3.7) into Equation (3.9) and receive the
model in the new coordinates with the initial conditions as

d ~U
dt

= A · ~F(A−1 ~U) ≡ ~G( ~U),

~U(0) = A~V(0). (3.11)

3.2. The decomposition of the model into fast and slow subsystems

The model (2.1)-(2.10) that is rewritten in new coordinates as (3.11), is the model with the required
hierarchy, and hence can be decomposed to fast and slow subsystems as follows
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f ast subsystem
{
ε1 ·

dx1
dt = G1

f ast(x1, ..., x10)
ε2 ·

dx2
dt = G2

f ast(x1, ..., x10)

slow subsystem



dx3
dt = G3

slow(x1, ..., x10)
dx4
dt = G4

slow(x1, ..., x10)
dx5
dt = G5

slow(x1, ..., x10)
dx6
dt = G6

slow(x1, ..., x10)
dx7
dt = G7

slow(x1, ..., x10)
dx8
dt = G8

slow(x1, ..., x10)
dx9
dt = G9

slow(x1, ..., x10)
dx10

dt = G10
slow(x1, ..., x10),

where 0 < ε1, ε2 << 1, and the initial conditions are

x1(0) = 8050, x2(0) = −15919.9, x3(0) = 4.41532, x4(0) = −63.9581, x5(0) = −8.45245,
x6(0) = 173980., x7(0) = −3.49929, x8(0) = 1.908 · 106, x9(0) = 92045.3, x10(0) = 948000.

The mathematical, and mainly biological significance of this decomposition is that it enables us to
reduce the model and to investigate the dynamics of the system only on the fast subsystem without
losing information if we would solve the complete system that includes all the variables of the system.
The reduced model decreases the run-time of calculations and in some cases, one can even obtain an
analytic expression for different variables of the reduced system.

The next analysis is investigating the fast subsystem. We take into account only the variables that
refer to the fast directions of the system i.e.,

x1 = 0.419 · B + 0.805 · A − 0.419 · AB + δ,

x2 = 0.569 · B − 1.592 · A − 1.569 · AB + ξ, (3.12)

where δ, ξ << 1. We take into account only three coordinates from the eigenvectors and neglect
the rest because the other coordinates belong to the order of magnitude < 10−7. The coordinates of
the eigenvectors are actually the desire optimal combination, i.e., in the direction of ~v1 the dominant
variable of the system is A (this variable will receive the largest weight) since its coefficient larger
compared to the coefficients of B and AB. The other two variables will approximately the same weight
since 0.4192

0.4192 = 1. The coefficients of the above linear combination indicate the proportions (relations)
of the quantities (or percentages) that should be taken for the considered treatment for each variable of
the old variables. The same analysis can be applied for the variable x2, which in the direction of the
vector ~v2.

4. Preliminaries to fast and slow systems, stability analysis

In this section, we present a brief introduction to the fast and slow systems and investigate the
stability of the considered model using the S PVF method.
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4.1. Introduction to fast and slow system

Once we apply the S PVF method, we can decompose the system into fast and slow subsystems.
This means that the investigation of the model can be concentrated on the reduced model, i.e., one can
investigate the stability analysis of the fast subsystem without loosing the information of the original
system.

Given a model that presented with a hidden hierarchy, by applying the S PVF method one can
present the model with an explicit hierarchy, i.e., S PS form as

ε ·
d~v
dt

= ~F f ast
(
~v, ~u, ε

)
d~u
dt

= ~Hslow
(
~v, ~u, ε

)
, (4.1)

where 0 < ε << 1, ~v = (v1, ..., vm f ast) ∈ R
m f ast called fast variables which change fast compared to

the slow ones ~u = (u1, ..., ukslow) ∈ Rkslow and m f ast + kslow = n (n is the dimension of the system. The
functions ~F and ~H are assumed to be C∞ of ~v, ~u and ε in (V × U) × I where V is an open subset of
Rm f ast , U is an open subset of Rkslow and I is an open interval containing ε = 0.

