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Abstract: Biochemical reaction networks describe the chemical interactions occurring between
molecular populations inside the living cell. These networks can be very noisy and complex and they
often involve many variables and even more parameters. Parameter sensitivity analysis that studies
the effects of parameter changes to the behaviour of biochemical networks can be a powerful tool in
unravelling their key parameters and interactions. It can also be very useful in designing experiments
that study these networks and in addressing parameter identifiability issues. This article develops a
general methodology for analysing the sensitivity of probability distributions of stochastic processes
describing the time-evolution of biochemical reaction networks to changes in their parameter values.
We derive the coefficients that efficiently summarise the sensitivity of the probability distribution
of the network to each parameter and discuss their properties. The methodology is scalable to
large and complex stochastic reaction networks involving many parameters and can be applied to
oscillatory networks. We use the two-dimensional Brusselator system as an illustrative example and
apply our approach to the analysis of the Drosophila circadian clock. We investigate the impact of
using stochastic over deterministic models and provide an analysis that can support key decisions for
experimental design, such as the choice of variables and time-points to be observed.

Keywords: parameter sensitivity analysis; reaction networks; oscillation; molecular biology

1. Introduction

Parameter sensitivity analysis is a useful tool for elucidating the dynamics of biological processes,
optimally designing biological experiments, and investigating the identifiability of model parameters.
It is particularly important in the context of reaction networks describing the time-evolution of
populations of molecular species that interact with each other through a set of reactions. These
biochemical reaction networks, which are used to describe signalling, regulation and development
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processes in molecular biology, often involve a large number of non-linear interactions parameterised
with an even larger number of parameters (e.g. reaction rate constants and reaction thresholds).
Sensitivity analysis in this context can be used to unravel the network complexities by identifying the
key parameters and the corresponding reactions that drive the most fundamental aspects of the
network. Sensitivity analysis can also be used to optimally design experiments, for example by
selecting the variables, time-points and number of replicates to be observed in order to achieve
maximum parameter sensitivity. Similarly, it is a useful tool for examining the identifiability of model
parameters for a given set of observations.

Early results in sensitivity analysis of biochemical reaction networks were derived using
deterministic (i.e. non-stochastic) models [1–3]. However, the technological innovations that allowed
for observing molecular species at the single cell level and over time emphasised the need to account
for the intrinsic stochasticity of reaction networks in molecular biology [4–6]. Progress has been
made in estimating sensitivities of summary measures of the probability distribution of reaction
networks (e.g. expectation of a key molecular population at its expected peak time) using finite
difference and other methods (e.g. [7–12]).

These methods use the Stochastic Simulation Algorithm (SSA) [13] to simulate sample paths of the
so-called master equation describing the evolution of the probability distribution P of the interacting
molecular populations over time. However, the SSA, which simulates every single reaction occurrence,
is computationally expensive for large and complex networks and especially those networks where
reactions occur across well-separated time-scales.

Sensitivity analysis that uses the full probability distributions, rather than their summary measures,
is computationally infeasible unless a suitable approximation of the master equation is used. The
Linear Noise Approximation (LNA) is a systematic stochastic approximation of the master equation
in terms of the system size. The system size, Ω, is a scale parameter that is inversely proportional to
the levels of stochasticity of the evolving molecular populations, i.e. the size of fluctuations is small
for large Ω [14]. The key advantage of the LNA, over approximations such as tau-leaping [15] and
Langevin or diffusion approximations [16], is that LNA provides analytical expressions for the
probability distribution, P, of the interacting molecular populations, which are Multivariate Normal.
This implies that the LNA can be much faster than other approximations in terms of simulation and
parameter estimation but also that quantities such as the Kullback-Leibler (KL) divergence and the
Fisher Information can be computed. The LNA has been used for simulation [17, 18], parameter
estimation [19–22] and sensitivity analysis [23].

The LNA has been shown to be inaccurate for simulating noisy oscillations [17, 24–27].
Oscillatory dynamics commonly arise in biology, epidemiology, engineering and beyond with
numerous examples including the circadian clock, NF-κB signalling, cardiac rhythms, and
predator-prey systems. We have recently developed (see [27]) an approximation, called phase
corrected LNA (pcLNA), that corrects the standard LNA to give fast and accurate long-time stochastic
simulations for oscillations. The probability distributions derived using pcLNA are Multivariate
Normal with mean vector and covariance matrix that have similar expressions to the standard LNA
and therefore computation of the KL divergence and the Fisher Information Matrix, which enables a
parameter sensitivity analysis, is computationally feasible.

This article develops a general theory of parameter sensitivity analysis. It uses the Kullback-Leibler
divergence and the Fisher Information Matrix to study the sensitivity of the probability distribution, Pθ,
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of a stochastic process, Y = {Y(t), t ≥ 0}, to changes of the parameter vector θ. It is a local analysis in
the sense that we study changes of the parameter vector θ′ = θ+δθ, where O(‖δθ‖3) are negligible. It is,
on the other hand, complete in the sense that the sensitivity of the probability distribution, rather than
summaries of the probability distribution, are analysed. It extends the theory of sensitivity analysis
developed earlier in [23, 27, 28], by (i) deriving a matrix for studying the parameter sensitivity of
any stochastic process of which the Fisher information matrix can be computed, possibly even by
rudimentary approximations, (ii) deriving a complete method for studying the sensitivity of the joint
probability distribution of any sample path of a multivariate Gaussian stochastic processes to changes
in parameter values, (iii) describing the application of this theory to oscillatory networks approximated
by pcLNA and showing how to use it for experimental design, for studying parameter identifiability
and for comparing deterministic to stochastic models.

The paper proceeds as follows. In section 2 we develop a general theory of parameter sensitivity
analysis of the probability distributions of sample paths of stochastic processes. We also consider the
case of multivariate Gaussian stochastic process. In section 3 we describe reaction networks and the
master equation and in section 4 the LNA and pcLNA approximations. In section 5 we provide an
illustrative example of our methods using the Brusselator system [29]. Our approach is then applied
in section 6 to the sensitivity analysis of the Drosophila circadian clock developed in [30]. Section
7 provides a discussion of the results, while details of the Drosophila circadian clock model [30] are
provided in Supplement A.

