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Eduardo González-Olivares1,∗, Claudio Arancibia-Ibarra2, Alejandro Rojas-Palma3 and
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Abstract: In this paper a modified May-Holling-Tanner predator-prey model is analyzed, considering
an alternative food for predators, when the quantity of prey is scarce. Our obtained results not only
extend but also complement existing ones for this model, achieved in previous articles.
The model presents rich dynamics for different sets of the parameter values; it is possible to prove the
existence of:
(i) a separatrix curve on the phase plane dividing the behavior of the trajectories, which can have
different ω − limit; this implies that solutions nearest to that separatrix are highly sensitive to initial
conditions,
(ii) a homoclinic curve generated by the stable and unstable manifolds of a saddle point in the interior
of the first quadrant, whose break generates a non-infinitesimal limit cycle,
(iii) different kinds of bifurcations, such as: saddle-node, Hopf, Bogdanov-Takens, homoclinic and
multiple Hopf bifurcations.
(iv) up to two limit cycles surrounding a positive equilibrium point, which is locally asymptotically
stable.
Thus, the phenomenon of tri-stability can exist, since simultaneously can coexist a stable limit cycle,
joint with two locally asymptotically stable equilibrium points, one of them over the y − axis and the
other positive singularity.
Numerical simulations supporting the main mathematical outcomes are shown and some of their
ecological meanings are discussed.
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1. Introduction

In recent years, Leslie-Gower type predator-prey models appear in various fields of the
Mathematical Ecology, which have been proposed and studied extensively due to their increasing
importance [1, 2]. Among the most widely used mathematical predation models of this type, the
Holling-Tanner model [3] (or May-Holling-Tanner [4, 5]) plays a special role in view of the
interesting dynamics it possesses [5]. It was proposed by James T. Tanner in 1975 [6] and based on
the Leslie-Gower scheme [7], which was raised by the ecologist Patrick H. Leslie in 1948 [8].

These models are described by an autonomous bidimensional differential equation system
characterized by the following aspects:

i) The prey-dependent functional response or predator consumption rate (depending only on the prey
population) is hyperbolic, a particular form of Holling type II [9, 10]. It is described by the function
h (x) =

qx
x+a , where x = x (t) is the prey population size. This function is known as the Michaelis-Menten

function in Biochemical Kinetic.
ii) The equation for predators is a logistic-type growth function [12, 11, 10]. So, the conventional

environmental carrying capacity for predators Ky is expressed by a function of the available prey
quantity [10]; in the seminal paper of P. H. Leslie [8], Ky is assumed proportional to prey abundance,
i.e., Ky = K(x) = nx. Implicitly, this formulation presupposes that the predator is a specialist.

In the logistic predator model, the quotient y
nx , called the Leslie-Gower term, measures the loss in

the predator population due to rarity (per capita y
x ) of its favorite food [13], where y = y (t) the predator

population size. The importance of the Holling-Tanner model is highlighted by J. B. Collings in 1997
[14], who assured that it provides a way to avoid the biological control paradox wherein classical prey-
dependent exploitation models generally do not allow for a pest (the prey) equilibrium density that is
both low and stable [14].

The May-Holling-Tanner model [15, 5, 10] is studied partially in [3] and in the Murray´s book
[16]; it has been used in [17] to investigate numerically the dynamics of a predator-prey system for a
pest in fruit-bearing trees, under the hypothesis that the parameters depend on the temperature; it has
also shown its efficacy for describing the real ecological systems like mite/spider mite, canadian lynx/

snowshoe hare, sparrow/sparrow hawk and more [15].
In the paper by Saez and González-Olivares (1999) [5], its bifurcation diagram is described,

establishing the existence of two limit cycles, surrounding the unique positive equilibrium point.
Moreover, it is demonstrated that locally asymptotic stability of that equilibrium point does not imply
global stability in this predator-prey model. This result implies the coexistence of a stable equilibrium
and persistent oscillations [5]. Nevertheless, some authors have achieved conditions under which
local stability of a positive equilibrium point implies its global stability [18].

The interesting phenomenon that local and global stability are not equivalent has also been shown in
Leslie-Gower type models considering other mathematical form to describe the consumption function,
as is shown in [12, 19, 4, 20], where a non-monotonic functional response is assumed.

But the Leslie-Gower type models may present anomalies in its predictions, because it predicts
that even in very low prey population density, when the consumption rate per predator is almost zero,
predator population might increase, yet if the predator/prey ratio is very small [10]. Even so, it has
been used to describe the interaction of certain populations [14, 21].

Nonetheless, in the case of severe scarcity, some predator species can switch over to other
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available food, although its populational growth could be limited by the fact that its most favorite food
is not available in abundance. This ability can be modelled by adding a positive constant c to the
environmental carrying capacity for predators [22, 13]. Thus, the c > 0 indicates the quantity of
alternative aliment available for the predators.

Then, we have that environmental carrying capacity for predators K(x) = nx + c; in that case, it is
said that the model is represented by a Leslie-Gower scheme and it is also known as modified Leslie-
Gower model [23, 24]; if x = 0, then K(0) = c, concluding that the predator is generalist since it
choices an alternative food to avoid its extinction.

At the approach of the Leslie-Gower type predator-prey model [25] (with c = 0, considering
implicitly a specialist predator), is assumed that a reduction in a predator population has a reciprocal
relationship with per capita availability of its favorite food [13].

When c > 0, the modified May-Holling-Tanner model here analyzed has not these abnormalities
and it enhances the predictions about the interactions. This model was proposed in [13], but focused
on demonstrating the global stability of a unique positive equilibrium point.

On the other hand, one of the main elements of the predator-prey relationship is the predator
functional response or consumption function, which refers to the change in attacked prey density per
unit of time per predator when the prey population size changes [9]. In many predator-prey models is
assumed that the functional response grows monotonic, being the inherent assumption the more prey
in the environment, the better for the predators [10].

We will consider that the predator consumption function is prey-dependent and expressed by the
hyperbolic function h(x) =

q x
x + a [26, 27] a particular case of a Holling type II functional response [9].

The parameter a is a abruptness measure of the functional response [28]. If a → 0, the curve grows
quickly, while if a→ K, the curve grows slowly, that is, a bigger amount of prey is needed to obtain q

2 .
The behavior of the system will be described according to the obtained constraints on the parameter

values and classifying the different and rich dynamics resulting that have not been exposed on earlier
works.

Although there are various works in which the model here proposed has been partially analyzed
[23, 24, 1, 29, 30, 2], new and novel properties of the model are here established such as: the existence
of different class of bifurcations (Bogdanov-Takens, generalized Hopf, homoclinic and heteroclinic
bifurcations); the existence up to two positive equilibrium points (see Figure 1), depending on the
relative positions of isoclines, being one of them always a saddle point; the existence of at least one
limit cycle encircling a stable positive equilibrium point; a separatrix curve in the phase plane which
divides the behavior of the trajectories, that implies the existence of solutions nearest to that separatrix
having different ω − limit, i.e., they are highly sensitives to the initial conditions [4, 31].

