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Abstract: The motivation for the research reported in this paper comes from modeling the spread
of vector-borne virus diseases. To study the role of the host versus vector dynamics and their interac-
tion we use the susceptible-infected-removed (SIR) host model and the susceptible-infected (SI) vector
model. When the vector dynamical processes occur at a faster scale than those in the host-epidemics
dynamics, we can use a time-scale argument to reduce the dimension of the model. This is often imple-
mented as a quasi steady-state assumption (Qssa) where the slow varying variable is set at equilibrium
and an oDE equation is replaced by an algebraic equation. Singular perturbation theory will appear
to be a useful tool to perform this derivation. An asymptotic expansion in the small parameter that
represents the ratio of the two time scales for the dynamics of the host and vector is obtained using
an invariant manifold equation. In the case of a susceptible-infected-susceptible (SIS) host model this
algebraic equation is a hyperbolic relationship modeling a saturated incidence rate. This is similar to
the Holling type II functional response (Ecology) and the Michaelis-Menten kinetics (Biochemistry).
We calculate the value for the force of infection leading to an endemic situation by performing a bifur-
cation analysis. The effect of seasonality is studied where the force of infection changes sinusoidally
to model the annual fluctuations of the vector population. The resulting non-autonomous system is
studied in the same way as the autonomous system using bifurcation analysis.

Keywords: asymptotic expansions; epidemic models; seasonally-forced models; quasi steady state
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1. Introduction

The spread of the vector-borne dengue fever in a human population has been studied in many papers:
we mention a family of three nested multi-strain compartmental SIR type models analyzed in [1-4].
In [3] a realistic description of recorded disease incidents was produced. However, in these models the
vector dynamics was taken into account by assuming that the size of the infected vector population is
proportional to the infected human-host population.

On the other hand, the analysis of [5] shows that an increased degree of personal protection and vec-
tor control are effective control measures in dengue-endemic areas. This leads to the conclusion that in
order to study the effects of vector-mosquito control an accurate vector population model together with
a human-host population model describing the multiple-strain virus outbreaks and spread is required.

In [6-8] the epidemics of the vectors is modeled explicitly by adding to a model similar to those
in [1-3] extra compartments for the vector epidemics without taking ecological processes into account.
The dynamics of the epidemics of the vector is directly related to ecological processes during the very
complex life-cycle with four stages: egg (embryo), larva, pupa (embryo) (in the water phase) and
imago (adult). Furthermore the numbers of healthy and infected vector individuals will change due to
epidemiological processes such as the spread of the disease in the host. The combination of the vector
and the host model results then in an eco-epidemiology model where two scientific fields are combined
to study ecological and epidemiological issues simultaneously.

The formulation and analyses of such a complicated model and its analysis based almost completely
on numerical simulations is beyond the scope of this paper. In the vector-host epidemic model ana-
lyzed in this paper we couple a simplified dengue-fever model for the host population based on [3]
with a simplified model for the mosquito vector population [9]. This is done in order to gain insight
into the effects of the vector dynamics on the host dynamics, especially when the time-scale of the
vector population is much faster than that of the host. In [9] it was investigated how far the fast time
scale of the mosquito epidemiology can be slaved by the slower human epidemiology, so that for the
understanding of human disease data mainly the dynamics of the human time scale is essential because
it will be only slightly perturbed by the mosquito dynamics. Useful and realistic parameter values for
the dengue fever case from [3] were used. It was concluded that owing to the faster vector dynamics it
is slaved by the slower dynamics of the hosts.

Mathematically the central manifold approximation in was used [9] to improve the quasi-steady-
state assumption (QssA) results, see also [10]. Here we use the geometric singular perturbation method
where asymptotic expansions give a better approximation when the time-scale difference is moderate,
see also [10].

The change from the disease-free into the endemic state of the population under variation of the
force of infection parameter is studied in the context of bifurcation theory. Instead of the threshold
value for the force of infection where the basic reproduction number equals one, Ry = 1 we calculate
this value by performing a bifurcation analysis. In this case an eigenvalue of the Jacobian matrix
evaluated at an equilibrium of the autonomous system is zero.

Besides time-scale separation, another important issue is the effect of seasonality. In [11, 12] sea-
sonality in a model similar to the one in [9] is studied. In [13] it is concluded that assuming parameter
stationarity in systems with approximate stationarity in disease incidence is unjustified and may result
in missed opportunities to understand the drivers of disease variability. The effect of seasonality is
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studied where the force of infection changes sinusoidally in time, modeling the annual fluctuations
of the presence of the vector. The resulting non-autonomous system is studied in the same way as
the autonomous system whereby equilibria are replaced by limit cycles and eigenvalues by Floquet
multipliers.

2. Description of the models

In [9, Sec. 3] an elementary susceptible-infected-removed SIR model for the host where host indi-
viduals start off susceptible, at some stage catch the disease, and after a short infectious period become
permanently immune, is coupled with also a minimal susceptible-infected SI model for the vector,
where mosquito-vectors start off susceptible, at some stage catch the disease and remain infected for
the duration of their lifetime. The resulting model is called the SIRUV model.

This simple model is formulated to study the effects of the difference in the time scales of the
epidemics in the host population and in the vector population. The total human population is denoted
N =S + I+ R, assumed to be constant. The compartments of the model are formed by susceptible S,
infected I and recovered R, all non-negative. The total vector population is denoted by M = U + V
where U and V are the susceptible and infected disease vectors.

s B dl B dR
- = _ N— _— = — — I = I— R
7 MSV"‘,U( S), o MSV (y+wl, =Yk
du ) dav ¢

E——NUI-FV(M—U), E—NUI—VV.