2. Parameter sensitivity analysis

Let Y = {Y(t), t ≥ 0} be a stochastic process defined on a probability space (Ω,F , Pθ) of which the
probability distribution Pθ depends on a parameter θ = (θ1, . . . , θk)T ∈ Θ ⊂ Rk. We wish to study how
the probability distribution of sample paths, Y(t1), . . . ,Y(tn), for 0 ≤ t1 < · · · < tn < ∞, is affected by
changes in the value of θ. For this purpose, we introduce the Fisher Information Matrix (FIM).

We first define the log-likelihood function `(θ; y) = log pθ(y) where pθ(y) is the probability density
(or mass) function of a sample path y of Y. The FIM, I(θ), is a symmetric positive-(semi)definite k× k
matrix with entries

Ii j(θ) = EPθ

[
∂i` · ∂ j`

]
= −EPθ

[
∂2

i j`
]
.

Here EPθ denotes the expectation function under the probability distribution Pθ, ∂i the partial derivative
with respect to θi evaluated at θ and ∂2

i j the corresponding second order derivative. The FIM is therefore
the negative of the expected curvature of `(θ; y) ∈ C2(Θ). For k = 1 and convex `(θ; y), the FIM, I(θ̂),
measures the expected “peakedness” of the likelihood at its maximum value `(θ̂; y).

The Fisher information matrix is related to the Kullback-Leibler (KL) divergence between two
probability distributions Pθ+δθ and Pθ. For two probability distributions P and Q with density functions
p(y) and q(y), y ∈ Y, the KL divergence is

DKL(P ‖Q) =

∫
Y

p(y) log
p(y)
q(y)

dy.

That is, the KL divergence DKL(P‖Q) is the expected value of the logarithm of the likelihood ratio
log p(y)/q(y) with the expectation taken with respect to P and the usual conventions when p(y) = 0 or
q(y) = 0. An analogous definition of KL divergence applies for discrete probability distributions.
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If P = Pθ+δθ and Q = Pθ, then (see [31]),

DKL(Pθ+δθ ‖ Pθ) =
1
2
δθTI(θ)δθ + O(‖δθ‖3).

That is, the FIM is the hessian matrix of the above KL divergence at θ ∈ Θ (the tangent of DKL at
δθ = 0k is 0).

If the Fisher information matrix I = I(θ), θ ∈ Θ, is positive definite, it defines a Riemannian
metric over the statistical manifold of probability distributions {Pθ, θ ∈ Θ} by the inner product of two
probability distributions Pθ+δθ and Pθ+δθ′ in the tangent space of the manifold at θ

〈δθ, δθ′〉θ =
∑

i, j

δθiδθ
′
jIi j(θ) = δθTIδθ′,

with the FI metric
‖δθ‖2θ = 〈δθ, δθ〉θ =

∑
i, j

δθiδθ jIi j(θ) = δθTIδθ.

This FI metric is related to the KL divergence by

DKL(Pθ+δθ||Pθ) =
1
2
〈δθ, δθ〉θ + O(||δθ||3).

The FIM can therefore be used to locally (i.e. when O(||δθ||3) ≈ 0) measure the change in probability
distribution Pθ → Pθ+δθ for a change in parameter values θ → θ + δθ.

2.1. The sensitivity matrix

Because the FIM I = I(θ) is symmetric and positive semi-definite, its Singular Value
Decomposition (SVD) is of the form VD2VT where V is orthogonal and D is diagonal with entries
σ1 ≥ · · · ≥ σk ≥ 0. It can therefore be decomposed to I = sT s with the matrix s = s(θ) = DVT and the
KL divergence

DKL(Pθ+δθ||Pθ) =
1
2
‖s δθ‖2 + O(||δθ||3) =

1
2

∑
i, j,l

δθ jδθlsi jsil + O(||δθ||3).

The length, ‖ s j ‖
2, of the column s j = (s1 j, . . . , sk j)

T of s, measures the effects of a single unit change of
the j-th parameter θ j to the distribution Pθ, j = 1, . . . , k. It can therefore be used to study the sensitivity
of Pθ to changes in the parameter values.

Note that no assumptions for the probability distribution, Pθ, are made so far. We next explain the
role of the matrix s as a sensitivity matrix in the important case of multivariate Gaussian stochastic
processes where analytical expressions for the FIM of probability distributions of sample paths are
available.

2.2. Sensitivity analysis for multivariate Gaussian stochastic processes

We consider the case where Y = {Y(t), t ≥ 0} is an m-dimensional Gaussian stochastic process.
That is, for t ≥ 0, Y(t) = (Y1(t), . . . ,Ym(t))T ∈ Rm with the joint probability distribution of sample
paths Y(t1),Y(t2), . . . ,Y(tn) being the multivariate normal MVN(µ(θ),Σ(θ)), with mean vector µ =
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µ(t1, . . . , tn; θ) = µ(θ) and covariance matrix Σ = Σ(t1, . . . , tn; θ) = Σ(θ) depending on θ. In this case,
the entries of the FIM are

Ii j(θ) = (∂iµ)T Σ−1(∂ jµ) +
1
2

tr(Σ−1(∂iΣ)Σ−1(∂ jΣ)) (2.1)

where all derivatives are taken at θ. This can also be written using the vec notation [32] as

Ii j(θ) = (∂iµ)T Σ−1(∂ jµ) +
1
2

vec(∂iΣ)(Σ−1 ⊗ I)(I ⊗ Σ−1)vec(∂ jΣ).

Now consider the N × k matrix (N = (m · n) + (m · n)2)

L =

(
∂µ

∂vec(Σ)

)
=

(
∂1µ . . . ∂kµ

∂1vec(Σ) . . . ∂kvec(Σ)

)
, (2.2)

which is the linearisation matrix of the mapping θ 7→ (µ(θ), vecΣ(θ)) at θ. That is, if we let δµ = (δµi)
and δΣ = (δΣi j), with δµi = µi(θ + δθ) − µi(θ) and δΣi j = Σi j(θ + δθ) − Σi j(θ), then

(δµ, δvec(Σ))T = L δθ + O(‖δθ‖2). (2.3)

If we also define the matrix F as the Cholesky decomposition of the block diagonal positive-definite
matrix (

Σ−1 0
0 (Σ−1 ⊗ I)(I ⊗ Σ−1)/2

)
then we can write the Fisher information in (2.1) as

I = (FL)T (FL).

