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Abstract: In the open shop scheduling problem, resources and tasks are required to be allocated in 

an optimized manner, but when the arrival of tasks is dynamic, the problem becomes much more 

difficult. To solve large scale open shop scheduling problem with release dates, heuristic algorithms 

are more promising compared with metaheuristic algorithms. In this paper, a framework of general 

scheduling object is developed, under which open shop scheduling problem is described. Then, a 

complex scheduling network model for open shop scheduling problem is established, and the 

problem is transformed into reasonably arranging the node traversal order with the goal of traversing 

all nodes in the network as quickly as possible, on condition that each node has a traversal time and 

only disconnected nodes can be traversed simultaneously. Considering that network structural 

features and local time attributes of nodes can provide heuristic information, six single heuristic rules 

are raised and a novel complex network based dynamic rule selection approach is proposed to solve 

dynamic open shop problem by switching dynamically the scheduling rules based on real-time 

production status. Finally, two experiments are carried out and the experimental results show that the 

proposed heuristic rules have acceptable performance, and the proposed complex network based 

dynamic rule selection approach is feasible. 
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1. Introduction 

Scheduling is one of the most widely researched areas of operational research, and its primary 

objective is to optimize one or more performance indicators by allocating scarce resources to 

productive operations in a given period [1–3]. From the perspective of machine environment, there 
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are five environments in literature, namely, single machine shop, parallel machine shop, flow shop, 

job shop and open shop. Different from other machine environments, open shop has no restriction on 

the processing route of each job during the production process. In this paper, the open shop 

scheduling problem is considered. 

Since open shop scheduling problem (OSSP) was raised, it has received considerable attention 

over the last four decades and has been applied to different fields including agriculture, hospitals, 

transport, and manufacturing industry [4,5]. In classic OSSP, a set of n jobs are to be processed by a 

set of m machines, with all jobs and machines available at the beginning. Each job contains a set of 

m operations, and each operation should only be processed on one machine. At any time, a job can 

be processed by at most one machine, and any machine can process only one job. Besides, setup 

times are negligible and preemption of operations is not allowed. The problem is to find an optimal 

schedule for the operations that minimizes the makespan. Due to unconstrained operational 

processing order within a job, OSSP can be perceived as a generalization of the job shop scheduling 

problem (JSSP) [6]. Compared with JSSP, the solution space of OSSP (represented by the sequence 

of operations on machines and operations within jobs) is too large to find the optimal solution. 

With the standard scheduling notation [7], the simplest OSSP can be described as Om||Cmax, 

where m is the number of machines. For problem O2||Cmax, a priority rule named Longest Alternate 

Processing Time first (LAPT) was developed to find the optimal scheduling in polynomial time [8]. 

Besides, an NP-hardness proof for O3||Cmax was provided by [4]. As the job is available only after its 

arrival in practice, the study of open shop scheduling problem with release dates is closer to the 

practical production [9], but it also makes it harder to arrange resources and tasks properly. Lawler, 

Lenstra, Kan, et al. [10] pointed out that the problem O2|rj|Cmax is strongly NP-hard. For problem 

O3|rj|Cmax, Chen, Huang and Tang [11] demonstrated that the worst-case performance ratio of greedy 

algorithm is 5/3. For small scale problems, Branch & Bound algorithm is the best choice [12,13]. For 

large scale problems, heuristic or metaheuristic algorithms may be the most effective way to obtain 

approximate optimal solutions. For example, hybrid genetic algorithms have been employed to solve large 

scale OSSP [14,15] while hybrid genetic algorithm and particle swarm optimization are introduced in 

integrated process planning and scheduling [16,17]. In addition, artificial bee colony algorithm is used in 

welding shop scheduling problem [18,19]. However, in terms of the scheduling problem with release 

dates, metaheuristic algorithms have great difficulty in modeling. Besides, metaheuristic algorithms 

may take much more time to obtain suboptimal solutions, making it difficult to meet the performance 

requirements of real-time scheduling decision. As the scale of the problem increases, the 

metaheuristic algorithms will fail fundamentally due to their inability to evaluate the performance of 

the solution in a timely and effective manner. In comparison, the heuristic algorithms are more 

promising as they achieve better trade-offs between computation time and solution quality. However, 

it remains a challenge to design appropriate heuristic algorithms for different problems. 