The law of mass action is assumed to model random encounters between vector and host. This model
can be reduced to an equivalent three-dimensional model:

as B

— = MSV+,u(N S), (2.1a)
dl B

av. o

— = N(M - WI-vV. (2.1¢)

In order to analyze this model in more detail a simplified model was formulated with a two-
dimensional equivalent model [9, Sec. 2]. In this model the SIR model for the host is replaced by
a SIS model where host individuals start off susceptible, at some stage catch the disease, and after a
short infectious period become susceptible again (no protective immunity), called SISUV model, where
v = 0: that is, it assumes no recovery compartment and allows the infected hosts after successfully
defeating the disease to re-enter immediately into the compartment of the susceptible:

ds B dl B

— =-LSV+ul, —==(N-DV-ul, 2.2
T el R P Vi A (22
du J av. ¢

E——N(M—V)I'FVV, E—N(M—V)I—VV

Note that assuming y = 0 turns the model (2.1) into (2.2), which is an SI model with no recovery,
although formally it appears as if it were indeed an SIS model with the birth/death rate u playing the
role of the recovery rate.
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Alternatively, using the constant host and vector populations, we obtain:

dal B
== M(N - DV —ul, (2.3a)
av o

3. Singular perturbation problem

In this work the geometric singular perturbation technique is used to analyze the SIRUV model
(2.1) and the SISUV model (2.3). We will also analyze the quasi-steady state solutions. The reader is
referred to [14, 15] for introductions into perturbation analysis and [16] for an illustrative application
to the Rosenzweig-MacArthur predator-prey model [17, 18].

We start with a short overview of singular perturbation technique. Singular perturbation theory
deals with systems whose solutions evolve on different time scales whose ratio is characterized by a
small parameter € > 0. When & <« 1 the system is a fast-slow system. For instance, in our epidemic
models (2.1-2.3) the mosquito-vector dynamics occurs at a much faster time scale than the human-host
dynamics. To set (2.3) as an illustration to this approach, the original equations can be rewritten in the
form

dl (B
- =e8(Vil.e) = S(M(N—I)V—,ul) : (3.1a)
av 9

I =f(V,l,e) = N(M—V)I—VV. (3.1b)

With € = 0 we have the fast system also called the layer system:

dv 9 dl

— = f(V,1(0),0) = =M -WV)I0)-vV, —=0. 32
7 f(V,1(0),0) ! () —v 7 (3.2a)
The infected host population remains constant, so that the trajectories are the vertical lines in Figure 1.
With a change of time-scale 7 = f for system (2.3), where the resulting system with € < 1 is named

the slow system:

dl 8
= = Le)=e|=WN-DV—-pul
oo = eg(V.1,e) s@fN W u),
dv 9
SE—f(V,I,S)—N(M—V)I—VV.

After substitution of € = 0 we get:

IM
0=fWV,1,0), V=—F, (3.3)
I+
dl B
— =gV, 1,0O) = =(N-DV —ul . 3.3b
o7 =& ) =34 W —p (3.3b)

This differential algebraic equation (paE) is called the reduced system. The trajectory is a part of the
f-nullcline of the original SISUV-system (2.3) shown in Figure 1. However, in the fast-slow context
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Figure 1. Phase-space plot of system (2.3) describing the SISUV model with the parameter
values of Table 1. The solid line is the trajectory starting at the point O where I = 100,
V = 3500. The dotted curve is the nullcline f(V,1,0) = 0 and the dashed curve the nullcline

g(V,1,0) = 0.

this is a set of equilibria of the fast layer-system (3.2), called critical manifold, in which V acts as a

parameter.

These heuristic results suggest the following approach for dealing with the two different time scales.
The first step consists in setting € = 0, which gives the set of fast equilibria of the fast system (3.2)
yielding the algebraic equation (3.3a). This is the critical manifold, namely the set of equilibria on the

hyperbola f(V,1,0) = 0.

With a good hypothesis (see below for the details) the hyperbola f(V,1,0) = 0 is equivalent to
I = g(V) and we can substitute I by g(V) in equation (3.3b). The result is the slow or reduced-system:

vyNV

I=qgV)= —— .

q(V) S —V)
Using (3.3b) and the chain rule

dl dg dV
— = V)) = —L -~
ar gV, q(V)) TV dr

from (3.4) we get formally:

v 5WN-g)V-pq(V)  dq  vNM

dr dq/dV AV M-V

(3.4)

(3.5)
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For the case 0 < € < 1, we follow the geometric singular perturbation technique. Let us consider
system (2.3) again. For € = 0 the f-nullcline, see Figure 1, the set

{(V,D|f(V,1,0) =0,V 20,1 > 0} (3.6)
consists of the critical manifold
vVN
=q(V.Dl=————, 0<V<MOLI<N;. 3.7
M {( W= o= } (3.7)

M forms a set of equilibria of the fast system (3.2).

We assume that the critical manifold M is normally hyperbolic. Then Fenichel’s theorem [15,19,20]
states that there exists & such that for 0 < & < &, there are locally invariant manifolds M,. Using its
invariance, the perturbed manifold M, can be approximated by asymptotic expansions in €. With good
hypothesis it can be described as a graph

{(V,DII = q(V,&),0<V<MO0<I<N}.

This manifold is invariant when the following equality holds

dal _oldvV _ 9q(V.e)dV
dr  0Vdr 0V dr’

which yields with Eq (3.1) and I = ¢(V, &) the invariance equation for the SISUV model:

dq(V, )
ov

9
(ﬁuw ~V)q(V.e) - vV) - a(%(zv — gV, e)V - uq(V, a)) . (3.8)

Later we will furthermore assume that also the inverse of function g(V) = I exists, denoted by p(I) =
g '(I) = V(I). That is, besides the implicit function theorem also the inverse function theorem holds in
region of the (V, I) plane we are interested in.