Therefore, FL is a linear map from θ to RN which sends the 〈·, ·〉θ metric to the standard one in RN ,

〈δθ, δθ′〉θ = δθTI(θ)δθ′ = δθT (FL)T (FL)δθ′ = (FLδθ)T (FLδθ′)

and relates the FI metric in Θ to the standard one in RN ,

‖δθ‖2θ = ‖FLδθ‖2.

The matrix s characterises sensitivity

The sensitivity of the probability distribution MVN(µ(θ),Σ(θ)) to changes δθ in θ can therefore be
studied using the vector FL δθ. Equation (2.3) shows that

F (δµ, δvec(Σ))T = FLδθ + O(‖δθ‖2).

We now consider the (thin) SVD of the N × k matrix FL, FL = WDVT , where W = [W1 · · ·Wk] is
an N × k column-orthogonal matrix, D a k × k diagonal matrix with entries of the main diagonal the
singular values σ1 ≥ · · · ≥ σk, and V = [V1 · · ·Vk] a k × k orthogonal matrix. Because I = (FL)TFL,
the eigenvalues of I are σ2

1 ≥ · · · ≥ σ
2
k ≥ 0, and Vi, i = 1, . . . , k, are the corresponding eigenvectors.
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The N×1 orthogonal column vectors Wi of W and the k×1 eigenvectors Vi of I, satisfy the equation
FLVi = σiWi, and if we define Ui = F −1Wi, i = 1, 2, . . . , s then

LVi = σiUi, (2.4)

where the N-dimensional vectors Ui can be written as Ui = (Uµ
i ,U

Σ
i )′ to reflect the correspondence of

each of its first m · n entries to the (m · n)-dimensional mean vector µ and the last (m · n)2 entries to the
covariance matrix Σ.

By (2.4), and using that δθ =
∑

i(VT
i δθ)Vi, up to terms that are O(‖δθ‖2),

L · δθ = L ·
∑

i

(VT
i · δθ)Vi =

∑
i

(σiVT
i · δθ)Ui =

∑
i

(
∑

j

si jδθ j)Ui = U · s · δθ.

Therefore,
L = U · s, (2.5)

and by (2.3),
‖(δµ, δvec(Σ))‖θ = ‖s · δθ‖ + O(‖δθ‖2)

since the Ui are orthonormal in the 〈·, ·〉θ metric and the coefficient of Ui in U ·s ·δθ is the ith coordinate
of s · δθ. These equations are the reason we call s = DVT the sensitivity matrix.

Similarly, up to terms that are O(‖δθ‖2),

F (δµ, δvec(Σ))T =

k∑
i=1

k∑
j=1

Wisi jδθ j = W · s · δθ (2.6)

i.e. FL = W · s. We can now make a few useful observations:

1. Equation (2.6) shows that the change in the probability distribution MVN(µ(θ),Σ(θ)) produced
by a change to the value of parameter θ → θ + δθ, according to the FI metric, is a weighted sum
of the vectors Wi = F (Uµ

i
T
,UΣ

i
T )T with weights-coefficients σ jVT

j δθ =
∑

j si jδθ j. The change in
the probability distribution is reflected to the mean through the Uµ

j directions and the covariance
matrix through the UΣ

j directions.

2. The coefficients σ jVT
j δθ are proportional to the singular values σ j and the inner products VT

j δθ.
The latter are the coordinates of δθ in the orthonormal basis of Θ defined by the columns of
the matrix V . Therefore, because the singular values are chosen in non-increasing order, i.e.
σ1 ≥ · · · ≥ σk, the largest change in the probability distribution, subject to fixed ‖δθ‖, occurs
when the change δθ is parallel to V1 that corresponds to the largest singular value σ1. If the
singular values decay fast, there are only a few directions of the signal space that can produce a
relatively large change in the MVN(µ(θ),Σ(θ)) distribution (subject to fixed ‖δθ‖).

3. Furthermore, the overall contribution of each coordinate δθi of δθ in the change of the probability
distribution is measured, according to the FI metric, by

∑k
j=1 W jsi j = Wsi. That is, if δθ = εei

with ei ∈ R
k the usual unit vector with only non-zero entry eii = 1 and constant ε ∈ R, then the

corresponding change in the probability distribution MVN(µ(θ),Σ(θ)) according to the FI metric
is

εFLei = εWsi. (2.7)
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Because of the definition of s through the SVD, the sensitivity matrix s is optimal for capturing as
much sensitivity as possible in the low order principal components of (δµ, δvec(Σ))T . That is, for any
(sensitivity) matrix s′ which for some orthogonal matrix U′ satisfies

(δµ, δvec(Σ))T = U′(s′)Tδθ + O(‖δθ‖2),

the sensitivity matrix s satisfies the following inequalities for all ` < k,∑
i≤`

∑
j

s2
i j ≥

∑
i≤`

∑
j

s′ 2i j

and∑
i≥`

∑
j

s2
i j ≤

∑
i≥`

∑
j

s′ 2i j , (2.8)

i.e. among all such sensitivity matrices s squeezes as much of the sensitivity effect as possible into the
lower i components.

For the above reasons, we call si j, for j = 1, . . . , k, principal coefficients of sensitivity of
MVN(µ(θ),Σ(θ)) to changes in the ith component of the signal S i, i = 1, . . . , k.

In the following section, we examine a particular case in which such sensitivity analysis is relevant.
These are the reaction networks used to describe cellular processes such as signalling, regulation and
development in molecular biology.

3. Reaction networks

A system of multiple different molecular populations, M1,M2, . . . ,Mm has state vector,
Y(t) = (Y1(t), . . . ,Ym(t))T where Yi(t), i = 1, . . . ,m, denotes the number of Mi molecules at time t.
These molecules undergo reactions R j, j = 1, . . . , r, where Y(t) jumps to a new state Y(t) + ν j, with
ν j = (ν1 j, . . . , νm j)T ∈ Zm the stoichiometric vectors of the reactions. Each reaction occurs with
intensity that depends on the current state of the network. If the current state is Y(t) = y, the
probability of a single R j reaction occurring in [t, t + dt) is w j(y) dt + o(dt), while the probability of no
R j reaction in [t, t + dt) is 1 − w j(y) dt + o(dt). Here limdt→0 o(dt)/dt = 0.