Setting τ = εt, the above model is transformed to

d~v
dτ

= ~F f ast
(
~v, ~u, ε

)
d~u
dτ

= ε · ~Hslow
(
~v, ~u, ε

)
. (4.2)

Since 0 < ε << 1 which describes the difference in time scales, than system (4.1) and (4.2) is called a
slow and f ast system, respectively.

These systems are equivalent whenever ε , 0 and they are labeled singular perturbation problems
when 0 < ε << 1. The label singular stems in part from the discontinuous limiting behavior in the
system (4.2) as ε→ 0. At this case, when ε→ 0, system (4.1) leads to differential-algebraic system

0 = ~F f ast
(
~v, ~u, 0

)
d~u
dt

= ~Hslow
(
~v, ~u, 0

)
. (4.3)

called reduced slow system which dimension decreases from m f ast + kslow to kslow.

On the other hand, system (4.2) reduces to an m f ast-dimensional system called reduced f ast system,
with the variable ~u as a constant parameter:

d~v
dτ

= ~F f ast
(
~v, ~u, 0

)
d~u
dτ

= 0. (4.4)
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By exploiting the decomposition into fast and slow reduced systems (4.4) and (4.3), the geometric
approach reduced the full singularly perturbed system to separated lower-dimensional regular pertur-
bation problems in the fast and slow regimes, respectively.

In this paper we apply the S PVF method and present the considered model at the form of system
(4.1).

According to the manifolds theory approximation, the slow manifold is obtained by setting ε = 0 in
system (4.1)

Mslow =
{
F f ast

(
~v, ~u, 0

)
= 0

}
, (4.5)

In addition, we assumed that the solutions of (4.5) tend toward an equilibrium

~v = g(~u), (4.6)

which is the root of equation (4.5).

The solutions of the system (4.1) have a fast transition from the initial points (or initial conditions)
of the system to a point of the slow manifold Mslow. Hence, at the system (4.1) a slow motion takes
place on the slow manifold, according to the equation

d~u
dt

= Hslow
(
g(~u), ~u

)
. (4.7)

This equation is called the reduced problem or the reduced model. This description of system (4.1)
was given by Tikhonov [27].

Follow the above theory of fast and slow system, the equilibrium points are obtained by solving the
fast sub-system for the fast variables while setting all the slow variables as constant (the slow variables
are ”frozen” at their initial values and hence one can take ~u = ~u(0) as the constants);

F f ast
(
~v∗, ~uconst

)
= 0. (4.8)

Here, we denote with the star notation the equilibrium points which indicate the fast variables at
their equilibrium values. Substitute the equilibrium points of the fast variables into the slow subsystem
and solve this subsystem to find the equilibrium points of the slow variables, i.e.,

Hslow
(
~v∗, ~u∗

)
= 0. (4.9)

In order to analyze the stability of the above equilibrium points, one should examine the sign of the
real part of the eigenvalues of the following Jacobian matrix at each equilibrium point of (4.8)-(4.9)

∂
(
F f ast(~v, ~u),Hslow(~v, ~u)

)
∂(v1, ..., vm f ast , u1, ..., ukslow)

|(~v∗,~u∗)

. (4.10)
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The eigenvalues with negative real parts are locally stable.

Another method to find out the equilibrium points and their stability is to concentrate only on the
fast subsystem, while the rest of the slow variables remaining constant. The advantage of this method
is that we obtain more simple algebraic expressions and we reduce the running time of computer work.
At this method, we solve only the fast subsystem (4.8) and the stability of the equilibrium points of the
fast variables is given by analyzing the Jacobian matrix of the fast subsystem

∂F f ast(~v, ~uconst)
∂(v1, ..., vm f ast) |(~v∗,~uconst)

(4.11)

which is a m f ast × m f ast matrix of partial derivatives of the fast subsystem with respect to the fast
variables ~v while the slow variables are taken as constants.

This means that the information about the stability of the model can be extracted from the analysis
of the fast manifold.

At the next section we apply the first method.

4.2. Stability analysis of the model

In this section, we investigate the stability of the model that is the decomposed model into fast and
slow subsystems.

The following steps are implements for finding the fixed points in the new coordinates and deter-
mining their stability.

