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Abstract: Radiofrequency ablation (RFA) and microwave ablation (MWA) have become an 

important means for treating liver tumors. RFA and MWA are a minimally invasive therapy which 

involves an ablation applicator or needle (i.e., radiofrequency electrode or microwave antenna) 

inserted percutaneously into a tumor under the guidance of medical imaging, so as to destroy the 

tumor in situ by heating-induced coagulation necrosis. Treatment planning, particularly needle 

trajectory planning, is crucial to RFA and MWA. In clinical procedures, however, needle trajectory 

planning still relies on the personal experience of clinicians. Manual needle trajectory planning is 

tedious and may cause inter-operator difference. Therefore, computer-assisted needle trajectory 

planning techniques are of clinical value and have been extensively explored. However, a literature 

review that focuses on computer-assisted needle trajectory planning for liver tumor RFA and MWA 

has not been reported. In this paper, we conducted an extensive review on computer-assisted needle 

trajectory planning for RFA and MWA of liver tumors. Fundamentals of needle trajectory planning 

are summarized. Algorithms for single-needle and multi-needle trajectory planning are analyzed. 

Shortcomings of current computer-assisted needle trajectory planning algorithms are discussed and 

future developments are suggested. 
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1. Introduction  

Hepatocellular carcinoma (HCC), which is the most common type of primary liver cancer in 

adults, is the most common cause of death in people with cirrhosis [1]. It is related to chronic viral 

hepatitis, alcohol abuse, steatohepatitis, and liver immunodeficiency [2]. The cure rate of HCC is low 

(18%) [3], and major treatments include surgical resection and liver transplantation. However, less 

than 20% of patients can undergo surgical resection, and the lack of suitable liver source limits liver 

transplantation. Therefore, local ablation treatments of HCC have noteworthy clinical significance [4–6]. 

It has been established as the third major treatment for liver tumors, following surgical resection and 

liver transplantation [7]. 

 

Figure 1. Schematic diagram of needle trajectory planning for radiofrequency ablation 

and microwave ablation of liver tumors. An ablation applicator (needle) is interested 

percutaneously into the tumor to destroy the tumor cells in situ by heating. A 

heating-induced ablation zone is created which encompasses the tumor with a 5–10 mm 

safety margin. 

Local ablation can be divided into energy-based ablation and chemical ablation [6,8]. 

Energy-based ablation includes thermal ablation and non-thermal ablation. Thermal ablation includes 

hyperthermic ablation (radiofrequency ablation, microwave ablation, laser ablation, and 

high-intensity focused ultrasound ablation) and hypothermic ablation (cryoablation). Non-thermal 

ablation mainly refers to irreversible electroporation. Radiofrequency ablation (RFA) and microwave 
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ablation (MWA) have become the key ablation treatments for liver tumors [2]. RFA and MWA are a 

minimally invasive therapy which involves an ablation applicator or needle (i.e., radiofrequency 

electrode or microwave antenna) inserted percutaneously into a tumor to destroy the tumor in situ by 

heating-induced coagulation necrosis (Figure 1). A heating-induced ablation zone is generated to 

cover the tumor with a 5–10 mm safety margin. Medical imaging, such as computed tomography 

(CT), is generally used to guide RFA and MWA procedures. 

RFA and MWA of liver tumor consists of three steps: pre-intervention, peri-intervention and 

post-intervention. Pre-intervention involves two critical missions for treatment planning. The first 

mission is to determine the anatomical structures of abdominal cavity and the relative location of the 

ablation zone. This relies on medical image processing to segment and reconstruct extrahepatic 

structures (including the rib, celiac artery/vein, spine, lung, stomach, and spleen) and intrahepatic 

tissues (including the liver, liver vessel, and liver tumor) [9–11]. The second mission of 

pre-intervention is to plan the needle trajectory (path) and the treatment parameters (e.g., ablation 

power and duration). Peri-intervention involves inserting the ablation needle along the planned 

trajectory, which is called targeting, and monitoring and controlling the ablation treatment. 

Post-intervention involves evaluating the efficacy of the ablation treatment. Treatment planning, 

particularly needle trajectory planning, is crucial to RFA and MWA [12–17]. In the clinical ablation 

procedures, however, needle trajectory planning still relies on the personal experience of clinicians. 

Manual needle trajectory planning is tedious and may cause inter-operator difference. Therefore, 

computer-assisted needle trajectory planning techniques are of clinical value and have been 

extensively explored. 

In 2010, a review of computer-assisted planning, intervention, and assessment of liver tumor 

ablation was presented [16]. However, a survey that focuses on computer-assisted needle trajectory 

planning for liver tumor RFA and MWA has not been reported. In this paper, we conducted an 

extensive review on computer-assisted needle trajectory planning for RFA and MWA of liver tumors. 

Fundamentals of needle trajectory planning are summarized (Section 2). Algorithms for 

single-needle and multi-needle trajectory planning are analyzed (Sections 3 and 4). Shortcomings of 

current algorithms are discussed and future developments are suggested (Section 5). 

2. Fundamentals of computer-assisted needle trajectory planning 

Figure 2 shows the flow chart of computer-assisted needle trajectory planning. Firstly, the liver, 

the liver tumor, the skin, and critical structures are segmented and reconstructed from the patient’s 

CT or magnetic resonance (MR) images. Subsequently, the target point of the needle trajectory is 

determined, usually as the center or the centroid of the tumor. Then, hard constraints for needle 

insertion (puncture) are extracted to determine applicable insertion zones, or to eliminate 

inapplicable zones, or no-fly zones on the skin. Next, soft constraints for needle insertion are 

extracted. Finally, the soft constraints are combined and rated to determine the insertion point on the 

skin for the needle trajectory, which is formulated mathematically as an optimization problem. 

2.1. Constraints for needle insertion 

Constrains for needle insertion include hard constraints and soft constraints [17,18]. Hard 

constraints refer to the conditions that must be met in treatment planning. Any violation from hard 
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constraints may lead to a failure of needle intervention. Soft constraints refer to the requirements that 

should be satisfied as much as possible in treatment planning. Failing to satisfy soft constraints may 

not directly lead to the failure of needle intervention, but the planned needle trajectory would not be 

optimal. Hard constraints and soft constraints are summarized as below. 