The Kolmogorov forward equation that describes the time-evolution of the probability distribution,
P(y, t) = P(Y(t) = y), of the stochastic process Y = {Y(t), t ≥ 0} is then

∂P(y, t)
∂t

=

r∑
j=1

w j(y − ν j)P(y − ν j, t) −
r∑

j=1

w j(y)P(y, t). (3.1)

The Kolmogorov equation is often referred as (chemical) master equation.
The master equation can rarely be solved analytically and therefore the focus has been on simulation

of sample paths of Y. The so-called Stochastic Simulation algorithm (SSA) [13] exactly simulates the
sample path Y(t), t ∈ [0,T ], for a given initial state Y(0), by generating all reactions that occur in [0,T ].
SSA quickly becomes slow as the complexity of the network rises.

Furthermore, computation of the likelihood of sample paths of Y as well as quantities such as the
KL divergence and the FIM is extremely expensive and require some form of approximation.
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4. Linear noise approximation

In this section, we focus on the Linear Noise Approximation (LNA), using which we can compute
the likelihood of sample paths, the KL divergence and FIM and therefore perform the sensitivity
analysis described in section 2.

4.1. System size

It is common in studying stochastic systems to introduce a system size parameter Ω which is a
parameter that occurs in the intensities of the reactions w j(Y(t)). The precise description of this
parameter depends on the system. In population models it might be considered to be of the same order
of magnitude as the total population size while in molecular biology a natural choice is to use molar
concentrations and therefore regard Ω as Avogadro’s number in the appropriate molar units (e.g.
nM−1) multiplied by the volume of the reacting solution (e.g. the cell) in appropriate units (e.g. in
litres (L)). In the circadian clock system that we consider in section 6, it has units L/µM.

The system size governs the size of the state fluctuations and therefore the size of the jumps. Larger
system sizes generally imply relatively smaller fluctuations and vice versa. In a certain sense the system
size parameter is just a mathematical convenience to control the overall levels of stochasticity and to
enable the study of the dependence of stochastic fluctuations upon system size.

While having a system size parameter is not necessary to apply our methods, it allows one to study
the dependence of stochastic fluctuations upon system size and to calculate the deterministic equations
that describe the evolution of the concentration vector X(t) = Y(t)/Ω in the limit of Ω → ∞ (see
next section). A sufficient condition to derive this limit is that the intensities w j(Y(t)) depend upon Ω

(cf. [14, 36, 37]) as
w j(Y) = Ωu j(Y/Ω), (4.1)

where u j(x) the macroscopic (Ω → ∞) rates, derived next, that generally depend on the concentration
vector x = x(t). The condition is very general and applies to all common reaction types encountered in
the biochemical context.

4.2. LNA derivation

The time-evolution of the stochastic process Y can be described using the random time change
representation (RTC) [35]

Y(t) = Y(0) +

r∑
j=1

ν jZ j

(∫ t

0
w j(Y(s))ds

)
, (4.1)

with Z j being independent unit Poisson processes corresponding to reaction R j
∗. The term

Z j

(∫ t

0
w j(Y(s))ds

)
in (4.1) counts the number of R j reactions that happened in [0, t).

Using the condition (4.1) we can re-write the infinitesimal RTC equation in (4.1) in terms of X(t) =

Y(t)/Ω as
∗If Z(t) is a unit Poisson process then it is a Poisson process with rate 1 (see properties of Poisson process) and Z(λt) is a Poisson

process with rate λ.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3965–3987.



3973

X(t + dt) − X(t) =

r∑
j=1

ν jΩ
−1Z j

(
Ωu j(X(t))dt

)
. (4.2)

If we also define x(t) as the limit in probability of X(t), i.e. X(t)
P
→ x(t), as Ω→ ∞, we can use the law

of large numbers (LLN) to derive the limit of equation (4.2) , as Ω→ ∞,

x(t + dt) − x(t) =

r∑
j=1

ν ju j(x(t))dt.

Equivalently, this can be written as the macroscopic rate equation

ẋ =
dx
dt

= F(x), F(x) =

r∑
j=1

ν ju j(x(t)). (4.3)

We now define the LNA ansantz [14, 36, 37] that describes the relation between the stochastic process
X(t) and the deterministic solution of the system x(t) with their difference, scaled by Ω, being a
stochastic process, {ξ(t), t ≥ 0}, describing the noise around x(t). That is,

X(t) = x(t) + Ω−1/2ξ(t).

The LNA ansantz implies that

ξ(t + dt) − ξ(t) =
∑

j

ν j

(
Z

(1)
j +Z

(2)
j

)
where

Z
(1)
j = Ω1/2

(
Ω−1Z j

(
Ω u j(X(t))dt

)
− u j(X(t))dt

) D
→ N(0, u j(x(t))dt), as Ω→ ∞,

and
Z

(2)
j = Ω1/2

(
u j(X(t)) − u j(x(t))

)
dt

Ω→∞
−→ (∇x u j(x(t)))Tξ(t)dt.

Therefore for sufficiently large values of Ω, the time-evolution of {ξ(t), t ≥ 0} can be described by
the linear Stochastic Differential equation (in the Itô sense)

dξ =

r∑
j=1

ν j(∇x u j(x))Tξdt +

r∑
j=1

ν j
√

u j(x)N(0, dt),

or, in matrix form,
dξ = Jξdt + EdWt,

where J = J(x) the Jacobian matrix of (4.3), E = E(x) = S diag
(√

u1(x), . . . ,
√

ur(x)
)

the product of the
stoichiometry matrix S = [ν1 · · · νr], and the square root of the diagonal matrix diag(u1(x), . . . , um(x)),
and Wt a Wiener process.

