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Abstract: We analyze the impact of aposematic time and searching efficiency of prey on the temporal
and spatio-temporal dynamics of a diffusive prey–predator system. Here, our assumption is that the
prey population primarily invests its total time in two activities—(i) defense against predation and (ii)
searching for food, followed by growth-induced reproduction, whereas, predators do not involve in
self-defense. Moreover, we consider that the reproduction rate of prey and the rate of predation have a
negative linear correlation with the amount of time invested for aposematism. Based on the presump-
tions, we find that unlike searching efficiency of prey, the aposematic time can diminish the proportion
in which prey and predator coexist when it crosses a certain threshold, and at the extreme aposematism,
the entire population drives into the extinction. The proposed dynamics undergoes Hopf-bifurcation
with respect to the searching efficiency of prey. We examine the individual effect of aposematic time
and searching efficiency on the formation of regular Turing patterns—the low to medium to high val-
ues of defense-time and food searching efficiency generate ‘spots’ to ‘stripes’ to ‘holes’ pattern, re-
spectively; however, the combined impact of both presents only non-Turing ‘spot’ pattern with the
‘predominance of predators,’ which happens through the Turing-Hopf bifurcation.

Keywords: aposematism; searching efficiency; turing patterns; Hopf-bifurcation; Turing-Hopf
bifurcation; Prey–predator system

1. Introduction

The intra- and inter-species mutualistic and antagonistic interactions have a significant impact on
the persistence and extinction of constituent populations in the real-world ecological systems. One of
the possible ways by which we can quantitatively understand the effect of cooperative and competi-
tive interactions on the co-evolution of species is the intensive analysis of the underlying prey–predator
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model [1, 2, 3]. The evidence of combative interactions is widespread in unicellular to multicellular or-
ganisms [4, 5]. The opportunistic human pathogen Pseudomonas aeruginosa uses a quorum-controlled
mechanism, called policing effect [6], to actively mitigate the unrestricted emanation of cheating. In
the course of strategic policing the defectors, the cooperative subpopulation of P. aeruginosa secrets
hydrogen cyanide in sequence with the production of public goods, such as elastase, to combat the
unimpeded exploitation of common goods by the toxin-sensitive defectors [6, 7]. Multicellular or-
ganisms often use perceptible color signals to avoid the predation, commonly known as aposematism
[8, 9], which is conceptually similar to the policing effect in bacteria.

Aposematism or warning coloration is one of the strategic defensive mechanisms, which is often
incurred by prey to reduce the predation-induced mortality rate [9]. Aposematic preys utilize their con-
spicuous color signals to express the deleterious effects of the consumption of the chemically-defended
preys to the predators. However, from the present phenotypic state of defended prey, predators explic-
itly measure the trade-off between the nutritional benefit from the consumption and the cost of toxin
ingestion, and regulate their rate of intake of toxic preys [10, 11, 12]. The undefended or defended
species share the warning color pattern of the sympatric aposematic species which are described as
Batesian and Müllerian mimicry, respectively [13]. It needs to be mentioned that the avoidance learn-
ing of predator on the basis of distinctive warning coloration of defensive preys fundamentally sup-
ports the evolution of aposematism and mimicry in an ecological system [10, 11, 12, 9]. In a general
resource-consumer model, the intrinsic characteristics of resource is to facilitate the abundance of
consumer, whereas, consumer hinders the abundance of available resources; however, an inclusion of
natural defense against consumer (e.g., prey–predator models with aposematic prey) additionally in-
cludes a negative feedback to its abundance.

The existence of aposematism is ubiquitous among animal taxa, including invertebrates, fishes, am-
phibians, snakes, and birds [14, 15, 16]. As the example, dendrobatid frog Oophaga pumilio [15],
venomous coral snake M. fulvius [17] and mealworm Tenebrio molitor [10] often use the bright colors
and/or patterns to represent their unpalatability or noxiousness to the potential predators. In La Selva
Biological Station, Costa Rica, Saporito et al. have experimentally validated that the red colored plas-
ticine models of O. pumilio receive lesser attacks from avian predators as compared to the brown frog
models—indicates that the conspicuous bright color (i.e., aposematic signal) in real alkaloid-contained
dendrobatid frog O. pumilio acts as a chemical-defense mechanism against predation [15]. The tri-
color banded pattern of venomous coral snakes serves as an aposematic signal for the free-ranging
avian predators as experimentally demonstrated by Edmund Brodie [17]. The experiments in Refs.
[15] and [17] contain plasticine models to conceptualize the aposematic signal indicator in poison frog
and coral snakes for the avian predators; however, Rowe et al. [10] have done the in-vitro experimen-
tation with live mealworm larvae Tenebrio molitor to validate the impact of warning coloration on the
avian predators—European starlings Sturnus vulgaris. In Ref. [10], the primary research question is:
How is the evolution of advertising the unprofitability in the consumption of aposematic prey and the
cognitive avoidance learning process of naive predators interrelated?

The sustenance of species primarily depends on the self-protection and food accumulation adjoined
to mating [18]. In the present manuscript, our logical assumption is that any species primarily invests
its total energy or time into two acts: (a) defense against predation and (b) search for food added with
reproduction. Therefore, if any species invests more time in self-defense (e.g., time for aposematism),
then the rate of reproduction naturally diminishes; however, it increases the prey’s survival rate via re-
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ducing the rate of consumption of defended prey by predator. On the basis of this assumption, here, we
construct a diffusive prey–predator model with defended (i.e., aposematic) prey, and we assume that
the prey’s reproduction rate and the rate of predation negatively linearly vary with the level of toxicity,
which is proportional to the time invested for aposematism. Moreover, we consider the unlimited re-
source environment for prey which ensures the non-existence of intra-prey competition-induced death
of prey. The primary finding of the current manuscript is that the aposematic time and food searching
efficiency of prey can substantially regulate the temporal as well as spatio-temporal population dynam-
ics of prey–predator systems.

