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Abstract: Dengue virus (DENV) infection is endemic in many places of the tropical and subtropical
regions, which poses serious public health threat globally. We develop and analyze a mathematical
model to study the transmission dynamics of the dengue epidemics. Our qualitative analyzes show
that the model has two equilibria, namely the disease-free equilibrium (DFE) which is locally asymp-
totically stable when the basic reproduction number (R0) is less than one and unstable if R0 > 1, and
endemic equilibrium (EE) which is globally asymptotically stable when R0 > 1. Further analyzes
reveals that the model exhibit the phenomena of backward bifurcation (BB) (a situation where a stable
DFE co-exists with a stable EE even when the R0 < 1), which makes the disease control more diffi-
cult. The model is applied to the real dengue epidemic data in Kaohsiung and Tainan cities in Taiwan,
China to evaluate the fitting performance. We propose two reconstruction approaches to estimate the
time-dependent R0, and we find a consistent fitting results and equivalent goodness-of-fit. Our findings
highlight the similarity of the dengue outbreaks in the two cities. We find that despite the proximity
in Kaohsiung and Tainan cities, the estimated transmission rates are neither completely synchronized,
nor periodically in-phase perfectly in the two cities. We also show the time lags between the seasonal
waves in the two cities likely occurred. It is further shown via sensitivity analysis result that proper
sanitation of the mosquito breeding sites and avoiding the mosquito bites are the key control measures
to future dengue outbreaks in Taiwan.
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1. Introduction

Dengue virus (DENV), a flavivirus primarily transmitted to human via a bites of an infected
mosquitoes of the genus Aedes (i.e., Aedes aegypti or Aedes albopictus) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. This
species is capable of transmitting other mosquito-borne diseases such as Chikungunya, Zika, Yellow
fever [3, 11, 12, 13, 14]. The DENV is endemic in at least 100 countries in the tropical and subtropical
regions of the world, with nearly 4 billion people at risk [7, 15]. It is second to malaria amongst the
deadly mosquito-borne diseases with fast-spreading ability [7], with an estimate of 390 million new
infections of which about 96 million are clinical, up to 1 million are severe cases (i.e., dengue hem-
orrhagic fever/dengue shock syndrome also known as DHF/DSS), and more than 20 thousand deaths
every year globally [6, 7, 16]. The DHF/DSS have a high mortality risk with death occurring within
24hrs after the onset of shock [17, 18, 19]).

The DENV are of four serotypes (i.e., DENV-1, DENV-2, DENV-3 and DENV-4) with low cross-
immunity among each other which can result in secondary infection after an infection with one serotype
has happened [7]. An individual infected with one serotype can be infected with different serotypes
about a half year later [3], yet there is no proof of reinfection with the same serotype. DEN infection
of all serotypes can cause three distinct syndromes: classic dengue fever, DHF and DSS [3].

The epidemiological cycle occurs as follows. Female Aedes aegypti mosquitoes are infected by
the blood meal from biting an infectious human during the viremic stage of the infection. After a
period of time called the extrinsic incubation period (EIP), the mosquitoes become infectious [20].
The range of the extrinsic incubation period lies between 4 to 10 days [20]. The infected mosquito
does not have immunity and can transmit the virus throughout its lifespan [3, 7, 20]. An infectious
mosquito can transmit the virus to a susceptible individual via bites [21], after a period of time called
the intrinsic incubation period (IIP), which varies from 4 to 7 days [20], the virus can evolve from
classical dengue fever to the secondary cases of dengue infection which may lead to DHF or DSS [17].
The manifestation of the symptoms varies between 3 to 7 days [3], which corresponds roughly to the
infectious period. Thereafter, the individual develops the life-long immunity against the same serotype
of the virus [3].

The prevention against DENV is limited to controlling mechanisms applied on the mosquito, be-
cause the vaccine is not yet available (even though there is a vaccine called dengvaxia, which is still
under clinical trial, released by Sanofi Pasteur in 2015 which was approved by morethan 10 countries
[7, 22]. The vaccine efficacy varies by the serotypes of the DENV (i.e., 54.7 % for DENV-1, 43.0 % for
DENV-2, 71.6 % for DENV-3, and 76.9 % for DENV-4 [7, 23]). To describe the overall transmission
dynamics of the DENV, we developed a mathematical model that takes into account the female adult
mosquito coupled with the human population to analyses and explain the transmission dynamics of the
DENV epidemics in Taiwan in 2014-2015.