1. substitute the slow variables as a constant into the fast subsystem (one can take the initial condi-
tion of the slow variables as the constants).

2. setting all fast variables derivatives to zero i.e., solve the fast subsystem (with slow variables as
constants) and find the equilibria points of the fast variables (x∗1, x

∗
2)

G1
f ast(x∗1, x

∗
2, x3(0), ..., x10(0)) = 0,

G2
f ast(x∗1, x

∗
2, x3(0), ..., x10(0)) = 0, (4.12)

(here, we denoted the fast equilibrium points with star notation). Here, we have two equations with
two unknown variables x∗1, x

∗
2.

3. substitute the equilibrium points from step 2 (x∗1, x
∗
2) into the slow subsystem, solve the slow

subsystem and find the equilibrium points of the slow variables (x∗3, ..., x
∗
10)

G3
slow(x∗1, x

∗
2, x

∗
3, ..., x

∗
10) = 0,

G4
slow(x∗1, x

∗
2, x

∗
3, ..., x

∗
10) = 0,

G5
slow(x∗1, x

∗
2, x

∗
3, ..., x

∗
10) = 0,

G6
slow(x∗1, x

∗
2, x

∗
3, ..., x

∗
10) = 0, (4.13)

G7
slow(x∗1, x

∗
2, x

∗
3, ..., x

∗
10) = 0,

G8
slow(x∗1, x

∗
2, x

∗
3, ..., x

∗
10) = 0,

G9
slow(x∗1, x

∗
2, x

∗
3, ..., x

∗
10) = 0,

G10
slow(x∗1, x

∗
2, x

∗
3, ..., x

∗
10) = 0.
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Here, we have eight equations with eight unknown variables x∗3, ..., x
∗
10.

4. substitute the equilibrium points from steps 2 and 3 at the Jacobian matrix of the full system (the
model at the new coordinates).

5. compute the eigenvalues of the Jacobian matrix of the system (the model at the new coordinates)
for each set of equilibrium point (the stable points are those with a negative real part of the eigenvalues).

6. transform only the equilibrium points that are stable from steps 2 and 3 to the original coordinates
using the inverse matrix of the eigenvectors, i.e., compute

~V∗stable = A−1 ~U i∗
stable (4.14)

where i indicateS for different stable equilibrium points.
It should be noted here that the equilibrium points we have received in the new coordinate system

are functions of the parameters of the original model and a function of the initial conditions of the new
model, i.e.,

x∗i = x∗i (µA, µA1 , ..., gL; x1(0), ..., x10(0)), i = 1, ..., 10. (4.15)

Comment 1: the initial condition as well as the equilibrium points
{
x∗1, x

∗
2, x

∗
3, ..., x

∗
10

}
are biologically

meaningless as there is no biological significance to the variables in the new coordinates. Hence, in
order to understand the biological meaning of the above results, we should transform these points to
the original coordinates using the inverse matrix of the eigenvectors A−1. 2: Since the eigenvalues
are invariant under change of coordinates, hence the stability equilibrium points will be remain stable
equilibrium points at the original coordinates.

By applying the above steps 1−6, we have found the following stability equilibrium point express in
the original coordinates as a function of the parameters of the original model and the initial conditions
at the new coordinates (For convenience, we denoted the initial condition xi(0) as x0

i )

B∗ = J(t0;α, β)η + 0.6224 · x0
1

p1θg
p2

+ 0.3147 · x0
2 p1µE1µB(µA1 − 1) − 0.4205 · x0

3

(
p2

p1
p3gL − µB

)
,

A∗ = 0.6777 · x0
1
ηγ

p3λη
− 0.6548 · x0

2(p3 − θ) − 4.756 · x0
3(p1 p3 − µA),

A∗B = 0.0976 · x0
1β

(
ηgL − p1

λ + g

)
+ 2.1732 · x0

3
p1

µA1

− 0.3524 · x0
4(βp1 − µA1)