4. Analysis of the SISUV model

The two-dimensional model is given in (3.1). There is a trivial, disease-free equilibrium I° =
0,V® =0and S° = N and an interior, endemic equilibrium given by:

I :Nﬁﬁ—ﬂv T Mﬂﬁ—yv .
(u+p0 Blv+ 1)
The biologically relevant domain for (2.3) is Q = {(/,V)|0 < I < N,0 < V < M}. Following [21,
Lemma 2.1], one can demonstrate that € is positively invariant under (2.3). The details are not shown
here.

Since the system is two-dimensional we calculate the determinant and trace of the Jacobian evalu-
ated at the equilibria, [22]. The trace and the determinant of the 2 X 2 Jacobian matrix J read

4.1

Tr J = e(-BV/M — ) — 9I/N — v, (4.2a)
der] = Ly =BON + 198 A; A;;))M + NVB( + 0 (42b)
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At the trivial equilibrium we have the following stability properties. Evaluated at this equilibrium
the trace and the determinant read:

TrJ=—-(eu+v), detJ=e(u—-p9). 4.3)

Note that the N and M do not appear in these expressions, but only the force of infections S, ¢ and
the birth and death rates u, v of host and vector respectively are present. The trace Tr J < 0 is always
negative. For the reference values given in Table 1 we have = 2u and ¢ = 2v. Then the determinant
is negative:

detJ = e(uv — 4uv) = -3euv < 0. 4.4)

Hence, the Routh-Hurwitz criterion shows the instability of the trivial equilibrium.
At the interior point given by Eq (4.1) we have

yu — B L YH- o1
v+ u+p
The determinant has just the opposite value of the trivial equilibrium. It changes sign when uv = gi.

At this point both equilibria coincide and the trace Tr J < 0 is again negative. This means that we have
detJ = O at the transcritical bifurcation 7C given by

TI‘JZE( -v, detJ=—-e(u—-p9). 4.5)

p=" (4.6)

For values of the parameter 8 above this point we have detJ > 0 and the interior equilibrium Eq (4.1)
is asymptotically stable.

In the epidemiological literature the basic reproduction number R, represents the number of sec-
ondary cases one case generates on average over the course of its infectious period in an otherwise
uninfected population [23,24]. R, equals one at the 7C-point.

4.1. Quasi-steady state assumption
The @ssa equilibrium is calculated, assuming € = 0, from Eq (2.3b)

MI

Vissa = = - 4.7
BTN+ 1 @

This means that the fast variable V changes instantaneously to this value and we substitute this equi-
librium value Vi, in Eq (2.3a) yielding:

dl
5 BN =D

y ul (4.8)

YN/ +1
After I(z) is calculated by solving the single ope Eq (2.3) and thereafter Eq (4.7) gives V().

Hence, the time-scale argument gives a further reduction to an equivalent one-dimensional model.
When we use the zero-order approximation we got the classical Qssa assumption. Then we finally
get using Eq (3.3) the single opk for the SISUV-system with large time-scale differences between the
host and the vector for the infected host population. Observe that in this one-dimensional version the
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parameters v, © from the vector modeling are present in the hyperbolic expression but not the size of the
vector population M. This hyperbolic expression models a saturated incidence rate. It resembles the
Holling type II functional response well known in predator-prey models. In ecology the quantity Nv/¢
is called the half-saturation constant. A mechanistic derivation is obtained when besides searching
time also handling time of the predator to digest a prey individual is introduced. In biochemistry,
Michaelis-Menten kinetics is one of the best-known models of enzyme kinetics. Then the reaction
rate is an hyperbolic expression in the substrate concentration. The Michaelis constant is again the
substrate concentration at which the reaction rate is half of the maximum rate at abundant substrate. In
the epidemiological literature it has also been considered to describe the infection mechanism with a
saturated incidence rate [25-28].

Motivated by Holling’s derivation it is tempting to follow a similar approach in to obtain the hy-
perbolic expression in epidemics. In [24, p.155 and p.277-280] it is argued why this is impossible.
Namely, it is due to the fact that in the ecological predator-prey setting the two populations are treated
independently, whereas in the epidemiology there is one population in which the individuals can reside
in two states, namely susceptible and infective.

Interestingly for a vector-borne disease we have here a simple mechanistic formulation where, as in
the derivation of the Holling type II, a time-scale argument plays a crucial role.

4.2. Asymptotic expansion for the SISUV model

The following asymptotic expansion in 0 < € < 1 is introduced:
I(V) = q(V,&) = qo(V) + equ(V) + Eqa(V) + ..., (4.9)

hence

dq dqgy dqn
99 _ 490 L 292 4.10
ov _av fav T fav T (4.10)

Substitution into the invariance equation (3.8) gives

d d d
(ﬂ L4 2dar

)
dav = dv av ) (N(M —W(qo(V) + eqi(V) + €2qo(V) +...) — vV)

= oLV = @)+ 6010 + V) + DV = lgoV) + e (V) + SV ) @

Gathering zero orders of € and assuming V > 0 results in the following formula, accurate of order

O(1):

qu )
— | =M - V)qo(V) =vV|[=0,
dV(N( )qo(V) —v

and this gives

YNV dqo vNM

YV =500-v) av T awi-vy

(4.12)
which are Eq (3.4) and Eq (3.5), respectively.
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Gathering the first orders of € and assuming V > 0 results in the following formula, accurate of
order O(1):

dC]l
dv

_ %(N — go(V)V = pgo(V) .

