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Abstract: Phenomenological models are particularly useful for characterizing epidemic trajectories
because they often offer a simple mathematical form defined through ordinary differential equations
(ODEs) that in many cases can be solved explicitly. Such models avoid the description of biological
mechanisms that may be difficult to identify, are based on a small number of model parameters that
can be calibrated easily, and can be utilized for efficient and rapid forecasts with quantified uncertainty.
These advantages motivate an in-depth examination of 37 data sets of epidemic outbreaks, with the aim
to identify for each case the best suited model to describe epidemiological growth. Four parametric
ODE-based models are chosen for study, namely the logistic and Gompertz model with their respective
generalizations that in each case consists in elevating the cumulative incidence function to a power p ∈
[0, 1]. This parameter within the generalized models provides a criterion on the early growth behavior
of the epidemic between constant incidence for p = 0, sub-exponential growth for 0 < p < 1 and
exponential growth for p = 1. Our systematic comparison of a number of epidemic outbreaks using
phenomenological growth models indicates that the GLM model outperformed the other models in
describing the great majority of the epidemic trajectories. In contrast, the errors of the GoM and
GGoM models stay fairly close to each other and the contribution of the adjustment of p remains
subtle in some cases. More generally, we also discuss how this methodology could be extended to
assess the “distance” between models irrespective of their complexity.
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1. Introduction

1.1. Scope

Dynamic growth models provide an important quantitative framework for characterizing epidemic
trajectories, generating estimates of key transmission parameters, assessing the impact of control inter-
ventions, gaining insight to the contribution of different transmission pathways, and producing short-
and long-term forecasts [1]. A natural question is that of the choice of the best suitable growth model
for a given epidemic. It is the purpose of this paper to shed light on the performance of different growth
models in describing different real epidemic outbreaks. Specifically, we employ four different growth
models based on differential equations (two of them with two parameters, and two with three param-
eters), and apply them to a total of 37 infectious disease outbreak datasets consisting of time series of
case incidence for different historic outbreaks comprising different diseases and settings.

The two-parameter models are the well-known logistic model (LM) [2] and Gompertz model (GoM)
[3], and the three-parameter models are generalizations for both models which we refer to as the
generalized logistic model (GLM) and the generalized Gompertz model (GGoM), respectively. These
models incorporate a parameter p, which is an exponent that provides a criterion about the type of early
growth dynamics, namely sub-exponential (0 < p < 1) or exponential (p = 1) growth. (For p = 1,
the GLM and GGoM models reduce to the LM and GoM models, respectively.) We explored the
performance of these models in describing the trajectory of 37 outbreaks by applying the methodology
described by Chowell [1] to estimate parameters with their confidence intervals. In this analysis, we
analyzed how well models fitted the 37 outbreaks using the root mean squared error (RMSE).

The particular choice of parametric models complements that of [1], where the well-known ex-
ponential and Richards [4, 5] growth models are employed along with their generalized counterparts.
Moreover, since that work is focused in detailing the methodology, the data set in [1] is limited to the
2013–2016 Ebola outbreak in Sierra Leone, and no mechanism of choice between two or more alterna-
tive models for the same data set is established. In this paper we are particularly interested in gaining
insight into the types of outbreaks where the different model variants provide an enhanced description
of the epidemic outbreaks.

1.2. Related work

This paper is focused on models given by ordinary differential equations (ODEs) to describe the
temporal dynamics of epidemic outbreaks. The properties of ODEs as models of growth are treated
in numerous monographs, see e.g. [6–12]. On the other hand, the presence of the nonlinearity caused
by the growth rate exponent p precludes in some cases solutions of the corresponding ODE in closed
form. Nevertheless, we mention that for p = 1, the properties of the Richards, logistic, Gompertz,
and related (e.g., von Bertalanffy [13, 14]) models are broadly discussed in terms of closed algebraic
expressions in [15–17] (see also the references cited in these papers).

We use phenomenological models within an empirical approach (without an explicit basis of physi-
cal laws or mechanisms) that are useful to reproduce the patterns observed in the time series data [18].
The result is a fairly simple temporal description of epidemic growth patterns [1]. For instance, epi-
demics display variable epidemic growth scaling (e.g., from sub-exponential to exponential). Here we
are particularly interested in the contribution of the parameter p as a corrector in the fit and the possible
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improvement in the forecasts. The relevance of this parameter was recently highlighted by Chowell
and Viboud [19] who demonstrated that a generalized-growth model is a simple tool that can be used to
characterize the early epidemic growth profile from case incidence data as well as from synthetic data
derived from transmission models via stochastic simulation [18]. Related references to early epidemic
growth models also include [20, 21]. For the connection between the growth rate and the reproductive
number of an epidemic, an aspect that is not discussed herein, we refer to [22–25].

Finally, we mention that there are also stochastic models built to study sigmoidal behaviours. In
particular, in recent years there have been many advances in stochastic models based on diffusion
processes, particularly associated with the Gompertz and logistic curves. A general procedure for
obtaining and estimating this type of models is considered in [26], where also further references can be
found (see also [27]). As is discussed in the introduction of [26], considering particular choices of the
time functions that define the exogenous factors has enabled researchers to define diffusion processes
associated to alternative expressions of already-known growth curves [26]. These processes include
a Gompertz-type process [28] (applied to the study of rabbit growth), a generalized von Bertalanffy
diffusion process (with an application to the growth of fish species) [29], a logistic-type process [30]
(applied to the growth of a microorganism culture), and a Richards-type diffusion process [31]. More
recent contributions to this line of research are [32] and [33].

1.3. Outline of the paper

The remainder of the paper is organized as follows. In Section 2 the mathematical growth mod-
els that we employ to investigate the trajectory of epidemic outbreaks are described. Specifically,
we employ two growth models with two parameters and two models with three parameters, which
are generalizations of the first models that incorporate a third parameter to model varying degrees of
early growth profiles (from sub-exponential to exponential growth). The materials and methods em-
ployed in our analyses are presented in the Section 3, including the descriptions of the datasets for
the 37 epidemic outbreaks, the concept of the RMSE, and the methods for the parameter estimation
and confidence interval generation using the parametric bootstrap approach. The results of applying
the methodology developed in Section 3 to the datasets are presented in Section 4. Finally, some
conclusions and possible directions of future work are collected in Section 5.