−3.7689 · x0
5(µA1 − β) − 0.9994 · x0

6(βp1 − 1)η
+0.6785 · x0

7(µA1βrp1 − gT ) + 0.5645 · x0
10 p1,

A∗T = 0.5647 · x0
1(p3 − θ)g−1

L + 0.7568 · x0
3(−λ/µE2) + 0.8765 · x0

4

(
β −

gL

θ

)
ηp3

+0.6544 · x0
5(1 − µA1gL p3) − 1.7666 · x0

6

(
−
β

λ

)
−0.5578 · x0

7(β − gL) − 0.6574 · x0
10(µA1 − p3θ),

E∗B = 0.056 · x0
1µE1βg−1

T − 0.7658 · x0
3gp3ηλθ + 0.9767 · x0

4(p3 − ηθ)
+0.8678 · x0

5(g − p3grkµB)/(gT aT,β) − 0.6755 · x0
7(µB)θbT,β

+0.4565 · x0
8µE1 p3gλ + 0.7657 · x0

10(g/µI2 p1),
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E∗T = 2.8765 · x0
1gp3

(
µA1 p3gT

q2q1 + gL

)
− 0.7655 · x0

3 p3gL + 0.5745 · x0
4 − 0.9876 · x0

5(µE2 − p3gq1(1 + q2))

+0.6534 · x0
6µE2 − 0.8765 · x0

7(p3) − 0.7547 · x0
8

(
p3

g
− µE2

)
+0.8766 · x0

9g − 0.5436 · x0
10

(
−p3

gµE2

− µE2

)
, (4.16)

I∗2 = 0.9878 · x0
1q1(−q2)p3 + 0.6756 · x0

3(q2 − gL)p1 p3θ + 0.9282 · x0
4gLη +J(t0;α, β)

−0.7865 · x0
5

(
q1gL

q2
µB p1γ − µI2

)
− 0.7544 · x0

6(q1η)−1(µI2 − gL)

0.0098 · x0
7(q2 − gLq1q2) − 0.7865 · x0

8(−gL − q1)θγ,

T ∗i = 0.8767 · x0
1(−p2)rgL + 0.0092 · x0

3(−p2)aT,βk − 0.5334 · x0
4

(
p2 − 1

p4

)
− 0.0098 · x0

5 p2 p4(p1k)−1

+0.5434 · x0
6

(
1
p4

)
+ 0.0195 · x0

7 p4bT,βr − 0.7619 · x0
8(−p2 p4) + 0.9454 · x0

9 + 0.2235 · x0
10,

T ∗u = 0.0661 · x0
1

(
rp2gL

aT,β − 1

)
µBrgT + 0.007 · x0

5λ(1 − α) − 0.6555 · x0
6(bT,β − p2k)q1 p1θ

+0.2344 · x0
7(k − rλ)η − 0.4566 · x0

8(−r) + 0.6663 · x0
9

(
gT

αp4

)
,

F∗β = 0.5665 · x0
1(aT,β − µBgT )µE2 + 0.0087 · x0

5(−µB)p1ηγ

+0.8655 · x0
6

(
µB − 1

p4

)
rq1 + 1.7865 · x0

8r + 0.4974 · x0
9λ bT,β

Here, we neglect elements of an order smaller than 10−4.
As we have mentioned before, this equilibrium point is stable since the eigenvalues are invariant

under change of coordinates.
In order to complete writing the above stable equilibrium points in the original system, we write

the initial conditions ~U as a function of the original initial conditions ~V using the matrix A as ~U(0) =

A~V(0) or in an explicit form

x0
1 = 0.419 · B(0) + 0.805 · A(0) − 0.419 · AB(0) − 1.959 · 10−5 · AT (0)

−1.758 · 10−5 · EB(0) + 1.034 · 10−7 · ET (0) + 5.102 · 10−8 · I2(0)
−5.153 · 10−9 · Ti(0) + 6.705 · 10−10 · Tu(0) + 1.032 · 10−9 · Fβ(0),

x0
2 = 0.569 · B(0) − 1.592 · A(0) − 1.569 · AB(0) + 2.880 · 10−7 · AT (0)