In order to model and optimize large-scale complex dynamic systems in the real world, since 

the 1990s, complex network theory has been developed in the field of statistical physics [20,21]. 

Complex network consists of numerous nodes and edges, which respectively represent elements of 

the system and the correlations between the elements, providing a new way to deal with large-scale 

dynamic scheduling problem. The complex network theory holds that the complexity of a network is 

mainly caused by the complex association between a large number of nodes, rather than by the 

complex dynamic behavior of the individual nodes. Similarly, complex relationships among jobs, 

resources and operations determine the performance of the entire scheduling system. Therefore, 
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complex network model may be an effective tool for solving large-scale dynamic open shop 

scheduling problem. 

In recent years, complex network theory has already found its way into the scheduling problems. 

To the best of our knowledge, the first complex network model for open shop scheduling problem 

was built by [22,23]. The open shop scheduling problem was transformed into reasonably arranging 

the node traversal order, with the goal of traversing all nodes in the network as quickly as possible. 

Moreover, three scheduling rules based on complex network characteristics, namely Degree rule, 

Cluster rule and Redundancy rule were proposed. This research is very instructive, but has obvious 

limitations. Specifically, these proposed rules only apply to non-uniform network topologies, which 

are obtained by setting jobs with different numbers of operations. Therefore, for classical production 

scheduling problem, the performance of these algorithms will be greatly compromised due to their 

inability to identify valid initial scheduling nodes. Besides, a multi-task directed-weighted network 

was established by setting production factors involved in the job shop system as nodes, possible 

process routes and logistics paths between nodes as edges [24]. In conclusion, the production 

scheduling research based on complex network is still in its infancy. In this paper, both the network 

structural features and time attributes are considered to construct effective heuristic rules. 

The rest of the paper is organized as follows: section 2 describes the framework of general 

scheduling object; Section 3 develops a complex scheduling network model for OSSP; Section 4 

proposes several complex network based heuristic rules, and a novel complex network based 

dynamic rule selection approach. In section 5, two groups of experiments are conducted. Finally, 

conclusions and future works are summarized. 

2. Framework of general scheduling object 

The general scheduling object involves many elements that have specific meanings in different 

application scenarios. In many cases, the relationship between these elements is quite complicated. In 

order to solve the scheduling problem in as many application scenarios as possible, a framework of 

general scheduling object is established based on the induction of the basic elements of the object, 

which can cover various types of scheduling problems, including OSSP. 

J O R
MJO

MOO

MOR

MRR

 

Figure 1. Structure diagram of the general scheduling object. 

As shown in Figure 1, a general scheduling object (GSO) can be defined by a formula:  
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[ , , , , , , ] JO OR OO RRGSO R J O M M M M        (1) 

where R, J, O, MJO, MOR, MOO and MRR denotes resource set, job set, operation set, job-operation 

mapping, operation-resource mapping, operation-operation mapping and resource-resource mapping, 

respectively. 

Resource set R can be simply defined as (2), which is made up of m resources. 

1 2{ , ,..., }mR r r r           (2) 

Each element in the job set J represents a job, which can contain some attributes, such as 

priority level, release date and due date. J with size n can be represented as (3). The release date RD 

of tasks can be represented as (4), and the due date DD of tasks can be described as (5). 

1 2{ , ,..., }nJ J J J          (3) 

1 2{ , ,..., }nRD rd rd rd         (4) 

1 2{ , ,..., }nDD dd dd dd         (5) 

Job-operation mapping MJO can be expressed as (6). Each job Ji is composed of ni operations to 

be processed, and k

iO denotes the kth operation of job Ji (k=1, 2,…, ni), which has the processing 

time k

it . For flow shop and job shop, each job Ji is an ordered set. 

1 2{ , ,..., }in

i i i iJ O O O          (6) 

Operation-resource mapping MOR can be presented as (7), of which the number of resources 

is k

isize given that the processing of operation k

iO  usually requires the cooperation of several 

resources. 