2. Mathematical models

The general form of a phenomenological model is

dxi/dt = fi(x1, . . . , xn; Θ), i = 1, . . . , n, (2.1)

where dxi/dt denotes the rate of change of the system state xi, i = 1, . . . , n, and Θ = (θ1, . . . , θm) is
the set of model parameters, where the complexity of a model depends on the number m of parameters
that are needed to characterize the states of the system and the spectrum of the dynamics that can be
recovered from the model [1]. In this contribution we highlight the logistic growth model (LM) and
the Gompertz model (GoM) and their respective generalizations, namely the generalized logistic model
(GLM) and the generalized Gompertz model (GGoM). The last two models incorporate a parameter p
that indicates the kind of scaling of growth. These models can be described as follows.
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The logistic growth model (LM) relies on two parameters to characterize the trajectory of an epi-
demic, where the model is given by the differential equation

dC(t)/dt = C′(t) = rC(t)
(
1 −C(t)/K

)
, (2.2)

where t is time, C′(t) describes the incidence curve over time, C(t) is the cumulative number of cases at
time t, while the parameter r > 0 indicates the growth rate (its dimension is 1/time), and K is the size
of the epidemic. During the initial stages of disease propagation, when C(t) � K, this model assumes
an exponential growth phase, as can be inferred from the well-known explicit solution of (2.2),

C(t) =
KC(0) exp(rt)

K + C(0)(exp(rt) − 1)
.

The two-parameter Gompertz model (GoM) is given by the ODE

dC(t)/dt = C′(t) = rC(t) exp(−bt), (2.3)

where the parameter b > 0 describes the exponential decay of the growth rate r, and the quantities C
and C′ have the same meaning as for the LM model. If C(0) is the initial number of cases, then the
solution of (2.3) is

C(t) = C(0) exp
(
(r/b)

(
1 − exp(−bt)

))
. (2.4)

We generalize the logistic and Gompertz models by incorporating a growth scaling parameter p ∈
[0, 1] that indicates the kind of growth, where p = 0 corresponds to a constant incidence over time,
p = 1 corresponds to the exponential growth and recovers the logistic model, and any value 0 < p < 1
leads to a model that describes a sub-exponential growth, a property that leads to potentially more
realistic models as shown in [18]. The model is given by the differential equation

dC(t)/dt = C′(t) = rCp(t)
(
1 −C(t)/K

)
. (2.5)

Similarly, the Gompertz model leads to the following ODE that defines the Generalized Gompertz
Model (GGoM), where p plays the same role as in the GLM:

dC(t)/dt = C′(t) = rCp(t) exp(−bt). (2.6)

It is worth noting that for general values p ∈ (0, 1), (2.5) does not possess an explicit solution in closed
algebraic form. (For a detailed discussion of this point and further references we refer to Ohnishi et
al. [34], who deal with the Pütter-von Bertalanffy equation dC/dt = αCA − βCB with positive constants
α, β, A and B, which includes (2.5). Nevertheless, this equation admits an analytical solution given in
implicit form [34, Eq. (9)].)

In contrast to the GLM equation (2.5), one may easily integrate the GGoM equation (2.6) for these
values of p to get

C(t) =
(
(1 − p)(r/b)

(
1 − exp(−bt)

)
+ C(0)1−p

)1/(1−p)
.
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Table 1. Summary of information about models and parameters.

Growth model Parameters
Logistic growth model (LM) Θ = {θ1 = r, θ2 = K}; r,K > 0
Gompertz model (GoM) Θ = {θ1 = r, θ2 = b}; r, b > 0
Generalized Logistic growth model (GLM) Θ = {θ1 = r, θ2 = p, θ3 = K}; r,K > 0, p ∈ [0, 1]
Generalized Gompertz model (GGoM) Θ = {θ1 = r, θ2 = b, θ3 = p}; r, b > 0, p ∈ [0, 1]

For this expression we get

C(t)→
(
(1 − p)r/b + C(0)1−p

)1/(1−p)
as t → ∞. (2.7)

It is interesting to note that for the Gompertz model with p = 1, (2.3), the expression (2.4) implies
that C(t) → C(0) exp(r/b) as t → ∞ so the limit value depends linearly on C(0) (unless the initial
population is absorbed into b or r), while for 0 < p < 1, (2.7) means that the limit of C(t) still depends
on C(0) but does so in a nonlinear fashion.

Summarizing, we have two two-parameter models with their respective generalizations that are
three-parameter models, where the third parameter is the growth scaling parameter p ∈ [0, 1], as we
show in Table 1. Before we proceed, we illustrate by an example the effect of varying p within the
GLM and GGoM, see Figure 1. We start with the logistic model (2.2) setting r = 1, C(0) = 10 and
K = 1000. The solid red curve in Figure 1 (top left) shows the incidence curve t 7→ C′(t) corresponding
to the solution t 7→ C(t) (Figure 1, top right). This solution approximates the maximum (K = 1000).
Now we pass to the GLM (2.5) by gradually decreasing p from one to p = 0.995, p = 0.99, and so on
(see the caption of Figure 1). We observe that the maxima of the incidence C′(t) decrease (as follows
easily from discussing the extrema of C 7→ Cp(1 − C/K)), but their time of occurrence increases, as
p is decreased. Furthermore, the incidence curves stay fairly close to the curve for p = 1 for values
of p close to one, and all solutions behave like C(t)→ K as t → ∞.

In order to compare these observations with those for the Gompertz and GGoM models, we plot in
Figure 1 (middle left) the incidence curve t 7→ C′(t) corresponding to the solution t 7→ C(t) (Figure 1,
middle right) for the Gompertz model (2.3) with parameters C(0) = 10,

r = 1 −C(0)/K = 0.99, and b = r/ ln
(
K/C(0)

)
≈ 0.2150, (2.8)

which have been chosen in such a way that C′(0) is the same as for the GLM as well as that C(t)→ K
as t → ∞ (cf. (2.4)) for p = 1. Note that the maximum of C′(t) is smaller than for the logistic model.
As p is decreased, but all other parameters are kept, these maxima become smaller (as with the GLM),
but they appear each time earlier (in contrast to the GLM). However, for t → ∞ we observe that
consistently with (2.7), C(t) approaches smaller values than K as t → ∞. If we wish to ensure that the
GGoM with p ∈ (0, 1) has the same value of C′(0) as the GLM (for the corresponding value of p) and
C(t)→ K as t → ∞, then we must also adjust b by setting

r = 1 −C(0)/K, b = r(1 − p)/
(
K1−p −C(0)1−p) (2.9)

(which results from equating the limit in (2.7) with K). From the bottom plots of Figure 1 we observe
that the joint variation of p and b produces curves similar to those of the GLM.
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Figure 1. Illustration of the GLM model (top) and the GGoM model (middle and bottom),
showing in each case C′(t) (left) and C(t) (right). The solid red curve corresponds to p = 1.
The arrow indicates decreasing values of p = 0.995, 0.99, 0.98, 0.95, 0.9, 0.8, 0.7, 0.6,
and 0.5, corresponding to the thin black curves. The plots in the middle correspond to fixed
values of r and b (see (2.8)), while in the bottom r is fixed but b is variable (see (2.9)).