The rest of the manuscript is organized as follows: Section 2 presents the formulation of temporal
and spatio-temporal models. Mathematical analysis of the temporal model is described in Section 3.
Section 4 deals with the stability analysis of the spatio-temporal system. Extensive numerical sim-
ulations are presented in Section 5. Section 6 concludes the manuscript with a few remarks on the
analytical and numerical results of the proposed model and future scope.

2. Description of model

To analyze the impact of aposematism on a resource-consumer system, we consider a simple prey–
predator model, where prey population shows anti-predation defense mechanism for their survival. Our
two-fold modeling study consists of the analysis of temporal dynamics and the subsequent investigation
of the spatio-temporal system. Suppose, N is the density of prey individuals, and P is the density of
predator individuals. We divide the total time invested by aposematic prey into two parts: they regulate
the degree of aposematism (i.e., the level of toxicity) to avoid predation and they search food for
their growth-induced reproduction. Let a be the fraction of time for aposematism in one unit time,
and b (= 1 − a) be the fraction of food and/or mate searching time in one unit time. Although the
aposematic time a is a behavioral strategy of prey, in the present study, our primary motivation is to
analyze the impact of non-adaptive nature of a on the prey–predator model first. We hope to find the
influences of adaptation of aposematic time on population dynamics in the further studies.

To derive the recruitment rate of prey population, we assume that the resource input rate is constant,
r. This assumption will simplify the dynamics and is also reasonable if the resource recovers very fast
to remain in steady state [18]. Therefore, one mature prey admits the resource r

N . Suppose, s0 is the
searching efficiency of the resource for prey individuals without the aposematism. Since, prey invest
only fraction b time in one unit time, the searching efficiency is reduced from s0 to s0b, i.e., s0(1 − a).
Now, the uptake rate of resource for one individual prey is w = s0(1 − a) r

N . We consider the simple
Beverton-Holt recruitment function k1w

1+k2w to obtain per-capita birth rate of prey (which includes the
saturation effect of converting nutrient into offsprings):

k1s0(1 − a) r
N

1 + k2s0(1 − a) r
N

=
s(1 − a)

N + k(1 − a)
,

where s = k1s0r and k = k2s0r. Now, with a consideration of Holling type II predators’ response, the
proposed prey–predator model with aposematic prey is given by

dN
dt =

s(1−a)N
k(1−a)+N − dN − (1−a)pNP

h+N ,
dP
dt =

c(1−a)pNP
h+N − m1P − m2P2,

(1)
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where N = N(t) and P = P(t) denote the population densities of prey and predator at time t, respec-
tively. s, a, k, d, p, h, c, m1 and m2 are positive constants. d is the intrinsic death rate of prey, p is the
rate of predation, h is the half-saturation constant, c is the conversion efficiency for converting preys’
biomass into predators’ biomass, m1 and m2 are the natural death rate and intra-predator competition-
induced death rate of predator, respectively. From the temporal dynamics (1), we can conclude that
if prey invests its entire time for aposematism (i.e., a = 1), then its growth-induced reproduction rate
diminishes to zero, and due to the excessive toxicity in prey, predator naturally avoids the consumption
of aposematic prey which subsequently ensures the population extinction.

If we consider the diffusion in prey and predator populations in the above Model 1, then we have
the following reaction-diffusion system

∂N
∂t =

s(1−a)N
k(1−a)+N − dN − (1−a)pNP

h+N + DN∇
2N,

∂P
∂t =

c(1−a)pNP
h+N − m1P − m2P2 + DP∇

2P,
(2)

where N ≡ N(x, y, t), P ≡ P(x, y, t) and (x, y) is the spatial coordinate. ∂
∂t denotes the partial derivative

with respect to time t. ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 is the Laplacian Operator in two dimensional space. DN and
DP are the self-diffusion coefficients of prey and predator, respectively, which describe the individual
movement from higher to lower concentration. As we choose the uniform environment, the model
parameters do not depend on space and time.

The spatio-temporal dynamics (2) is subject to the non-zero initial conditions and zero-flux (or
Neumann) boundary conditions [19]:

N(x, y, 0) = N0(x, y) > 0, P(x, y, 0) = P0(x, y) > 0, (x, y) ∈ Ω = [0,R] × [0,R], and

∂N
∂̂n

=
∂P
∂̂n

= 0, (x, y) ∈ ∂Ω.

Here, n̂ is the outward unit normal vector of the boundary ∂Ω which is assume to be smooth. We
consider zero-flux boundary conditions (i.e., there is no external input) as in the present manuscript,
we are primarily interested in the self-organization of patterns.

3. Mathematical analysis of temporal model

In this section, first we will analyze our non-spatial Model 1.

3.1. Boundedness of positive solutions

All non-negative solutions of the Model 1 that start in R2
+ are uniformly bounded. It is easy to check

that the solution N(t) of 1 tends to 0 (hence also P(t) tends to 0) if s ≤ dk. In fact dN
dt < 0 if s ≤ dk and

N > 0.

Theorem 3.1. The system 1 is positively invariant and uniformly ultimately bounded in R2
+, with

the following properties

limt→∞ sup N(t) ≤
(1−a)(s−dk)

d
in fact limt→∞ sup

[
N(t) + 1

c P(t)
]
≤

(1−a)(s−dk)
min{d,m1}

.
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Proof. For any N > 0 and P > 0, we have dN
dt

∣∣∣∣
N=0

= 0 and dP
dt

∣∣∣∣
P=0

= 0, which implies that N = 0 and
P = 0 are invariant manifolds, respectively. Due to the continuity of the system, we can conclude that
the system 1 is positively invariant in R2

+.
Now, choose any point (N, P) ∈ R2

+, such that N > (1−a)(s−dk)
d , then due to the positive invariant

property of 1, we have

dN
dt

∣∣∣∣
N> (1−a)(s−dk)

d

= N
(

s(1−a)
k(1−a)+N − d

)
−

(1−a)pNP
h+N

≤ N
(

s(1−a)
k(1−a)+N − d

)
< 0.