This linear SDE has a solution that can be written as

ξ(t) = C(0, t)ξ(0) + η(0, t), η(0, t) ∼ MVN(0,V(0, t)),
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where, C(0, t) the fundamental matrix of (4.3), which is the solution of the initial value problem

Ċ = JC, C(0, 0) = In, (4.4)

and the symmetric positive-definite matrix V(0, t) is the solution of the initial value problem

V̇ = JV + V JT + EET , V(0, 0) = 0. (4.5)

The above representation implies that by solving the initial value problems in (4.3), (4.4) and (4.5)
one can easily derive the probability distribution of ξ(t) for any given initial state ξ(0) = ξ0. In
particular, the probability distribution(
ξ(t)

∣∣∣ ξ(0) ∼ MVN(m0, S 0)
)
∼ MVN(m(t), S (t)), m(t) = C(0, t)m0, S (t) = C(0, t)S 0C(0, t)T + V(0, t)

and therefore(
X(t)

∣∣∣ X(0) ∼ MVN(µ0,Σ0)
)
∼ MVN(µ(t),Σ(t)), µ(t) = x(t) + Ω−1/2m(t), Σ(t) = S (t)/Ω.

where here X(0) = x(0) + Ω−1/2ξ(0).
It can also be shown that the joint probability distribution of sample paths

(X(t1), X(t2), . . . , X(tn) | X(0) ∼ MVN(µ0,Σ0)), under the LNA, is also MVN with mean

µ1:n =
(
µ(t1)T , . . . , µ(tn)T

)T
(4.6)

and precision matrix (inverse of variance matrix) ΩA1:k where A1:k is the block tridiagonal matrix
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2,3V−1

2,3 0 · · · 0

0 −V−1
2,3C2,3

. . .
. . .

. . .
...

...
. . .

. . . 0

V−1
k−2,k−1 + CT

k−1,kV
−1
k−1,kCk−1,k −CT

k−1,kV
−1
k−1,k

0 · · · 0 − V−1
k−1,kCk−1,k V−1

k−1,k



. (4.7)

Here we used the notation Ci,i+1 = C(ti, ti+1), Vi,i+1 = V(ti, ti+1), and V1 = V0,1 + C0,1S 0VT
0,1.

The above results make LNA hugely faster in simulation compared to SSA, but perhaps more
importantly make feasible the computation of the likelihood function of sample paths and associated
quantities such as the FIM.

However, the important question arises on whether the LNA is an accurate approximation of the
master equation for finite Ω. The answer relates to the structure of the reaction network [18, 39]. For
example, LNA has been found to be accurate for networks involving intensity functions that are up
to first order polynomials of the reactants concentrations [40]. The LNA is also very accurate for
long-time approximation of reaction networks with a single stable fixed point, while it is inaccurate for
long-time approximation of multi-stable networks (see e.g. [39]).

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3965–3987.



3975

4.3. LNA for biological oscillators

Furthermore, the LNA is inaccurate for long-time approximation of reaction networks with
oscillatory dynamics. This failure of the LNA was extensively studied for those oscillatory networks
where in the Ω → ∞ limit, the ode in (4.3) has a periodic solution, γ, given by x = g(t) with
g(t) = g(t + T ), for some T > 0 [17, 24–26]. In a nutshell, this failure of the LNA is due to that, for
finite Ω, the stochastic sample paths, Y(t), t ≥ 0, of the master equation increasingly spread in the
tangental direction of g(t) (i.e. parallel to F(g(t))) as time grows. This is in contrast to the variance of
Y(t), t ≥ 0, in the direction transversal to γ, which quickly converge to a fixed value. The increasing
tangental variability results in the phase of Y(t), t ≥ 0, increasingly drifting from the phase of the
deterministic solution g(t). Therefore, the LNA predictions, which have the same phase as g(t), are
increasingly out of phase with Y(t), t ≥ 0 [17, 24–27].

We have recently developed (see [27]) a modification of the standard LNA for oscillatory networks,
called phase corrected LNA or pcLNA, that corrects for the phase drifts. We first define the section, Sx,
for x ∈ γ, which is an (m− 1)-dimensional linear hyperplane with x ∈ Sx and transversal to the tangent
vector, F(x). A particular example is the hyperplane normal to γ at x, i.e. for any u ∈ Sx, u ⊥ F(x).
Then the mapping G of a neighbourhood of γ onto γ is such that if u ∈ Sx then G(u) = x ∈ γ. We use
G to map the stochastic sample path X(t), t ≥ 0, to the periodic solution g(t). The pcLNA anstantz is

X(t) = G(X(t)) + Ω−1/2κ(t).

Here κ(t) lies on the transversal section SG(X(t)) and therefore, unlike ξ(t) in the standard LNA ansantz,
is unaffected by the increasing tangental variance.

The pcLNA can be used for fast and accurate long-time simulation of sample paths of oscillatory
networks. The simulation algorithm (see Figure 1) proceeds as the standard LNA except that after
deriving X(t) an extra step is added to find G(X(t)) and subsequently κ(t) = Ω1/2(X(t) − G(X(t))) to
replace x(t) and ξ(t), respectively, before progressing with another LNA step. The key point here is
that G(X(t)) = g(s) ∈ γ for some s ∈ [0,T ] and therefore the same solutions of the ode’s in (4.3), (4.4),
(4.5) are used in all simulations. The same principle can be used for parameter estimation using the
corresponding Kalman filter (see [27]).

The probability distributions on the transversal section derived under the LNA converge to a fixed
point probability distribution and are shown to be almost indistinguishable from SSA simulations even
for relatively low Ω (for the Drosophila circadian clock [30] for Ω ≥ 300, see also [26, 27]). They
can be used to analyse the network at specific important phases of the network, e.g. peaks of the key
protein in the network, but also the overall dynamics if joint probability distributions of a large number
of phases are considered.

We can derive the joint probability distribution of a sample path Qx1 , . . . ,Qxn of points on the
transversal sections Sxi , i = 1, . . . , n, respectively, where xi = g(ti), 0 < t1 < · · · < tn, for initial
condition X(0) ∼ MVN(µ0,Σ0). This is(

Qx1 , . . . ,Qxn |X(0) ∼ MVN(µ0,Σ0)
)
∼
LNA MVN(µx1:n ,Ω

−1Ax1:n), (4.8)

where µx1:n and Ax1:n are of the same form with µ1:n in (4.6) and A1:n in (4.7) respectively. However, µ(ti),
Ci−1,i, and Vi−1,i are replaced by their projections on the transversal section Sxi . For normal transversal
sections, this can be easily derived by first deriving (e.g. using Gram-Schmidt process) an orthogonal
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A B