Finally, let us emphasize once again that the exponent p is introduced in both (2.5) and (2.6) in such
a way that it affects the initial growth rate, corresponding to the early stage when C(t)/K � 1 and
therefore C′(t) ≈ rCp(t), so that p characterizes sub-exponential growth dynamics [18]. In particular,
the identification of p at early stage of an epidemic is fundamental for forecasting the outbreak [19]. It
is therefore instructive to provide an example to compare (2.5) with an alternative way of introducing
an exponent p into (2.2), namely the well-known Richards equation [4]

dC(t)/dt = C′(t) = rC(t)
(
1 −

(
C(t)/K

)p
)

= (r/K p)C(t)
(
K p −C(t)p). (2.10)

Figure 2 displays the incidence curves t 7→ C′(t) and the solution t 7→ C(t) for selected values of p
for both the GLM model (2.5) and the Richards equation (2.10). We observe that since C(0)/K � 1,
the initial growth rates for (2.10) are very similar for all values of p, in contrast to those of the GLM
model. Thus, the variability of the exponent p in the Richards equation (2.10) is not suitable for
capturing sub-exponential initial growth.
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Figure 2. Illustration of the GLM model (top) and the Richards model (bottom), showing in
each case C′(t) (left) and C(t) (right), starting from C(0) = 10 with K = 1000. The solid red
curve corresponds to p = 1. The arrow indicates decreasing values of p = 0.99, 0.98, 0.95,
0.9, 0.8, 0.7, 0.6, and 0.5, corresponding to the thin black curves.

On a similar note, we mention that the traditional form of the Gompertz ODE (cf., e.g., [28]) is

dC/dt = C′(t) = α ln
(
K/C(t)

)
C(t) = (α ln K)C(t) − αC(t) ln C(t) (2.11)

with a constant α > 0, which is a nonlinear differential equation, in contrast to the linear ODE (2.3)
utilized herein. Our preference of (2.3) is based on the fact that this equation can easily be equipped
with the exponent p to give (2.6). Furthermore it is fairly easily possible to compare (2.6) and its
solutions with those of the sub-exponential growth equation dC/dt = rC(t)p analyzed in [18,19], while
the multiple, and nonlinear occurrence of C(t) makes such a generalization at least more complicated.

3. Materials and methods

In order to compare the mathematical models, we need time series data that describe the temporal
changes in one or more states of the system, whose temporal resolution varies among daily, weekly or
yearly and by the frequency at which the state of the system is measured. We herein employ a data set
for 37 different epidemic trajectories with different temporal resolutions (see Table 2). Additionally we
present the method for fitting the model to the data, that is, to estimate the parameters as in [1]. Finally,
to compare the models, we conduct a comparative analysis of RMSEs for all models and epidemics.
Then, to continue we present the materials and methods that allow us to understand the methodology.
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Table 2. Information on the 37 data sets of epidemic outbreaks obtained from the following
sources: Cases 1 to 23: [38], Case 24: [39,40], Case 25: [41,42], Case 26: [43], Case 27: [44],
Case 28: [45], Case 29: [46], Case 30: [47] , Cases 31 and 32: [48, 49], Case 33: [50],
Case 34: [51], Cases 35 and 36: [52, 53], Case 37: [54].

Case Disease Outbreak Temporal Total Case Disease Outbreak Temporal Total
No. resolution data No. resolution data
1 Ebola Forecariah (GIN) weeks 51 20 Ebola Tonkolili (SLE) weeks 29
2 Ebola Gueckedou (GIN) weeks 49 21 Ebola Western Area Rural (SLE) weeks 51
3 Ebola Keroune (GIN) weeks 14 22 Ebola Western Area Urban (SLE)) weeks 55
4 Ebola Kindia (GIN) weeks 30 23 Ebola Grand Bassa (LBR) weeks 30
5 Ebola Macenta (GIN) weeks 32 24 Ebola Congo (1976) days 52
6 Ebola N’Zerekore (GIN) weeks 24 25 Ebola Uganda (2000) weeks 18
7 Ebola Bomi (LBR) weeks 33 26 Measles London (ING) (1948) weeks 40
8 Ebola Bong (LBR) weeks 17 27 Plague Bombay (IND) (1905-06) weeks 41
9 Ebola Grand Cape Mount (LBR) weeks 29 28 Plague Madagascar (2017) weeks 50
10 Ebola Lofa (LBR) weeks 24 29 Smallpox Khulna (BGD) (1972) weeks 13
11 Ebola Margibi (LBR) weeks 40 30 Yellow fever Luanda (AGO) (2016) weeks 28
12 Ebola Montserrado (LBR) weeks 42 31 FMD UK (2001) days 121
13 Ebola Bo (SLE) (2014) weeks 39 32 FMD Uruguay (2001) days 27
14 Ebola Kailahun (SLE) weeks 33 33 Pandemic Influenza San Francisco (USA) (1918) days 63
15 Ebola Kambia (SLE) weeks 45 34 Zika Antioquia (COL)(2016) days 105
16 Ebola Kenema (SLE) weeks 39 35 VIH-AIDS Japan (1985-2012) years 21
17 Ebola Kono (SLE) weeks 30 36 VIH-AIDS NYC (1982-2002) years 70
18 Ebola Moyamba (SLE) weeks 37 37 Cholera Aalborg (DNK) (1853) days 105
19 Ebola Port Loko (SLE) (2014) weeks 54

3.1. Datasets

Table 2 summarizes the information of the 37 epidemic outbreaks analyzed, including the name
of the disease associated with each epidemic, the location where the outbreak occurred, the temporal
resolution (by days, weeks, or years) of the time series, and the number of data points. For each
outbreak, the onset corresponds to the first observation associated with a monotonic increase in incident
cases, up to the peak incidence. We notice that for Ebola we have more information about the outbreak
in West Africa (see also [35–37]).