Furthermore, using the computation of Lyapunov numbers (or quantities) [32, 33], we were able to
demonstrate the existence of two limit cycles, when a weak (or fine) focus occurs, being the innermost
unstable and the outermost stable, showing examples to illustrate this property for different obtained
cases.

Hence, our analysis allows to extend the properties of the model proposed in a highly cited
article [13] and we complement the outcomes of the Holling-Tanner model established in [5],
showing the existence of the phenomenon of multistability, when it exists: a local attractor positive
equilibrium, a stable limit cycle and a stable equilibrium point over the y − axis.
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The rest of the paper is organized as follows: In the next Section, the modified May-Holling-Tanner
model is presented; in Section 3, the main properties of the model are proved; in Section 4 we discuss
the obtained results, giving the ecological meanings of them. To reinforce these results, some numerical
simulations are shown in the last section.

2. The model

The modified May-Holling-Tanner model [4, 5] to be analyzed, considering a generalist predator,
is described by the following autonomous bidimensional differential equation system of Kolmogorov
type [34]:

Xµ :

 dx
dt =

(
r
(
1 − x

K

)
−

qy
x+a

)
x

dy
dt = s

(
1 − y

nx+c

)
y

(2.1)

where x = x(t) and y = y(t) indicate the prey and predator population sizes respectively, for t ≥ 0,
measured as the number of individuals, biomass, density by unit of area or volume. The parameters
are all positives, i. e., µ = (r,K, q, a, s, n, c) ∈ R7

+ and for ecological reasons a < K; the parameters
have their meanings are given in the following table:

Table 1. Parameters and Meanings in system (2.1) .

Parameters Meanings
r intrinsic prey growth rate or biotic potential
K prey environmental carrying capacity
q maximum number of prey that can be eaten by a predator in each time unit
a amount of prey to achieve one-half of the maximum rate q
s intrinsic predator growth rate
n measure of the food quality
c amount of alternative food available for predators

The parameter n indicates also how the predators turn eaten prey into new predator births, and c is
expresses that the predator is generalist, i.e., if it does not exist available prey, it switch to an alternative
food. We note if c = 0 the May-Holling-Tanner model is obtained which is not defined in x = 0 and
whose dynamics was described in [5].

In system (2.1), the growth population rate of predators, expressed by dy
dt , becomes larger when c

increases. This is in accordance with the ecological fact that if the predator is more capable of changing
from its favorite prey to other food options, it can survive more easily when the prey is lacking severely
[13].

As system (2.1) is of Kolmogorov type, the coordinates axis are invariable sets and the model is
defined at

Ω =
{
(x, y) ∈ R2/ x ≥ 0, y ≥ 0

}
= R+

0 × R
+
0 .

The equilibrium points of system (2.1) or vector field Xµ are (K, 0), (0, 0), (0, c) and (xe, ye), where
xe and ye satisfy the equation of the isoclines y = nx + c and y = r

q

(
1 − x

K

)
(x + a). Clearly, (xe, ye) can
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be a positive equilibrium point (equilibrium at the interior of the first quadrant) or cannot exists there,
depending on the sign of factor 1 − x

K .
System (2.1) has been used to study non-autonomous versions by incorporating delay [29] or

impulses [35, 2] as well as autonomous model considering partial derivatives [36]. In spite of these
recent studies, the dynamics of the system (2.1) have not fully analyzed and some obtained results are
not true or well established.

In this paper, we show that local and global stabilities are not equivalent to this class of predator-prey
models. The existence of subsets on the parameter space is proved for which there exist a bifurcation
manifold of semistable limit cycles and an open manifold, where a positive equilibrium point is locally
stable and surrounded by at least two limit cycles.

In order to simplify the calculations, it is convenient to reduce system (2.1) to a normal form; so,
we follow the methodology used in [37, 20, 11, 5], making a change of variable and a time rescaling,
by means of a diffeomorphism [32]. So we have the following:

Proposition 1. (Topological equivalent system)
System (2.1) is topologically equivalent to the polynomial system given by

Yη (u, v) :
{ du

dτ = ((1 − u) (u + A) − Qv) u (u + C) = M(u, v)
dv
dτ = S (u + C − v) (u + A) v = N(u, v)

(2.2)

where η = (A, S ,C,Q) ∈ ]0, 1[ × R3
+ with A = a

K < 1, S = s
r , C = c

Kn and Q =
nq
r .

Moreover, system (2.2) is defined on the set Ω̄ =
{
(u, v) ∈ R2 : 0 ≤ u, 0 ≤ v

}
.

Proof. Let x = Ku and y = nKv; substituting into the system (2.1), simplifying and factoring, we
obtain

Uµ (x, y) :


du
dt = r

(
(1 − u) − q

u+ a
K

n
r v

)
u

dv
dt = s

(
1 − v

u+ c
nK

)
v

Now, using the time rescaling given by τ = r
(u+ a

K )(u+ c
nK ) t;

then,
du
dt = du

dτ
dτ
dt = du

dτ
r

(u+ a
K )(u+ c

nK ) and dv
dt = dv

dτ
dτ
dt = dv

dt
r

(u+ a
K )(u+ c

nK ) .
Rearranging and simplifying

Vµ (x, y) :

 du
dt =

(
(1 − u)

(
u + a

K

)
−

qn
r v

)
u

dv
dt = s

r

(
u + c

nK − v
)

v
(
u + a

K

)
Making the above indicated substitution, system (2.2) is obtained. �

Remark 2. 1. We have constructed the diffeomorphism ϕ : Ω̄ × R −→ Ω × R, so that
ϕ(u, v, τ) =

(
Ku, nKv, 1

r

(
u + c

nK

) (
u + a

K

)
τ
)

= (x, y, t).
The Jacobian matrix of ϕ is

Dϕ (u, v, τ) =


K 0 0
0 nK 0

1
Knr (c + an + 2Knu) τ 0 1

r

(
u + c

nK

) (
u + a

K

)


and we have that det Dϕ(u, v, τ) = nK2

r

(
u + c

nK

) (
u + a

K

)
> 0.
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Then, the diffeomorphism ϕ is a smooth change of variables with a rescaling of the time preserving
the time orientation; thus, the vector field Xµ (x, y), is topologically equivalent to the vector field Yη =

ϕ ◦ Xµ with Yη (u, v) = M(u, v) ∂
∂u + N(u, v) ∂

∂v and the associated differential equation system is given by
the polynomial system of fourth degree of Kolmogorov type [34].

2. With this parameterization and time rescaling we have obtained a representative system with
the least quantity of parameters possible; system (2.2) describes the dynamical behaviors of all those
systems topologically equivalent to the system (2.1). Therefore, more important than knowing the
influence of a specific parameter in the dynamical behavior of the system (2.1), it may be best to
know the relationships between some of them, which also permits a simple description of the system
properties.

The equilibrium points of system (2.2) or singularities of vector field Yη are (1, 0), (0, 0), (0,C) and
the points (ue, ve) which lie over the curves:

v = 1
Q (1 − u) (u + A) and v = u + C.