 

Figure 2. Flow chart of computer-assisted needle trajectory planning. 



4850 

Mathematical Biosciences and Engineering  Volume 16, Issue 5, 4846–4872. 

2.1.1. Hard constraints 

The length of the needle trajectory (l), the trans-hepatic route depth (d), and the angle between 

the ablation needle and the liver capsule (θ) are illustrated in Figure 3. Four hard constrains for 

needle insertion (H1–H4) are summarized as below. 

 

Figure 3. Illustration of the length of the needle trajectory l, the trans-hepatic route depth 

d, and the angle between the ablation needle and the liver capsule θ. The skin, liver, liver 

tumor, and critical structures are depicted in light blue, gray, dark blue, and yellow, 

respectively. 

H1. The needle trajectory should avoid critical structures including the heart, lung, stomach, spleen, 

kidney, rib, spine, and vessel (Figure 4a). 

H2. The length of the needle trajectory l should be less than that of the ablation needle (Figure 4b). 

H3. The angle between the ablation needle and the liver capsule θ should be large enough (> 20°) [19,20] 

(Figure 4c). If θ is too small, the ablation needle may glide on the liver capsule. 

H4. The needle trajectory should ensure an enough trans-hepatic route depth d (> 5 mm) (Figure 4d). 

2.1.2. Soft constraints 

Six soft constrains for needle insertion (S1–S6) are summarized as below. 

S1. The needle trajectory should be far enough away from critical structures. 

S2. The length of the needle trajectory should be small enough. 

S3. The angle between the needle trajectory and the liver capsule should be large enough. 

S4. The horizontal and vertical deflection angles (defined as α and β in Figure 5) should small 

enough. 

S5. An ablation zone that conformally covers the tumor with a 5–10 mm safety margin should be 

generated. 

S6. Ablation damage to healthy liver tissue should be minimized. 
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Figure 4. Illustration of applicable insertion zones (light blue) and no-fly zones (red) 

on the skin, using hard constraints H1 (a), H2 (b), H3 (c), and H4 (d). The skin, liver, 

liver tumor, and critical structures are depicted in light blue, gray, dark blue, and 

yellow, respectively. 

 

Figure 5. Illustration of horizontal deflection angle α (a) and vertical deflection angle β (b). 

2.2. Multi-objective decision-making and numerical optimization 

After defining the constraints, the goal is to plan the optimal needle path under the constraints. 

The mathematical model of needle trajectory planning is briefly described here. Needle trajectory 

planning can be abstracted into decision-making and numerical optimization problems. The goal of 

numerical optimization is to identify a variable nxR  for which the value of an objective function 

f(x) is optimal. Based on an initial guess of x, a sequence of improved estimation is generated 

consequently, hopefully terminating with an optimal solution [21]. Its mathematical expression is as 



4852 

Mathematical Biosciences and Engineering  Volume 16, Issue 5, 4846–4872. 

follows: 

 ( ) minf x  , 

subject to: 

( ) 0,   1,2,...,jg x j m                             (1) 

( ) 0,    1,2,...,lh x l e  ; and                           

 , , : n

j lf g h R R , 

where g(x) and h(x) are the inequality and equality constraints functions, respectively; m and e are 

the number of inequality and equality constraints, respectively. The problem described in Equation (1) 

is the basis of numerical optimization, which is called single-objective optimization (SOO). However, 

the actual needle trajectory planning involves the decision-making and numerical optimization of 

multiple-objective functions fi(x) (multiple constraints). Note that some objective functions are 

contradictory to each other. In this case, the optimization problem turns into multi-objective 

optimization (MOO) [22]: 

1 2( ) :[ ( ), ( ),..., ( )] minT

kF x f x f x f x  , (2) 

where F(x) is the vector of k-objective functions fi(x). The objective function fi(x) does not have 

priority difference in spatial R
k
, so the MOO problem usually does not have a single optimal solution, 

but a series of relatively optimal solutions can be obtained by the pre-definition of optimization [23,24]. 

The solution of MOO problem usually follows the idea of scalar quantization, which integrates 

the multi-objective vector function F(x) into a scalar objective function F’(x), and makes MOO 

problem degenerate into SOO problem. Then, the SOO problem can be solved by using classical 

derivative or non-derivative strategies. Newton algorithm is often used as derivation strategy. For 

non-derivative strategy, Powell algorithm [25], Nelder-Mead simplex algorithm [26], simulated 

annealing algorithm [27], and exhaustive algorithm are common in needle trajectory planning. 

The process of needle trajectory planning can be summed up as follows. The hard constraints 

are used to initialize the needle trajectory x, and the value space of x is divided into two categories. 

The value space satisfying hard constraints is called feasible solution space (corresponding to 

applicable insertion zones on the skin), denoted as  . The value space that does not satisfy hard 

constraints is marked as infeasible solution space (corresponding to no-fly zones on the skin). Figure 

6 illustrates hard and soft constraints. Figures 6b–6e represent the classification of applicable 

insertion zones and no-fly zones based on hard constraints H1–H4, respectively. Figure 6f shows the 

applicable insertion zones after combining H1–H4. With optimization strategy, local or global 

optimal solution set *  is searched in the applicable insertion zones   (Figure 6f). Figure 6g 

shows the combination of multiple soft constraints S1–S6 and rating of the applicable insertion zones 

  on the skin. The better to worse ratings are shown in darker to lighter green. 

3. Single-needle trajectory planning algorithms 

Villard et al. [28] used ideal ellipsoid to simulate the ablation zone of RFA, and searched the 
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optimized needle path that could conformally cover liver tumors (S5, S6) with Nelder-Mead simplex 

algorithm [26]. The planning algorithm also involved critical structures avoidance (H1). A pickup 

function derived from graphics rendering technology was customized, which returned the collision 

and depth information between the needle path and the critical structures in the search process. The 

algorithm was tested on 9 cases of clinical data, and it was found that the validity heavily depended 

on the initial search location of the planning path. Therefore, Villard et al. then proposed an 

improved algorithm [29] to initialize the search space of simplex algorithm [26] by avoiding the 

critical structures (H1). The algorithm rendered polygonal surfaces of the patient's skin, treated the 

tumor as a light source and treated the critical structures as opaque shelters. If the light emitted from 

the tumor was not obscured by the critical structures, the light could be received by a number of 

polygons surfaces. All the polygons covered by light constituted the initial applicable insertion zones. 