3.2. The root mean square error (RMSE)

As in [1], besides using the residuals for any systematic deviations for the model fit to the data, it is
also possible to quantify the error of the model fit to the data using performance metrics [55]. These
metrics are also useful to quantify the error associated with a forecast. A widely used performance
metric is the root mean squared error (RMSE) given by

RMSE =

√√
1
n

n∑
i=1

(
f (ti, Θ̂) − yti

)2
,

where Θ̂ is the set of parameter estimates, f (ti, Θ̂) denotes the best-fit model, and yti (i = 1, . . . , n)
is the time series data (for that specific epidemic outbreak) and n is the total number of data points.
In this work we employ the RMSE since this quantity naturally arises in the context of least-squares
methods. Other applicable performance metrics [1] include the mean absolute error (MAE) and the
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mean absolute percentage error (MAPE), given by the respective expressions

MAE =
1
n

n∑
i=1

∣∣∣ f (ti, Θ̂) − yti

∣∣∣, MAPE =
1
n

n∑
i=1

∣∣∣∣∣ f (ti, Θ̂) − yti

yti

∣∣∣∣∣.
While we have not applied any special treatment on outliers when calculating the RSME, the sensitivity
of each of these performance metrics to anomalous data is left as a topic for future study.

3.3. Parameter estimation and confidence interval generation

Based on the description of the determination of the best fit in [1], we use the built-in Matlab
(The Mathworks, Inc.) function LSQCURVEFIT to obtain parameter estimates via least-square fit-
ting of the model solution to the observed data. This is achieved by searching for the set of pa-
rameters Θ̂ = (θ̂1, . . . , θ̂m) that minimizes the sum of squared differences between the observed data
yti = yt1 , . . . , ytn and the corresponding model solution denoted by f (ti,Θ). For the implementation for
this function, we need the initial parameter guesses and the upper and lower bounds for these parame-
ters as well as the initial data point C(0) . The process for the parameter estimation is summarized in
the next steps:

1. Define the upper and lower bounds for each parameter.
2. Consider m sets of initial parameters defined with the Matlab function LSHDESING and the

upper and lower bounds defined in step 1.
3. Calculate the parameter estimation for each set of initial parameters with the function

LSQCURVEFIT.
4. Measure the error RMSE and select the parameter estimates with lowest RMSE, in order to ensure

that the global minimum rather than a local minimum was found.

On the other hand, to generate the confidence interval, we use the parametric bootstrap method [56]
(see also [57, 58]) with Poisson error structure that was implemented to generate 250 model realiza-
tions. This process can be summarized in the following steps:

1. With the parameter estimations Θ̂ obtained by the least-squares fit of the model f (ti,Θ) to the
time series data yt1 , . . . , ytn, we achieve the best-fit model f (ti, Θ̂).

2. Then, we generate S -times replicated simulated datasets, using the best-fit model, which we
denote by f ∗1 (t j, Θ̂), . . . , f ∗S (t j, Θ̂). To generate these simulated data sets, we first use the best-fit
model f (ti, Θ̂) to calculate the corresponding cumulative curve function F(t j, Θ̂) defined as

F(t j, Θ̂) =

j∑
l=1

f (tl, Θ̂), j = 2, . . . , n.

Moreover, f ∗k (t1, Θ̂) = f (t1, Θ̂) for k = 1, . . . , S . Besides, these data are generated assuming a
Poisson error structure as follows: we assume that

f ∗k (t j, Θ̂) = Po
(
F(t j, Θ̂) − F(t j−1, Θ̂)

)
, j = 2, 3, . . . , n, k = 1, 2, . . . , S ,

where Po(λ) denotes the Poisson distribution with mean λ.
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3. We re-estimate parameters for each of the S simulated realizations, which are denoted by Θ̂i for
i = 1, . . . , S .

4. Finally, using the set of re-estimated parameters Θ̂i, i = 1, . . . , S , we construct the confidence in-
terval, so the resulting uncertainty around the model fit is given by f (t, Θ̂1), f (t, Θ̂2), . . . , f (t, Θ̂S ).

Then, for our case, from these S = 250 realizations, we calculate 95% confidence intervals for
model parameters.

3.4. Methodology: Analysis of the RMSE

In this section we summarize the methodology used to decide which is the best model for a given
outbreak, and to analyze the contribution of the parameter p. The definitions and theory are taken
from [1]. The methodology consists in an analysis of the RMSE error with the help of bar and scatter
charts.

For this purpose, we first explore the initial parameters for each model and epidemic in order to
ensure that the best fit of the model yields the smallest RMSE following the steps defined in the Section
3.3 for parameter estimation and considering r, b ∈ [0, 5], K ∈ [0, 107] and the known p ∈ [0, 1]. The
above is an important process in order to ensure that we are obtaining the best fit to the data using the
LSQCURVEFIT function in Matlab. We then with the best fits for each model and epidemic, we have
their incidence curves and the lower RMSE. With these values we obtain graphs that compare the fit
with the data, bar charts and scatter plots, which will be used for the error analysis (see Figure 3).

Data in time seriesEpidemic

Selection of initial parameters

Fitting with a growth model

Parameter estimation and RMSE

Error analysis

Figure 3. Methodology for error analysis.

4. Results

4.1. Error analysis and comparison of fits for each epidemic

With the RMSE and the best fits obtained for each model, we obtain tables and graphics (see
Table 3 and Figures 4 to 8) to compare the sizes of the errors for each model and epidemic outbreak,
where the numbers from 1 to 37 in Table 3 identify the cases of outbreak (see Table 2). In Table 3 we
observe that (independently of the epidemic) the GLM method yields the lowest RMSE in most of
the cases (highlighted in green), and the LM yields the larger errors (highlighted in yellow). Besides,
whenever the GLM is not the “best” model, the GGoM follows.