Then, the abscissa u of the positive equilibrium points is a solution of the second-degree equation:

u2 − (1 − A − Q) u + (CQ − A) = 0, (2.3)

Considering the Descartes’ Rule of Signs and according to the sign of the factors B1 = 1−A−Q and
B0 = CQ − A and ∆ (η) = (1 − A − Q)2

− 4 (CQ − A), the equation (2.3) has two, one or none positive
roots. In the following, we describe the diverse cases existing for the equation (2.3).

1) Assuming B1 = 1 − A − Q > 0, B0 = CQ − A > 0 and
1.1 ∆ (η) > 0, the solutions are:

u1 =
1
2

(
1 − A − Q −

√
∆ (η)

)
and u2 =

1
2

(
1 − A − Q +

√
∆ (η)

)
, (2.4)

1.2 ∆ (η) = 0, the solution is u∗ = 1
2 (1 − A − Q),

1.3 ∆ (η) < 0, there is no positive solution.

2) The solutions are u1 < 0 < u2, if and only if,
2.1) 1 − A − Q > 0 and CQ − A < 0, or else,
2.2) 1 − A − Q < 0 and CQ − A < 0.

3) If 1 − A − Q > 0 and CQ − A = 0, there are two solutions
u1 = 0 and u2 = G = 1 − A − Q = 1 − A − A

C > 0.
4) If 1 − A − Q = 0 and CQ − A < 0, we have two solutions, u1 < 0 < u2.
5) Moreover, equation (2.3) does not have real roots, if and only if,

5.1 1 − A − Q = 0 and CQ − A > 0, or
5.2 1 − A − Q < 0 and CQ − A > 0.

According to the above analysis of equation (2.3) we have:
1. Assuming B1 = 1 − A − Q > 0 and B0 = CQ − A > 0, then, there exists three possibilities for

system (2.2):
1.1. There are two equilibrium points at interior of the first quadrant, if and only if,

C < 1
4Q

(
4A + (1 − A − Q)2

)
, which are P1 = (u1, u1 + C) and P2 = (u2, u2 + C) with 0 < u1 < u2 < 1.

We note that the coordinates of the points P1 and P2 do not depend on the parameter S .
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1.2. There is a unique equilibrium point at interior of the first quadrant, if and only if, ∆ (η) = 0. In
this case, the points P1 and P2 coincide, i.e.,

(u1, u1 + C) = (u2, u2 + C) = (E, E + C)
with E =

1−A−Q
2 and C = 1

4Q

(
4A + (1 − A − Q)2

)
.

1.3. For 1 − A − Q > 0 and CQ − A = 0, there are not equilibrium points at interior of the first
quadrant, if and only if, C > 1

4Q

(
4A + (1 − A − Q)2

)
.

The case 1.1 is shown in the Figure 1.

 

 

u

v

(0,0) (1,0) 

(0,C) 
P 

P 

1 

2 

Prey Isocline 

Predator Isocline 

Figure 1. For B1 = 1 − A − Q > 0, B2 = CQ − A > 0, and ∆ (η) > 0, the intersection of
isoclines in system (2.2) determines five equilibrium points.

2. In this case, the unique equilibrium point at interior of the first quadrant is, P2 = (u2, u2 + C) =

(L, L + C)
with L = 1

2

(
1 − A − Q +

√
∆ (η)

)
. According to the relation between C and L, the point P1 lies in

the second or the third quadrant.
3. Clearly, the point P1 coincides with (0,C). Then,

(
C−A−AC

C , (C−A)(C+1)
C

)
is the unique equilibrium

point at interior of the first quadrant.
4. For 1 − A = Q, the unique equilibrium point at interior of the first quadrant is P2 = (F, F + C)

with F =
√

A −C (1 − A), and A−C (1 − A) > 0. So, C < A
1−A . Moreover, the point P1 = (−F,−F + C)

lies in the second or the third quadrant.
5. There are not equilibrium points at interior of the first quadrant, if and only if,
5.1. 1 − A − Q = 0 and CQ − A ≥ 0, or
5.2. 1 − A − Q < 0 and CQ − A ≥ 0.
The above classification 1-5 implies the study of different cases in this family of systems, according

to the quantity of the equilibrium points and the relations between the parameters A, C and Q. We
note that A is the intercept of the prey isocline with the v − axis; then, the relative position among
C and A over this axis, influences the quantity of positive equilibrium points and the nature of these
equilibriums.
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In short, we summarize the different cases to study in the following table (Table 2).

Table 2. Number of positive equilibrium points in system (2.2).

Case sg(B1) sg(B0) sg(∆ (η))
Number of

Positive equilibrium
1.1 + + + 2
1.2 + + 0 1
1.3 + + − 0
2.1 + − + 1
2.2 − + + 1
3 + 0 + 1
4 0 − + 1
5.1 0 + − 0
5.2 − + − 0

We note system (2.1) has a significant difference with May-Holling-Tanner model (when C = 0),
respect to the quantity of equilibrium points [5], since system (2.1) can have up to two positive
equilibrium points, apart from of the new equilibrium (0,C) (see Figure 1). Meanwhile, in the
May-Holling-Tanner model [3, 5] there exists a unique positive equilibrium point (the point P1 lies in
the third quadrant); nevertheless, other dynamical differences between both models will be
established.

To determine the local nature of the equilibrium points we will use the Jacobian matrix of system
(2.2) which is:

DYη (u, v) =

(
DYη (u, v)11 −Qu (u + C)

S v (A + C + 2u − v) S (A + u) (C + u − 2v)

)
with
DYη (u, v)11 = −4u3 + 3 (1 −C − A) u2 + 2 ((A + C (1 − A) − Qv)) u + C (A − Qv).

3. Main results

For system (2.2) we have the following general properties:

Lemma 3. (Existence of positevely invariant region)
The set Γ̃ =

{
(u, v) ∈ Ω̄/ 0 ≤ u ≤ 1, v ≥ 0

}
is a region positevely invariant.

Proof. Clearly the u−axis and the v−axis are invariant sets because the system is a Kolmogorov type.
If u = 1, we have

du
dτ = −Qv (1 + C) < 0

and whatever it is the sign of
dv
dτ = S (1 + A) ( 1 + C − v) v

the trajectories enter and remain in the region Γ̃. �
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Lemma 4. (Boundedness of solutions)
The solutions are bounded

Proof. See [13] or else, applying the Poincaré compactification and the directional blowing-up method
[32, 33], using the change of variables X = rw and Y = w and the time rescaling given by ζ = w2T ;
after doing a large algebraic work ([38, 39]) a new system is obtained, in which the point (0,∞) is a
non-hyperbolic saddle point. �

3.1. Nature of equilibrium points over the axis

Lemma 5. For all η = (A, S ,C,Q) ∈]0, 1[×R3
+

1. The equilibrium (1, 0) is a saddle point.
2. The equilibrium (0, 0) is a repeller point.

Proof. Evaluating the Jacobian matrix in each point is immediate that
1) det DYη (1, 0) = −S (A + 1)2 (1 + C)2 < 0.
Therefore, the equilibrium (1, 0) is saddle point.
2) det DYη(0, 0) = A2C2S > 0 and trDYη(0, 0) = AC (1 + S ) > 0.
Then, the equilibrium (0, 0) is a repeller point. �

Lemma 6. The equilibrium (0,C) is
i) a saddle point, if and only if, CQ − A < 0.
ii) an attractor point, if and only if, CQ − A > 0.
iii) a non hyperbolic attractor point, if and only if, CQ − A = 0.