) dqo
( (M = V)qo(V) — VV) + WN(M Vg, (V)

or using Eq (4.12)

q 19 vNV vNM
B E N vyNV _ vNV
m\" Tem—v)) T Fem—vy’
or, further
dg, vM _B (g NV Yy, NV
—(VV VV)+M VC]1(V)— M(N ﬁ(M—V)) 'uﬁ(M—V) ’
or, finally:
NV
=l r-v-30)- 55

In order to get the slow dynamics along this curve we can solve the opg for the reduced one-
dimensional system

dl
— = BN = Dp(D) - uI (4.14)

where p(I) =g '(I) =V

Alternatively the same asymptotic expansion procedure as for I = g(V, ¢) yielding Eq (4.9) can be
used for p(I, €). The results are not shown here.

5. Analysis of the SIRUV model

We recall the three-dimensional SIRUV model (2.1)

S
= e(S.LV) = g(—%svw(zv— S)) , (5.1a)
j— =g (5,1, V)ZS(ESV—(’)/+,U)I) , (5.1b)
‘Z—V = £(S,1,V) = —(M W =vV . (5.1¢)

There is a trivial equilibrium S° = N, I° = 0, V? = 0 and an interior equilibrium (whenever v(u + y) <
JB) given by:

v(y + ) + pd I Nﬁﬂ—vwﬂt) . Mﬁﬂ—vww)

ST = , = , = ,
W+ ) K V(B + )y + ) K B (y + p) + ud)

(5.2)
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and furthermore R* =N - (S*+[Hand U* = M — V*.

The biologically relevant domain for (2.1) is Q = {(S,I,V)[0 < S +1 < N,0 < § < N,0 <
I < N,0 <V < M}. Following [21, Lemma 2.1], one can demonstrate that Q is positively invariant
under (2.1). The details are not shown here.

Theorem 1. When the interior equilibrium (5.2) exists, it is locally asymptotically stable and a spiral
as long as u is sufficiently small.

Proof. We provide the proof for the reference values 8 = 2y, = 2v in Table 1. The Jacobian computed
at the interior equilibrium gives a characteristic polynomial

J() = 2y + 99 u + 10y* + 3uH)A°
+ 2y + 1990 + 2vy° + 35y + 12vyPu + 23y + 18vy® + SuhHA?
+ a8y + 24y u + 11vy? + 26y% 1% + 39vy?u + 1293 + 1Tvy® + 2u* = 3vi®)A
+uv(6y* +25y°u + 21y%u* -y’ - 3ut)

Since u 1s the smallest parameter in the coefficients of J, all coefficients are positive and Descartes’
rule of signs shows that J has no positive real roots. Similarly, because vy is the dominant parameter,
the coeflicient of A% is the largest with respect to those of A* and A, hence, the local extrema of J are
both negative. A result on the geometric interpretation of the complex conjugate roots of a cubic [29],
shows that these have negative real parts. Therefore, the interior equilibrium (S*, I*, V*) is a spiral. O

For the reference parameter values, the slow variables S, I enslave the fast variables V (Figure 2).
There is rapid approach to the locus (V*(S), I*(S)) shown by the dotted line and fast switching between
values near the origin and the interior equilibria.

5.1. Singular perturbation of SIRUV model

Applying the singular perturbation technique for the SIRUV model (5.1) is now more complicated
than for the SISUV model (3.1). The slow manifold is in this case two-dimensional. Using the time-
scale argument similar as for Eq (3.3) we get for &€ = 0 the two-dimensional f-nullspace, the set

{(V(S,DIg:(S,V,.) =0, g5,V,)=0,0<V<MO0<S,0<1I, S+I<Nj} (5.3)

which is the critical manifold M of the system (2.1) with

ds B dl B

— =g VL) =——=SV+uiN-5), —=gWV,I1,0)0==SV-(y+wl. 5.4

7 gi( ) ’ H( ) o & ) i (y + ) (5.4)
In case of the SIRUV model, using the qssa approach with & = 0, the two-dimensional slow mani-

fold is
vyNV
={0<S,I=———|IS+I<N, 0V <M} 5.5
M=1{0< =V ) (5.5)
Note that apparently / grows unbounded when V. — M~. But this is in fact prevented by the constraint
I < N, see (5.3). The system (5.4) with V = #ﬁlﬂ from (5.5) is the reduced-system. This hyperbolic
expression for V(S, I) with saturation with respect to V' is the same as that for V() in the SISUV model

(4.12).
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Figure 2. The projection of the phase-space result for system (2.1) describing the SIRUV
model with parameter values in Table 1 in the (/, V) space. The dashed-curve is the surface
in which the dynamics takes place in the @ssa case. The equilibrium point is shown as ‘e’.

5.2. Host-only model

It is interesting to compare model (2.1) with the simplest host-only model where the vector dynam-
ics is taken into account implicitly, and where contact rates between the host individuals are described
by the law of mass action. To this end we use the linearized version of the inverse of the expression
I = Gy, namely V = 7 at its origin, see also the ossa assumption (4.7). This gives for the
hidden infected vector population size V:

M
Vi =—1. 5.6
QssA = (5.6)
and the host-only model:
ds B dl  po dR
— =—-—51 N-8), —==—78I- I, —=vyl—-uR, 5.7
o= oS ). =N (y + ) o - (5.7

This version can be considered as a simplified version of the model formulated and analyzed in [3]
when the size of the infected vector population is proportional to the infected host population.

5.3. Singular perturbation analysis SIRUV model

The algebraic expression (5.5) for the two-dimensional slow manifold M for the infected host
population size I(V) where € = 0 is the same as given in Eq (3.4) and there are no restrictions for
the susceptible population size. Hence, unlike in the SISUV case we can at most express the fast
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variable V in terms of the slow variables. The statement of Fenichel’s theorem [15, 19, 20] under the
condition that the critical manifold M is normally hyperbolic is as follows. There exists &, such that
for 0 < & < &y, there are locally invariant manifolds M,. Using its invariance, the perturbed manifold
M, can be approximated by asymptotic expansions in &.