Furthermore, we also observe that between LM and GoM, the GoM is better, because the dyna-
mics of this model are more closely aligned to the dynamics of the GGoM. Furthermore, the LM is
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Table 3. RMSE using the total data for each model. For each outbreak, we highlight the
lowest RMSE (green) and the highest value (yellow) for the error sizes.

Case LM GLM GoM GGoM Case LM GLM GoM GGoM
No. No.
1 5.91840 5.08749 5.28578 5.28578 20 13.81574 10.44249 10.33338 10.33338
2 5.36334 4.68065 4.72246 4.71404 21 22.13303 12.51529 13.31396 13.31396
3 6.80378 5.21596 5.21959 5.19461 22 27.16583 20.98778 26.48861 26.48861
4 3.07198 3.06934 3.22175 3.22175 23 3.01595 2.47452 2.57271 2.43990
5 16.02456 8.74242 8.73707 8.49820 24 3.03925 2.28213 2.29532 2.29498
6 6.95680 5.27913 5.36135 5.36135 25 9.36028 6.37029 7.81157 7.81157
7 5.42450 3.96942 4.41215 3.96139 26 264.91368 108.36306 147.87904 147.87904
8 7.01087 5.81503 6.21805 5.81937 27 57.27638 51.60129 154.36235 154.36234
9 4.79101 4.79101 5.05457 5.05457 28 20.21720 8.50542 8.31521 7.87152
10 8.58955 8.58955 14.88488 14.88488 29 31.10051 28.45452 31.44816 31.44816
11 14.13951 11.40156 17.78045 17.78045 30 16.22091 9.42127 13.00660 13.00660
12 22.89522 14.77254 37.63692 37.63692 31 7.59491 5.12274 5.79428 5.79428
13 19.73810 10.08899 12.70424 12.70424 32 265.53459 78.47628 118.53622 79.95863
14 17.94184 11.77214 12.98507 11.93256 33 137.38697 137.38697 387.23469 387.23464
15 4.13574 3.31649 3.35153 3.34541 34 10.15666 5.47679 5.54259 5.54259
16 9.18180 5.58002 5.76447 5.74384 35 2174.08795 1354.63027 1493.07521 1493.07521
17 13.74655 13.74655 17.83847 17.83847 36 11.13642 7.40159 8.17479 7.64371
18 11.77779 11.32307 11.31585 11.31585 37 31.65064 26.58298 46.71374 46.71374
19 26.11925 11.66119 12.71813 12.71813
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Figure 4. Bar chart for comparison of the errors of each methods, where we observed that
among the best results are for the GLM and GGoM.
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Figure 5. Scatter plots for RMSE, where we verify that the pair of Gompertz models have a
closer behavior than the logistic models, where the variations are more marked. Additionally,
we also verify that the models incorporating the parameter p yield similar errors, in contrast
to the models with p = 1.

associated with the largest errors in the great majority of the cases of outbreaks.
Figures 4 and 5 display the RMSE for each model and dataset. In Figure 4 we can see that although

the GLM outperforms in most cases, we note that the error for the GLM is higher for Cases 3, 5, 7, 18,
20, 23, and 28 compared to the GGoM. Yet, those error differences are very small.

We also employ scatter plots to compare the errors yielded by a pair of models across all of the
epidemics (Figure 5). Therefore, we compare the models with or without the parameter p, and then
between the logistic and Gompertz models. For the first comparison we verify that the GGoM has
errors with sizes larger than the GLM, unlike the models without p, where the behavior is different,
since the LM has the errors with more scatter and below the line with slope one. Moreover, for the
second group of cases, we note that the logistic models have a more scattered behavior above the
diagonal line, where LM has errors with sizes greater than the sizes for the GLM’s errors. This contrasts
with the Gompertz models, where the scatter is closer to the diagonal. This shows that the errors yielded
by both Gompertz models are very similar, and we can readily observe that these models are stable or
closer to each other.

Having analyzed the RMSE for each model, now we study their respective fits for each epidemic
outbreak, where we obtain a graphic sample of the best fit that corresponds to the RMSE, i.e., we will
plot the best fits. These results are plotted in Figures 6 to 8. In these figures we can observe and
compare the quality of the fits and their erorrs, where can note that the best fits to the data correspond
to the smaller errors in terms of the RMSE.
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Case 1: Ebola (Forecariah) Case 2: Ebola (Gueckedou)
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Case 5: Ebola (Macenta) Case 6: Ebola (N’Zerekore)