Proof. It is immediate, since evaluating the Jacobian matrix in the point (0,C) we obtain
det DYη (0,C) = AC2S (CQ − A) and
trDYη (0,C) = C (A − AS −CQ).

Therefore, the point (0,C) is
i) a saddle point, if and only if, CQ − A < 0, because det DYη (0,C) < 0.
ii) an attractor point, if and only if, CQ − A > 0, since det DYη (0,C) > 0 and trDYη (0,C) < 0.
iii) If CQ− A = 0, then, we obtain that det DYη (0,C) = 0, trDYη (0,C) < 0 and the Jacobian matrix

has an eigenvalue zero. �

Remark 7. 1. These above results confirm the fact that the predator population is generalist; then, its
extinction is avoided.

When the favorite prey is scarse(u = 0), the predators attain their environmental carrying capacity
C.

2. Let us Wu (1, 0), the unstable manifold of the hyperbolic saddle point (1, 0), and Σ̄ = W s (0,C),
the stable manifold of the saddle point (0,C) (hypebolic or not).

Then, the relative position of both manifold determines a heteroclinic curve, when Wu (1, 0)∩ Σ̄ , φ.
3. We note that the positive equilibria lie in the region

Λ̄ =
{
(u, v) ∈ Γ̄ / 0 ≤ u ≤ 1, 0 ≤ v ≤ vΣ, such that (u, vΣ) ∈ Σ̄

}
.
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3.2. Nature of the positive equilibria

In the following, we consider only the case 1, in which there exists two positive equilibrium point
at interior of the first quadrant, they collapse or they do not exist there. In this case, the point (0,C) is
a local attractor.

The positive singularities must fulfill the equation of the predator isocline v = u + C and the prey
isocline (1 − u) (u + A) − Qv = 0; so. we obtain

DYη (u, u + C) = (C + u)
(
−u (A + 2u − 1) −Qu

S (A + u) −S (A + u)

)
.

Thus,
detDYη (u, u + C) = S (C + u)2 (A + u) u (A + Q + 2u − 1) and
trDYη (u, u + C) = (C + u) (u (1 − 2u − A) − S (A + u))

Remark 8. Remembering B1 = 1 − A − Q > 0, the sign of detDYη (u, u + C) depends on the factor
2u − (1 − A − Q).

At once, the sign of trDYη (u, u + C) depends on the sign of
T (u, A, S ) = u (1 − 2u − A) − S (A + u).
We have,
a) If u > 1−A−Q

2 implies that detDYλ (u, u + C) > 0 and the nature of singularity depends on the sign
of the trDYλ(u, u + C).

b) If u < 1−A−Q
2 , then detDYλ (u, u + C) < 0 and (u, u + C) is a saddle point.

c) If u =
1−A−Q

2 , then the two equilibrium points coincide.

Theorem 9. Nature of the first positive equilibrium
The equilibrium point P1 = (u1, u1 + C) is a saddle point.

Proof. As detDYη (u1, u1 + C) = S u1 (C + u1)2 (A + u) (2u1 − (1 − A − Q)), then
u1 −

1−A−Q
2 = 1

2

(
1 − A − Q −

√
∆ (η)

)
−

1−A−Q
2 = −1

2

√
∆η < 0

Therefore, the equilibrium (u1, u1 + C) is a saddle point. �

We note that the point (u1, u1 + C) is not in the interior of the first quadrant, if and only if, CQ−A <

0, and it coincides with (0,C), if and only if, CQ − A = 0.

Remark 10. Existence of a separatrix curve
Let W s

+ (P1) be the superior stable manifold of P1 = (u1, u1 + C); it originates a separatrix curve Σ̄,
in the phase plane, whose α − limit can stay out or inside Γ̄. Any solutions having initial conditions
above this separatrix has the point (0,C) as its ω − limit.

Theorem 11. (Existence of a heteroclinic curve)
A subset of parameter exists for which a heteroclinic curve joining the equilibrium points (1, 0) and

(u1, u1 + C).

Proof. Let Wu (1, 0) the unstable manifold of the saddle point (1, 0) and W s
+ (P1) the superior stable

manifold of P1 = (u1, u1 + C). It is clear that the curve determined by the unstable manifold Wu (1, 0)
remains at Γ̄ by Lemma 3 and its ω − limit can be the point P2 = (u2, u2 + C) or a stable limit cycle
surrounding that point.
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Assuming that the α − limit of W s
+ (P1) is out of Γ̄, then the curve Σ̄, is above the curve determined

by Wu (1, 0). If the α − limit of W s
+ (P1) is inside of Γ̄, then the curve Σ̄ is below the curve determined

by Wu (1, 0).
Then, by the Existence and Uniqueness Theorem of solutions [32], there exists a subset on the

parameter space for which the two manifolds coincide, forming a heteroclinic curve. �

Remark 12. The nature of the equilibrium P2 = (u2, u2 + C) depends of the relation between vu and
vs, the ordinate of the points (u∗, vu) ∈ Wu (1, 0) and (u∗, vs) ∈ Σ̄, respectively.

Theorem 13. (Nature of the second positive equilibrium)
Let us u = u∗, any value of u such that u1 < u∗ < 1.
Considering (u∗, vs) ∈ W s (u1, v1) = Σ̄ and (u∗, vu) ∈ W s (1, 0), and
a) Assuming vu < vs, we have:
The equilibrium point P2 = (u2, u2 + C) is
a1) an attractor point, if and only if, S > u2(1−2u2−A)

u2+A ,
a2) a repeller, if and only if, S < u2(1−2u2−A)

u2+A ; furthermore, there exists, at least a limit cycle
surrounding this equilibrium point.

a3) a weak focus, if and only if, S =
u2(1−2u2−A)

u2+A and a Hopf bifurcation occurs.
b) Assuming vu > vs, it has that: The equilibrium P2 = (u2, u2 + C) is
b1) an attractor surrounded by a unstable limit cycle, if and only if, S > u2(1−2u2−A)

u2+A ,
b2) a repeller (node or focus) and the trajectories have the point (0, u2 + C) as their ω− limit, being

this point an almost globally stable equilibrium [45, 43].