In addition, we have dN
dt

∣∣∣∣
N=

(1−a)(s−dk)
d

= 0. Therefore, we can conclude that

lim
t→∞

sup N(t) ≤
(1 − a)(s − dk)

d
.

Now define, X(t) = N(t) + 1
c P(t), then we have
dX(t)

dt =
s(1−a)N

k(1−a)+N − dN − m1
c P − m2

c P2

≤
(

s(1−a)
k(1−a)+N − d + m1

)
N − m1X.

Case I: d ≥ m1

dX(t)
dt ≤

s(1−a)N
k(1−a)+N − m1X.

For sufficiently large t ≥ 0, we have

dX(t)
dt ≤

s(1−a) (1−a)(s−dk)
d

k(1−a)+ (1−a)(s−dk)
d
− m1X

= (1 − a)(s − dk) − m1X.

By applying the theory of differential inequality, we have

limt→∞ sup
[
N(t) + 1

c P(t)
]
≤

(1−a)(s−dk)
m1

.

Case II: d < m1

dX(t)
dt ≤

s(1−a)N
k(1−a)+N + (m1 − d)N − m1X.

For sufficiently large t ≥ 0, we have
dX(t)

dt ≤ (1 − a)(s − dk) + (m1 − d) (1−a)(s−dk)
d − m1X

=
m1(1−a)(s−dk)

d − m1X.

Hence,

limt→∞ sup
[
N(t) + 1

c P(t)
]
≤

(1−a)(s−dk)
d .

Consequently, we have

limt→∞ sup
[
N(t) + 1

c P(t)
]
≤

(1−a)(s−dk)
min{d,m1}

.

�
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3.2. Equilibrium analysis

The Model 1 has three non-negative equilibria:

1. The extinction equilibrium E0 = (0, 0), which always exists.

2. The axial equilibrium, where only prey population survive is given by En =
(

1
d (1 − a)(s − dk), 0

)
,

and which exists if s > dk.

3. The interior equilibrium is given by

E∗ = (N∗, P∗) =

(
N∗,

cp(1 − a)N∗ − m1(h + N∗)
m2(h + N∗)

)
,

and which exists if

N∗ >
m1h

cp(1 − a) − m1
,

therefore, we must have m1 < cp(1 − a). Here, N∗ is the real positive root of cubic polynomial

Φ(z) ≡ C1z3 + C2z2 + C3z + C4,

where

C1 = dm2(> 0),
C2 = cp2(1 − a)2 + 2dhm2 −

[
m2(s − dk) + pm1

]
(1 − a),

C3 = kcp2(1 − a)3 + dh2m2 − h
[
m2(s − dk) + pm1

]
(1 − a) − (1 − a)

[
pkm1(1 − a) + hm2(s − dk)

]
,

C4 = −h(1 − a)
[
pkm1(1 − a) + hm2(s − dk)

]
.

Theorem 3.2. There exists a unique positive equilibrium if s > dk and m1 <
cp(1−a)2(s−dk)
(1−a)(s−dk)+hd .

Proof. Since, s > dk, then the coefficient C4 < 0. Now, by Descartes’ rule of signs the polynomial
Φ(z), can have more than one real positive solution if and only if C2 < 0, but C3 > 0. Therefore, for
the existence of unique positive real solution, it is sufficient to show that, under the condition s > dk,
C3 must be negative, when C2 is negative. Now, C3 can be written as

C3 = h
[
dhm2 − {m2(s − dk) + pm1}(1 − a)

]︸                                         ︷︷                                         ︸
(I)

+
[
kcp2(1 − a)2 − {pkm1(1 − a) + hm2(s − dk)}

]︸                                                      ︷︷                                                      ︸
(II)

(1 − a),

(I) : C2 < 0 ⇒ cp2(1 − a)2 + 2dhm2 −
[
m2(s − dk) + pm1

]
(1 − a) < 0

⇒ dhm2 −
[
m2(s − dk) + pm1

]
(1 − a) < 0

⇒ (I) < 0

(II) = kcp2(1 − a)2 − pkm1(1 − a) − hm2(s − dk)
< kcp2(1 − a)2 − kcp2(1 − a)2 − hm2(s − dk) as m1 < cp(1 − a), for N∗ > 0
= −hm2(s − dk) < 0
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Therefore, there exists at most one positive real root N∗ of Φ(z) = 0.
Now, since cp(1−a)2(s−dk)

(1−a)(s−dk)+hd < cp(1 − a), and m1 <
cp(1−a)2(s−dk)
(1−a)(s−dk)+hd , we have m1 < cp(1 − a). We will prove

that this unique solution N∗ satisfies

N∗ >
m1h

cp(1 − a) − m1
≡ N.

By using P∗ =
cp(1−a)N∗−m1(h+N∗)

m2(h+N∗)
,

−dN
dt

∣∣∣∣
(N∗,P∗)

= 0

⇒ −
s(1−a)

k(1−a)+N∗
+ d +

(1−a)p
h+N∗

[
cp(1−a)N∗
m2(h+N∗)

−
m1
m2

]
= 0

⇒

[
−s(1−a)m2(h+N∗)2+dm2(h+N∗)2(k(1−a)+N∗)+cp2(1−a)2N∗(k(1−a)+N∗)−m1(1−a)p(h+N∗)(k(1−a)+N∗)

]
m2(h+N∗)2(k(1−a)+N∗)

= 0
⇒

Φ(N∗)
m2(h+N∗)2(k(1−a)+N∗)

= 0
It can be easily verified that cp2(1 − a)2N(k(1 − a) + N) − m1(1 − a)p(h + N)(k(1 − a) + N) = 0.
Therefore,