( )k k

i iOR O fix          (7) 

In order to approach the real-world problem, the setup time between any two operations should 

not be ignored, and the length of the setup time on the machine depends on the similarity between 

the two consecutive operations. The higher the similarity, the shorter the setup time. 

Operation-operation mapping MOO can be expressed as (8), where S denotes the total number of 

operations, and can be calculated by (9). Any element OOi,j represents the switching time from ith to 

jth operation. 

, *[ ]OO i j S SM OO           (8) 
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1

n

ii
S n


           (9) 

The occurrence of resources in parallel is common in the actual systems. Therefore, it is 

important to figure out if the resources can perform the same functions. Resource-resource mapping 

MRR can be formulated by a matrix, in which any element RRi,j represents the substitution efficiency 

of the corresponding two resources, specifically, RRi,j equals the ratio of the time spent on the ith 

resource to the jth resource. 

, *[ ]RR i m mjM RR          (10) 

Most scheduling problems can be described under the framework of GSO, including OSSP.  

Om||Cmax can be obtained from the GSO under these constraints: (1) the resource set R is made up of 

m unrelated resources, that is, no resource can be replaced by any other resource, thus, MRR is an unit 

matrix; (2) the job set J is made up of n jobs, and the release date RD of any task is set to zero, 

regardless of the due date DD; (3) each job Ji is composed of m operations to be processed, and its 

kth operation k

iO  needs to be processed for k

it  unit time on the kth resource. Thus, { }k

ifix k and 

1k

isize   for all i and k; (4) MOR is consistent with the above expression; (5) all setup times are 

assumed to be zero, so MOO is zero matrix. When the release date of the ith job rdi is set as ri, the 

problem is converted into Om|rj|Cmax. 

3. Complex scheduling network model for OSSP 

Under the framework of GSO, most scheduling problems can be easily transformed into 

complex scheduling network models. The complex scheduling network G can be represented by a 

triad G= (V, L, UR), where V denotes the set of nodes, L denotes the set of edges, and UR denotes the 

set of network update rules. 

 

Figure 2. A complex scheduling network model for OSSP with 6 jobs and 6 machines. 
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As shown in Figure 2, in the complex scheduling network model for OSSP, a node k

iO  

represents the kth operation of the ith job, assigned two variables respectively representing the 

required processing time k

it , and the release date rdi. Every edge represents mutually exclusive 

timing constraint between two operations. Specifically, since any two operations of the same job 

can’t be processed simultaneously, an edge will link any pair of nodes of the same job ( k

iO and l

iO ). 

Similarly, since a resource can only be used for processing one operation at a time, an edge will link 

any pair of nodes that require the same resource ( k

iO and k

jO ). Then the problem can be formulated as: 

how to arrange the node traversal order so that all the nodes in the network can be traversed as 

quickly as possible, on condition that each node has a traversal time, and only the disconnected 

nodes can be traversed simultaneously. 

As is known to us all, the network update rules UR can be divided into two parts. One part is 

growth rule (GR), and the other part is cutting rule (CR). GR controls the increase of network nodes 

and edges caused by the dynamic arrival of jobs, and CR determines the disappearance of network 

nodes and edges with the completion of operation. For Om|rj|Cmax, GR is predictable, but not 

fundamentally controllable. However, CR can be controlled to some extent by designing different 

scheduling algorithms. 

4. Complex network based dynamic rule selection approach 

Before presenting the complex network based dynamic rule selection approach, it is necessary 

to design several heuristic rules based on complex networks. The complex scheduling network model 

expresses the constraints between operations. Analysis of the topological features of complex 

networks helps simplify complex scheduling problems and inspire the design of heuristic rules based 

on complex networks. Given the fact that complex scheduling problems with different timing 

scheduling objectives can be congruously mapped to the node traversal problem on the complex 

scheduling network model, the general idea for generating complex network based heuristic rule is 

identical. The systematic heuristic rule generation approach based on network topological features 

can be divided into four steps:  

(1) Establish complex scheduling network model for given scheduling object; 

(2) Extract global features related to scheduling optimization objectives;  

(3) Structure local features related to global features;  

(4) Design heuristic rules based on the local features.  