The invariance equation is similar to (3.8) as follows

dv _9vdS avdl

dr T asdr T ardn ©8)
where ‘fl—i and fl—i are given in (5.4). With V(S,1) = p(S, 1, &) we get
dp(S,I,s)_8p(S,I,s)d_S+8p(S,I,s)ﬂ (5.9)
dr 0S5 dr ol dr’ '
5.4. Asymptotic expansion for the SIRUV model
The following asymptotic expansion in 0 < £ < 1 is now introduced:
V(S,D) = p(S.1,8) = po(S, D) + ep1(S, D) + & pa(S, D + ..., (5.10)
hence
dp(S,1,e) OpodS Opodl op,dS Jdp,dl
——=— M-V =—-——+ —— —_——t —— A1
dr NM ==V = o e Yo ar T\ es @ Far ax) t 1D
Substituting into the invariance equation (5.8) leads to
?
N(M = po(S, D) —epi(S, 1) — .. ) = v(po(S, D) + epi(S, D) +...) =
e%((—%S(pO(S,I) Fepi (S, D) +..)+ (N - S))+
0
PO (polS. )+ pa(S.1) . =+ ol o
opr, B op1 B
2 —_— — — —_— — p—
8(65( MSV+;1(N S)) + aI(MSV (y+D|+.... (5.12)

Gathering the zero orders of € and assuming V > 0 gives the following result with O(1) accuracy:

9
N(M_pO)I_VPO =0,

which in turn yields

MI opy dpo  MIVYN

U - 5.13
I+vE oS ol  (I9+ Nv)? (5.13)

po(S, 1) =

and this is the same expression we found for the SISUV model in (4.12). This is also the same as the
QssA result in (5.5).
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200
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Figure 3. Plots of the coefficients of first two terms in the asymptotic expansion for V =
p(S, 1, &) with € = 1/365. They show that up to O(g), the dynamics is confined to a tilted
surface in the S /V-space of the zero-order approximation.

Gathering the first orders of & results in the formula with accuracy O(1):

0
ﬁ(ﬁsms,n —(y +m1) .

0
——p(S,]) - S, 1) =
NPl( ) —vpi(S, 1) Vi

or, using (5.13),

Mv9ON? DAY
P, D) = - ( p

(O + vNy\II + vN _(y+“)1)' (5.14)

Taking only up to the first order terms into account, the reduced model is described by the two-
dimensional system (5.4) with V(S,I) given by the following asymptotic expansion up to the first
order:

V(S.,I)=p(S,1, &) = po(S,I) +epi(S,1), (5.15)

with po(S,I) obtained by (5.13) and p(S,I) by (5.14). The three-dimensional plot of py, ep; for the
reference parameter values with € = 1/365 is shown in Figure 3. The zero-order expression, the tilted
surface in the S 7V-space in the left panel, gives the reduced-system (5.4) where V(S,I) is described
by the zero-order asymptotic expansion (5.15). The size of the first-order term in the right panel shows
that the the contribution of the term is marginal. Numerical experiments show that the use of the first-
order term can be counterproductive already for £ > 1/365 and that spurious equilibria can occur when
the trajectory starts not close the the equilibrium.

5.5. Heuristic analysis of the SIRUV model

Here we present a heuristic analysis of the trajectory of system (2.1) in the two-dimensional slow
manifold. The §, I variables for the host population are slow while the variable of the vector population
V is fast. However, because the variable I does not appear in the differential equation for S, it would
be convenient to analyze the behavior of the fast V flow in the V/-system, assuming a fixed value of §.
For a value of the slow variable S = S, the VI-system reads as

dl B

—=8v- I 1
7 MSV u+ylI, (5.16a)
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dv 9
o N(M -WI-vV. (5.16b)

We consider the dynamics of V,I driven by system (5.16) with S acting as a parameter. Depend-

ing on the value of S, this system has either one or two equilibria: a trivial one {(0,0)} or a pair
{(0,0); (V*(§), I"(S))} with the interior equilibrium dependent on S given by

. S +7Y)N . +7y)N
1) =L (1—V('“ Y) ) , V*(S):M(l—u) . (5.17)
(u+7vy) I9BS 9BS
LetS, =" DN Tt is important to note that for biological relevance we have the constrains V() > 0

9B
and /(r) > 0 and that for § < §. both are negative in equilibrium. Furthermore, the transcritical

bifurcation is degenerate at S = S, because V = 0 and / = 0 at the same time.

Theorem 2. The biologically relevant domain of (5.16)is Q ={(V,DI0 <V <M, 0 <1 < (NB)/(u +
v)}. Given initial data in Q, the trivial equilibrium (0, 0) is the single local and global asymptotically
stable equilibrium of (5.16) when S < S ., and otherwise the interior equilibrium V*(S), I*(S) is locally
and globally asymptotically stable.

Proof. Denote by F the flow of the system (%V = f(,V), %I = g,(1,V)) defined by (5.16). It is
straightforward to verify that the boundary of Q is impenetrable from the interior under F so the
biologically relevant domain Q is positively invariant under F.