Five cases of clinical data were selected to validate the algorithm. The result showed that the 

initialization to simplex algorithm [26] could make the planned needle trajectory far away from the 

gaps surrounding the critical structures. 

Baegert et al. [30] used quasi-exhaustive algorithm to optimize the needle path in the applicable 

insertion zones, and converted the soft constraint of conformal coverage (S5) into the angle between 

the planned needle trajectory and the long axis of the tumor. Results of needle trajectory planning of 

7 cases of clinical data showed that the quasi-exhaustive algorithm has the same conformal coverage 

ability as exhaustive method. Then Baegert et al. [19] extended hard constraints in needle trajectory 

planning. When initializing the applicable insertion zone, three hard constraints were added: the 

depth (H2) and the angle (H3) of the needle path, and the reserved trans-hepatic route distance (H4). 

They also proposed a multi-scale refinement strategy on polygonal meshes reconstructed for the 

patient skin surface. The algorithm compared the effect of needle trajectory planning with and 

without multi-scale refinement strategy with 7 cases of retrospective clinical data (18 tumors). The 

results showed that the multi-scale refinement strategy expanded the applicable insertion zone, and 

the additional operation time was acceptable. In another work, Baegert et al. [18] constructed an 

evaluation function to measure soft constraints by considering the actual needle depth and the actual 

distance from the needle path to the critical structures, and integrated the soft constraints (S1, S2, S6) 

with weighted sum algorithm. The algorithm was qualitatively evaluated by 7 cases of retrospective 

clinical data. It was found that one case of the needle path planned by the computer-assisted system 

is significantly better than that planned manually by experts. In the remaining cases, the planning 

performance is comparable. 

For the MOO problem, there is some controversy about the weighted summation algorithm [31,32], 

as the ideal weighted result is not equivalent to the cooperative optimization of multi-objective 

vector function. In addition, the weighting factors depend on subjective experience, which will cause 

planning deviation. For these reasons, Seitel et al. [20] introduced Pareto optimality concept [33–35] 

into needle trajectory planning of umbrella ablation electrode. The planning algorithm constructed 

Pareto frontier from pairs of soft constraints (S1 and S2, or S2 and S4) in the applicable insertion 

zone (H1–H4), and guided the clinician to select the optimal needle path on Pareto frontier. The 

algorithm was retrospectively verified by 10 cases of clinical data which were ablated unsuccessfully 

(with complications). The results showed that the manually planned trajectories of 6 patients were 

invalid (violating hard constraints), and the rest manually planned trajectories were not the optimal 

choice (dissatisfying soft constraints). The concepts and algorithms involved in solving the optimal 

needle path problem by Pareto optimality were discussed, and detailed mathematical proofs were 
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given. At the same time, the authors also proposed an adaptive hyper-boxing algorithm [35], which 

could rapidly deploy Pareto frontier based on pairwise soft constraints. 

 

Figure 6. (a) Models of the skin, the liver, the tumor, and critical structures, obtained by 

segmentation and reconstruction. (b)–(e) Applicable insertion zones (light blue) and 

no-fly zones (red) on the skin, using hard constraints H1 (b), H2 (c), H3 (d), and H4 (e). 

(f) Combination of (b)–(e). (g) Combination and rating (green) of soft constraints S1–S6 

on the basis of (f). 
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The needle trajectory planning algorithms introduced above are based on polygonal surface 

rendering of the segmented structures using the patient's medical images. This makes the accuracy 

and efficiency of trajectory planning heavily depend on the resolution and quality of polygon surface 

rendering, which limits the potential of the needle trajectory planning algorithms. To overcome these 

drawbacks, Schumann and colleagues proposed the idea of needle trajectory planning based on 

perspective projection. In a preliminary study, Schumann et al. [36] proposed a needle trajectory 

planning algorithm based on the cylindrical projection [37,38] of multiple constraints (H1–H4 and 

S1–S6). The projection discretized the needle path space into alternative path list by two deflection 

angles, and generated constraint maps for each constraint. The final planned needle trajectory was 

obtained from the weighted product of the constraint maps. In order to consider the rationality of the 

weighted coefficient, the coefficient functions of each constraint were also designed. The algorithm 

was validated by 25 cases of clinical data. Radiologists were invited to grade the needle path with a 

score of 1–6 (1: best; 6: worst). The results showed that 84% of the planned trajectory scored within 

2 (mean value 1.77). 

Generally, the teaching and practice of needle trajectory planning accepted by clinician were 

carried out on two-dimensional (2D) slices of medical images. In order to facilitate the integration of 

computer-assisted needle trajectory planning algorithm into this workflow, Schumann et al. [39] 

proposed a visualized needle trajectory planning algorithm which could rapidly project the no-fly 

zone onto patient image slices. The algorithm only aimed at avoiding critical structures (H1). After 

defining the reconstruction scene of target point and related critical structures, using the cube 

mapping algorithm [40], the critical structures mapping was obtained by accelerating volume 

rendering with graphics processing unit (GPU) [41]. Then, the mapping result was projected onto the 

medical image slices. In the evaluation of 20 cases of liver RFA, three experienced radiologists 

indicated that the visualized planning algorithm had a significant assistant effect on 55% of cases, 

and two radiologists pointed out that the algorithm significantly reduced the time-consumption of 

needle trajectory planning. Subsequently, Schumann et al. [42] designed a needle trajectory planning 

system based on slider interactive interface, which could accommodate all the alternative needle 

paths with the according constraint parameters in each constraint maps (H1, H2, S1, S2, S4). The 

clinician could remove the unsatisfactory needle path by dragging the slider to set the corresponding 

parameter. At the same time, the needle path selected by the slider would be rendered in real-time in 

the three-dimensional (3D) reconstructed scene. The algorithm was evaluated by two radiologists 

without clinical puncture background and an expert in the field of human-computer interaction by 

User Experience Questionnaire [43]. The score of six aspects ranged from 1.75 to 2.41.  