Intuitively, the more mutually exclusive timing constraints between the nodes in a network, the 

stronger the coupling between nodes, and consequently, the lower the traversal efficiency, and vice 

versa. Therefore, one feasible approach is to prioritize nodes that can significantly reduce system 

coupling after removal. Given that network average degree and network average efficiency can 

distinctly reflect this coupling, local topological features such as degree and clustering coefficient 

can be used as heuristic information. Therefore, the Largest Degree first (LD) rule and the Smallest 

Cluster Coefficient first (SCC) rule can be employed. In addition, the time attributes of nodes can 

also provide heuristic information, especially for non-uniform complex scheduling networks. Hence, 
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the Longest Processing Time first (LPT) rule and the Shortest Processing Time first (SPT) rule are 

worthy of consideration. To combine the heuristic information from network topological features and 

time attributes of nodes, the Longest Total Remaining Processing on Adjacent Operations first 

(LTRPAO) rule and the Longest Total Remaining Processing on Other Machines first (LTRPOM) 

rule are developed. The effectiveness and performance of these six heuristic rules will be confirmed 

and compared in the experiments of Section 5. 

Previous studies have shown that any elevated performance of an algorithm over one class of 

problems is offset by its performance over another class [25], which means no single dispatching rule 

performs dominantly better than any other in all scheduling environments [26]. Thus, designing or 

improving heuristic rules may not be the best research direction for solving NP-hard scheduling 

problems. With the arrival of new jobs and the completion of the operation, the production status 

changes over time, therefore, it is necessary to select the appropriate scheduling rules dynamically 

based on real-time production status, involving the effectiveness evaluation and selection of 

scheduling rules. The principle of dynamic rule selection based on complex networks can be divided 

into the following three steps: 

(1) Calculate the attribute values of each node under different rules for each scenario.  

(2) Design an effectiveness evaluation scheme based on the distribution of attribute values of nodes 

under different rules.  

(3) Select the rule with the highest effectiveness as the rule in the current scenario. 

Since the local features of nodes reflect the status of nodes in the network, the differences of 

local features provide heuristic information [27,28]. The larger the differences, the better effect the 

heuristic rule may achieve. Therefore, a feasible scheduling rule effectiveness evaluation scheme is 

to evaluate the difference in node attribute values under different rules. Considering that the node 

attribute values of different rules have different magnitudes and only one node needs to be selected at 

a time according to one scheduling rule, the ratio of the attribute value of the optimal node to the 

attribute value of the suboptimal node under different rules can be used as the validity index of the 

rule. The proof experiment of the proposed complex network based dynamic rule selection approach 

is also presented in Section 5. 

5. Experiment results and discussion 

To investigate the effectiveness of the proposed heuristic rules based on complex network, and 

to check the feasibility of the proposed complex network based dynamic rule selection approach, two 

experiments are carried out, respectively. All the experiments are executed on R2017a Matlab, 8 GB 

RAM and i7 processor. 

5.1. Case study I: Heuristic rules for Om||Cmax  

In the first experiment, the open shop benchmarks from [29] are used to fully test the proposed 

heuristic rules based on complex networks, compared with the currently known optimal solution, and 

the chosen benchmarks are identical with the experiment in [30]. In order to verify whether the 

topology uniformity of the complex scheduling network has a significant impact on the performance 

of the rules, a carefully crafted set of test problems is generated for lack of the benchmark instances 

in the literature. To obtain the non-uniform open shop benchmarks with m jobs and m machines, the 
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number of operations that are randomly removed from each job of the above benchmarks is subject 

to a discrete power-law distribution [31,32], with the range from 1 to m-1. 

Table 1. Results of heuristic rules for Om||Cmax. 