+2.025 · 10−9 · EB(0) − 4.451 · 10−9 · ET (0) + 6.08 · 10−8 · I2(0)
−7.596 · 10−11 · Ti(0) + 5.070 · 10−8 · Tu(0) − 6.377 · 10−9Fβ(0),

x0
3 = 0.017 · B(0) − 3.626 · 10−6 · A(0) + 0.017 · AB(0) − 0.156 · AT (0)

−0.101 · EB(0) − 0.004 · ET (0) + 0.088 · I2(0)
−1.238 · 10−6 · Ti(0) + 1.609 · 10−8 · Tu(0) + 0.978 · Fβ(0),

x0
4 = −0.004 · B(0) − 5.072 · 10−7 · A(0) − 0.004 · AB(0) − 1.208 · AT (0)

+1.722 · EB(0) − 0.745 · ET (0) − 0.5755 · I2(0)
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+2.726 · 10−7 · Ti(0) − 1.758 · 10−5 · Tu(0) − 0.899 · Fβ(0),
x0

5 = 0.024 · B(0) − 4.707 · 10−7 · A(0) + 0.940 · AB(0) − 0.740 · AT (0)
−0.897 · EB(0) − 0.630 · ET (0) + 0.877 · I2(0)
+5.444 · 10−4 · Ti + (0) − 2.6147 · 10−5 · Tu(0) − 0.182 · Fβ(0), (4.17)

x0
6 = 0.9763 · B(0) + 2.134 · 10−7 · A(0) + 0.957 · AB(0) + 0.877 · 10−5 · AT (0)

−0.562 · 10−5 · EB(0) + 0.883 · 10−7 · ET (0) − 0.401 · 10−8 · I2(0)
−0.087 · 10−9 · Ti(0) + 0.087 · 10−10 · Tu(0) + 0.213 · 10−9 · Fβ(0),

x0
7 = −0.158 · B(0) + 7.092 · 10−7 · A(0) − 2.683 · AB(0) + 0.028 · 10−5 · AT (0)

−0.098 · 10−5 · EB(0) − 4.0196 · 10−7 · ET (0) − 0.07 · 10−8 · I2(0)
−7.005 · 10−9 · Ti(0) + 0.000 · 10−10 · Tu(0) + 0.000 · 10−9 · Fβ(0),

x0
8 = −0.09 · B(0) − 5.525 · 10−8 · 10−7 · A(0) − 0.036 · AB(0) − 0.068 · 10−5 · AT (0)

+0.055 · 10−5 · EB(0) + 0.988 · 10−7 · ET (0) + 0.015 · 10−8 · I2(0)
−0.019 · 10−9 · Ti(0) + 0.954 · 10−10 · Tu(0) + 0.335 · 10−9 · Fβ(0),

x0
9 = 0.001 · B(0) − 4.741 · 10−10 · A(0) + 0.000 · AB − 8.787 · 10−4 · AT

+0.002 · EB(0) − 0.966 · ET (0) + 0.906 · I2(0)
−0.9813 · Ti(0) + 0.046 · Tu(0) − 3.736 · 10−4 · Fβ(0),

x0
10 = −0.004 · B(0) − 7.831 · 10−12 · A(0) − 0.000 · AB(0) + 3.189 · 10−5 · AT (0)

−0.007 · EB(0) − 0.796 · ET (0) − 8.275 · 10−6 · I2(0)
+0.944 · Ti(0) + 0.474 · Tu(0) + 3.076 · 10−7 · Fβ(0).

By substitute equation (4.17) into equation (4.16), we receive the equilibrium point written com-
pletely in the original coordinates of the model. Our analysis for the equilibrium point includes dif-
ferent values of the function J(t0;α, β) i.e., different combinations of dosages and periods of BCG
pulsing.

Here, in table 1–4, we present the stable equilibrium point of the dynamical variable T ∗u for different
values of bk at different periods of BCG pulsing (after 30 days, 44 days, 58 days and 65 days).

Table 1. Stable equilibrium points for a different combination of treatment. For the function
J (1) which relates to the sub-graph 1 at Figure 1 that indicates the same dose of BCG at the
permanent period of BCG pulsing.