Proof. a) As the Jacobian matrix is

DYη(u2, u2 + C) = (u2 + C)
(
− (A + 2u2 − 1) u2 −Qu2

S (u2 + A) −S (u2 + A)

)
then,
detDYη(u2, u2 + C) = S (u2 + C)2 (u2 + A) (2u2 − M) u2 > 0.
Since 2u2 − (1 − A − Q) = 1 − A − Q +

√
∆ (η) − (1 − A − Q) =

√
∆ (η) > 0

the nature of (u2, u2 + C) depends on the sign of
trDYη(u2, u2 + C) = (C + u2) (u2 (1 − 2u2 − A) − S (u2 + A))

i.e., the sign depends on the factor
T (u2, A, S ) = u2 (1 − 2u2 − A) − S (u2 + A).

We have,
a1) trDYη (u2, u2 + C) < 0, if and only if, S > u2(1−2u2−A)

u2+A ; therefore, the point (u2, u2 + C) is an
attractor.

a2) trDYη (u2, u2 + C) > 0, if and only if, S < u2(1−2u2−A)
u2+A ; then, the point (u2, u2 + C) is a repeller.

As the trace changes sign, a Hopf bifurcation occurs [32] at the equilibrium point (u2, u2 + C); then,
the point (u2, u2 + C) is surrounded by a stable limit cycle.

Furthermore, the transversality condition [32] is verified, since we have that
∂
∂S

(
trDYη(u2, u2 + C)

)
= − (u2 + A).

a3) trDYη (u2, u2 + C) = 0, if and only if, S =
u2(1−2u2−A)

u2+A ; thus, the point (u2, u2 + C) is a weak focus,
whose weakness must be determined.

b) When vu > vs, the α − limit of the W s (u1, v1) can be the repeller equilibrium P2 = (u2, u2 + C) or
an unstable limit cycle surrounding the point P2, when this is an attractor equilibrium.
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In the first situation, the Wu
+ (P1) must coincide with the Wu

+ (1, 0), since the Existence and
Uniqueness Theorem applies in the region Λ̄, or its ω − limit is the equilibrium (0,C).

Assuming the existence of the an unstable limit cycle surrrounding the point P2, therefore this point
must be an attractor equilibrium. Then, when the parameters change, that limit cycle coincides with
the W s

+ (P1), and after is broken. Thus, all the trajectories, except the point P2, tends to the equilibrium
(0,C), which is an almost global attractor [45, 43]. �

Remark 14. The equilibrium P2 = (u2, u2 + C) can be node or focus depending of the quantity
H =

(
trDYη(u2, u2 + C)

)2
− 4

(
det DYη(u2, u2 + C)

)
.

After a few algebraic manipulations it has that the sign of H depends on the factor
H1 = (A + u2)2 S 2 + 2u2 (A + u2) (A + 2 (1 − A − Q) − 2u2 − 1) S + u2

2 (A + 2u2 − 1)2

As it is well-known, the point (u2, u2 + C) is a focus, if and only if, H1 < 0; it is a node, if and only
if, H1 > 0.

Theorem 15. (Existence of homoclinic curve)
There are conditions on the parameter values for which:
a) It exists a homoclinic curve determined by the stable and unstable manifold of point

P1 = (u1, u1 + C).
b) It exists a non-infinitesimal limit cycle that bifurcates from the homoclinic [41, 44] surrounding

the point P2 = (u2, u2 + C).

Proof. We note that if the point (u, v) ∈ P1P2, then du
dt > 0; clearly, the direction of the vector field at

the point lying in the straight line v = u + C is to the right, since
du
dt = ( (1 − u) (u + A) − Q (u + C)) u (u + C) > 0 and dv

dt = 0.
Considering W s

+ (P1) and Wu
+ (P1), the superior stable manifolds and the right unstable manifolds of

P1, we have:
a) As Γ̄ is an invariant region, the orbits cannot cross the straight line u = 1 towards the right.

The trajectory determined by the right unstable manifold Wu
+ (P1) cannot cut or cross the trajectory

determined by the superior stable manifold W s
+ (P1), by Theorem of existence and uniqueness (see

Figure 2).
Moreover, the α − limit of the W s

+ (P1) can lie at the point (1, 0) by lemma 3 or at infinity in the
direction of u − axis.

On the other hand, the ω − limit of the right unstable manifold Wu
+ (P1) must be:

i) the point P2, when this is an attractor;
ii) a stable limit cycle, if P2 is a repeller.
iii) the point (0,C).
Then, there is a subset on the parameter space for which Wu

+ (P1) intersects with W s
+ (P1) and a

homoclinic curve is obtained. In this case, the same point P1 is the ω − limit of the right unstable
manifold Wu

+ (P1).
b) When the point P2 = (u2, u2 + C) is an attractor and the ω − limit of the right unstable manifold

Wu
+ (P1) is the point (0,C), there exists an unstable limit cycle dividing the behavior of trajectories in

the neighborhood of P2 = (u2, u2 + C), which is the frontier of the basin of attraction of that point. �

In Figure 2 we show the relative position of the upper stable manifold W s
+ (P1) and the right unstable

manifold Wu
+ (P1), meanwhile in Figure 3 the homoclinic curve is shown.
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Figure 2. Relative position of the upper stable manifold W s
+ (P1) and the right unstable

manifold Wu
+ (P1) of the saddle point P1 = (u1, u1 + C) originating the homoclinic curve.
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Figure 3. The homoclinic curve.
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Remark 16. An interesting aspect happens when the homoclinic curve is broken, since a
non-infinitesimal limit cycle is generated [41]. To determine the nature (stability) of this
non-infinitesimal limit cycle, we will consider R, the absolute value of the ratio between the negative
and positive eigenvalues of the Jacobian matrix evaluated in the saddle point P1 = (u1, u1 + C),
denoted by λ− and λ+, respectively, i.e., R =

∣∣∣λ−
λ+

∣∣∣.
Considering a little modification of the criterion described in [26] it has that if R > 1, the non-

infinitersimal limit cycle generated by homoclinic bifurcation is stable (orbitally); if R < 1, this limit
cycle is unstable and if R = 1 the limit cycle is neutrally stable [26]. So, R depends on the sign of the
difference ∇ = |λ−| − λ+.

We know that
detDYη (u1, u1 + C) = S u1 (C + u1)2 (A + u) (2u1 − (1 − A − Q)) and
trDYη (u1, u1 + C) = (C + u1) (u1 (1 − 2u1 − A) − S (A + u1))

Then, the eigenvalues of the Jacobian matrix evaluated on P1 are:
λ− = 1

2 (C + u1)
(
trDYη (u1, u1 + C) −

√
∆ (ρ)

)
λ+ = 1

2 (C + u1)
(
trDYη (u1, u1 + C) +

√
∆ (ρ)

)
.

with λ− < 0 < λ+ and
∆ (ρ) =

(
trDYη (u1, u1 + C)

)2
− 4detDYη (u1, u1 + C).

We have the following:

Theorem 17. (Stability of the non-infinitesimal limit cycle)
The non-infinitesimal limit cycle is:
a) stable, if and only if, T (u1, A.S ) > 0, i.e., S < u1(1−2u1−A)

A+u1
.

b) unstable, if and only if, T (u1, A.S ) < 0, i.e., S > u1(1−2u1−A)
A+u1

.
c) neutrally stable,if and only if, T (u1, A.S ) = 0, i.e., S =

u1(1−2u1−A)
A+u1

.