A number of mathematical modeling studies have been carried out to gain insight into the DENV
transmission dynamics in human and/or mosquito populations [3, 4, 5, 6, 11, 24, 25]. Garba et al. [6]
developed a deterministic model for the DENV transmission within human and mosquito populations,
and extended the model to incorporate an imperfect vaccine against the virus, and find that both models
exhibited backward bifurcation phenomenon, and the courses have been explained in detail by Gumel
[26]. Yang and Ferreiri [3] proposed a model to describe the transmission dynamics of the DENV
in human and mosquito populations, they incorporated aquatic stages (i.e., eggs, larvae, pupae) in
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the mosquito population, and calculated the basic reproduction number to be less than one (which
indicate that the disease can dies out in time). Yang et al. [24] designed a simple model in order to
assess the effect of temperature on the population of the mosquito by using the temperature controlled
experiments. Yang et al. [25] extended Yang et al. [24] by including human compartments and updated
most of the parameters to assess the effect of temperature on the risk of the DENV outbreaks. Yang [5]
developed and analyzed a model encompassing four quiescence stages of the mosquito, and used the
model to assess the influence of the quiescent eggs on the transmission dynamics of the mosquito.

In the current study, we focus on the design and analysis of a model, which extends some of the
aforementioned studies, for assessing the transmission dynamics of the DENV in human and mosquito
populations. Our model includes both the human and mosquito populations, and incorporates asymp-
tomatic (Ah) and severe cases (those with DHF/DSS) of the DENV infection (Ih2) in human population.
We performed model fitting by using the plug-and-play inference framework for the human popula-
tion, and our results contribute to better understanding of the transmission dynamics of the DENV
epidemics in Taiwan in 2014-15 and provide useful guidelines for the design of control strategies in
the future.

The paper is organized as follows. The model is formulated in section 2 and analyzed in section 3.
Sensitivity analysis results of the full model is also given in section 4. Finally numerical analysis of
the human only sub-model is performed with a plug-and-play inference framework in section 5.

2. Model formulation

2.1. Dengue epidemic model
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Figure 1. Schematic diagram of the model (2.1).
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The total human population at time t, denoted by Nh(t), is divided into six compartments of sus-
ceptible, S h(t), exposed (infected but not infectious individuals that can progress to Ih1 class), Eh(t),
asymptomatically infected, Ah(t) (i.e., expose individuals that can progress and becomes infectious
without showing any clinical symptoms, which are lumped together for computational conveniences),
symptomatically infected, Ih1(t), symptomatically infected with severe DENV (DHF/DSS), Ih2(t), and
recovered, Rh(t), humans. Hence,

Nh(t) = S h(t) + Eh(t) + Ah(t) + Ih1(t) + Ih2(t) + Rh(t).

The total mosquito population at time t, denoted by Nm(t), is split into susceptible S m(t), exposed
(infected but not infectious mosquitoes) Em(t) and symptomatic (infectious mosquitoes) Im(t) classes.
Hence,

Nm(t) = S m(t) + Em(t) + Im(t).

The model for the DENV transmission in the human and mosquito populations is given by the
following deterministic ordinary differential equations (ODE) systems (2.1). The flow diagram of the
model (2.1) is depicted in Figure 1. The state variables and parameters of the model are described in
Tables 1 and 2, respectively.

dS h

dt
= Πh − λhS h − µhS h,

dEh

dt
= θλhS h − (vh + µh)Eh,

dAh

dt
= (1 − θ)λhS h − (γh + µh)Ah,

dIh1

dt
= vhEh − (γ1 + µh)Ih1 ,

dIh2

dt
= (1 − η)γ1Ih1 − (δh + γ2 + µh)Ih2 ,

dRh

dt
= ηγ1Ih1 + γ2Ih2 + γhAh − µhRh,

dS m

dt
= Πm − λmS m − µmS m,

dEm

dt
= λmS m − (σm + µm)Em,

dIm

dt
= σmEm − µmIm.