J (1)(t0;α, β) bk T ∗u
t0=30 (days) 2·108 2.032·105

t0=44 (days) 2·108 5.024·104

t0=58 (days) 2·108 2.786·102

t0=65 (days) 2·108 1.000·10−1
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Table 2. Stable equilibrium points for a different combination of treatment. For the function
J (2) which relates to the sub-graph 2 at Figure 1 that indicates a different doses of BCG at
the permanent period of BCG pulsing.

J (2)(t0;α, β) bk T ∗u
t0=30 (days) 2.2·107 4.009·104

t0=44 (days) 5.4·107 1.745·102

t0=58 (days) 1.1·108 0.078·10−1

t0=65 (days) 1.4·108 0.034·10−3

Table 3. Stable equilibrium points for a different combination of treatment. For the function
J (3) which relate to the sub-graph 3 at Figure 1 that indicates a different dose of BCG at the
different times.

J (3)(t0;α, β) bk T ∗u
t0=30 (days) 3.1·107 1.756·105

t0=44 (days) 5.5·107 2.659·104

t0=58 (days) 1.2·108 0.876·102

t0=65 (days) 1.4·108 0.001·10−1

Table 4. Stable equilibrium points for a different combination of treatment. For the function
J (4) which relate to the sub-graph 4 at Figure 1 that indicates the same dose of BCG at the
different period of BCG pulsing.

J (4)(t0;α, β) bk T ∗u
t0=30 (days) 2·108 5.773·105

t0=44 (days) 2·108 3.067·104

t0=58 (days) 2·108 2.965·103

t0=65 (days) 2·108 0.060·10−2

Every table presents the stable equilibrium points expressed in the original variables of the bladder
cancer model for different values of the Gamma functions, i.e., for different combinations of dosages
and times. For example, 2 presents the stable equilibrium point for the function J (2) which relates to
the sub-graph 2 at Figure 1 that indicates a different doses of BCG at the permanent period of BCG
pulsing: after 30, 44 58 and 65 days. According to these results, we can see that this combination of
treatment is optimal since it causes the variable Tu (cancer) to decrease to zero very fast compared to
the other combinations of the function J , and this result is consistent with the results obtained from
the numerical simulations presented in the graph of Tut.
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5. Conclusions

In this study, we improved the mathematical model for the treatment of bladder cancer using the
probability density function in the form of a gamma function to describe the introduction of BCG and
IL-2. Gamma function allows the delivery of treatment at different periods of pulsing and at different
doses. The mathematical model includes ten nonlinear ordinary differential equations of first order.
The model describes the dynamics of the combination between BCG and IL − 2 influence on the
bladder tumor. The model describes the dynamics variability of the variables of the system involved in
the interaction between the variables of the immune system and the variables of treatment in a way that
the hierarchy is not explicit. We solved the model using numerical simulations for varying amounts
of BCG and at varying period of BCG pulsing. Outcome following BCG therapy depends on the dose
and period of pulsing [28].

In order to obtain an optimal solution, we implemented the algorithm of the S PVF method. This
method transforms the model, using eigenvectors, to a model presented in new coordinates in which
the system can be splitted into a fast subsystem and a slow subsystem according to the hierarchy
eigenvalues of the system. This hierarchy enables one to study the model using various asymptotic
methods without losing any mathematical or biological information from the original system.

After rewriting the model in the new coordinate using the eigenvectors received from the S PVF
method, we exposed the hierarchy of the new model and received two fast variables and eight slow
variables. This decomposition enabled us to apply the stability analysis to the fast subsystem. We
found one stable equilibrium point express by the parameters of the original system and the initial
conditions in the new coordinates. In order to obtain a biological meaning of these equilibrium point,
we inversed and transformed the stable equilibrium points using the inverse matrix of the considered
eigenvectors. And since the eigenvalues are invariant under change of coordinates, the stable equilib-
rium points remain stable at the original coordinates. After,applying this procedure, we received the
equilibrium points expressed by the parameters of the original model and the initial conditions of the
original model. The equilibrium points are also depend on the function J which takes into account
different combination of dosages and periods of the pulsing therapy. We have found that the optimal
combination of different dosages and periods of BCG pulsing at 30, 44, 58 and 65 days after the start
of the treatment.