Φ(N) = −s(1 − a)m2(h + N)2 + dm2(h + N)2(k(1 − a) + N)
= m2(h + N)2[ − s(1 − a) + d(k(1 − a) + N)

]
= m2(h + N)2[ − (s − dk)(1 − a) + dN

]
=

m2(h+N)2
[
(s−dk)(1−a)+dh

]
cp(1−a)−m1

[
m1 −

cp(1−a)2(s−dk)
(s−dk)(1−a)+dh

]
< 0 (as m1 <

cp(1−a)2(s−dk)
(1−a)(s−dk)+hd and m1 < cp(1 − a))

This means N∗ > N. �
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(a) No interior equilibrium for m1 = 0.5 > m1c = 0.448

-1 -0.5 0 0.5 1

N

-0.1

0

0.1

0.2

0.3

0.4

0.5

Φ
(
N
)

0 N
*

(b) Unique interior equilibrium for m1 = 0.05 < m1c = 0.448

Figure 1. Existence of interior equilibrium for different values of m1 for the Model 1. The
other parameter values are fixed as mentioned in Table 1. Here, m1c =

cp(1−a)2(s−dk)
(1−a)(s−dk)+hd .
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Table 1. Description and fixed values of parameters used in the Models 1 and 2.

Parameter Description Value
s Searching efficiency of prey 0.8
a Aposematic time in one unit time 0.1
k Saturation constant 0.6
d Natural death rate of prey 0.01
p Predation rate 2
h Half-saturation constant 0.3
c Conversion efficiency 0.25
m1 Natural death rate of predator 0.05
m2 Density dependent death rate of

predator
0.5

DN Self-diffusion coefficient of prey 0.01
DP Self-diffusion coefficient of preda-

tor
1

3.3. Stability analysis

1. The extinction equilibrium E0 is locally asymptotically stable if s < dk, as the eigenvalues
associated with the equilibrium E0 are given by λ1 = 1

k (s− dk) < 0 if s < dk, and λ2 = −m1 (< 0).

In fact, E0 is globally asymptotically stable under this condition. In fact, we have

dN
dt < s(1−a)N

k(1−a)+N − dN
1
N

dN
dt < s

k − d.

Consider the system, dq
dt =

(
s
k −d

)
q; with q(0) ≥ N(0). Since, s < dk, we define

(
s
k −d

)
= −ε (< 0).

Therefore,

q(t) = q(0)e−εt,

which gives q(t)→ 0 as t → ∞.
By comparison theory, we have N(t) ≤ q(t), for t ≥ 0. Hence, N(t) → 0 as t → ∞, i.e., prey
population goes to extinction.
When preys goes to extinction, then we have 1

P
dP
dt < −m1 < 0, and by similar way we can show

that P(t)→ 0 as t → ∞, i.e., predator population also goes to extinction.

2. The axial equilibrium En, exists if s > dk, and locally asymptotically stable if m1 >
cp(s−dk)(1−a)2

(s−dk)(1−a)+hd .
Since the eigenvalues at the equilibrium En are given by λ1 = −d

s (s − dk) < 0 as s > dk, and
λ2 =

cp(s−dk)(1−a)2−m1(s−dk)(1−a)−m1hd
(s−dk)(1−a)+hd < 0, if cp(s − dk)(1 − a)2 − m1(s − dk)(1 − a) − m1hd < 0, i.e.,

if m1 >
cp(s−dk)(1−a)2

(s−dk)(1−a)+hd .
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Table 2. Existence and stability conditions of equilibria for the Model 1.

Equilibria Existence Stability
E0 Always s < dk
En s > dk m1 >

cp(s−dk)(1−a)2

(s−dk)(1−a)+hd
E∗ s > dk and A > 0 and B > 0

m1 <
cp(s−dk)(1−a)2

(s−dk)(1−a)+hd

3. The Jacobian matrix at the interior equilibrium E∗ is given by

J
∣∣∣∣
(N∗,P∗)

=

[
a11 a12

a21 a22

]
,

where,

a11 =
(1−a)pN∗P∗

(h+N∗)2 −
s(1−a)N∗

(k(1−a)+N∗)2 , a12 = −
(1−a)pN∗

h+N∗
a21 =

ch(1−a)pP∗
(h+N∗)2 , a22 = −m2P∗.

The characteristic equation at the interior equilibrium is given by

λ2 + Aλ + B = 0, (3)

where A = −tr(J) = −(a11 + a22), and B = det(J) = a11a22 − a12a21. Thus, by Routh-Hurwitz criterion,
the interior equilibrium E∗ is locally asymptotically stable iff A > 0 and B > 0.

The existence and stability conditions of equilibria for the Model 1 are summarized in Table 2.

Next, we investigate the possibility of Hopf-bifurcation at the interior equilibrium E∗ by
considering the parameter s, the searching efficiency of prey for resource, as the bifurcation parameter.

The interior equilibrium E∗ loses its stability through Hopf-bifurcation when the eigenvalues
are complex conjugate with zero real parts. We consider the parameter s as the bifurcation parameter.
Let, λ(s) = λr(s) + iλi(s) be the eigenvalues of the characteristic equation 3. After substituting the
value of λ in equation 3, and separating real and imaginary parts, we get

λ2
r − λ

2
i + Aλr + B = 0,

2λrλi + Aλi = 0.
(4)

At the Hopf-bifurcation point, we have λr(s) = 0. We set at s = sH, λr(sH) = 0, and put λr = 0 in 4.
Therefore,

−λ2
i + B = 0,
Aλi = 0, where λi , 0.