Benchmark BKS LD SCC LPT SPT LTRPAO LTRPOM 

10×10
–1

 637 702 702 674 683 674 682 

10×10
–2

 588 629 629 658 624 639 626 

10×10
–3

 598 711 711 698 706 708 749 

10×10
–4

 577 690 690 668 680 689 710 

10×10
–5

 640 685 685 723 707 707 746 

10×10
–6

 538 668 668 666 660 665 678 

15×15
–1

 937 958 958 946 995 944 948 

15×15
–2

 918 998 998 1011 1013 981 1019 

15×15
–3

 871 1013 1013 933 933 905 925 

15×15
–4

 934 1064 1064 1055 1055 1063 1067 

15×15
–5

 946 978 978 973 1024 986 1012 

15×15
–6

 933 1043 1043 983 987 972 1009 

20×20
–1

 1155 1290 1290 1230 1234 1314 1252 

20×20
–2

 1241 1277 1277 1267 1316 1277 1287 

20×20
–3

 1257 1391 1391 1375 1366 1386 1398 

20×20
–4

 1248 1289 1289 1282 1340 1280 1337 

20×20
–5

 1256 1276 1276 1279 1286 1305 1293 

20×20
–6

 1204 1260 1260 1247 1254 1246 1251 

10×10
–1’

 - 632 631 634 671 650 664 

10×10
–2’

 - 527 574 562 579 533 543 

10×10
–3’

 - 650 669 646 668 650 655 

10×10
–4’

 - 584 605 622 591 615 609 

10×10
–5’

 - 639 665 692 651 670 659 

10×10
–6’

 - 661 660 660 660 693 662 

15×15
–1’

 - 923 883 909 911 908 908 

15×15
–2’

 - 996 970 965 975 992 976 

15×15
–3’

 - 898 855 870 854 861 869 

15×15
–4’

 - 1082 1047 1053 1059 1048 1073 

15×15
–5’

 - 938 895 927 901 928 969 

15×15
–6’

 - 925 972 909 942 916 917 

20×20
–1’

 - 1136 1144 1170 1135 1131 1155 

20×20
–2’

 - 1282 1303 1284 1262 1280 1279 

20×20
–3’

 - 1320 1306 1297 1303 1296 1321 

20×20
–4’

 - 1268 1260 1267 1309 1254 1280 

20×20
–5’

 - 1219 1187 1266 1233 1198 1214 

20×20
–6’

 - 1192 1233 1192 1202 1219 1190 

Total time(s) - 120.9 122.6 145.8 145.2 172.6 174.4 

After mapping open shop scheduling problem to complex scheduling network model,  
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Om||Cmax can be transformed into reasonably arranging the node traversal order with the goal of 

traversing all nodes in the network as quickly as possible. All the proposed heuristic rules (LD, SCC, 

LPT, SPT, LTRPOM and LTRPAO) are used separately for solving Om||Cmax. The results are listed in 

the Table 1, where the “BKS” is the best-known solution, “m × m
–k

” means the kth instance for the 

OSSP with m jobs and m machines and “m × m
–k

’’ is the instance generated by removing a part of 

the operations on the basis of “m × m
–k

”. 

From the above table, it is obvious that for uniform open shop scheduling problem, the 

consistent scheduling results are achieved by these two network topological features based heuristic 

rules: LD and SCC. The reasons are not hard to comprehend. (1) At the beginning, topological 

differences among nodes in the complex scheduling network for uniform Om||Cmax do not work; (2) 

In the subsequent scheduling process, the local attributes of the nodes to be selected are sufficiently 

similar, and LD is approximately equivalent to SCC, subject to (11). 

2*

*( 1)

i
i

i i

E
C

k k



         (11) 

In addition, heuristic rules involving local time attributes of nodes (LPT, SPT, LTRPAO and 

LTRPOM) obviously provide more heuristic information for uniform open shop scheduling problem. 

The results show that 16/18 best scheduling results are achieved by the heuristic rules involving local 

time attributes of nodes. Among them, LPT and LTRPAO perform best, the next does SPT, and the 

worst does LTRPOM. Both LPT and LTRPAO obtain 7/18 best scheduling schemes.  

For non-uniform open shop scheduling problem, the running results of LD and SCC are no 

longer consistent, since different initial processing nodes are selected. Once the initial traversal nodes 

are different, the network will evolve in a significantly different direction. However, SCC becomes 

the best scheduling rule, and achieves 6/18 best scheduling schemes. It can be concluded that the 

effectiveness of heuristic rules based on the network topological features is greatly influenced by the 

non-uniformity of the initial complex network topology. The higher the non-uniformity, the better the 

scheduling effect, and vice versa. The performance of other heuristic rules is basically consistent 

with that of the uniform open shop scheduling problem. Specifically, LPT performs the best, 

followed by LTRPAO and SPT, and LTRPOM exhibits worst performance.  