Due to the S PVF method, we have explicitly received the equilibrium points, since this method
enables us to reduce the dimension of the original model. We compared the results of the equilibrium
point to the results we received from the model and found that they corresponded to our numerical
simulations as one can see from the graphs.
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Appendix

Gamma distribution
The general formula for the probability density function of the gamma distribution is:

f (x) =

(
x−µ
β

)α−1
· e−

x−µ
β

β · Γ(α)
, (5.1)

for x ≥ µ, α, β > 0, where α is the shape parameter, µ is the location parameter, β is the scale parameter,
and Γ is the gamma function which has the formula

Γ(α) =

∫ ∞

0
tα−1e−tdt, (5.2)

with the following properties:
1. Γ(1) =

∫ ∞
0

e−xdx = 1
2. Γ(α + 1) = αΓ(α)
3. Γ(α)

λα
=

∫ ∞
0

xα−1 · e−λxdx
4. Γ(n) = (n − 1)!, n = 1, 2, ...
5. Γ

(
1
2

)
=
√
π.

The case where µ = 0 and β = 1 is called the standard gamma distribution and has the form of

f (x) =
xα−1 · e−x

Γ(α)
, (5.3)

for x ≥ 0, α > 0.

Parameters
µA = 0.038 APC half life [days−1]
µA1 = 0.138 Activated APC half life [days−1]
µE1 = 0.19 Effector cells mortality rate W/O IL − 2 [days−1]
µE2 = 0.034 Effector cells mortality rate IL − 2 [days−1]
µB = 0.1 BCG half life [days−1]
p1 = 1.25 · 10−4 The rate of BCG binding with APC [cells−1][days−1]
p2 = 0.028 · 10−6 Infection rate of tumor cells by BCG [cells−1][days−1]
p3 = 1.03 · 10−10 Rate of E deactivation after binding with infected tumor cells [cells−1][days−1]
p4 = 1.1 · 10−6 Rate of destruction of infected tumor cells by effector cells [cells−1][days−1] λ =

0.01 · 10−6 Production rate of T AA − APC [days−1]
βB = 1.45 · 108 Recruitment rate of effector cells in response to signals released by BCG-infected and
activated APC [cells−1][days−1][I−1

2 ]
βT = 1.51 · 106 Recruitment rate of effector cells in response to signals released by T AA-infected and
activated APC [cells−1][days−1][I−1

2 ]
γ = 4700 Initial APC cell numbers [cells−1][days−1]
η = 2.8 · 10−6 Rate of recruited additional resting APCs [cells−1][days−1]
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r = 0.0048 − 0.0085 Tumor growth rate [days−1]
β = 0.034 Migration rate of T AA − APC and bacteria activation APC to the lymph node
[cells−1][days−1]
α = 3.7 · 10−6 Efficacy of an effector cell on tumor cells [cells−1][days−1]
g=1013 Michaelis-Menten constant for BCG activated CT Ls and for T AA−CT Ls [cells] gT = 5.2 ·103

Michaelis-Menten constant for tumor cells [cells]
k = 1011 Maximal tumor cell population [cells]
q1 = 0.007 Rate of IL − 2 production [cells−1][days−1]
q2 = 1.2 · 10−3 The production of IL − 2 used for differentiation of effector cells IU production
[cells−1][days−1]
µI2 = 11.5 Degradation rate [days−1]
θ = 0.01 Recruitment rate of Tumor-Ag-activated APC cells in response to signals released after bind-
ing effector cells that react to BCG infection, with infected tumor cells [1/cell−1]
aT,β = 0.69 Michaelis-Menten saturation dynamics. The dependence of Fβ is decreasing from 0 to aT,β

[dimensionless]
bT,β = 104 Michaelis constant [pg]
µβ = 166.32 The constant rate, account for degradation of Fβ [days−1]
gL = 104 Michaelis-Menten constant for IL − 2 [cells]
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