Therefore, from the above equations, we have A(sH) = 0, and λi(sH) =
√

B(sH) > 0, i.e., det J
∣∣∣∣
s=sH

=

B(sH) > 0. Thus, at the Hopf-bifurcation point, we have

A(sH) = 0⇒ sH =

(
k(1 − a) + N∗

)2P∗
(1 − a)N∗

[
(1 − a)pN∗
(h + N∗)2 − m2

]
.
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Differentiating equations 4, w.r.t. s, and put λr(s) = 0, we have

Adλr
ds − 2λi

dλi
ds = −dB

ds
2λi

dλr
ds + Adλi

ds = −λi
dA
ds .

By solving the above system of equations, we have

dλr(s)
ds

∣∣∣∣
s=sH

= −
2λ2

i
dA
ds + AdB

ds

A2 + 4λ2
i

∣∣∣∣
s=sH
, 0,

provided [2λ2
i

dA
ds + AdB

ds ]
∣∣∣∣
s=sH
, 0. Hence, we can write the following theorem:

Theorem 3.3. If det J
∣∣∣∣
s=sH

> 0 and d<(λ(s))
ds

∣∣∣∣
s=sH
, 0 hold, then the interior equilibrium E∗ of Model

(1) is locally asymptotically stable when s < sH, and the Model (1) undergoes Hopf-bifurcation at E∗
when s = sH.

4. Stability analysis of the spatial model

In this section, we will investigate the Turing instability of the Model 2, where the spatially-
homogeneous steady state E∗ of the system is stable without diffusion, but unstable in the presence
of diffusion. First, we consider the linearized form of the system 2 about the positive equilibrium
E∗ = (N∗, P∗) as follows:

∂u
∂t = a11u + a12v + DN

(
∂2u
∂x2 + ∂2u

∂y2

)
,

∂v
∂t = a21u + a22v + DP

(
∂2v
∂x2 + ∂2v

∂y2

)
,

(5)

where N = N∗ + u and P = P∗ + v, and (u, v) are small perturbation of (N, P) about the interior
equilibrium point E∗ = (N∗, P∗). Now we can consider the solution of the system 5, as(

u
v

)
=

(
uκ
vκ

)
eξt+i(κx x+κyy),

Here ξ is the growth rate of perturbation in time t, and κx, κy are the wave numbers of the solutions.
The Jacobian matrix of the linearized system can be written as:

J =

[
a11 − DN(κ2

x + κ2
y) a12

a21 a22 − DP(κ2
x + κ2

y)

]
.

In spatial model, the growth rate of perturbation ξ depends on the sum of square of the wave numbers
(κ2

x + κ2
y). Therefore, both the wave numbers will affect the eigenvalues of J. For simplicity, we can

consider ξ as rotational symmetric function on the κxκy - plane and substitute κ2 = κ2
x + κ2

y and obtain
the results for the two-dimensional case from the one-dimensional formulation. The corresponding
characteristic equation is given by

ξ2 + Aξ + B = 0 (6)
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where

A = tr(J) = A + κ2(DN + DP),
B = det(J) = B − (a11DP + a22DN)κ2 + DN DPκ

4.

Thus using the Routh-Hurwitz criterion, we have the following theorem for the stability of spatially-
homogeneous positive equilibrium of the Model 2.

Theorem 4.1. The positive equilibrium point E∗ of the system 2 is locally asymptotically stable iff
A > 0 and B > 0.

From the expressions of A and A, it is clear that if A > 0, then A > 0. Thus the only possibility for
the occurrence of diffusion-induced instability is the case when B > 0, but B < 0. Thus the condition,
for diffusive instability is given by

H(κ2) = DN DPκ
4 − (a11DP + a22DN)κ2 + B < 0. (7)

Therefore, the diffusion can induce the loss of stability with respect to the perturbation of certain
wave numbers. Here, H is a quadratic function of κ2 and the graph of H(κ2) is a parabola. Let the
minimum of H(κ2) is reached at κ2 = κ2

c , where κ2
c is given by

κ2
c = a11DP+a22DN

2DN DP
> 0. (8)

As a11 + a22 < 0, and κc is real then we must have a11a22 < 0. The sufficient condition for instability
is that H(κ2

c) < 0. Thus, with the critical value of κ = κc, the condition for diffusive instability can be
written as

(a11DP + a22DN)2 > 4DN DPB.

It is easy to see that the change of sign in H(k2) occurs when k2 enters and leave the interval (κ2
−, κ

2
+)

where

κ2
± =

a11DP+a22DN±
√

(a11DP+a22DN )2−4DN DPB
2DN DP

.

In particular, we have H(κ2) < 0 for κ2
− < κ2 < κ2

+. Also, the diffusive instability cannot occur
unless the diffusivity ratio is sufficiently away from unity. In fact, we have a11 + a22 < 0, and therefore
a11 < −a22 (where a22 < 0). Then, from the condition 8, we have

DP
DN

> −a22
a11

> 1.

The above conditions are the necessary conditions for the Turing instability, which is applicable to
any two-species activator-inhibitor system. In particular, we must have DP , DN .

From the inequality 8, the explicit condition for the occurrence of Turing instability becomes:

sH < s < sT ≡
(k(1−a)+N∗)2P∗

(1−a)N∗DP

[
(1−a)pN∗DP

(h+N∗)2 − m2DN

]
.

5. Numerical simulations

In this section, we perform some numerical simulations for both temporal and spatio-temporal
dynamics. For our numerical simulations, the fixed parameter values are given in Table 1.
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5.1. Temporal dynamics

First, we study the temporal dynamics of the Model 1. We draw the bifurcation diagrams of both
prey and predator with respect to the bifurcation parameter a (the fraction of time for aposematism in
one unit time). From the Figure 2, we can observe that when a is small (a ≈ 0.08) system shows the
oscillatory coexistence between prey and predator. As we increase the parameter a, system becomes
asymptotically stable, and the abundance of both prey and predator increases up to a certain threshold
value of a. Predator and prey abundance reaches maximum at a ≈ 0.45 and a ≈ 0.75, respectively and
then decreases to zero. The predator becomes extinct at very high value of a (a ≈ 0.9), when preys
are too much defensive such that predator may not capture sufficient prey to survive, and the predator
is specialist. At a = 1, the extinction of population occurs which is also clear from the dynamics (1).
Therefore, from the bifurcation diagrams, we can say that aposematism time can increase the stability
and abundance of both the populations up to a certain range, after that the abundance decreases.
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(a) Bifurcation diagram of prey with respect to a.
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(b) Bifurcation diagram of predator with respect to a.