(2.1)

Here, the infection rate for humans (λh) and vectors (λm) are given by

λh =
abβhIm

Nh
, and λm =

abβm(Ah + Ih1 + Ih2)
Nh

. (2.2)

In model (2.1), Πh is the recruitment rate for human by birth, λh is the infection rate of susceptible
human from infectious mosquitoes, where a is the mosquito biting rate, b is the maximum number of
bites a human can receive per unit time, βh is the transmission probability from infected mosquitoes to
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the susceptible humans while βm is transmission probability from an infectious humans to the suscepti-
ble mosquitoes per bite, and µh is the natural death rate of human. The term θ is the symptomatic ratio,
and (1 − θ) remains the fraction of asymptomatic ratio. The parameter vh measures the rate at which
an individuals in the Eh class develop a primary clinical symptoms of the virus, while η is a fraction
of humans who will not get a severe DENV, δh accounts for the disease-induced death rate of humans
from the Ih2 class, and γi(i = 0, 1, 2) measures the rate of recovery of individual from Ah, Ih1 , and Ih2 ,
respectively.

The susceptible adult mosquitoes acquire the DENV at a rate λm, this population is decreased by
natural death at a rate µm. Finally, σm is a progression rate of the DENV from the Em(t) class to the
Im(t). It is also worth stating that the model (2.1) accounts for the conservation law of mosquito bites.
Thus, the infection rates, λh and λm, are normalized by the total host population, that is Nh(t) [27].

2.2. Basic properties

The basic properties of the model (2.1) will now be explored. Consider the following equations for
the rate of change of the total human N′h(t) and mosquito N′m(t) populations

N′h(t) =
dNh

dt
= Πh − µhNh − δhIh2 6 Πh − µhNh, (2.3)

and

N′m(t) =
dNm

dt
= Πm − µmNm, (2.4)

here, the prime, ′, represent a differentiation with respect to time, t.

Table 1. Descriptions of compartmental classes in the model (2.1).

Variable Interpretation

Nh(t) Total population of humans

S h(t) Population of susceptible humans

Eh(t) Population of humans exposed to DENV

Ah(t) Population of asymptomatic humans

Ih1(t) Population of humans with clinical symptoms of the DENV

Ih2(t) Population of humans with severe clinical symptoms of the DENV

Rh(t) Population of humans recovered from the DENV

Nm(t) Total population of adult female mosquitoes

S m(t) population of susceptible adult mosquitoes

Em(t) population of exposed adult mosquitoes

Im(t) population of infectious adult mosquitoes
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Furthermore, consider the region,

Ω =

{
(S h, Eh, Ah, Ih1 , Ih2 ,Rh, S m, Em, Im) ∈ R9

+ : Nh 6
Πh

µh
,Nm 6

Πm

µm

}
.

It can be shown by solving for Nh and Nm in Eqs (2.3)-(2.4) so that all solutions of the system
starting in the region Ω will remain in Ω for all time t with t > 0. Thus, the region Ω is positively-
invariant, and it is sufficient to consider solutions restricted in Ω. In this region, the usual existence,
uniqueness and continuation results hold for the system (2.1) [28, 29].

Table 2. Description of the parameters in the model (2.1).

Parameter Interpretation / Description

Πh/Πm Recruitment rate of humans/mosquitoes
µh Natural death rate of humans
µm Death rate of female adult mosquitoes
βh Transmission probability from infectious mosquitoes to susceptible humans
βm Transmission probability from infectious humans to susceptible mosquitoes
a Mosquito biting rate
b Maximum number of bites a human can receive per unit time
θ Fraction of infected humans that are exposed
vh Progression rate of exposed humans to infectious humans with clinical symptoms
η Fraction of infectious humans that will not get a severe symptom
γh, γ1, γ2 Recovery rate of infectious humans from Ah, Ih1 , Ih2 , respectively
δh Disease-induced death rate of humans
σm Progression rate of exposed mosquitoes to the infectious mosquitoes
ρ Reporting rate to actual case ratio
m Average mosquito to human ratio

3. Mathematical analysis

3.1. Disease-free equilibrium and its stability

The disease-free equilibrium (DFE) of the model (2.1) obtained at steady state is given by

E0 =
(
S 0

h, E
0
h, A

0
h, I

0
h1, I

0
h2,R

0
h, S

0
m, E

0
m, I

0
m

)
=

(
Πh

µh
, 0, 0, 0, 0, 0,

Πm

µm
, 0, 0

)
.