Figure 1. Schematic representation of pcLNA. (A) The mapping GN from transversal
sections normal to γ into γ. (B) The main steps of the pcLNA simulation algorithm. For
a given X(ti) = x(ti) + Ω−1/2ξi (here for simplicity we assume that G(X(t0)) = g(t0) and thus
κ0 = ξ0), the algorithm computes X(ti+1), ti+1 = ti + ∆t using the standard LNA distribution.
Then, the mapping G(X(ti+1)) = g(si+1) and κ(ti+1) = Ω1/2(X(ti+1)− g(si+1)) are computed and
replace x(ti+1) and ξ(ti+1) in computing the next steps using the standard LNA. Note that the
periodic solution g(t) is only computed once as only the time/phase changes after the phase
correction step.

matrix R = [R1 R2] that has first column, R1, parallel to the tangent vector F(xi), for i = 1, . . . , n,
and replacing µ(ti) with RT

2µ(ti), Ci−1,i with RT
2 Ci−1,iR2 and Vi−1,i with RT

2 Vi−1,iR2. For convenience, we
henceforth call the probability distributions under the LNA on the transversal sections of given phases
in (4.8) as pcLNA distributions.

5. Parameter sensitivity analysis for the Brusselator model

In this section, we provide an illustrative example of our approach using the two-dimensional
Brusselator model described by the ODE system

ẋ1 = 1 − x1 − bx1 + cx2
1x2,

ẋ2 = bx1 − cx2
1x2.

The system has a single fixed point, x∗ = (1, b/c)′, that is stable for b < 1 + c, while a unique stable
periodic solution, x(t) = (x1(t), x2(t))′, exists for b > 1+c (see Figure 2). We have previously shown that
pcLNA probability distributions are almost indistinguishable to SSA empirical probability distributions
of this network for Ω ≥ 1000 [27]. We now use the pcLNA joint probability distributions for b = 2.2,
c = 1, at phases/times, t = 0.25, 0.5, . . . , 6, for Ω = 1000 to analyse the parameter sensitivities of the
model.

As we can see in Figure 2(B), the first singular value of the FIM is substantially larger (about
23.25 ≈ 10 times) than the second singular value. The large first principal sensitivity coefficients for both
parameters reveal that the pcLNA probability distributions are sensitive to changes in both parameter
values (see Figure 2(C)). Furthermore, the first singular value corresponds to changes that move the
two parameters in opposite directions. That is, the principal sensitivity coefficients s11, s12 and similarly
the eigenvector V1 = (V11,V21)′ of the FIM corresponding to the first singular value σ1 are such that
s11 · s12 < 0 and V11 · V21 < 0. Therefore changes of the parameter value θ0 = (2.2, 1)′ in the V1

direction, i.e. θ1 = θ0 + δV1, δ , 0, result in a relatively large fixed-point translocation and, as shown
in Figure 2(D), a large change in the deterministic solution and pcLNA probability distributions. On
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contrary, the principal sensitivity coefficients s21, s22 and therefore the eigenvector V2 = (V21,V22)′

corresponding to the second singular value σ2 are such that s21 · s22 > 0 and V21 · V22 > 0. Therefore, a
change in parameter values, θ2 = θ0 + δV2, result in much smaller changes in the deterministic solution
and pcLNA probability distributions (see Figure 2(D)).
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Figure 2. The Brusselator model and its parameter sensitivities. (A) The deterministic
periodic solution derived for parameter values b = 2.2, c = 1 plotted against time.
(B) The singular values of the FIM of pcLNA probability distributions computed at t =

0.25, 0.5, . . . , 6. (C) The principal sensitivity coefficients of the two parameters of the model.
(D) The deterministic periodic solution and the pcLNA confidence intervals µxi ± σxi for
parameter value θ0 = (2.2, 1)′ (black color), θ1 = θ0 + 0.05 · V1 = (2.17, 1.04)′ (blue color)
and θ2 = θ0 + 0.05 · V2 = (2.16, 0.97)′ (red color).

6. Parameter sensitivity analysis of the Drosophila circadian clock

In this section, we will perform a sensitivity analysis of the reaction network of the Drosophila
circadian clock in [30]. The network involves two proteins PER(iod) and TIM(eless), that can be
reversely phosphorylated twice to P1, T1 and P2, T2, respectively, with the twice phosphorylated forms
able to form a dimer complex, C, that can translocate to the nucleus, CN , and repress the transcription
of PER and TIM mRNA, MP and MT , respectively (see Figure 3 and Supplementary A).

The network involves r = 30 reactions parameterised by k = 38 parameters. These include (see also
Table 2) the constants of each reaction and the half-max constants, say c1, for enzymatic reactions with
macroscopic rates either of Michaelis-Menten form, i.e. c2xi/(c1 + xi), or Hill form, i.e. c2xh

i /(c
h
1 + xh

i ).
Parameter sensitivity analysis attempts to unravel the complexities of the network dynamics.

The macroscopic rate equations have periodic solutions. Gonze et al. [30] studied the stochastic
version of the network using SSA simulations in various system sizes. We have previously shown
(see [27]) that pcLNA probability distributions accurately approximate empirical distributions derived
using SSA simulations for Ω ≥ 300. We now use the pcLNA distributions for parameter sensitivity
analysis.

We first compute the FIM and the corresponding singular values σi and principal sensitivity
coefficients si j of the pcLNA distributions at phases/time-points t = 1, 3, . . . , 23 (period T ≈ 24). The
system size is set to Ω = 300. For comparisons, we also compute the FIM under:
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Figure 3. The Drosophila circadian clock [30]. (A) Schematic representation of the main
reactions in the network. (B) The deterministic (Ω → ∞) periodic solution of PER mRNA
(MP) and PER-TIM dimer complex (CN , nuclear) concentrations over the time interval of
one cycle. (C) The deterministic and stochastic sample paths of the network derived using
SSA (Ω = 300).

(a) the ordinary least squares (OLS) approximation with mean the deterministic model, i.e. X(t) ∼
MVN(x(t), eImn). Then, the (ij)-th entry of the FIM is e−1∂iµ

T∂ jµ,

(b) the pcLNA but assuming that ∂Σ = 0. This is a weighted least squares (WLS) approximation with
the weights arising from the pcLNA method, assumed to be constant to θ. Then, the (ij)-th entry
of the FIM is (∂iµ)T Σ−1(∂ jµ).