Consider first a fixed 0 < S < §,. To show local asymptotic stability of (0,0), examine the eigen-

values of its respective Jacobian
w Wty

Its characteristic polynomial is

988
H(ﬂo:12+<(u+y>+vm+<vw+y>—%x

which cannot have roots with positive real part.
Fix § > S.. To show local asymptotic stability of the interior equilibrium (V*(S), I*(S)), examine
the eigenvalues of its respective Jacobian

(_ 9BS (u+y)vM )
(utyN BS . (5.18)
BS
o —wuty)
Its characteristic polynomial is
9BS 9BS

which cannot have roots with positive real part.
To show the global behavior it is enough to exclude the possibility of a closed orbit in Q. It is
straightforward to verify that

. of 0 v
divF=—+ —=—-u-y-v-—=1<0, 5.20
MEww T TRV TN (5:20)
in Q, so Bendixson’s negative criterion [30, p. 329] shows that there is no limit cycle in Q, and all
trajectories starting inside {2 converge to the asymptotically stable equilibrium. O
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The phase portrait of the system (5.16) is shown in the Figure 4 for changing values of S. Observe
that the /-nullcline changes with §, but the V-nullcline is independent of S .

When § is increasing, the I-nullcline rotates counterclockwise and system (5.16) converges to the
interior equilibrium (Figure 4, left panel). When S drops beyond the threshold value S, the I-nullcline
rotates clockwise, leading to disappearance of the interior equilibrium, and system (5.16) converges to
the origin (Figure 4, right panel).

N N

dv/dt=0 - - - qv/dt=0 - - -
dI/dt =0 —I' dI/dt =0 —I'
1
7 1
Py [ Py l;
) ‘ )
~ 7 ~ //
0& 0 &
0 M 0 M
V(S) V(S)

Figure 4. The dependence of the nullclines of (5.16) on S. When S is increasing, the system
converges to the interior equilibrium (left panel), when § drops beyond the threshold value
%;”N, the interior equilibrium disappears and the system converges to the origin (right
panel). The globally asymptotically stable equilibria are shown as filled circles (‘e’), and the
unstable as empty circles (‘o’). Figure not drawn to scale.

To summarize, system (5.16) undergoes a bifurcation at § = S.. From the trivial branch
B, = {(§,0,0)0 < § < N} a second branch of interior equilibria B, = {(S, V*(§),I*§)IS > S}
emanates. Note that By consists of 2 parts with different stability properties: when § < S, B; is
locally asymptotically stable, and when § > S, B, is a saddle.

Next we characterize the dynamics of the slow variable S in terms of the fast variable V. As the
dependence of S is explicit on V in (2.1a), it is sufficient to consider the dynamics in the S V-plane.
Consider the locus of points {(S,V) : u(N - §) — Z%VS = 0} representing the S nullcline in the system
(2.1) (the dotted curve in Figure 5). First, for (S, V) below this curve, dS/dt is positive and the slow
flow is oriented to the right, and for (S, V) above this curve, dS/dt is negative and the slow flow is
oriented to the left.

However, when S crosses the critical value S, the dynamics in the VI plane will rapidly change
because of the reappearance or the disappearance of the interior equilibrium. The V() value will make
a large jump toward the globally asymptotically stable equilibrium of (5.16) (shown as continuous
solid line in Figure 5). This would be either an equilibrium in {(S,0,0) : § < §.} or in B, (fast V-flow
shown as long arrows).

Hence, after an initial fast convergence of (V, I) to the locus of equilibria (V*, I*), the slow variable
S will evolve monotonically (slow flow shown as short arrows) until the VI-system is destabilized and
switches between the trivial and interior equilibrium. This switching between the respective trivial and
interior equilibria in the V/-plane causes the direction of the slow flow to change sign, leading to S (¢)
spiraling slowly into the equilibrium (S, V*, I'") which we showed to be locally asymptotically stable.
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=
=

infected vectors (V)

o

susceptible hosts (.S)

Figure 5. Fast and slow flow in the S V-plane. The locus of fast equilibria V* is shown as solid
line (denoting locally asymptotically stable equilibria of (5.16)), or dashed line (denoting the
locally unstable unstable equilibria of (5.16)) while the dotted line represents the S -nullcline
in the system (2.1). The direction of the fast V-flow is shown by long arrows, while the
direction of the slow S-flow by short arrows. The interior equilibrium (S, V*) is shown by
‘e’. Figure not drawn to scale.

6. The role of seasonality

Seasonality is introduced in the non-seasonal, autonomous SIRUV-system by assuming that the
size of the vector population changes in a perfect sinusoidal way, this assumption being motivated
by dengue fever epidemiology [3]. The main motivation lies in being able to reproduce the observed
yearly or semiyearly, see [12], cycle in dengue incidences. Note that the cause of this yearly periodic
changes is outside our modeling approach but includes environmental conditions such as temperature
and rainfall.

The expression for the size of the vector population M(t), which is now time-dependent, reads

M(t) = My(1 + pcos(2nt)) . 6.1)

In [3], where no vector dynamics is modeled, the seasonality was introduced as a sinusoidal fluctuation
in the host infection rate (based on mass action contact between susceptible hosts S and infected
hosts I instead of susceptible hosts S and infected vectors V). The expression (6.1) for M, with the
expression for the infected host based infection rate given in (5.6), is consistent with the expression for
the infection rate used in [3].

In [12], it is shown that the amplitude of the forcing function does not have any substantial influence
on the system outcome if a steady state is attained, while simulations indicate that if an oscillatory
dynamics arises, the amplitude of the cycles is directly proportional to the one of the forcing function.

7. Numerical results
In this section we give numerical results of the analysis of the two models: the SISUV model of
Eq (2.3) and SIRUV model given by Eq (2.1). To be able to draw conclusions from the obtained

results realistic empirical parameter values for the studied eco-epidemiological problem are needed.
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The reference parameter values used in our study are given in Table 1, with M, = 10000, and taken
from [9], which are realistic for the dengue fever case. There is a yearly periodic solution with fixed
period equal to 1 year.

In order to apply a time-scale separation technique we have to decouple the three dimensional
SIRUV-system (2.1) or (5.1) with state variables S, /, V into one system for the host with state variables
S, I and one for the vector with state variable V where the rate of change for the vector is much faster
than the one for the host. The ratio of these two rates is defined as &.