As outlined in Table 1, in terms of the computational speed, heuristic rules based on topological 

features have a slight advantage over the heuristic rules involving local time attributes. But all of 

them can meet the real-time requirements. In all experiments, the closest result to the best-known 

solution is obtained by LTRPAO rule on benchmark 15 × 15
–1

, and the Gantt chart is shown in Figure 

3. 
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Figure 3. Gantt chart for benchmark 15 ×15
–1

 obtained by LTRPAO. 

5.2. Case study II: Dynamic rule selection approach for Om|rj|Cmax  

The first experiment illustrates the effectiveness of proposed heuristic rules based on complex 

networks. To further study the feasibility and effect of the proposed dynamic rule selection approach 

for open shop scheduling problem with release dates, a carefully crafted set of test problems is 

generated for the lack of benchmark instances in the literature for Om|rj|Cmax. In the benchmark 

instances, the processing time of each operation on the corresponding machine can vary within a 

range of 20–99, and the arrival time interval of two adjacent jobs can fluctuate within a range of 

10–50. Based on the idea of dynamic rule selection approach, five new algorithms selected from 

different sets of heuristic rules are proposed, named DRSA1–DRSA5, respectively. The first one is 

selected from LPT, SPT, LTRPAO and LTRPOM, and the second to fifth algorithms are obtained by 

the first algorithm to remove separately LTRPOM, LTRPAO, SPT and LPT. 

In Table 2, “m × m
–k

” instance means the kth case for the OSSP with m jobs and m machines at 

the beginning, and then another m jobs will arrive at random. Besides, the lower boundary ‘LB’ can 

be calculated roughly by the following formula: 

1 11 2
max(max ,max )

m mk k

i i ik ki Set i Set
LB t t rt

  
          (12) 

where Set1 denotes a set of jobs at the beginning, Set2 denotes a set of jobs arriving successively and 

m is the number of machines. 

As seen in Table 2, for uniform open shop scheduling problem with release dates, LD and SCC 

can still achieve the same scheduling results. Besides, it is clear that LPT rule is still the 
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best-performing scheduling rule, but LTRPOM rule defeats LTRPAO rule. Satisfyingly, 

DRSA1–DRSA5 achieve similar performance compared with other single heuristic rules on all the 

benchmarks, and obtains better schemes than any single heuristic rules on the 8/18 benchmarks. 

Specially, DRSA5 achieves better results than that of any single heuristic rule on six benchmarks (10 

× 10
–3

, 10 × 10
–5

, 15 × 15
–2

, 15 × 15
–5

, 15 × 15
–6

 and 20 × 20
–2

). And all the five dynamic rule 

selection approaches can obtain better results than that of any single heuristic rule on 15 × 15
–5

. The 

Gantt chart of best approximate scheme achieved by DRSA5 on benchmark 15 × 15
–5

 is shown in 

Figure 4. Compared with Figure 3, it appears that the result in Figure 5 is much more compact at the 

beginning. The main reason is that there are many jobs that can be processed at the beginning, due to 

the dynamic arrival of jobs. 

The experimental results adequately demonstrate the feasibility and necessity of the proposed 

complex network based dynamic rule selection approach.  

 

Figure 4. Gantt chart for benchmark ‘15 × 15
–5

’ obtained by DRSA5. 
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Table 2. Scheduling results of proposed complex network based dynamic rule selection approach for Om|rj|Cmax. 