In order to design a more practical computer-assisted planning system, Schumann et al. [44] 

took the lead in replacing the ellipsoid ablation zone with the simplified temperature field simulation 

model for the first time, which further studied the conformal coverage to the liver tumor. The 

computer-assisted planning system divided the needle trajectory planning into two steps. The ‘seed’ 

path was selected firstly by multi-constraint maps, and a new Pareto slider was designed by 

combining the Pareto optimality [35]. Clinicians could search the Pareto optimality path with 

compromised multi-constraints interactively. The performance of the system was validated by 19 

cases of clinical data. Compared with the needle path manually planned by experts, 32% of the 

computer-assisted needle paths were superior. The six items score of the User Experience 

Questionnaire [43] were between 1.375 and 2.0. Then, Helck and colleagues [45] reported clinical 

trials of the system. 
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The accuracy of the needle trajectory planning algorithms proposed by Schumann and 

colleagues depends on the cylindrical projection. Because the horizontal and vertical deflection 

angles are discretely resampled during projection to obtain a list of candidate needle paths, the 

degree of discretization will affect the precision of needle trajectory planning. 

Liu et al. [46] used spherical coordinates to investigate the reachable area of the fix-length 

ablation needle without touching the critical structures. In the algorithm, the needle, the critical 

structures and the patient's skin were sampled at discrete points to construct the ablation scene. With 

two soft constraints about needle insertion depth and distance to critical structures (S1, S2), the 

Newton algorithm was used to obtain the optimal needle path. The planning algorithm was specially 

designed for surgical manipulator with three degrees of freedom. However, the algorithm has not 

been verified on clinical data. 

4. Multi-needle trajectory planning algorithms 

The needle trajectory planning algorithms in Section 3 plans a single-needle path for a single 

liver tumor, assuming that a single ablation can destroy the whole tumor. In fact, this hypothesis is 

incomplete. Studies have shown that a single ablation could completely destroy a liver tumor whose 

radial length is less than 2 cm [47,48]. Once the radial length of the tumor is longer than 3 cm, a 

single ablation could not completely ablate the whole tumor [49–53]. In this case, a multi-needle 

ablation is required for the large tumor. In this section, needle trajectory planning algorithms of 

multi-needle ablation are reviewed. 

Butz et al. [54] were the first to study the needle trajectory planning algorithm for the large 

tumor. The algorithm reconstructed the 3D scene of abdominal cavity based on MR images. In the 

scene, a simulated ablation needle could be placed interactively to generate simulated ablation zones 

of cryoablation without collision with skeleton and blood vessel. Powell algorithm [25] was used to 

optimize the external insertion points for the large liver tumor. This semi-automatic needle trajectory 

planning algorithm involved the simulation scenario of multi-needle ablation for the large tumor, but 

complicated human interaction is needed in the planning process. 

Automated conformal coverage planning for large tumors were initially based on two 

assumptions. Hypothesis I: Assume that the shape of the tumor is an ideal sphere. Hypothesis II: 

Assume that the simulated ablation zone is an ideal sphere or ellipsoid. The coverage models 

proposed by Dodd et al. [55] and Khajanchee et al. [56] can be regarded as the foundation of the 

conformal coverage planning for large tumors. Dodd et al. [55] constructed standard 6-ball, 14-ball 

and columnar ablation zone coverage model. The effective coverage of each simulation ablation zone 

models was demonstrated. Khajanchee et al. [56] proposed that the number of surfaces on the basis 

of circumscribed regular polyhedron greater or equal to the diameter of the tumor is the minimum 

number of ablations required for conformal coverage of the large tumor. The minimum number of 

ablations required for conformal coverage tumors (3–6.23 cm) by simulated spherical ablation zones 

(3–7 cm) were discussed. 

In order to make the planning more realistic, researchers relaxed the hypothesis of tumor 

morphology (Hypothesis I) and began to study the conformal coverage of irregular tumors. 

Mundeleer et al. [47] proposed a large tumor coverage planning algorithm independent of target 

points and tumor shapes. By constructing a cost function to represent the effective ablation volume, 

simplex algorithm [26] was used to obtain the optimal target points. Chen et al. [57] used the regular 
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prism or polyhedron models to calculate the minimum number of punctures required for RFA of liver 

tumors. Then, the optimal overlap of ablation zones and the optimal target points were planned. The 

planning was based on covering the tumor center firstly, and then complementary ablation covered 

the tumor edge or bulge. 

However, the above algorithms [47,55–57] only consider the conformal coverage of the large 

tumor, but it is not integrated into the needle trajectory planning. The following work overcomes this 

limitation. 

RFA planning toolkit ‘RF-Sim’ developed by Villard et al. [48] involved multi-needle ablation 

needle trajectory planning for the large tumor. The initial target points were used as the clustering 

centers, and the large tumor was clustered into multiple lesion sub-regions according to voxel 

spacing by means of distance transformation [58]. Then the simplex optimization algorithm [26] was 

used to find the final target point and the planned needle trajectory for each lesion sub-region. 

Trovato et al. [59] proposed a large tumor coverage planning algorithm which took into account the 

effective ablation zone and the over-ablation of the liver tissues. Firstly, the algorithm arranged 

enough spherical simulated ablation zones to cover the tumor on bounding box of the ablation zone. 

Then, it attracted the simulated ablation zones to the expected ablation zone center by means of the 

attractors which were located at the target points and the center of simulated ablation zones. Finally, 

it iteratively updated the coverage of the simulated ablation zones, deleted redundant ablations, and 

finally fed back the location of external insertion points.  