Figure 2. Change of stability of interior equilibrium for non-spatial Model 1 by varying a.
The other parameters are fixed as mentioned in Table 1. Blue and red color represent the
maximum and minimum population density, respectively.

Similarly, we examine the effect of the parameter s (the searching efficiency of prey) for the Model
1. From the bifurcation Figure 3, we can observe that as we increase the parameter s, the system
behavior changes from stable to limit cycle (at s ≈ 0.48) through Hopf-bifurcation and again changes
from limit cycle to stable behavior (at s ≈ 1.26). Therefore, for some intermediate values of s, the
system shows oscillatory behavior, otherwise system become stable for a long range of the parameter
values of s. Also, as we increase the parameter s, the abundance of both prey and predator increases.

5.2. Spatial dynamics

5.2.1. Existence of spatial heterogeneity

First, we prove the possibility of the existence of Turing instability in our Model 2. The diffusion-
driven instability of an equilibrium means if it is asymptotically stable without diffusion, but unstable
in the presence of diffusion. To confirm the diffusion-driven instability around the interior equilibrium,
here we check the analytic conditions numerically. First, we check the diffusion-induced instability
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(a) Bifurcation diagram of prey with respect to s.
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(b) Bifurcation diagram of predator with respect to s.

Figure 3. Change of stability of interior equilibrium for non-spatial Model 1 by varying s.
The other parameters are fixed as mentioned in Table 1. Blue and red color represent the
maximum and minimum population density, respectively.

for the parameter a. In the Figure 4(a), we plot the polynomial H(κ2) 7 with respect to κ2 for different
values of a (a = 0.05, 0.15, 0.25, 0.30, and 0.35). From the Figure 4(a), we can observe that as the
parameter a increases, the range of κ2, for which the polynomial H(κ2) remains negative decreases, and
finally H(κ2) becomes completely positive for a > 0.30. Thus, by increasing the aposematism time
a, the possibility of the occurrence of Turing instability decreases. As the largest real part of ξ 6 also
provides information about the existence of Turing instability. Largest real part of ξ is positive, implies
the possibilities of the Turing instability. We can observe that as a increases the maximum of the real
part of ξ decreases and become completely negative for a > 0.30.
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(a) Black dashed line represents H(κ2) = 0.
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(b) Black dashed line represents Re(ξ) = 0.

Figure 4. The graph of the function H(κ2) with respect to κ2 4(a), and dispersion relation
plotting the real part of the eigenvalues Re(ξ) with respect to κ2 4(b) for different values of a.
The other parameter values are fixed as mentioned in Table 1.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3864–3884



3877

Similarly, in the Figure 5, we draw the polynomial H(κ2) and the largest real part of ξ with respect
to κ2 and check the possibility of the occurrence of Turing patterns for different values of s. Here, we
can observe that Turing instability can occur only at the intermediate values of s. For the fixed set of
parameter values as in Table 1, with a = 0.25, if s is between 0.4 and 1.1 then only pattern can be
observed. The polynomial H(κ2) remains positive and real part of ξ remains negative if s < 0.4 or
s > 1.1.

0 2 4 6 8 10
2

0

0.2

0.4

0.6

0.8

1

2
)

s = 0.3

s = 0.4

s = 0.6

s = 0.8

s = 1.1

s = 1.2

(a) Black dashed line represents H(κ2) = 0.
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Figure 5. The graph of the function H(κ2) with respect to κ2 5(a), and dispersion relation
plotting the real part of the eigenvalues Re(ξ) with respect to κ2 5(b) for different values of s.
The other parameter values are fixed as mentioned in Table 1, with a = 0.25.

5.2.2. Effect of aposematic time and searching efficiency

Next, we investigate how the stability of the system changes by changing both aposematism time
(a) and searching efficiency of prey (s) in (s, a) parameter plane (Figure 6). Here, black region is for
the extinction of both prey and predator populations. In this region the extinction equilibrium E0 is
globally asymptotically stable. In the magenta region, only prey population survive and the extinction
of predator occurs. In this region the axial equilibrium En is locally asymptotically stable. The white
region stands for the stability region of the coexistence equilibrium E∗ in both spatial and non-spatial
cases (both with and without diffusion). The yellow region represents the region of Turing instability,
where the system is stable without diffusion but unstable and shows different spatial pattern in the
presence of diffusion. The red region represnets the Turing-Hopf region, i.e., system shows oscillatory
coexistence without diffusion but there is a possibility of inhomogeneous stationary patterns due to the
interaction of Turing instability. From the Figure 6, it is clear that both the parameters s and a are
very important for determining different dynamics of the system. For example, for this set of fixed
parameter values as in the Table 1, when s is very small, both the prey and predator extinct, and for
large value of a, predator population extinct. For some intermediate values of s and low value of a,
different spatial patterns (both Turing-Hopf and Turing patterns) occur. For large value of a (a >≈ 0.30)
there is no possibility of Turing patterns and the system is stable at the coexistence equilibrium in a
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Figure 6. Different stability region in (s, a) parametric space. Region black corresponds to
the stability of extinction equilibrium, magenta corresponds to the stability of En (extinction
of predator), white and yellow corresponds to stable interior (E∗), yellow corresponds to the
Turing instability, and Red corresponds to the Turing-Hopf domain. The other parameters
are fixed as mention in Table 1.

large parameter domain.