Benchmark LB LD SCC LPT SPT LTRPAO LTRPOM DRSA1 DRSA2 DRSA3 DRSA4 DRSA5 

10×10
–1

 984.3 1382 1382 1410 1409 1436 1397 1421 1434 1397 1405 1427 

10×10
–2

 933 1447 1447 1452 1489 1480 1429 1458 1453 1458 1427 1446 

10×10
–3

 949.6 1452 1452 1443 1432 1483 1461.4 1485 1442 1421 1453 1427 

10×10
–4

 1060 1588 1588 1569 1598 1570 1516 1548 1572 1548 1610 1598 

10×10
–5

 927 1418 1418 1436 1433 1418.6 1404 1396.6 1438.6 1408 1396.6 1401 

10×10
–6

 919.2 1429 1429 1406 1494.7 1421 1430 1454 1450 1425 1421 1430 

15×15
–1

 1471.9 2193 2193 2231 2159 2234 2217 2230 2196 2238 2204 2216 

15×15
–2

 1463.3 2225 2225 2206 2188 2256 2207 2255 2218 2255 2204 2171 

15×15
–3

 1342.5 2030 2030 2130 2101 2045 2100 2083 2065 2049 2076 2039 

15×15
–4

 1161.2 2083 2083 2005 2039 2026 2043 2064 2096 2039.1 2047 2029 

15×15
–5

 1379.1 2194 2194 2227 2204 2199 2199 2162 2175 2162 2168.1 2155 

15×15
–6

 1311.5 2058 2058 2085 2068 2117 2075 2088 2053 2088 2079 2049 

20×20
–1

 1912.6 2946 2946 2892 2927 2968 2948 2932 2944 2903 2904 2897 

20×20
–2

 1842.9 2890 2890 2879 2877 2925 2888 2910 2867 2904 2896 2861 

20×20
–3

 1797.4 2719 2719 2690 2723 2725 2737 2729 2714 2704 2725 2717 

20×20
–4

 1800.4 2764 2764 2737 2757 2764 2776 2762 2753.2 2771 2781 2787 

20×20
–5

 2001.9 2981 2981 2952 2936 2947 2961 2944 2990 2933 2949 2986 

20×20
–6

 1906.9 2906 2906 2868 2954 2957 2894 2898 2931 2909 3000 2973 

Total time (s) - 1819.2 1783.1 1893.8 1785.9 1901.3 1919.9 1808.1 1792.4 1796.4 1804.4 1804.4 
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6. Conclusion and future work 

This study has dealt with open shop scheduling problems. Firstly, the framework of general 

scheduling object is built, under which most scheduling problems can be described, and open shop 

scheduling problem has no exception. Secondly, open shop scheduling problem is mapped to 

complex scheduling network model, in which one node denotes one operation of one job and one 

edge represents mutually exclusive timing constraint between two operations. By this means, OSSP 

can be transformed into reasonably arranging the node traversal order with the goal of traversing all 

nodes in the network as quickly as possible, on condition that each node has a traversal time, and 

only the disconnected nodes can be traversed simultaneously. Then from the perspective of 

decoupling complex scheduling networks, based on topological features, two heuristic rules (LD and 

SCC) are established. Given that local time attributes of nodes can also provide heuristic information, 

LPT and SPT are employed. Next, two heuristic rules (LTRPAO and LTRPOM) are developed to 

combine network topological features with local time attributes of nodes. Finally, an effective 

complex network based dynamic rule selection approach is proposed for open shop scheduling 

problem with release dates by switching the scheduling rules dynamically based on real-time 

production status. 

For uniform Om||Cmax and Om|rj|Cmax, heuristic rules based on topological features obtain same 

scheduling results. Moreover, heuristic rules involving local time attributes of nodes (LPT, SPT, 

LTRPAO and LTRPOM) provide more heuristic information and achieve better scheduling results on 

the most benchmarks. For non-uniform Om||Cmax, LCC becomes the best scheduling rule and 

achieves 6/18 best scheduling results. Based on the idea of dynamic rule selection approach, 

DRSA1~DRSA5 are designed to change the scheduling rules dynamically based on real-time 

production status. They achieve similar performances compared with other single heuristic rules on 

all the benchmarks. Besides, they achieve better results than that of any single rule on the 8/18 

benchmarks. The feasibility and necessity of the proposed complex networks based dynamic rule 

selection approach is confirmed. Future work is still needed to design more effective heuristic rules 

based on topological features or local time attributes of nodes for different scheduling objectives, and 

further study complex networks based dynamic rule selection mechanism for each scheduling 

decision scenario. 
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