(c) the pcLNA but assuming that ∂µ = 0. Then, the (ij)-th entry of the FIM is 1
2 tr(Σ−1(∂iΣ)Σ−1(∂ jΣ)).

Here, µ and Σ are equal to µx1:n and (ΩAx1:n)
−1 as in (4.8). The choice of the constant e in the OLS

approximation is arbitrary and therefore, for the purpose of comparisons, it is chosen so that the first
singular value, σ1, of the corresponding FIM is equal to σ1 derived under the pcLNA. The model (c)
is simply used to allow an investigation of the sensitivities of the covariance matrix of pcLNA.

The ten largest singular values, σ1 ≥ · · · ≥ σ10 (k = 34) for each of these models are displayed in
Figure 4(A). As we can see, while σ1, σ2 take similar values for the OLS approximation and pcLNA,
the values of σi, i ≥ 3, for OLS drop much faster than those of the pcLNA method. This indicates that
pcLNA contains much more information than the deterministic model. Most of this extra information
in pcLNA is because of the use of the variance matrix Ax1:n that provides more accurate scaling than
the identity matrix. This is suggested by that the singular values of the WLS model are very close to
those of the pcLNA model.

However, the first singular value, σ1, of the WLS approximation is substantially lower than σ1

in pcLNA and this is due to the parameter sensitivity of the covariance matrix. The σi values for
approximation in (c) are much lower than pcLNA and WLS, but this largely depends on the system
size. For smaller system size, the singular values of the WLS become smaller and of approximation (c)
larger. Overall, this result indicates that using pcLNA over WLS and OLS approximations substantially
improves parameter sensitivities.
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In addition to overall comparisons between parameter sensitivity of different models, we can use
the principal sensitivity coefficients to investigate the sensitivities of the model to each parameter. As
we can see in Figure 4(B), the change in parameter values that has the greatest effect on the pcLNA
probability distributions (see s1 j in first row) is the one that changes a small selection of parameters of
PER and TIM in opposite directions. In particular, the model is most sensitive to opposite sign changes
of the mRNA transcription parameters vsp and vst, the mRNA degradation parameters vmp and vmt
and the half-max constants kip, kit for the repression of transcription, and the translation parameters
ksp and kst. Furthermore, while there is some agreement between pcLNA and OLS models on the
most influential parameters, OLS fails to capture sensitivity to a large number of parameters (e.g. the
translation, ksp and kst, and phosphorylation, v1p and v1t, reaction constants).
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Figure 4. Parameter sensitivity analysis of the Drosophila circadian clock. (A) The largest
singular values, σi, i = 1, . . . , 10, of the FIM for the pcLNA (green), WLS (red), pcLNA with
∂µ = 0 (blue), and OLS (black) (B) principal sensitivity coefficients si j, i = 1, . . . , 5 (y-axis)
for all parameters (x-axis) under pcLNA (top) and OLS (bottom) models.

We next look at the parameter sensitivities of the marginal probability distributions of each variable
of the network separately. This will be the observed sensitivities if only one variable, say Xi, of the
network is observed. For this computation, we eliminate the appropriate entries of µ and Σ and the
corresponding partial derivatives and consider only the terms that correspond to Xi. We see in Figure 5
that there are substantial variations in the values of s1 j for the different variables. As expected, the
variables of PER (TIM) are most sensitive to parameters related to reactions affecting PER (TIM), but
sensitivities to some other parameters are also high. We also see that the variable that gives the largest
sensitivities is the dimer complex CN , which is the transcription factor and therefore the regulatory
variable of the network.

We then look in the parameter sensitivities of joint probability distributions of couples of variables
of the network. In particular, we assume that either the mRNA levels, un-phosphorylated proteins,
once phosphorylated proteins, twice phosphorylated proteins or dimer complexes are observed. This
analysis is particularly relevant in experimental design when deciding at which of those levels a
process should be observed to give the highest parameter sensitivities. We see in Figure 6(B) that
there are considerable differences in sensitivity values with the biggest values observed at the level of
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the transcription factor (C, CN), followed by mRNA (MP, MT ). The differences are more prominent
for the first singular value (see Figure 6(A)), which is at least 23 times larger than the rest of the
eigenvalues.
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Figure 6. Comparison of parameter sensitivities for the network observed in different
level (e.g. mRNA, phosphorylated protein, dimer) (A) The largest singular values, σi,
i = 1, . . . , 10, of the FIM and (B) principal sensitivity coefficients s1 j for all parameters
(x-axis) when a couple of variables (y-axis) of the Drosophila circadian clock are observed.

We also investigate an important question arising in experimental design and this is the choice of
time-points to take observations or to apply perturbations to the network. We compute the parameter
sensitivities of the joint probability distributions of the variables of the network for the selected
time-points. We first see in Figure 7 that there is considerable variation in the values of si j at each
time-point. The pcLNA probability distributions are increasingly sensitive to the transcription (vsp,
vst) and degradation (vmp and vmt) parameters for the time t ∈ [11, 23] where PER and TIM mRNA
concentrations are expected to increase (see Figure 3). On contrary, the pcLNA probability
distributions are less sensitive to those parameters at the times of mRNA decay. Furthermore, there is
a sharp increase in sensitivity to the half-max constants for the repression of PER and TIM mRNA
transcription (kip, kit) around the time t ∈ [9, 11], where the transcription factor CN crosses these
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values. Many of those sensitivities are not captured by the OLS model dispayed in Figure 7, which is
overall less sensitive to parameter sensitivities. The deterministic nature of the OLS model is reflected
here in the sense that the model appears to be sensitive to parameter changes only in specific
time-points rather than time-intervals. For example, the OLS model is very sensitive to the
transcription parameters vsp, vst at time t = 23 only.
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Figure 7. Comparison between parameter sensitivities at time-points of the pcLNA (left
panel) and the OLS (deterministic, right panel) model. The principal sensitivity coefficients
si j, i = 1 (top), i = 2 (middle) and i = 3 (bottom) for all parameters (x-axis) and at different
time-points (y-axis) of the Drosophila circadian clock.