0 50 100 150 200

Time

0

10

20

30

40

50

60

70

In
c
id

e
n
c
e

LM

GLM

GoM

GGoM

Data

LM GLM GoM GGoM

Model

0

2

4

6

8

10

12

14

16

R
M

S
E

0 50 100 150

Time

0

5

10

15

20

25
In

c
id

e
n
c
e

LM

GLM

GoM

GGoM

Data

LM GLM GoM GGoM

Model

0

1

2

3

4

5

6

R
M

S
E
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Figure 6. Results of fits for epidemic outbreaks (Cases 1 to 12).
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Case 13: Ebola (Bo) Case 14: Ebola (Kailahun)
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Case 15: Ebola (Kambia) Case 16: Ebola (Kenema)
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Case 17: Ebola (Kono) Case 18: Ebola (Moyamba)
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Case 19: Ebola (Port Loko) Case 20: Ebola (Tonkolili)
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Case 21: Ebola (Western Area Rural) Case 22: Ebola (Western Area Urban)
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Case 23: Ebola (Grand Bassa, 2014) Case 24: Ebola (Congo, 1976)
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Figure 7. Results of fits for epidemic outbreaks (Cases 13 to 24).
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Case 25: Ebola (Uganda, 2000)
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Case 26: Measles (London, 1948) Case 27: Plague (Bombay, 1905–06)
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Case 28: Plague (Madagascar-wave2, 2017) Case 29: Smallpox (Khulna, Bangladesh, 1972)
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Case 30: Yellow Fever (Luanda, 2016) Case 31: FMD (UK, 2001)
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Case 32: FMD (Uruguay, 2001) Case 33: Pandemic influenza (San Francisco, 1918)
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Case 36: HIV-AIDS (NYC, 1982–2002) Case 37: Cholera (Aalborg, 1853)
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Figure 8. Results of fits for epidemic outbreaks (Cases 25 to 37).
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Table 4. Parameter estimation for LM, GLM, GoM and GGoM with total data.
Case LM GLM GoM GGoM
no. r̂ K̂ r̂ p̂ K̂ r̂ b̂ r̂ b̂ p̂
1 0.0515 349.7231 0.1166 0.7713 444.2758 0.1074 0.0195 0.1074 0.0195 1.0000
2 0.0272 312.0756 0.1333 0.6196 407.0675 0.0716 0.0129 0.0716 0.0119 0.9199
3 0.1395 103.0945 0.4286 0.6217 140.4582 0.3545 0.0636 0.3545 0.0580 0.9182
4 0.0661 96.5409 0.0761 0.9502 99.1794 0.1245 0.0307 0.1245 0.0307 1.0000
5 0.0895 447.7870 0.4231 0.6114 725.6594 0.2533 0.0334 0.2533 0.0293 0.8988
6 0.0824 181.5802 0.2410 0.6776 248.1927 0.1937 0.0350 0.1937 0.0350 1.0000
7 0.0794 125.5729 0.6590 0.3822 197.6517 0.5303 0.0376 0.5303 0.0229 0.5241
8 0.1022 112.4554 0.8366 0.3050 197.8649 0.7161 0.0421 0.7161 0.0188 0.3987
9 0.0563 126.3540 0.0563 1.0000 126.3550 0.1222 0.0243 0.1222 0.0243 1.0000
10 0.0801 449.7942 0.0801 1.0000 449.7945 0.1680 0.0300 0.1680 0.0300 1.0000
11 0.0860 717.8667 0.1321 0.8856 835.4420 0.2037 0.0295 0.2037 0.0295 1.0000
12 0.0781 2186.2506 0.1151 0.9075 2558.8591 0.1891 0.0234 0.1891 0.0234 1.0000
13 0.0580 1120.3306 0.1510 0.7861 1516.9220 0.1379 0.0205 0.1379 0.0205 1.0000
14 0.0881 460.4146 0.8746 0.4820 743.9952 0.5880 0.0371 0.5880 0.0249 0.6606
15 0.0397 209.5318 0.1488 0.6165 297.9425 0.0931 0.0162 0.0931 0.0151 0.9355
16 0.0937 348.5524 0.3352 0.6473 521.6719 0.2350 0.0344 0.2350 0.0324 0.9540
17 0.0488 588.5557 0.0488 1.0000 588.5585 0.1001 0.0183 0.1001 0.0183 1.0000
18 0.0481 233.1384 0.1574 0.6929 299.3579 0.0975 0.0224 0.0975 0.0224 1.0000
19 0.0704 1367.5564 0.2398 0.7224 2117.9765 0.1731 0.0225 0.1731 0.0225 1.0000
20 0.0713 462.3494 0.2765 0.6858 621.0968 0.1428 0.0306 0.1428 0.0306 1.0000
21 0.0704 1081.3964 0.2051 0.7484 1597.3617 0.1728 0.0232 0.1728 0.0232 1.0000
22 0.0544 2333.8907 0.1257 0.8349 2869.5270 0.1282 0.0191 0.1282 0.0191 1.0000
23 0.0881 71.3732 0.3692 0.4182 117.6898 0.2726 0.0351 0.2726 0.0219 0.6261
24 0.2489 184.6402 0.7254 0.6591 264.8534 0.5537 0.0970 0.5537 0.0955 0.9869
25 0.1320 321.0079 0.2531 0.7975 405.2692 0.2883 0.0471 0.2883 0.0471 1.0000
26 0.0464 22036.2242 0.3110 0.7547 28828.6606 0.1004 0.0178 0.1004 0.0178 1.0000
27 0.0619 8469.9885 0.0785 0.9599 8953.5581 0.1488 0.0205 0.1488 0.0205 1.0000
28 0.0447 1092.7766 0.2944 0.6104 1794.4156 0.1352 0.0163 0.1352 0.0141 0.8972
29 0.0897 1066.4611 0.1540 0.8772 1248.9623 0.1622 0.0283 0.1622 0.0283 1.0000
30 0.1175 676.3573 0.2210 0.8228 881.6454 0.2617 0.0378 0.2617 0.0378 1.0000
31 0.1672 1183.5522 0.3987 0.7918 1613.2740 0.4063 0.0542 0.4063 0.0542 1.0000
32 0.3065 20755.6167 5.8972 0.5830 95304.7125 4.9103 0.0845 4.9103 0.0178 0.6244
33 0.2818 26871.5921 0.2818 1.0000 26871.5957 0.7090 0.0776 0.7090 0.0776 1.0000
34 0.1643 1138.8055 0.6332 0.6874 1847.4319 0.3922 0.0521 0.3922 0.0521 1.0000
35 0.4780 108372.6501 3.6817 0.7742 144496.6825 1.0171 0.1613 1.0171 0.1613 1.0000
36 0.2301 621.0656 1.8679 0.5341 1057.3185 1.4274 0.0886 1.4274 0.0607 0.7021
37 0.2067 6151.3786 0.3366 0.9132 7000.0555 0.4765 0.0670 0.4765 0.0670 1.0000

Having finalized our comparative analysis of the model fits and their corresponding errors, we point
out that for the Ebola epidemics (Cases 1 to 25), the GLM tends to yield an improved description
to the data because in those cases where the GGoM wins (in terms of smallness of the RMSE), the
corresponding errors do not differ by more than 0.6399. However, for the rest of the cases of epidemic
outbreaks, the best model remains the GLM which yields smaller errors compared to the GGoM.

4.2. Parameter estimation

These results were obtained from the fits calculated in the previous section with the use of the
Matlab function LSDCURVEFIT. We summarize the results for all cases in Table 4. We note that for
the GGoM, there are 24 cases with p = 1, which means that these exhibit an initial exponential growth,
where moreover the Gompertz and GGoM models yield equal RSMEs for that value of p. On the other
hand for this same period of time and for the logistic models, we notice that only for four epidemics
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we have p = 1 (exponential initial growth), and the others give rise to initial sub-exponential growth
with p ∈ (0, 1). There were a number of outbreaks where the Gompertz models yield p = 1 (Gompertz
and GGoM models are equivalent), for which the differences between the corresponding RMSEs are
negligible.