Using the next generation matrix method [30], we obtained the associated reproduction number of
the model (2.1), denoted by R0 = ρ(FV−1). The term ρ represents the function to find the spectral
radius of the next generation matrix, G = FV−1. The matrices F (for the new infection terms) and V
(for the remaining transition terms), associated with the model (2.1), are given by
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F =



0 0 0 0 0 θ abβh

0 0 0 0 0 (1 − θ) abβh

0 0 0 0 0 0

0 0 0 0 0 0

0 abβmS 0
m

Nh

abβmS 0
m

Nh

abβmS 0
m

Nh
0 0

0 0 0 0 0 0


, (3.1)

V =



n1 0 0 0 0 0

0 n2 0 0 0 0

−vh 0 n3 0 0 0

0 0 − (1 − η) γ1 n4 0 0

0 0 0 0 n5 0

0 0 0 0 −σm µm


, (3.2)

where n1 = vh + µh, n2 = γh + µh, n3 = γ1 + µh, n4 = δh + γ2 + µh, and n5 = σm + µm. Therefore, the
basic reproduction number, R0, is given by

R0 = Rh · Rm, (3.3)

where

Rh =

√
abβhµh

Πh
·

[
θvh

n1n3
+
θ(1 − η)γ1vh

n1n3n4
+

(1 − θ)
n2

]
, (3.4)

and

Rm =

√
abβmσmS 0

m

n5µm
. (3.5)

R0 interpretation: The threshold quantity R0 is ecologically and epidemiologically interpreted as
follows.

i. abβh
Nh

accounts for the number of new infected human hosts caused by an infected mosquito over
its expected infectious period,

ii. vh
n1

is the probability that an exposed human survives the exposed stage and move to the infectious
stage, Ih1 ,

iii. 1
n3

is the average duration in the infectious stage,
iv. (1−η)γ1

n4
is the probability that an infectious human survives the infectious stage (including severe

stage of the DENV) and move to the recovered class,
v. (1−θ)

n2
is the probability that an infected human move to the asymptomatic class,

vi. abβm
σm
n5

S 0
m
µm

accounts for the possible number of new infected mosquito caused by an infected
human hosts over its exposed infectious period.
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Table 3. Values and ranges of the parameters of the model (2.1).

Parameter Baseline [Range] Units Source

Πh 2.5 [1, 5] person day−1 [6]
Πm 5000 [1000, 6000] Day−1 estimated from [6]
µh 3.9 × 10−5 [3.6 × 10−5, 4.0 × 10−5] Day−1 [12]
µm 0.05714 [0.01, 0.1] Day−1 [11]
βh 0.75 [0.1, 0.95] Day−1 [6]
βm 0.75 [0.1, 0.95] Day−1 [6]

a 0.4997 [0.1, 1] Day−1 [13, 14]
b 0.4 [0.1, 1] Day−1 [13]
θ 0.18 [0.1, 0.6] Dimensionless [31]

vh 0.0666 [0, 1] Day−1 [6, 32]
η 0.1 [0.05, 0.15] Dimensionless [19, 33]
γh 0.1428 [0.1, 0.2] Day−1 [13]
γ1 0.2 [0.1428, 0.3] Day−1 [13]
γ2 0.05 [0.0333, 0.07143] Day−1 [13]
δh 10−3 [10−4, 2 × 10−3] Day−1 [6]
σm 0.5 [0, 1] Day−1 [6]
m 10 [1, 20] Dimensionless assumed

The theorem 3.1 below follows the Theorem 2 of Ref [30].

Theorem 3.1. The DFE, E0, of the model (2.1), is locally-asymptotically stable (LAS) in Ω if R0 < 1,
but unstable if R0 > 1.