Proof. Clearly, ∇ = |λ−| − λ+ = (C + u1)trDYη (u1, u1 + C) = 0.
By remark the sign of trDYη (u1, u1 + C) depends on the sign of the factor

T (u1, A.S , ) = u1 (1 − 2u1 − A) − S (A + u1).
Considering R = 1, we have S =

u1(1−2u1−A)
A+u1

and the non-infinitesimal limit cycle is neutrally stable.
Then, the other possibles cases a) and b) are obtained with R > 1 and R < 1, respectively. �

Remark 18. 1. The breaking of the homoclinic curve determined by the intersection of the upper stable
manifold and the unstable right manifold of the saddle point P1 = (u1, u1 + C), i.e., W s

+ (P1)∩Wu
+ (P1),

generates a non-infinitesimal limit cycle (originating a homoclinic bifurcation), which could coincide
with other limit cycle obtained via Hopf bifurcation (infinitesimal limit cycle), when P2 = (u2, u2 + C)
is a center-focus.

2. The non-infinitesimal limit cycle increases until concide with W s
+ (P1); then is broken, and the

point P2 becomes to a repeller focus or node; so, the point (0,C) an almost global attractor [45, 43].

3.2.1. Multiple Hopf bifurcation

In the next Theorem we determine the weakness of the focus P2 = (u2, u2 + C), i. e., the number of
the limit cycles bifurcating of a weak (fine) focus [32, 33]; for this we will use the calculations of the
Lyapunov numbers (or quantities) [32, 44].
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Theorem 19. (Order of the weak focus)
The singularity P2 = (u2, u2 + C) of vector field Yη is at least a two order weak focus, if and only if,

S =
L(1−2L−A)

A+L , with u2 = L = 1
2

(
1 − A − Q +

√
∆ (η)

)
and η2 can change of sign.

Proof. As S =
L(1−2L−A)

A+L and Q = 1
L+C (1 − L) (L + A), system (2.2) can be expressed by

Zν (u, v) :

 du
dτ =

(
(1 − u) (u + A) − (1−L)(L+A)

L+C v
)

u (u + C)
dv
dτ =

L(1−2L−A)
A+L (u + C − v ) (u + A) v

where ν = (A, L,C) ∈ (]0, 1[)2
× R+.

Setting u = U + L and v = V +C + L, then the new system translated to origin of coordinates system
is

Zν (U,V) :

 dU
dτ =

(
(1 − U − L) (U + L + A) − (1−L)(L+A)

L+C (V + C + L)
)

(U + L) (U + L + C)
dV
dτ =

L(1−2L−A)
A+L (U − V) (U + L + A) (V + C + L)

The Jacobian matrix of the vector field Zν at the point (0, 0) is

DZν(0, 0) =

(
L (1 − 2L − A) (C + L) − (1 − L) (A + L) L
L (1 − 2L − A) (C + L) −L (1 − 2L − A) (C + L)

)
,

the same that DYη (L, L + C). Denoting
W2 = detDZν(0, 0) = L2 (C + L) (1 − 2L − A)

(
A −C (1 − 2L − A) + L2

)
,

it has
L (C + L) (1 − 2L − A) = W2

L(A−C+AC+2CL+L2) ;
the first Lyapunov quantity [32] is

η1 = trDYη (L, L + C) = trDZν(0, 0) = α = 0.
The Jordan matrix associated [3] to vector field Zν is

J =

(
0 −W

W 0

)
.

Then, the matrix change of basis [3] is given by

M =

(
Z11 − α −β

Z21 0

)
=

(
L (1 − 2L − A) (C + L) −W
L (1 − 2L − A) (C + L) 0

)
.

Now consider the change of variables given by(
U
V

)
=

(
L (1 − 2L − A) (C + L) −W
L (1 − 2L − A) (C + L) 0

) (
x
y

)
that is,

U = L (1 − 2L − A) (C + L) x −Wy
V = L (1 − 2L − A) (C + L) x

or
x = 1

L(1−2L−A)(C+L)V
y = −U+V

W .
Then the new system is

Z̃ν :
{ dx

dτ = 1
L(1−2L−A)(C+L)

dV
dτ

dy
dτ = − 1

W
dU
dτ + 1

W
dV
dτ

After a large algebraic calculations and by means of a time rescaling given by γ = Wτ, we obtain
the normal form Z̃ν [32] to vector field Zν given by
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dx
dγ = −y − H(A+C+2L)

A+L xy + W
A+Ly2 −

H2(C+L)
A+L x2y + WH

A+L xy2

dy
dγ =

x +
H2(C+L)(AC2+7CL2+3C2L+AC+2AL−2CL−C2+3L3+2ACL)

W2 x2

−b11xy + A2C+6AL2+2A2L+CL2−AC−2AL−L2+3L3+3ACL
(A+L) y2

+
H3(C+L)2(A−C+AC+5CL+C2+3L2)

W2 x3 − b21x2y + b12xy2

−W (A + C + 4L − 1) y3 +
H4(C+L)4

W2 x4 −
4H3(C+L)3

W x3y
+6H2 (C + L)2 x2y2 − 4WH (C + L) xy3

+W2y4

with
H = L (1 − 2L − A)

b11 =
H(4L4+(6A+9C)L3+(4C2+(15A−2)C+A(A+1))L2+((7A−1)C2+A(4A−3)C+2A2)L+AC(A−2C+2AC))

W(A+L) ,

b21 =
H2(C+L)(3AC2+3A2C+10AL2+A2L+13CL2+3C2L−3AC+AL−2CL+2A2+8L3+17ACL)

W(A+L)

b12 =
H(3AC2+3A2C+12AL2+2A2L+13CL2+3C2L−3AC−AL−2CL+A2−L2+9L3+17ACL)

A+L
Using the Mathematica package [46] for the symbolic calculus, we obtain that the second Lyapunov

quantity [32] is given by
η2 =

L2H2(C+L)2

8(A+L)2W3 f1 (A,C, L)
with f1 (A,C, L) = f10 (A, L) + C f11 (A, L) + C2 f12 (A, L) + C3 f13 (A, L)
where
f10 (A, L) = −8L7 + 4 (1 − 2A) L6 − A (A + 11) L5 + A

(
A2 − 8A + 5

)
L4 +

A2 (7A − 34) L3 + A2
(
7A2 + 4

)
L2 + A3

(
A2 − 10A + 3

)
L + A4 (1 − A).

f11 (A, L) = −36L6 + 16 (2 − 3A) L5 −
(
13A2 + 15A + 6

)
L4 + A

(
11A2 − 64A + 37

)
L3

+A
(
7A3 − 46A2 + 39A − 8

)
L2 + A2 (1 − A)

(
11A − A2 − 4

)
L +

(
A − A2 − 2

)
A3.

f12 (A, L) = −50L5 + 22 (3 − 4A) L4 +
(
75A − 61A2 − 28

)
L3 +

(
33A2 − 19A3 − 12A + 4

)
L2 +

A (1 − A)
(
−4A + 2A2 − 1

)
L + A2 (1 − A).

f13 (A, L) =
(
−16L3 + 24 (1 − A) L2 − 12 (1 − A)2 L + 2 (1 − A)3

)
L.