Additionally, we observe that for the cases of Ebola in Grand Cape Mount, Lofa, Kono and Pan-
demic Influenza (Cases 9, 10, 17, and 33), we obtained p = 1 for the two generalized models. Also,
for epidemics when the value of p for GLM is near one, the corresponding value of the parameter for
the GGoM is one including the epidemics of Ebola (Kindia, Montserrado; Cases 4 and 12), Plague
(Bombay; Case 27) and Cholera (Aalborg; Case 37), in Table 4. We also observe that when the value
of the parameter for GLM is small, for example the cases of Ebola (Bomi, Bong; Cases 7 and 8), the
value for the GGoM is also small, and for all cases when the value of p = 1 en GGoM, the values of p
for GLM is greater than 0.6.

4.3. Confidence intervals

In this part, for the calculation of confidence intervals, we consider the generalized models (GLM
and GGoM), for which we can obtain another piece of information to compare both models, and to de-
cide which models best fit a given dataset. To this end we take the same initial parameters obtained for
the RMSE calculation, and we use the parametric bootstrap process with 250 simulations with Poisson
error structure, defined in Section 3, and summarize the results in Tables 5 and 6. In these results we
note that the intervals are narrower and contain the mean value, suggesting that the parameters are
identifiable (see [1]) for the GLM model. On the other hand, for the GGoM model, this situation oc-
curs in some cases, for example, see Figure 9, where for Case 1 the confidence interval obtained with
GLM model has a bar chart that is centred, while that for the GGoM model, the bar chart displays a
distribution with two modes. This behavior displayed by the GGoM model can be due to dependency
or correlations (presented in Section 2) between the parameters b and p.

Another observation is that the non-identifiability can be present in the results where the upper and
lower limit of the 95%CI intervals are not so close, and the mean is not a central value inside the
interval. This is observed for the GGoM in the Cases 1 and 24, and the opposite situation can be
observed, for instance, for Cases 12 and 19, where the mean value is a central value inside the interval
which has the extremes very close. This last situation also appears in all the results derived from the
GLM.

5. Discussion and conclusion

Our systematic comparison of a number of epidemic outbreaks using phenomenological growth
models indicates that the GLM outperformed the other models in describing the great majority of the
epidemic trajectories. In a few cases (such as Cases 3, 4, 23, and 28) the GGoM outperformed the other
models. These findings indicate that the parameter p plays a much more significant role in shaping the
dynamic trajectories supported by the GLM compared to the GoM since we observed that the errors
of the GoM and GGoM models stay fairly close to each other and the contribution of the adjustment
of p remains subtle in some cases. In fact, a closer examination of the parameter estimates derived
from both models GoM and GGoM indicates that parameter p is close to 1 in these models, which
explains the similarity in the fits derived from these models. So the GGoM model could be reduced to
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Table 5. Confidence intervals for GLM parameters.
Case r p K
no. mean 95%CI mean 95%CI mean 95%CI
1 0.115 (0.086,0.158) 0.776 (0.696,0.846) 443.49 (394.90,487.00)
2 0.131 (0.089,0.200) 0.626 (0.526,0.717) 406.78 (365.07,452.51)
3 0.423 (0.257,0.704) 0.627 (0.471,0.777) 139.71 (119.44,163.74)
4 0.073 (0.062,0.121) 0.965 (0.790,1.000) 98.86 (82.50,116.37)
5 0.431 (0.323,0.548) 0.605 (0.559,0.671) 726.36 (668.81,778.98)
6 0.240 (0.175,0.320) 0.678 (0.606,0.773) 246.65 (218.27,274.52)
7 0.642 (0.378,1.147) 0.384 (0.227,0.523) 196.30 (166.86,220.68)
8 0.840 (0.423,2.038) 0.313 (0.005,0.499) 199.49 (160.34,283.75)
9 0.058 (0.053,0.077) 1.000 (0.885,1.000) 129.27 (108.47,150.70)
10 0.081 (0.078,0.096) 1.000 (0.950,1.000) 451.77 (417.50,494.91)
11 0.132 (0.115,0.149) 0.885 (0.853,0.922) 833.39 (775.85,894.77)
12 0.115 (0.105,0.122) 0.908 (0.894,0.928) 2556.08 (2451.96,2652.82)
13 0.152 (0.129,0.176) 0.785 (0.755,0.818) 1516.06 (1437.87,1598.21)
14 0.858 (0.638,1.192) 0.487 (0.418,0.547) 742.15 (691.23,794.99)
15 0.153 (0.098,0.216) 0.614 (0.521,0.729) 299.04 (262.92,333.23)
16 0.329 (0.252,0.443) 0.652 (0.587,0.714) 518.72 (473.90,565.42)
17 0.049 (0.047,0.059) 1.000 (0.954,1.000) 594.39 (551.33,647.65)
18 0.156 (0.100,0.235) 0.693 (0.597,0.813) 300.69 (267.36,329.84)
19 0.240 (0.216,0.265) 0.722 (0.703,0.744) 2123.24 (2028.54,2209.52)
20 0.274 (0.194,0.374) 0.688 (0.618,0.760) 620.20 (570.91,671.19)
21 0.205 (0.183,0.232) 0.749 (0.720,0.771) 1598.77 (1509.05,1682.88)
22 0.126 (0.113,0.139) 0.835 (0.815,0.855) 2869.41 (2750.68,2980.44)
23 0.356 (0.161,0.796) 0.433 (0.162,0.683) 116.16 (94.65,141.21)
24 0.719 (0.514,1.012) 0.663 (0.567,0.761) 263.51 (227.52,299.68)
25 0.256 (0.196,0.308) 0.796 (0.740,0.873) 405.35 (361.75,440.83)
26 0.310 (0.289,0.330) 0.755 (0.747,0.764) 28794.12 (28454.39,29171.09)
27 0.078 (0.074,0.083) 0.961 (0.951,0.970) 8950.33 (8758.74,9158.87)
28 0.295 (0.245,0.353) 0.609 (0.576,0.645) 1794.21 (1700.83,1870.10)
29 0.153 (0.118,0.201) 0.879 (0.819,0.938) 1250.05 (1145.82,1369.44)
30 0.221 (0.185,0.260) 0.824 (0.786,0.869) 878.98 (821.33,929.29)
31 0.400 (0.353,0.452) 0.791 (0.765,0.820) 1618.73 (1522.17,1682.63)
32 5.899 (5.227,6.851) 0.583 (0.562,0.600) 93958.96 (73179.88,139505.38)
33 3.288 (2.811,3.494) 0.639 (0.627,0.663) 26899.66 (23324.67,28492.81)
34 0.629 (0.552,0.716) 0.689 (0.665,0.714) 1848.41 (1745.74,1928.95)
35 3.700 (3.567,3.819) 0.774 (0.767,0.778) 144499.22 (88406.56,145514.69)
36 1.862 (1.483,2.435) 0.536 (0.482,0.585) 1057.80 (986.65,1116.99)
37 0.338 (0.312,0.358) 0.912 (0.902,0.927) 7016.81 (6840.94,7162.10)

GoM without much impact on the model fit. This is in sharp contrast to what is happening with the
logistic models where both the LM and GLM models only yield similar fits for three epidemics. Future
research could be directed at determining which of the models equipped with generalized growth are
easier to calibrate than the other, considering the initial or final parts of the dynamics and with the aim
to improve predictions.