Yang et al. [60] proposed a large tumor conformal coverage planning based on the ‘voxel 

growth’, which adaptively generated multiple target points according to the contour of a tumor. In 

order to reduce the number of ablations and the degree of over-ablation, ‘growth regions’ needed to 

best fit the geometric shape of the ablation zone. The algorithm divided the tumor voxels into several 

continuous voxel cubes. Each cube grew layer by layer along the contour of the tumor. Its growth 

centers were the corresponding target points, and its external growth regions were the corresponding 

simulated ablation zones. In subsequent work of the same team, Duan et al. [61] integrated this 

algorithm into the surgical manipulator system, and realized multi-needle trajectory planning through 

a single incision at the skin. The feasibility of the algorithm was verified by the experiment of swine 

liver ex vivo. Liu et al. [62] designed a multi-needle collaborative ablation system based on a single 

incision at the skin. In order to effectively cover the large irregular tumor, a sphere-propagation 

algorithm was proposed. Based on the hexagonal close packing theory [63], a series of simulated 

spherical ablation zones covering the tumor were automatically generated by the volume of effective 

ablation and over-ablation. 

The MWA planning system proposed by Liu et al. [64] could automatically calculate the 

minimum ablation times according to the selected external insertion points and the volume of liver 

tumors. The simulated ablation zones were modeled as an ellipsoid whose radius varied with ablation 

power and duration. The cost function reflected the volume of under-ablation and over-ablation. The 

additional penalty was inflicted by the paths colliding critical structures (H1). The Limited Memory 

Broyden Fletcher Goldfarb Shanno with Bounds (LMBFGSB) optimization approach [65,66] was 

used to select optimally the planned trajectories. Wang et al. [67] theoretically improved the ablation 

planning of larger irregular liver tumors by geometric optimization model. They pointed out that it 

was almost impossible to plan more than three needle paths for the same tumor. Therefore, the 

conformal coverage of simulated ablation zones was modeled by 2D inscribed triangle method and 

subdivision method. Finally, the coverage problem could be classified into four categories: 
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single-needle ablation, double-needle ablation, three-needle ablation, and untreatable ablation. The 

algorithm optimized the needle path after determining the number of ablation times. 

Ren et al. [68] proposed a needle trajectory planning method by solving integer programming 

model on the basis of previous work [69,70]. The initial insertion points were labeled by the clinician. 

The algorithm consisted of two parts: the minimum trajectories integer program and the minimum 

ablations integer program. The minimum radial trajectory required to cover the tumor and the 

minimum ablation times along the selected radial trajectory were obtained respectively. The 

algorithm could generate several feasible schemes, which needed to be decided by clinicians after 

parameter evaluation and visual comparison. In the same year, Ren et al. [71] also proposed a 

planning system for liver tumor ablation, which used genetic algorithm to heuristically solve the 

optimal coverage problem. Chen et al. [72] investigated the conformal coverage planning of large 

tumors by using improved clustering algorithm and coverage iteration optimization algorithm in 

applicable insertion zones. The clustering algorithm initialized the ablation zone into several 

sub-regions with the approximate volume, and the shape of each sub-region was similar to that of the 

simulated ablation zone. Coverage optimization algorithm minimized the simulated ablation zone of 

each sub-region and iteratively calculated the minimum number of ablation. In order to avoid 

collision between planned path and critical structures (H1), the algorithm attached a conical needle 

region for fine-tuning. 

5. Discussion 

The single-needle and multi-needle trajectory planning algorithms reviewed in this paper are 

listed in Table 1, in terms of the constraints involved in each needle trajectory planning methods, the 

strategy of combining hard or soft constraints, and the validation data of each algorithm. Although 

some progress has been made in the research of needle trajectory planning algorithms, they are rarely 

used in the clinic. There is still a gap between the current research and clinical practice. Next, we will 

analyze the shortcomings of existing needle trajectory planning algorithms and discuss future 

developments from three aspects: needle trajectory planning, ablation zone simulation, and 

deformation model. 

Table 1. Summary of single-needle and multi-needle trajectory planning algorithms. 

Authors 
Hard 

constraints 

Combination of hard 

constraints 

Soft 

constraints 

Combination of soft 

constraints 
Validation data 

Villard, 

2003
[26]

 
H1 

Customized picking 

function 
S5, S6 

N-M simplex 

algorithm 

9 cases of clinical 

data 

Villard, 

2005
[27]

 
H1 

Visualization of skin 

based on triangular 

mesh surface rendering 

S5, S6 
N-M simplex 

algorithm 

5 cases of clinical 

data 

Baegert, 

2007
[28]

 
H1 

Visualization of skin 

based on triangular 

mesh surface rendering 

S5, S6 
Quasi-exhaustive 

method 

7 cases of clinical 

data 

Continued on next page 
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Authors 
Hard 

constraints 

Combination of hard 

constraints 

Soft 

constraints 

Combination of soft 

constraints 
Validation data 

Baegert, 

2007
[18]

 
H1–H4 

Visualization of skin 

based on triangular 

mesh surface rendering 

S1, S2, S6 Weighted summation 
7 cases of clinical 

data 

Seitel, 

2011
[32]

 
H1–H4 

Z-buffer based on 

triangular mesh surface 

rendering 

S1 and S2 

or S2 and 

S4 

Pareto optimality 
10 cases of clinical 

data 

Teichert, 

2013
[35]

 
H1–H4 

Z-buffer based on 

triangular mesh surface 

rendering 

S1 and S2 

or S2 and 

S4 

Pareto optimality 
2 cases of clinical 

data 

Schumann, 

2010
[36]

 
H1–H4 

Cylindrical projection 

based on direct volume 

rendering 

S1–S6 Weighted product 
25 cases of clinical 

data 

Schumann, 

2012
[39]

 
H1 

Cube mapping based 

on direct volume 

rendering 

/ / 
20 cases of clinical 

data 

Schumann, 

2013
[42]

 
H1, H2 

Cylindrical projection 

based on direct volume 

rendering 

S1, S2, S4 Manual interaction 
48 cases of clinical 

data 

Schumann, 

2015
[44]

 
H1, H2 

Cylindrical projection 

based on direct volume 

rendering 

S1, S2, 

S4–S6 

Weighted product and 

Pareto optimality 

19 cases of clinical 

data 

Liu, 2017
[46]

 H1, H2 

Reachable area of 

fixed-length needle 

based on spherical 

coordinate system 

S1, S2, 

S5, S6 
Newton algorithm 

1 case of simulation 

data 

Butz, 2000
[54]

 H1 Interactive setting S5, S6 Powell algorithm 
1 case of simulation 

data 

Dodd, 

2001
[55]