This is most easily done for the SISUV-system (3.1) when we assume § = 2u and ¢ = 2v and
the ratio of the population rates is §/¢. For the SIRUV-S, 1,V system (5.1) the situation is more
complex. Here we need to decouple the host S, /-system (5.1a) and (5.1b) from the vector V-system
(5.1c) because V occurs on the right-hand side of system (5.1a) and (5.1b). To that end we can use the
Qssa expression (4.7) (effectively the € = 0 case). The dominant (real part of the) eigenvalues of the
Jacobian matrix evaluated at the equilibrium given by (5.2) are the two dominant system rates, given
by the return rates to the equilibrium.

With the reference parameter values from Table 1 the calculated time-scale ratio for the host/vector
system becomes € = —0.04228/ — 36.51614 = 0.00116. In [9] and in this paper the ratio of the life
expectancies u/v of the host and vector is used for the SISUV model giving € = 1/365 = 0.00274. In
the case of the SIRUV model we get even /v = 0.000421. Note that the three values differ by a factor
of approximately three and are therefore of the same order. For consistency we used the reference
ratio € = 1/365 = 0.00274 for both models as a natural reference ratio for the host/vector return to
equilibrium time-scales.

The small values justify that with the parameters values for Table 1 we can apply a time-scale

argument to reduce the full three dimensional S, I, V-system (5.1) to the two dimensional §, I-system
(5.1a) and (5.1b).

Table 1. List of state variables and parameters after [9]. Column A for SIRUV model (2.1)
or (5.1) and Column B for SISUV model (2.3) or (3.1) Dimensions: numbers [#] and time per
year y. For reference value of the ratio of the host and vector rates € we take §/9 = 1/365.

Par. Description Units A B

Host

N Host population size # 1000 1000

B Infection rate #y ! 730/7 0.2

7 Susceptible birth rate #y !l 1/65 0.1

% Recovery rate #y ' 365/7 n/a
Vector

M Vector population size # 10000 10000

J Infection rate #y ! 02x365 0.2x365
v Susceptible birth rate #y ! 0.1x365 0.1x365
Jo, Magnitude of sinusoidal fluctuation vectors — 0.9 n/a

Ty Period of system y 1 n/a
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7.1. SISUV model

The trajectory with the reference parameter setting and initial conditions I = 100,V = 3500 in
shown in Figure 1. From the initial values there is a fast phase where the variable / is almost constant.
This fast transient episode ends close to the nullcline f(V, 1, ) and the trajectory follows this slow
manifold and rests at the equilibrium point. Considered as an initial value problem for points far from
the slow manifold the first episode is simple, there is an instantaneous reset at the quasi-steady state
equilibrium, but this holds only for small &.

For moderate ¢ values we can still do the reduction, but only when the initial condition is close but
not at the slow manifold. To that end we use the parameter expansion in € explained in the previous
section. For larger € no reduction is obtained, one has to solve the two-dimensional original system
either analytically or numerically.

We study the case with parameter values in Table 1 except for the ratio between the rates of the host
and vector which is now & = 60/365 instead of default value £ = 1/365. The results are shown in
Figure 6. The initial point is the same as in Figure 1. The difference in time scale is reduced and ¢ is
moderately small but not very small as can be seen from the initial part of the trajectory, which differs
from a vertical orbit a lot. Nevertheless, when the trajectory approaches the stable equilibrium it is for
a large region along the calculated invariant manifold M, with first order approximation in the asymp-
totic expansion in ¢ derived here, which is itself an approximation of the stable manifold belonging
to the dominant negative eigenvalue of the Jacobian of the stable equilibrium. This approximation is
better than that obtained for the zero-order approximation with € = 0.

6000

5000 -
4000 =
= 3000 -

2000 4 f(V,1,0) . /¢ (1) .

1000 H ,0"' ,«”’, Q(Va ]a O)

0 = T T T T T
0 100 200 300 400 500 600
1(t)

Figure 6. Phase-space result for system (2.3) describing the SISUV model with parameter
values in Table 1 except for the ratio between the rates of the host and vector which is now
& = 60/365 instead of default value € = 1/365. One solid line is the trajectory starting at the
point 0. The other solid line is the invariant manifold ¢g~'(I) with only the first term of the
asymptotic expansion in € given by Eq (4.11). The dotted curve is the nullcline f(V,1,0) = 0
and the dashed curve the nullcline g(V, 1,0) = 0.
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7.2. SIRUV model
7.2.1. Phase-space analysis

Figure 7 gives a trajectory of SIRUV-system (2.1) in the three-dimensional phase-space. With
parameter values in Table 1 there is convergence to the spiral stable interior equilibrium (5.2). The
projection of the trajectory on the I, V-plane is shown in Figure 2. This shows that the asymptotic
dynamics occurs close the the plane V = ¢(I) given in (4.7) with the saturated incidence rate. Figure 8
gives the results where this relationship is replaced by the linear relationship (5.6) without incidence
saturation.

Vv Vv

150 175 200
225 95
0275 300 555 7250

Figure 7. Left panel: Phase-space result for system (2.1) describing the SIRUV model.
Right panel: Phase-space result for the reduced-system (5.4) where V(S, I) is described by
the zero order asymptotic expansion (5.15).

Figure 8. Left panel: Phase-space result for the host-only model Eq (5.7) where the vector
is only implicitly modeled by the Qssa assumption and the size of infected vector individuals
is given by Eq (5.6). Right panel: Phase-space result for the reduced-system (5.4) where
V(S, 1) is described by the first order asymptotic expansion (5.15).