Referring to the parameter estimation procedure and the need to provide an initial solution to the
optimization numerical methods, we have found that Matlab functions and the steps defined in the
section 3.3, are sufficient for the present study, in agreement with the experience made in [1, 18].
However, since there is a limited range for some of the parameters (as is the case of parameter p, but
not of the others) it might be interesting in future work to use metaheuristic procedures to the parameter
estimation that possibly guarantee in an appropriate form that the parameters found are indeed optimal
globally. As is mentioned in [26], such procedures include simulated annealing (see, e.g., [27,31,59]),
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Table 6. Confidence intervals for GGoM parameters.
Case r b p
no. mean 95%CI mean 95%CI mean 95%CI)
1 2.399 (0.103,2.934) 1.489 (0.017,8.886) 0.061 (0.008,1.000)
2 0.069 (0.016,0.178) 0.012 (0.010,9.034) 0.901 (0.010,1.000)
3 0.355 (0.292,0.670) 0.058 (0.043,0.074) 0.900 (0.589,1.000)
4 0.129 (0.050,0.302) 0.030 (0.020,9.357) 0.977 (0.041,1.000)
5 0.254 (0.193,0.327) 0.029 (0.026,0.033) 0.900 (0.806,1.000)
6 0.200 (0.175,0.265) 0.034 (0.028,0.040) 1.000 (0.716,1.000)
7 0.523 (0.264,1.014) 0.023 (0.018,0.032) 0.535 (0.284,0.795)
8 0.687 (0.341,1.479) 0.020 (0.011,0.032) 0.416 (0.134,0.718)
9 0.125 (0.082,1.620) 0.025 (0.018,8.948) 0.877 (0.068,1.000)
10 0.174 (0.159,0.219) 0.029 (0.026,0.032) 1.000 (0.886,1.000)
11 0.208 (0.195,0.270) 0.029 (0.027,3.012) 0.994 (0.408,1.000)
12 0.191 (0.185,0.205) 0.023 (0.022,0.024) 0.999 (0.971,1.000)
13 0.139 (0.134,0.166) 0.020 (0.019,0.021) 1.000 (0.935,1.000)
14 0.570 (0.391,0.814) 0.025 (0.022,0.029) 0.667 (0.569,0.784)
15 3.424 (0.071,4.404) 3.847 (0.014,9.774) 0.130 (0.005,0.943)
16 0.236 (0.206,0.294) 0.032 (0.029,0.036) 0.951 (0.858,1.000)
17 0.106 (0.096,0.983) 0.018 (0.015,5.936) 0.979 (0.260,1.000)
18 0.114 (0.091,3.443) 0.023 (0.018,9.747) 0.931 (0.004,1.000)
19 0.175 (0.170,0.195) 0.022 (0.021,0.023) 1.000 (0.955,1.000)
20 0.148 (0.136,0.215) 0.030 (0.026,0.032) 1.000 (0.871,1.000)
21 0.175 (0.169,0.193) 0.023 (0.021,0.024) 0.999 (0.948,1.000)
22 0.130 (0.126,0.146) 0.019 (0.018,0.019) 1.000 (0.963,1.000)
23 0.256 (0.122,0.671) 0.023 (0.014,0.035) 0.648 (0.242,1.000)
24 0.560 (0.109,3.233) 0.096 (0.077,9.604) 0.953 (0.037,1.000)
25 0.297 (0.273,0.363) 0.046 (0.040,0.050) 1.000 (0.890,1.000)
26 0.101 (0.100,0.112) 0.018 (0.017,0.018) 1.000 (0.984,1.000)
27 0.150 (0.148,0.162) 0.020 (0.020,0.021) 1.000 (0.980,1.000)
28 0.134 (0.104,0.168) 0.014 (0.013,0.016) 0.899 (0.839,0.973)
29 0.169 (0.155,0.268) 0.027 (0.019,0.030) 0.998 (0.830,1.000)
30 0.267 (0.253,0.306) 0.037 (0.034,0.039) 1.000 (0.929,1.000)
31 0.409 (0.006,3.851) 0.055 (0.050,9.469) 0.973 (0.005,1.000)
32 4.891 (3.893,6.247) 0.018 (0.011,0.025) 0.625 (0.584,0.664)
33 0.712 (0.705,0.744) 0.077 (0.076,0.078) 1.000 (0.989,1.000)
34 0.559 (0.386,3.960) 5.605 (0.049,7.869) 0.305 (0.292,1.000)
35 1.020 (1.014,1.096) 0.161 (0.159,0.162) 1.000 (0.990,1.000)
36 1.424 (1.114,1.798) 0.061 (0.054,0.069) 0.704 (0.632,0.774)
37 0.481 (0.471,0.542) 0.067 (0.065,0.068) 0.999 (0.970,1.000)

variable neighborhood search (VNS) [27, 31], and the so-called firefly algorithm [33].

While we compared phenomenological growth models based on their ability to describe empirical
trajectories of real epidemics, our methodology could be extended to assess the “distance” between
models in terms of the range of dynamics supported by model A that can also be supported by model B
and vice versa. For instance, based on our empirical findings we hypothesize that the distance between
the LM and GLM models is larger compared to the distance between the GoM and GGoM models.
Importantly such distance could be derived for any pair of models regardless of model complexity.
Future work could explore this research direction by analyzing a larger set of dynamic models including
phenomenological and mechanistic models.
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Figure 9. Identifiability vs. non-identifiability of parameters for Case No 1.
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