3.2. Existence of endemic equilibrium and backward bifurcation

3.2.1. Endemic equilibrium and backward bifurcation

The endemic equilibrium (EE) for the system (2.1), which is

E∗ = (S ∗h, E
∗
h, A

∗
h, I
∗
h1, I

∗
h2,R

∗
h, S

∗
m, E

∗
m, I

∗
m),

in terms of the forces of infection, λ∗h and λ∗m, is given by

S ∗h =
Πh

λh + µh
, E∗h =

θλhΠh

n1(λh + µh)
, A∗h =

(1 − θ)λhΠh

n2(λh + µh)
, I∗h1 =

vhθλhΠh

n1n3(λh + µh)
,

I∗h2 =
(1 − η)γ1vhθλhΠh

n1n3n4(λh + µh)
, R∗h =

Πhλh

µh(λh + µh)
(
(1 − θ)γh

n2
+
ηγ1vhθ

n1n3
+
γ1γ2(1 − η)vhθ

n1n3n4
),

S ∗m =
Πm

λm + µm
, E∗m =

Πmλm

n5(λm + µm)
and I∗m =

σmΠmλm

n5µm(λm + µm)
.

(3.6)

Substituting the above equilibrium points (equation (3.6)) into equation (2.2), we have

Aλ2
h + Bλh + C = 0, (3.7)
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where
A = Πh(σm + µm)µm(−abβmµhθvhn2n4 − abβmµhγ1θvhn2 + abβmµhγ1θvhn2η − abβmµh(1 − θ)n1n3n4 −

µmθµhn2n3n4 − µm(1− θ)µhn1n3n4 − µmθvhµhn2n4 − µmγ1θvhµhn2 + µmγ1θvhµhn2η− µmγh(1− θ)n1n3n4 −

µmηγ1vhθn2n4 −µmγ1γ2vhθn2 +µmγ1γ2vhθn2η)(−θµhn2n3n4 − (1− θ)µhn1n3n4 − θvhµhn2n4 − γ1θvhµhn2 +

γ1θvhµhn2η − γh(1 − θ)n1n3n4 − ηγ1vhθn2n4 − γ1γ2vhθn2 + γ1γ2vhθn2η),
B = n4n2n1µh(−µm(σm + µm)[(((((−2n3 − 2vh)n4 + 2γ1vh(−1 + η))n2 + 2n1n3n4)µh − 2vh(n4η − γ2(−1 +

η))γ1n2 +2γhn1n3n4)θ−2n1n3n4(µh +γh))µm +a(((−n4 +γ1(−1+η))vhn2 +n1n3n4)θ−n1n3n4)µhbβm]Πh +

a2σm(((−n4 + γ1(−1 + η))vhn2 + n1n3n4)θ − n1n3n4)µhΠmb2βmβh)n3, and C = (1 − R2
0).

Therefore, one can obtain the positive EE of the model (2.1) by simplifying the quadratic equa-
tion (3.7), and substituting only the positive values of the λh into the EE points. The occurrence of the
quadratic equation (3.7) shows that the backward bifurcation (BB) for the model (2.1) exists.

Hence, the following Theorem 3.2 is established.

Theorem 3.2. The model (2.1) has

i) a EE if C < 0⇔ R0 > 1;
ii) a unique EE if B < 0 and C = 0 or B2 − 4AB = 0;

iii) two EEs if B < 0, C > 0 and B2 − 4AC > 0; or
iv) no EE otherwise.

The existence of the phenomenon of the BB in the model (2.1) highlights a co-existence between a
stable disease free-equilibrium (DFE) and a stable endemic equilibrium (EE) even if the basic repro-
duction number (R0) is less than unity, this makes the disease control more difficult. Furthermore, the
disease eradication would no longer depends on the basic concept of R0, i.e., when R0 < 1, the disease
dies out in time; and while R0 > 1, the disease persists in the community. Although the BB has been
firstly shown to exist in the DENV from the work of Garba et al. [6] and its courses has been explained
extensively by Gumel [26]. In this study, our analysis suggests that the BB can be removed if the R0

can be equal to one (i.e., R0 = 1), so that equation (3.7) will be Aλh + B = 0 which is linear equation.

3.2.2. Global stability analysis of the endemic equilibrium

The following Theorem 3.3 is claimed.

Theorem 3.3. The endemic equilibrium (EE), E∗, is globally-asymptotically stable (GAS) in Ω when
R0 > 1 provided that

(1 −
λh

λ∗h
)(1 −

Ih1λ
∗
h

I∗h1λh
) > 0,

(1 −
λh

λ∗h
)(1 −

Ih2λ
∗
h

I∗h2λh
) > 0,

(1 −
λm

λ∗m
)(1 −

Imλ
∗
m

I∗mλm
) > 0, and

(
Ih1

I∗h1

− ln
Ih1

Ih1
+ ln

Ah

Ah
+

Ah

A∗h
) 6 0.