Because to the difficulty in deciding whether a change of sign occurs in the factor f1 (A,C, L), a
numerical evaluation will be made for the factor f10 (A, L), considering it is most influential when C
tends to 0.

Choosing A = 0.1 we have
f10 (0.1, L) = − 1

100 000 f101 (L)
with

f101 (L) = −201.0L− 4070.0L2 + 33300.0L3 − 42100.0L4 + 1. 11× 105L5 − 3. 2× 105L6 + 8.0×
105L7 − 9.0

and choosing L = 0.175 it has,
f101 (L) = −16. 788,

then,
f10 (0.1, 0.175) = − 1

100 000 (−39. 84) > 0.
Analogously, choosing A = 0.1 and L = 0.2, we have

f10 (0.1, 0.2) = − 1
100 000 f101 (0.2) = − 1

100 000 (12. 32) < 0.
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So, η2 change the sign depending of the above relations, existing at least, two limit cycles when
η2 = 0.

Then, the sign of η3 must be obtained to prove the existence of exactly two limit cycles. �

Remark 20. 1. As we have seen, the computation of weakness of the focus P2 = (L, L + C) requires
the fulfilment of two strict relationships between the parameters of the model; a little deviation in one
of them causes the condition for the existence of one or more limit cycles. So, these relations determine
a subset of measure non-zero for the existence of two limit cycles.

2. This is ecologically important, inasmuch as in reality none of the equalities given in the above
Theorem will be possible to maintain for a long time; thus, any tiny change in some of the involved
parameters will imply inequality rather than equality; hence, we have a structurally unstable system.

3. We note that the proof of the above theorem does not depend on the sign of a0 = CQ − A.

Case 1.2 By considering ∆ (η) = (1 − A − Q)2
− 4 (CQ − A) = 0, the points P1 = (u1, u1 + C) and

P2 = (u2, u2 + C) are coincident.
So, u1 = u2 = E =

1−A−Q
2 , if and only if, C =

(1−A−Q)2+4A
4Q . The point (u2, u2 + C) lies in the first

quadrant, if and only if, 1 > A + Q.

Theorem 21. (Collapse of the positive equilibria)
The equilibrium point (E, E + C) with E =

1−A−Q
2 , is:

i) a saddle-node attractor, if and only if, S > Q(1−A−Q)
A−Q+1 ,

ii) a saddle-node repeller, if and only if, S < Q(1−A−Q)
A−Q+1 ,

iii) a cusp point, if and only if, S =
Q(1−A−Q)

A−Q+1 .

Proof. The Jacobian matrix is

DYη (E, E + C) =

(
E (E + C) (1 − 2E − A) −QE (E + C)

S (E + A) (E + C) −S (E + A) (E + C)

)
.

Then, detDYη (E, E + C) = 0, and
trDYη (E, E + C) = (C + E)

(
(−A − E) S +

(
E − AE − 2E2

))
which depends on the sign of factor

T1 (A,Q, S ) = − ((A − Q + 1) S + Q (A + Q − 1))
Then, the point (E, E + C) is
i) a saddle-node attractor, if and only if, S > Q(1−A−Q)

A−Q+1 ,
ii) a saddle-node repeller, if and only if, S < Q(1−A−Q)

A−Q+1 ,
c) If S =

Q(1−A−Q)
A−Q+1 , the Jacobian matrix is

DYη (E, E + C) = 1
4 Q (A + Q − 1) (A − 2C + Q − 1)

(
1 −1
1 −1

)
,

whose Jordan form matrix is J =

(
0 1
0 0

)
[3], and we have the Bogdanov-Takens bifurcation or

bifurcation of codimension 2 [47], and the point (E, E + C) is a cusp point. �

In this case, the point (0,C) is an attractor almost globally asymptotically stable [45, 43], since an
unique trajectory exists in the phase plane having the point (E, E + C) as its ω − limit.
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Case 1.3 If B1 = 1 − A − Q > 0 and B2 = CQ − A > 0 and ∆ (η) < 0, there were not exist positive
equilibrium points.

Theorem 22. (Non-existence of positive equilibria)
When there exists no positive equilibria, the point (0,C) is globally asymptotically stable.

Proof. By lemma 5, we know the solutions are bounded; by lemma 3, Γ̄ is invariant region. As it was
stated before, the equilibrium (1, 0) is a saddle point, then the Poincaré-Bendixon Theorem applies and
the unique ω − limit of the trajectories is the point (0,C). �

4. Some simulations

In order to reinforce the obtained results, we show some numerical simulations (Figures 4–9),
considering only the case 1, i.e., B1 = 1 + A − Q > 0, B0 = CQ − A > 0 and ∆ > 0, being in this case
the point (0,C) always attractor (local or global).
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1

u

v

(1,0)(0,0)

(C,0) P1

P2

Figure 4. For A = 0, 2; C = 0, 425; Q = 0, 5 and S = 0, 175, it exists the bistability
phenomenon in system (2.2), since the point (0,C) is an attractor node and P2 is an attractor
focus; the equilibriums (1, 0) and P1 are saddle point, meanwhile (0, 0) is a repeller node.
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Figure 5. For A = 0.2, C = 0.425, Q = 0.5 and S = 0.167, the phenomenon of triple
stability exists, since (0,C) is a local attractor, the positive equilibrium P2 = (L, L + C) is a
local stable, surrounded by two limit cycles, the innermost unstable and the outermost stable;
(0, 0) is a repeller; (1, 0) and P1 are a saddle points.
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Figure 6. For A = 0.185, C = 0.4, Q = 0.5 and S = 0.1765, the point P2 is an attractor
focus, surrounded by a unstable limit cycle, (0,C) is an attractor node, P1 and (1, 0) are saddle
points and (0, 0) is a repeller node.
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Figure 7. For A = 0.195, C = 0.41, S = 0.1105 and Q = 0.5, the point P2 is repeller focus,
P1 is saddle point and (0,C) is almost global attractor [45, 43].
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Figure 8. For A = 0.24074, C = 0.51509, Q = 0.5 and S = 0.175, the unique equilibrium
point, collapse of P1 and P2, it is a cusp point.
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Figure 9. For A = 0, 2; C = 0, 55; Q = 0, 5 y S = 0, 175, the point (0,C) is a global attractor
and there no positive equilibrium points.

4.1. Bifurcation diagram

In the following picture (Figure 10) the bifurcation diagram of system (2.2) is shown.

Figure 10. The bifurcation diagram of system (2.2) for A, Q fixed. The curve H represents
the Hopf curve at S =

u2(1−2u2−A)
u2+A , where P2 changes stability (Theorem 1.3), HOM represents

the homoclinic curve (Theorem 1.5) and S N represents the saddle-node curve here ∆ = 0 and
BT represents the Bogdanov–Takens bifurcation (Theorem 2.1).