5.2.3. Different types of pattern formations

Now, after finding the possibilities of getting Turing instability and range of parameter values for
the parameters s and a, we investigate the different types of Turing patterns by varying s and a for the
Model 2. For obtaining the spatio-temporal dynamics in two dimensional spatial domain, the system of
equations in 2 is solved numerically by using a finite difference method. The forward difference Euler
scheme is used for the reaction part and the standard five point explicit finite difference scheme is used
for two dimensional diffusion terms. We use positive initial conditions and homogeneous Neumann
boundary conditions at the boundary of the domain. Numerical simulations for all the stationary pat-
terns are carried out over a square domain Ω = [0, 200]×[0, 200] with the spatial grid sizes ∆x = ∆y = 1
and the temporal grid size ∆t = 1/30. For the simulations, the initial conditions (N0, P0) are always
a small random perturbation around the interior equilibrium E∗. (N0, P0) = (N∗ + δζi, j, P∗ + δηi, j),
where δ = 0.0001, ζi, j and ηi, j represent the usual Gaussian white noise. After the initial period of
perturbation spreads, the system goes into either a time-dependent state or an essentially steady state
solution, and we stopped our simulations after sufficeint time to assume that the patterns attained the
stationary state and they do not change further with time. In all the simulations of pattern formation,
we run our simulations up to t = 50, 00, 000 time points, so that the patterns do not change further with
time. While doing the simulations, different types of spatial dynamics have been observed, and almost
one-to-one correspondence is observed between the stationary patterns of prey and predator. Thus, we
have only shown the spatial distribution of prey.
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First, we find different types of patterns formation in Turing domain (parameter values are chosen

(a) Spots pattern for a = 0.22. (b) Mixture of spots and stripes pattern
for a = 0.25.

(c) Stripes patterns for a = 0.28.

(d) Mixture of stripes and holes pattern
for a = 0.29.

(e) Holes patterns for a = 0.295.

Figure 7. Different types of stationary Turing patterns developed by prey at different values
of the aposematism time investment parameter a. The other parameters are fixed as men-
tioned in Table 1.

from the yellow region of the Figure 6). As we vary the aposematic time investment of prey in one unit
of time (a), and keeping all the other parameters fixed as mentioned in Table 1, we get different spatial
patterns (Figure 7). When the aposematic time investment is small, the system shows spot patterns for
a long range of values of a. Here, in Figure 7(a), we have drawn the spot patterns for a = 0.22, where
the abundance of prey is higher in isolated red zones. In view of population dynamics of the proposed
model, this ‘spot’ pattern signifies that when prey aposematism time is small, then prey population is
outcompeted by the predator population, and fixes to a very low density in majority of the spatial region
due to its weak defense level. It results in the formation of patches of high prey density surrounded by
areas of low prey densities [20].

Now, as we increase the value of aposematism time, at a = 0.25 we get a mixture of spot and
stripe patterns (Figure 7(b)). Further increasing the value of a, at a = 0.28, there is a regular peaks
and troughs of prey density, i.e., the stripe pattern emerges (Figure 7(c)). At a = 0.29, we observe a
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mixture of stripes and holes (Figure 7(d)). Finally, for relatively large value of a, in the Turing domain,
at a = 0.295, the system dynamics changes to holes (Figure 7(e)), i.e., the prey population is at low
density in the isolated zone and exist at high density in the remaining region. Thus by increasing the
value of aposematism time a, the patterns changes from spots to holes through spot-stripe mixture→
stripes→ stripe-hole mixture.

Next, in the Turing domain, we look at the different patterns formed by varying the prey searching

(a) Spots pattern for s = 1.1. (b) Mixture of spots and stripes pattern
for s = 1.21.

(c) Stripes pattern for s = 1.4.

(d) Mixture of stripes and holes pattern
for s = 1.45.

(e) Holes pattern for s = 1.5.

Figure 8. Different types of stationary Turing patterns developed by prey at different values
of searching efficiency of prey s. The other parameters are fixed as mentioned in Table 1.

efficiency parameter (s) and keeping all the other parameters fixed as mentioned in the Table 1. At
low values of s in the Turing domain, spots patterns is observed (at s = 1.1, Figure 8(a)). Thus, as
prey searching efficiency is small, prey population with very low density is observed in the majority of
the spatial region. As we increase the searching efficiency s, at s = 1.21 a mixture of spots and strips
pattern is observed (Figure 8(b)). Further increase of s results stripes pattern (at s = 1.4, Figure 8(c)).
At s = 1.45, a mixture of stripes and holes pattern can be observed (Figure 8(d)). Finally, at large value
of s in the Turing domain, we observe the holes pattern only (at s = 1.5, Figure 8(e)). Thus with high
searching efficiency, higher density of prey has been observed in the majority of the spatial domain.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3864–3884



3881

Therefore, in this case also, as we increase the value of searching efficiency the pattern sequence ‘spots
→ spot-stripe mixture → stripes → stripe-hole mixture → holes’ is observed. In both the cases, as
we increase the aposematism time or searching efficiency of prey, the system changes from predator
predominance to prey predominance.

5.2.4. Turing-Hopf patterns

Finally, we find the types of patterns observed in the Turing-Hopf domain (parameters are cho-
sen from the red region of the Figure 6). In the Turing-Hopf domain, only spots patterns have been
observed. In Figure 9, we have shown the spots patterns for both prey and predator. Thus, for our
model, when temporal dynamics shows limit cycle oscillations, then the spatio-temporal dynamics
shows predator predominance in the system. From Figures 7, 8, and 9, we can observe that the density
variation is higher in Turing-Hopf domain (non-Turing patterns) as compared to corresponding Turing
patterns.

(a) Spots pattern of prey for s = 1.3 and a =

0.02.
(b) Spots pattern of predator for s = 1.3 and a =

0.02.