 
/ / S5, S6 

Ideal multi-spheres 

model 

Spherical tumor 

mode 

Khajanchee, 

2004
[56]

 
/ / S5, S6 

Circumscribed regular 

polyhedron model 

Spherical tumor 

mode 

Chen, 

2004
[57]

 
/ / S5, S6 

Regular prism or 

regular polyhedron 

model 

110 cases of clinical 

data 

Mundeleer, 

2009
[47]

 
/ / S5, S6 

N-M simplex 

algorithm 

1 case of animal data 

(in vitro) 

Villard, 

2005
[48]

 
H1 

Visualization of skin 

based on triangular 

mesh surface rendering 

S5, S6 
N-M simplex 

algorithm 

12 cases of clinical 

data 

Continued on next page 
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Authors 
Hard 

constraints 

Combination of hard 

constraints 

Soft 

constraints 

Combination of soft 

constraints 
Validation data 

Trovato, 

2009
[59]

 
H1 Manual planning S5, S6 

Unique coverage area 

and Attractors 

Spherical tumor 

mode 

2 cases of simulated 

tumor 

Yang, 2010
[60]

 H1 Manual planning S5, S6 Voxel growing 
1 case of animal data 

(ex vivo) 

Liu, 2019
[62]

 H1 Manual planning S5, S6 Sphere propagation 

1 case of animal data 

(ex vivo) 

1 case of animal data 

(in vivo) 

Liu, 2012
[64]

 H1 LMBFGSB S5, S6 LMBFGSB 
4 cases of synthetic 

data 

Wang, 

2013
[67]

 
H1 Manual planning S5, S6 

Inscribed triangle 

model and 

Subdivision 

3 cases of clinical 

data 

Ren, 2014
[68]

 H1 Manual planning S5, S6 Integer programming 

1 case of phantom 

data 

1 case of animal data 

(in vivo) 

Ren, 2014
[71]

 H1 Genetic algorithm S5, S6 Genetic algorithm 

1 case of phantom 

data 

1 case of animal data 

(in vivo) 

Chen, 

2018
[72]

 
H1, H2 Manual planning S5, S6 Adaptive clustering 

20 cases of clinical 

data 

N-M simplex algorithm: Nelder-Mead simplex algorithm; LMBFGSB: Limited Memory Broyden Fletcher 

Goldfarb Shanno with Bounds optimization approach 

5.1. Needle trajectory planning algorithms 

Table 2 compares the constraints involved in single-needle and multi-needle needle trajectory 

planning. For hard constraints, current single-needle planning methods consider them more 

comprehensively, while most of multi-needle planning methods only consider the constraint of 

avoiding critical structures (H1). For soft constraints, single-needle planning takes into account the 

actual distance between the needle path and the critical structures, the actual puncture depth and 

angle. Among them, Villard et al. and Baegert et al. [28–30] based their research on the conformal 

coverage of tumors. However, Schumann et al. [39,42,44] neglected the coverage of tumors; in the 

preliminary study [36], the conformal coverage problem was handled by the simplified constraint 

that the direction of the needle path was best parallel to the direction of the long axis of a tumor. 

Seitel et al. [20] and Teichert [35] also lacked consideration of the conformal coverage of liver 

tumors. Multi-needle planning just focused on avoiding under-ablation of liver tumors and 

over-ablation of healthy tissues. In future developments, the conformal coverage should be 
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considered more in single-needle trajectory planning (for small tumors). Multi-needle trajectory 

planning (for large tumor) should be based on the conformal coverage of tumors and establish a 

relationship with needle trajectory planning. 

The reconstruction scene of abdominal critical structures can determine the accuracy of the 

applicable insertion zone. Multi-needle planning has not yet involved the complete needle trajectory 

planning process, so here we only analyze the single-needle trajectory planning algorithm (Table 3), 

which can be roughly divided into two categories. Firstly, the abdominal skin and critical structures 

were reconstructed by surface rendering. Villard et al. [28] proposed reconstructing the ablation 

scene by triangular mesh surface rendering. The connection between the vertex of the triangle 

meshes and the target point is used as the candidate needle trajectories. This strategy has higher 

rendering efficiency and lower requirement for computer hardware. However, the quantity and 

quality of the triangular meshes are directly related to the accuracy and generation efficiency of the 

applicable insertion zone and candidate needle paths. The surface rendering is also limited by the 

resolution of the used screen. Off-screen rendering may be a solution for this problem [20]. In 

addition, the strategy of surface rendering of critical structures and sampling them into discrete 

points was proposed by Liu et al. [46]. The discrete points were combined with the spherical 

coordinates to plan the needle trajectory. However, their method was not validated by clinical data. 

Secondly, cylindrical projection based on direct volume rendering was conducted. The accuracy and 

efficiency of candidate needle trajectories do not depend on the rendering algorithm, but they depend 

on the discreteness of horizontal and vertical deflection angles in the projection process. Schumann 

et al. [6] pointed out that the critical structures could be made through dilation operation or the 

constraint maps could be filtered by a proper threshold, but it does not solve the problem essentially. 

Table 2. Constraints used in single-needle and multi-needle trajectory planning. 

 Single-needle  Multi-needle  

H1 
[18], [26], [27], [28], [29], [32], [35], [36], [39], 

[42], [44], [46] 

[48], [54], [59], [60], [62], [64], [67], [68], [71], 

[72] 

H2 [18], [29], [32], [35], [36], [42], [46] [72] 

H3 [18], [29], [32], [35], [36]  

H4 [18], [29], [32], [35], [36]  

S1 [18], [32], [35], [36], [42], [44], [46]  

S2 [18], [32], [35], [36], [42], [44], [46]  

S3 [36]  

S4 [32], [35], [36], [42], [44]  

S5 [26], [27], [28], [36], [44], [46] 
[47], [48], [54], [56], [57], [59], [60], [62], [64], 

[67], [68], [71], [72]; 

S6 [18], [26], [27], [28], [36], [44], [46] 
[47], [48], [54], [56], [57], [59], [60], [62], [64], 

[67], [68], [71], [72]; 
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Table 3. Comparison of rendering methods for generating hard constraints. 