Considering A and Q fixed it was created with the numerical bifurcation package MaTCont [40]
showing that the bifurcation curves divide the (C, S )-parameter space into five parts. Modifying the
parameter C impacts the number of positive equilibrium points of system (2.2).

The modification of the parameter S changes the stability of the positive equilibrium point P2 of
system (2.2), while the other equilibrium points do not change their behaviour.

There are no positive equilibrium points in system (2.2) when the parameters C and S are located
in the red area where ∆ < 0. In this case, the origin is a global attractor.
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For C = C∗, which is the saddle-node curve S N, the equilibrium points P1 and P2 collapse since
∆ = 0. So that, system (2.2) experiences a Bogdanov-Takens bifurcation. When the parameters C and
S are located in the green, grey or blue area, system (2.2) has two equilibrium points P1 and P2.

The equilibrium point P1 is always a saddle point, while P2 can be unstable (grey area) or stable
(blue area). For C and S in the green area the stable equilibrium point P2 can be surrounded by an
unstable limit cycle (green Region IV(1)) or surrounded by two limit cycle (green Region IV(2)).

5. Conclusions

In this work, a modified May-Holling-Tanner predator-prey model was studied, particularly a
modified Leslie-Gower model [13, 25, 5], considering that predators can eat other prey in the case of
severe scarcity of its most favorite food. This situation was taken into account by adding a positive
constant c in the function Ky representing the environmental carrying capacity for predators. This
implies the existence of a new equilibrium point (0, c) in the y − axis.

By means of a diffeomorphism, we analyzed a topologically equivalent system depending only
on four parameters. It was shown that the model has a rich dynamic since this model can exhibit
various kinds of bifurcations (e.g. saddle-node, Hopf-Andronov, Bogdanov-Takens, homoclinic, Hopf
multiple bifurcations) as likewise infinitesimal and non-infinitesimal limit cycles, generated by Hopf
and homoclinic bifurcation, respectively.

Conditions for the existence of equilibrium points and their nature were established. We proved
that the equilibrium point (0, 0) is always a repeller for all parameter values, which means that there is
no extinction of both populations simultaneously; moreover, (1, 0) is a saddle point, implying that the
predator population can go to depletion, meanwhile the prey attains its maximum population size in
the common environmental.

Also, a wide subset of the parameter values was determined, for which there exist two positive
equilibrium points P1 = (u1, u1 + C) and P2 = (u2, u2 + C), being the first of them always a saddle
point. The other equilibrium can be an attractor, a repeller or a weak focus, depending on the sign of
the trace of its Jacobian matrix. Furthermore, both equilibrium points can collapse, obtaining a cusp
point, i.e., Bogdanov-Takens bifurcation or codimension 2 bifurcation [47].

When two equilibrium points exist at the interior of the first quadrant in the system (2.2), the
singularity (0,C) is an attractor and the stable manifold W s (P1) of P1 determines a separatrix curve
which divides the phase plane into two regions. The trajectories having initial conditions above this
curve have the point (0,C) as their ω − limit, meanwhile, those that lie below the separatrix can have a
positive equilibrium point or a stable limit cycle as their ω − limit. This implies that there exists a
great possibility for the prey population to go to extinction, although the ratio prey-predator is high
(many prey and little predators).

We also prove the existence of a homoclinic curve determined by the stable and unstable manifolds
of the positive saddle point P1, encircling the second positive equilibrium point P2; when it breaks up
it originates a non-infinitesimal limit cycle.

The dynamics of the studied model, in which the predators have an alternative food to low densities
of prey, differs from the May-Holling-Tanner model [3, 5], since:

i) System (2.1) can have one, two or none positive equilibrium points at the interior of the first
quadrant with a more varied dynamic; whereas, the May-Holling-Tanner model has a unique positive
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equilibrium point, which can never be a cusp point, then there no exists Bogdanov-Takens bifurcation
for this model.

ii) In system (2.1) there is a parameter constraint for which a homoclinic curve exists, something
that does not appear in the May-Holling-Tanner model.

iii) Each model has a separatrix curve dividing the behavior of the trajectories, which are originated
by, the non-hyperbolic saddle point (0, 0), in the May-Holling-Tanner model, and in the modified model
is created by the hyperbolic attractor point (0,C).

iv) Both models have in common the existence of triple or bi-stability since two limit cycles can
bifurcate of a weak focus, surrounding an attractor positive equilibrium point, being the innermost
unstable (frontier of the attraction basin) and the outermost stable.

But, in the model here analyzed, this situation also can appear when exist two positive equilibria (see
Figure 7) or when exists a unique equilibrium at the interior of the first quadrant (For instance, when
A = 0.2, C = 0.4, Q = 0.5 and S = 0.12005, i.e., CQ − A = 0, when A = 0.2000001, C = 0.39999925,
Q = 0.5 and S = 0.12005, i.e., CQ − A < 0). In the Holling-Tanner model, the two limit cycles appear
when there is one positive equilibrium point.

The triple-stability phenomenon exists in the system (2.2) when simultaneously are stable: (1) the
point (0,C); (2) the positive equilibrium P2; and (3) a limit cycle, for a determined set of parameters;
then, for these parameter values, both populations can coexist, oscillate around specific population
sizes or prey population can be depleted and the predators survive as an alternative food.

It can conclude that for certain parameters values in the system (2.2), there exists self-regulation
since the species can coexist experimenting oscillations of their population sizes surrounded a fix point,
or else, the population sizes can tend to that fix point. But, depending on the ratio prey/predator the
prey population can go to extinction for the same parameters values.

Moreover, system (2.2) is sensitive to disturbances of the parameter values, since there exist changes
of the basin of attraction of P2 as it is shown in Figures 4–8.

The self-regulation depends mainly on the parameter S = s
r . This implies that increasing the

intrinsic predator growth rate s or decreasing the intrinsic prey growth rate r, the possibility of
oscillations of the population sizes increase. Similar statements can be derived for other parameters
values of the system (2.2).

The complex dynamic of the analyzed model is a prominent issue to be considered by the ecologists
and agencies responsible for conservation and management of renewable resources, as the open access
fisheries.

This concern must be especially with those populations more sensitive to disturbances of the
environment, considering that for given initial condition the dynamic of the model predicts the long
term persistence of the populations, or else, the extinction of one of them.

On the other hand, the system (2.1) could have a behavior nearest to the model studied in [22],
where c = 0, or with the model analyzed in [37], since the Allee effect implies a closer dynamic, due
to the existence of two positive equilibria.

In short, in this article, we extend the dynamical properties of the model proposed in [13] and
the partial results obtained in previous papers [23, 24, 1, 29, 2]; we also complement the outcomes
obtained in [5] for the May-Holling-Tanner model, showing that the modified model has interesting
and rich mathematical dynamics, describing different possible ecological behaviors.
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