7.2.2. Bifurcation analysis

The numerical bifurcation analysis was performed using AUTO [31] with the reference parameters
values from [9] given in Table 1 for the SIRUV model. The one-parameter diagram for parameter g in
Figure 9 shows equilibrium values of the susceptible hosts S, infected hosts / and the infected vectors
V. The solid lines represent the non-seasonal system and the dashed lines denote the maximum and
minimum values in the annually fluctuating system.
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In both the non-seasonal and seasonal case there is a transcritical bifurcation 7C that separates
the parameter space into two regimes where the system is disease-free and endemic. In the non-
seasonal case the TC occurs where one eigenvalue of the Jacobian matrix evaluated at the disease-free
equilibrium is zero and in the seasonal case where one Floquet multiplier of the limit cycle equals one.

The numerical results suggest that both 7C’s occur at the same parameter threshold value. For the
non-seasonal case, below the 7C the system is disease-free, thatis S = N and U = M, and both infected
I = 0 and recovered R = 0 host populations and infected vector V = 0 are extinct. For the seasonal
case, below the TC the susceptible vector population U(¢) oscillates with the same phase and amplitude
of the forcing given by Eq (6.1) U(t) = M(t), while the infected population is extinct V(¢) = 0. For the
host population the susceptible population is constant at S (f) = N = 10000 while the infected I(r) = 0
and the recovered R(f) = N — S (¢) + I(r) = 0 are extinct.

Above the TC the disease is endemic and all populations oscillate between minimum and maximum
values shown in Figure 9 with period of 1 year, equal to that of the forcing function.

Figure 9. One-parameter diagram for the bifurcation parameter 8 for the non-seasonal
and seasonal SIRUV model, with parameter values in Table 1. The solid curves gives the
equilibrium values in the non-seasonal case. The dashed curves the maximum and minimum
values in the periodically forced system in the seasonal case. The T'C point is the transcritical
bifurcation for both the non-seasonal and the seasonal case. My = 10000 and there is a yearly
periodic solution with fixed period equal to 1 year.

In Figure 10 the resulting limit cycles by seasonal forcing are shown for various parameter p-values
where 5 = 104.

The two-parameter bifurcation diagram for the two infection rates S of the host and  for the vector
is shown in Figure 11. The transcritical bifurcation 7C-curve for the non-seasonal system is described
by Eq (4.6). The TC-curve for the seasonal case is almost the same; the curves in both cases are
indistinguishable in the figure.
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0.75

5250 252 0

Figure 10. Stable limit cycles in the state space with seasonal forcing and increasing am-
plitude: p = 0.225,0.45,0.675,0.9. For p = 0 the endemic equilibrium point is indicated by

[l

12

endemic

disease-free
0 T T T T
0 3 6 9 12 15

Figure 11. Two-parameter diagram for parameters 5 and J for both non-seasonal and
seasonal SIRUV model. The curves are the transcritical bifurcation curves. Both bifurcation
curves are hardly distinguishable in the figure. In the left-bottom part there is no-infected
and in the right-upper part the system is infected. With parameter values in Table 1 with
n=1/65v=0.1,& =1/365 and p = 0.9.
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8. Discussion and perspectives

In many dengue epidemic models neither the epidemics nor the ecology of the vector population is
modeled explicitly. In the case of dengue fever one vector is the mosquito Aedes aegypti which has a
very complex life-cycle with four stages: egg (embryo), larva, pupa (embryo) (in the water phase) and
imago (adult). When effects of vector-mosquito control are investigated, an accurate vector population
model describing the multiple dengue-strain virus outbreak and spread coupled with a human-host
population model is required. This paper is a first step toward an eco-epidemiological approach where
we use simplified models for both the host and the vector dynamics.

In [9] it was investigated how far the fast time scale of the mosquito epidemiology can be slaved
by the slower human epidemiology, so that for the understanding of human disease data, mainly the
dynamics of the human time scale is essential and only slightly perturbed by the mosquito dynamics.
It was concluded that in a very simple mono-strain SIS host model including vector dynamics, this
vector dynamics is slaved by the host dynamics, owing to its slower evolution in time.

In this paper we used the parameter values from [9] which are realistic for the dengue fever case.
This means that the results from that paper can be directly compared to those obtained here, which
in some cases are supplementary. In [9] a center-manifold approach is used via eigenvectors of zero
eigenvalues at the equilibrium point while here an invariant manifold together with an asymptotic ex-
pansion in the perturbation parameter is used. This facilitates the approximation when the differences
between time scales of host and vector are moderate and not very large. The results obtained show
that in those cases modeling of the vector becomes important. Furthermore, as demonstrated by ex-
perimental host-pathogen models [32-34], pathogenic virus aligns its behavior differently in the target
cells of the vector and the host in order to maximize its chance of further transmission. Additional
effects such as pest control or personal protection also influence the vectors, factors that speak in favor
for an explicit inclusion of the vector dynamics into the epidemic model.

The zero-order assumption, equivalent to the quasi-steady-state, gives a mechanistic derivation of
the hyperbolic relationship where the number of contacts saturate with increasing population densities.
This resembles the derivation of the Holling type Il functional response in the case of a predator-prey
system.

Another result is that the transcritical bifurcation of the non-seasonal and seasonal forced system by
annual abundance cyclic change of the number of mosquitoes that separates the parameter space into
two regimes where the system is disease-free and endemic occur at the same parameter value.

In the near future we will use this approach and the obtained results with the analysis of a much
more complex eco-epidemiological model for dengue fever by taking explicitly the vector dynamics
into account. Examples are the evaluation of vaccines, vector control by application of insecticides,
releasing of male mosquitoes infected by a special strain of Wolbachia [35] and potential release of
genetically modified mosquitoes [36].
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