Strategy Advantages Limitations 

Resampling based on 

surface rendering [18], 

[26], [27], [28], [29], [32], 

[35], [46], [48]  

Faster rendering efficiency and lower 

requirement for computer hardware. 

The discretization accuracy and efficiency of 

candidate needle paths depend on the quantity 

and quality of polygon surface rendering. 

Projection based on direct 

volume rendering [36], 

[39], [42], [44] 

The discretization accuracy of 

candidate needle paths does not 

depend on the quality of polygon 

surface rendering. 

High computational complexity. 

Table 4 compares the strategies of combining the multiple soft constraints. The optimization to 

conformal coverage problem of multi-needle ablation is only an incomplete optimization problem, so 

we only summarize these related algorithms in Table 1. The optimization problem discussed here is 

mainly rationally planned needle trajectory within the applicable insertion zone. Villard et al. 

compared Powell algorithm [25], Nelder-Mead simplex algorithm [26] and simulated annealing 

algorithm [27] in both the research of single-needle [28] and multi-needle [48] trajectory planning. 

Their study showed that the search efficiency of Powell algorithm and simulated annealing algorithm 

was lower. The parameters of simulated annealing algorithm were difficult to set. Therefore, 

Nelder-Mead simplex algorithm was chosen to select the optimal path. Although it was relatively 

sensitive to initialization, Villard et al. [29] pointed out that Nelder-Mead simplex algorithm could be 

reasonably initialized by searching the applicable insertion zone. Baegert et al. [18] and Seitel et al. [20] 

tried weighted summation strategy. Although the algorithm complexity of weighted summation is 

simple, there are still some shortcomings in solving MOO problems, because it is difficult to ensure 

that multiple objectives achieve coordination optimal. Weighted product can alleviate this 

shortcoming to some extent, but both weighted summation or product need to set weight factors 

artificially, which will lead to the deviation of needle trajectory planning due to the difference of 

human experience. Pareto optimality can avoid this kind of artificial interference, but the solution of 

MOO problem based on Pareto optimality concept has not been recognized clinically [31]. In 

addition, Pareto optimality is applicable to deal with the paired clinical soft constraints, and it still 

needs manual interaction when selecting the final planned trajectory. Although Newton algorithm 

adopted by Liu et al [46] is theoretically suitable for solving local optimization problems, in practice, 

it may be difficult to satisfy the ideal premise of derivation. The approximation of finite difference 

leads to increased computational complexity [21]. LMBFGSB algorithm [65,66] adopted by Liu et al. [64] 

is a quasi-Newton method, which the computational cost is lower, and the memory requirement is 

also lower than other online quasi-Newton methods. However, it is not fast convergent and requires a 

lot of function calculation to converge on difficult problems [66]. The concept of Genetic algorithm 

is easy to understand, and it supports multi-objective optimization, so Ren et al. [71] carried out 

simple needle trajectory planning based on Genetic algorithm. However, the construction of 

objective function reflecting constraints in genetic algorithm is complex, the calculation of genetic 

algorithm is time-consuming, and it may fall into local extremum. To sum up, there is no recognized 

optimization algorithm to search for the optimal needle path in the applicable insertion zone, which 

is one of the reasons that limit the clinical application of needle trajectory planning algorithms. In 

future developments, this issue should be addressed. 
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5.2. Ablation zone simulation 

In order to further relax the assumption of the standard model for simulating ablation zones in 

needle trajectory planning (Hypothesis II) and make the ablation zone more realistic, it is necessary to use 

the simulation of the temperature field in ablation zones. However, the environment of liver cancer 

ablation is complex and involves many characteristics of liver tissues (including electrical conductivity, 

thermal conductivity, thermal capacity, tissue density, tissue temperature, water content and protein 

status). The simulation of ablation zones has developed into a new research field. It is generally accepted 

that the finite element simulation of thermal ablation temperature field can be carried out by using the 

bio-heat transfer equation in the existing simulation studies of ablation zones. 

Table 4. Comparison of the algorithms for the combination and rating of soft constraints 

(optimization problem). 

 Advantages Limitations 

Powell algorithm [26], [48] Low computational complexity 

It is sensitive to initialization; local 

extremum exists; and operation 

efficiency is low. 

Simulated annealing algorithm 

[26], [48] 
Less subject to local minima 

Operation efficiency is low and 

parameters are difficult to adjust. 

Nelder-Mead simplex algorithm 

[26], [27] , [48] 
Low computational complexity 

It is sensitive to initialization, and local 

extremum exists 

Quasi-exhaustive method [28] Reduced dimension of parameters 

It is based on a simplified model of 

conformal coverage and is not suitable 

for multi-constraint conditions. 

Weighted summation [18], [32] 
Low computational complexity, and 

fully automatic optimization. 

Weights are subjective, and weighted 

summation is controversial in MOO 

problems. 

Weighted product [36], [44] 
Low computational complexity, and 

fully automatic optimization. 

Weights are subjective, and weighted 

product is controversial in MOO 

problems. 

Pareto optimality [32], [35], 

[44] 

No need to set parameters that depend 

on human experience 

It is based only on paired constraints, and 

is a kind of semi-automatic optimization. 

Newton algorithm [46] 
Well suited to solve local optimization 

problems efficiently 

An analytical computation of derivatives 

is not feasible, and an approximation 

based on finite differences might be 

required. 

LMBFGSB [64] 
Lower computational complexity than 

other quasi-Newton methods 
It does not have fast convergence. 

Genetic algorithm [71] 

Support multi-objective optimization, 

and work well on mixed 

discrete/continuous problem 

It converges towards local optima, is 

difficult to design an objective function, 

and is computationally expensive. 

MOO: multi-objective optimization; LMBFGSB: Limited Memory Broyden Fletcher Goldfarb Shanno with 

Bounds optimization approach 
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Most bio-heat simulation is based on the Penne’s bioheat equation (PBE) [73]. The heat 

conduction term is derived from classical Fourier heat conduction law. Considering metabolic heat 

production and blood perfusion heat transfer, it is the most concise model for calculating the 

temperature field of bio-heat transfer. However, Fourier heat conduction law implies the following 

assumption: the velocity of heat transfer in the medium is infinite, which is inconsistent with the heat 

conduction in the process of thermal ablation. With the deepening of the research, the Hyperbolic 

bioheat equation (HBE) based on the non-Fourier heat conduction law has been proposed [74,75]. 