Figure 9. Stationary patterns developed by prey and predator in Turing-Hopf domain. The
other parameters are fixed as mentioned in Table 1.

6. Discussion

Self-defense and growth-induced reproduction are two basic intrinsic characteristics of any species
in an ecosystem [18]. Specifically, in a prey–predator model, the prey population most often invests its
total time in two actions—(i) self-protection against predation (such as camouflage, warning coloration
or aposematism) and (ii) search food for growth-induced mating; However, predators are primarily in-
volved in searching of preys for their diet, which is adjoined to mating of mature predators. The
aposematic time and time invested in searching of food for prey are complementary of each other. An
increase in time for aposematism naturally decreases the reproduction rate of prey, whereas, preda-
tors often diminish the rate of intake of highly defended prey [11]. With the consideration of these
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logical assumptions, in the present manuscript, we formulate a diffusive prey–predator model with
aposematic prey, which follows Beverton-Holt recruitment function [18] for its per-capita growth rate.
The proposed model (1) contemplates unlimited-resource environment for prey which justifies the
non-existence of intra-prey competition; however, the Model (1) considers intra-predator competition-
induced death of predators. To include the saturation effect in the processing of food, we use Holling
type-II functional response for predation and corresponding per-capita growth of predator.

In the process of analyzing the temporal and spatio-temporal version of the suggested model, we
primarily concern about the effect of aposematic time (a) and searching efficiency (s) of prey on the
dynamic outcomes. The Model (1), which is positively invariant and uniformly ultimately bounded
(see Theorem 3.1), shows Hopf-bifurcation with respect to the bifurcation parameter s (see Theorem
3.3 and Figure 3). Unlike the searching efficiency s, the proportion in which prey and predator coexist
(see Theorem 3.2 and Figure 1) declines after a certain value of aposematic time a; moreover, at the
highest level of aposematism (a = 1), the prey population rarely gets time for mating, and on the other
side, predators avoid the consumption of extremely defended prey which jointly results in the extinc-
tion of entire population as shown in Figure 2. Like temporal dynamics, the impact of aposematic time
and searching efficiency on the formation of spatial patterns (as emerged from the reaction-diffusion
model (2)) is notable. The steady-state spatial abundance of prey or predator population, in the form of
regular Turing and non-Turing patterns, varies with respect to both a and s (see yellow and red regions
in Figure 6). The individual effect of a and s on the organization of Turing patterns is conceptually
similar. For the low value of aposematic time (i.e., less defended prey), the rate of predation increases
with a less dominant increment in the reproduction rate of prey—results in ‘spot’ pattern, which con-
firms the presence of high density in discrete patches with low density in the surroundings as shown in
Figure 7 (a). Further increase in the value of a shows the transition from ‘spots’ to ‘mixture of spots
and stripes’ to ‘stripes’ to ‘mixture of stripes and holes’ to ‘holes’ (low density in the center of patches
and high density in the surroundings) pattern, which is generated due to declination in the predation
rate of substantially defended prey (see Figure 7). Similarly, low food searching efficiency of prey
results in ‘spot’ patterns, whereas, the abundance of prey increases (‘spots’ to ‘stripes’ to ‘holes’) with
an increase in s as shown in Figure 8. As, in the proposed reaction-diffusion model (2), the predator
dynamics is coupled with the dynamics of prey, we get the same Turing patterns for both prey and
predator. The combined effect of a and s in the formation of non-Turing patterns is shown in Figure 9,
where, we get only ‘spot’ pattern with the dominance of predators.

The work presented in the current manuscript can give a clue towards understanding the impact
of both prey defense and preys’ food searching efficiency on the extinction, coexistence and spatial
distribution of the constituent populations of a real ecosystem. Here, we consider that the reproduction
rate of prey and the rate of predation vary linearly with the time for aposematism (a); however, one can
analyze the effect of nonlinearity in aposematic time on the dynamic outcomes of the proposed model.
Our logical assumption is that the predators avoid the aposematic preys on the basis of its level of tox-
icity (proportional to the amount of time invested for aposematism), which can be perceived through
the degree of warning coloration, although, we have not considered the dynamics of a. The consider-
ation of adaptive dynamics for the toxicity level of aposematic prey can incline the dynamic outcomes
more towards reality. In the existing literature [11], it has been shown that the predator’s decision to
include the aposematic preys in their diet is influenced by the presence of undefended (i.e., non-toxic)
preys, therefore, one can further analyze the 3D dynamics with the subpopulations of undefended prey,
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defended prey and predator [21].
In the realm of evolutionary biology, the evolution of aposematism and its paradoxical effects have

long been the topics of interest [22, 23, 24]. The advertisement of noxiousness and unpalatability of
aposematic prey through conspicuous warning coloration often initially suffers from immense preda-
tion by naive predators—questioned those mechanisms, which are responsible for the conversion of
cryptic prey into overtly defended prey [22].
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23. J. Gohli and G. Högstedt, Explaining the evolution of warning coloration: Secreted secondary
defence chemicals may facilitate the evolution of visual aposematic signals, PLoS One, 4 (2009),
e5779.

24. J. B. Barnett, C. Michalis, N. E. Scott-Samuel, et al., Distance-dependent defensive coloration
in the poison frog Dendrobates tinctorius, Dendrobatidae, Proceed. Nat. Aca. Sci., 115 (2018),
6416–6421.

c© 2019 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3864–3884

http://creativecommons.org/licenses/by/4.0

	Introduction
	Description of model
	Mathematical analysis of temporal model
	Boundedness of positive solutions
	Equilibrium analysis
	Stability analysis

	Stability analysis of the spatial model
	Numerical simulations
	Temporal dynamics
	Spatial dynamics
	Existence of spatial heterogeneity
	Effect of aposematic time and searching efficiency
	Different types of pattern formations
	Turing-Hopf patterns


	Discussion