Finally, we investigate another important question regarding the number of time-points to be
observed. As we can see in Figure 8, there is a great increase in the singular values of the FIM of
pcLNA probability distributions as more time-points are observed. The increase in the value of σi,
when more time-points are observed, is larger for larger i. For example, the value of σ1 when 12
time-points are observed is approximately

√
2 ≈ 1.41 times larger than σ1 when only one time-point

is observed, whereas the corresponding increase in the value of σ10 is approximately twice as large
(≈2
√

2).
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Figure 8. The increase in the singular values of FIM of the probability distributions of sample
paths of pcLNA for increasing number of observed time-points.

7. Discussion

As greater understanding of biological processes leads to more complex network structures and
more informative models, there is a need for further improving the methodology for analysing various
salient aspects of those models. Moreover, as those models involve an increasing number of
parameters, there is a need for systematic studies identifying those parameters and reactions that are
most important for the given network and can be estimated from data. And as biotechnological
innovation provide great opportunities for experimental data of better quality and greater quantity,
there is a need for appropriate experimental design tools in order to optimise the collected
information. This paper is an effort towards this direction.

The developed theory enables a study of the effects of parameter value changes to the probability
distributions of sample paths of stochastic process. It applies directly to the changes in the relevant
probability distribution and does not depend upon the choice of specific observables. It identifies the
directions of the parameter space in which these probability distribution are most sensitive to
perturbations in their parameter values. When the study considers only marginal, rather than full,
probability distributions of subsets of variables or time-points, then the outcomes change
substantially. This highlights that different observations capture different aspects of the network
dynamics and this outcome has to be carefully considered in designing experiments and estimating
parameters.
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Supplementary A

Drosophila circadian clock

The variables of the network describing the time-evolution of the Drosophila circadian clock in [30]
along with the initial conditions (in nanomolar concentrations) used in our implementation are provided
in Table 1. The parameter values used to derive the ODE solution of the system are provided in Table 2.
The ODE system for the Drosophila circadian clock is given in Table 3. The intensity functions of the
master equation are provided in Table 1 of [30].

Table 1. The variables of Drosophila circadian clock system in [30] and the initial conditions
(in nanomolar concentrations) used to derive their solution.

variable description initial condition
MP PER mRNA 3.0975
P0 PER protein 0 1.2547
P1 phosphorylated PER protein 1 1.2302
P2 phosphorylated PER protein 2 1.7997
MT TIM mRNA 3.0975
T0 TIM protein 0 1.2346
T1 phosphorylated TIM protein 1 1.0577
T2 phosphorylated TIM protein 2 0.3593
C PER-TIM cytosolic complex 0.6230

CN PER-TIM nuclear complex 0.8178
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Table 2. The parameters of Drosophila circadian clock system in [30] and the values used to
derive their ODE solution.

parameter reaction description value measurement unit
vsp MP transcription reaction constant 1 nMh−1

vst MT transcription reaction constant 1 nMh−1

vmp MP degradation reaction constant 0.70 nMh−1

vmt MT degradation reaction constant 0.70 nMh−1

vdp P2 degradation reaction constant 2 nMh−1

ksp MP translation reaction constant 0.90 h−1

kst MT translation reaction constant 0.90 h−1

k1 C → CN reaction constant 0.60 h−1

k2 CN → C reaction constant 0.20 h−1

k3 P2 + T2 → C reaction constant 1.20 h−1

k4 C → P2 + T2 reaction constant 0.60 h−1

kmp MP enzymatic degradation half-max constant 0.20 h−1

kmt MT enzymatic degradation half-max constant 0.20 h−1

kip MP transcription Hill coefficient 1.00 h−1

kit MT transcription Hill coefficient 1.00 h−1

kdp P2 enzymatic degradation half-max constant 0.20 h−1

kdt T2 enzymatic degradation half-max constant 0.20 h−1

kd linear degradation reaction constant 0.01 h−1

kdc C degradation reaction constant 0.01 h−1

kdn CN degradation reaction constant 0.01 h−1

vdt T2 degradation reaction constant 2.00 nMh−1

k1p P0 →P1 enzymatic half-max constant 2.00 h−1

k1t T0 →T1 enzymatic half-max constant 2.00 h−1

k2p P1 → P0 enzymatic half-max constant 2.00 h−1

k2t T1 → T0 enzymatic half-max constant 2.00 h−1

k3p P1 → P2 enzymatic half-max constant 2.00 h−1

k3t T1→ T2 enzymatic half-max constant 2.00 h−1

k4p P2 → P1 enzymatic half-max constant 2.00 h−1

k4t T2 → T1 enzymatic half-max constant 2.00 h−1

v1p P0 →P1 reaction constant 8.00 nMh−1

v1t T0 →T1 reaction constant 8.00 nMh−1

v2p P1 → P0 reaction constant 1.00 nMh−1

v2t T1 → T0 reaction constant 1.00 nMh−1

v3p P1 → P2 reaction constant 8.00 nMh−1

v3t T1→ T2 reaction constant 8.00 nMh−1

v4p P2 → P1 reaction constant 1.00 nMh−1

v4t T2 → T1 reaction constant 1.00 nMh−1

h Hill power 4.00 NA
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Table 3. The ODE system for the Drosophila circadian clock network in [30].

ṀP = vsp kipn

kipn+Cn
N
− vmp MP

kmp+MP
− kd MP

Ṗ0 = ksp MP − v1p P0
k1p+P0

+ v2p P1
k2p+P1

− kd P0

Ṗ1 = v1p P0
k1p+P0

− v2p P1
k2p+P1

− v3p P1
k3p+P1

+ v4p P2
k4p+P2

− kd P1

Ṗ2 = v3p P1
k3p+P1

− v4p P2
k4p+P2

− k3P2T2 + k4C − vdp P2
kdp+P2

− kd P2

ṀT = vst kitn
kitn+Cn

N
− vmt MT

kmt+MT
− kd MT

Ṫ0 = kstMT − v1t T0
k1t+T0

+ v2t T1
k2t+T1

− kd T0

Ṫ1 = v1t T0
k1t+T0

− v2t T1
k2t+T1

− v3t T1
k3t+T1

+ v4t T2
k4t+T2

− kd T1

Ṫ2 = v3t T1
k3t+T1

− v4t T2
k4t+T2

− k3P2T2 + k4C − vdt T2
kdt+T2

− kd T2

Ċ = k3P2T2 − k4C − k1C + k2CN − kdc C

ĊN = k1 C − k2 CN − kdn CN .
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