The main idea is that there exists a constant delay time τ between heat flux and temperature gradient 

in biological tissues. In the early years, HBE has been used to calculate 3D temperature distribution 

in radiofrequency ablation of cornea and arrhythmia [76].  

Temperature field simulation of RFA and MWA is generally based on PBE, and a finite element 

model of ablation is established. Because the individual difference of tumor is significant, it is 

necessary to establish accurate 3D temperature field simulation to determine the optimal heating 

parameters in MWA [77]. For the simulation accuracy of temperature field in MWA, the research 

mainly focuses on the accuracy distribution of specific absorption rate (SAR) [78,79], the setting of 

thermophysical parameters of liver tissues [78,80], the influence of blood perfusion and 

vaporization [81]. Similarly, in order to establish the finite element model of RFA, the temperature 

change in the thermal lesion is predicted by the coupled analysis of electric-thermal field in the 

simulation software, and there are also many studies on the simulation of temperature field of 

RFA [82–86]. 

At present, there is a lack of research on the combination of simulated ablation zones and needle 

trajectory planning for liver tumor ablation. Only Schumann et al. [44] used the approximation of the 

numerical simulation [87] to take the conformal coverage of simulated ablation zones as a clinical 

constraint condition of needle trajectory planning for the initialization of needle path. Researchers 

either tend to simplify the model (ellipsoid simulation ablation zone), or speed up the simulation with 

GPU [87–89]. Simplified simulation model of ablation zones will reduce the accuracy of needle 

trajectory planning and limit the application of planning algorithm in the clinic. GPU computing is a 

direct means to accelerate the simulation of temperature field in ablation zones, and it can also make 

the real geometry of temperature field more ideal through interdisciplinary means. A new 

nano-cryoablation technique using nanoparticles was proposed [90]. A theoretical 3D simulation of 

the freezing ablation zone incorporating nanoparticles was conducted [91,92]. The phenomenon of 

heat conduction caused by blood flow in large vessels was fully considered. In vitro animal 

experiments showed that injecting nanoparticles with high thermal conductivity into the freezing 

ablation zone could significantly reduce the heat-sink effect caused by blood flow, shorten the 

ablation duration, and expand the effective range of cryoablation. This technique may be introduced 

into RFA and MWA in the future. 

5.3. Linear needle trajectory planning and curved needle trajectory planning 

The needle trajectory planning algorithms in Sections 3 and 4 abstract the path as a line segment 

between the insertion point and the target point. However, in the actual puncture process, linear 

needle trajectory planning is not enough to meet the clinical needs, because the puncture process is 

bound to face two types of deformation. Deformation I: The pressure on the body surface or viscera 

surface caused by the needle tip and the friction force produced by the needle-tissue interaction will 
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force the needle and tissues to be deformed. Deformation II: The patient's respiratory function 

causes the liver to produce similar periodic displacement and deformation, which changes the 

relative position of the liver tumor to the body surface. Due to the complexity of the two types of 

deformation, curved needle trajectory planning is challenging. 

The needle trajectory planning methods considering deformation I is still rare. Hamzé et al. [93] 

proposed a needle trajectory planning model for liver tumor ablation under the condition of 

needle-tissue interaction force. Tan et al. [94] planned the needle path of flexible needle based on 

Markov decision. Modeling of needle-tissue interaction can be found in a recent review [95], but the 

models are rarely used in needle trajectory planning for liver tumor ablation. 

There are no literatures reporting the needle trajectory planning considering deformation II. 

Only respiratory deformation models are reported. For curved needle trajectory planning, the trend is 

to effectively build dynamic atlas of liver tissues. The planning can introduce medical image 

sequence with motion information to realize multi-modal medical image fusion, such as 

ultrasound-CT/MR [96–99]. During the acquisition of CT or MR images, ultrasound image sequence 

of several respiratory cycles is acquired simultaneously. The periodic trajectory of the target point 

can be obtained by an efficient registration algorithm. For single-modality medical image sequence, 

the construction of four-dimensional motion maps including anatomical structure and motion 

characteristics was conducted [100–102]. Besides, the periodic displacement of the tumor can be 

tracked by the feedback signal of the labeled sensor [103–105]. However, compared with the 

image processing methods [96–102], the ways of adding labels or auxiliary needles pose 

additional challenges. 

It should be noted that there are some clinical considerations that are challenging in current 

needle trajectory planning. (i) Patient breathing, patient movement, and interventional radiologists 

skill at replicating angle are variables that mathematical modeling cannot currently predict. (ii) As 

the actual ablation zone is dependent on the ablation device used, the expected ablation zone with a 

5–10 mm safety margin (Figure 1) prior to needle placement may not be realized. (iii) Tissue 

shrinkage [106–110] and hydrodissection have not been taken into account in current needle 

trajectory planning. 

In addition, the current trajectory planning algorithms still have the following shortcomings. (i) 

The target point of the needle trajectory is set as the center or the centroid for small tumors, or as the 

sub-region for large tumors. However, in the clinic, the needle tip usually punctures through the 

tumor (Figure 7). There is no mathematical model for the actual target point. Additionally, as the 

needle tip penetrates through the tumor, the outside part of the needle involves key constraints such 

as whether to touch the critical structure. (ii) In the needle trajectory planning for large tumors, the 

default multiple ablation effect is equivalent to multiple superimposition of single-needle ablation 

effect, but in fact, the ablation zone generated by multi-needle ablation will be more complex. (iii) 

Finite element simulation, respiratory motion model and needle-tissue interaction deformation model 

are still difficult to meet the actual clinical needs. To effectively integrate the multi-level 

mathematical model into needle trajectory planning is also a problem. (iv) There is no accepted 

criterion for the evaluation of needle trajectory planning algorithms. In future developments, these 

shortcomings should be overcome. 
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Figure 7. Illustration of planned target point (a) and actual target point (b). 
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