(3.8)

The proof of the above Theorem 3.3 is given in Appendix A1, and the Figure 2 is used to demon-
strate the analytical result obtained.
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Figure 2. Time series plot of the model (2.1) with different initial conditions (repre-
sented by the different colours). The parameter values are given in the Table 3 so that
R0 = 2.178122430 > 1; (a) the number of exposed human; (b) the number of asymptomati-
cally infected human; (c) the number of infected human with primary clinical symptoms; (d)
the number of infected human with secondary clinical symptoms; (e) the number of exposed
mosquito; (f) the number of infectious mosquito.

4. Sensitivity analysis of the model (2.1)

Following the previous studies [13, 14, 34, 35], we adopted the partial ranked correlation coefficient
(PRCC) for sensitivity analysis. The PRCC of the R0 and IAR of the model (2.1) is estimated. The
sensitivity analysis results in Figure 3 suggest the top three ranked parameters (i.e., a, b and Πm) are
prioritized in controlling the DENV epidemics in Taiwan.
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Figure 3. The partial ranked correlation coefficients (PRCC) of the model (2.1). The dots
are the PRCC estimates and the bars are the 95% confidence intervals (CI). The values and
ranges of the model parameters are summarized in Table 3.

5. Numerical simulations: a special case

5.1. Plug-and-play inference framework

The analyses in this section will be carried out for the special scenario of the model (2.1) in the
absence of mosquito compartments (i.e., a human only sub-model). We assumed that there is no birth
and death rate (Πh = µh = 0), and no disease-induced mortality rate (δh = 0) in a short period. We also
assumed that the effective contact rate of the simplified version of the model to be β = β(t) = ab ·m(t),
where m(t) is the time-dependent mosquito to human ratio. This setting allows us to fit the “SIR” based
model to a vector-borne disease under the “absence of vector” model structure. The term of the product
of (abm) is equivalent to the standard Ross-Macdonald malaria model [36].
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The equivalent (simplified) model without mosquito compartment together with the above assump-
tions is given by

dS h

dt
= −βIh1

S h

Nh
,

dEh

dt
= θβIh1

S h

Nh
− vhEh,

dIh1

dt
= vhEh − γ1Ih1 ,

dIh2

dt
= (1 − η)γ1Ih1 − γ2Ih2 ,

dAh

dt
= (1 − θ)βIh1

S h

Nh
− γhAh,

dRh

dt
= ηγ1Ih1 + γ2Ih2 + γhAh,

(5.1)

where the basic reproduction ratio of the simplified model (5.1) is given by R0(t) =
βθ

γ1
.

The weekly number of cases of the i-th week is

Zi =

∫
week i

ργ1Ih1 dt, (5.2)

where the term ρ denotes a constant reporting rate of the DENV cases. The Zi denotes the theoretical
weekly DENV cases yield from the model (5.1).

We model the observed (reported) DENV cases, Ci for the i-th week during the study period, as
a partially observed Markov process (POMP, also know as hidden Markov model, HMM). Instead of
implementing Poisson-distributed priors [34], all Cis are assumed to follow over-dispersed Poisson
distributions according to the theoretical modelling (Eq (5.2)) outputs, Zis. Since the rate of Poisson
distribution is a Gamma random variable, the observed weekly number of people who are confirmed
DENV infections (Ci of the i-th week) is a random sample from a Negative-binomial (NB) distribution.
Therefore,

Ci ∼ NB(mean = Zi, variance = Zi(1 + ψZi)), (5.3)

where ψ is the over-dispersion parameter for NB distribution under estimation. In this model, we set
Li(·) be the likelihood function for the week, which is the “probability” of Ci, given the real cases from
simulations Zi under the NB distribution [37, 38]. In this section, the model simulations are conducted
by using the R (version 3.4.1) package “POMP” [39].

The overall log-likelihood, l, for the whole-time series is

l(Θ) =

T∑
i=1

ln[Li(Ci | C0, ...,Ci−1; Θ)], (5.4)

where Θ is the parameter vector under estimation. The term T denotes the total number of
weeks during the study period. We apply the iterated filtering algorithm with the plug-and-play
likelihood-based inference framework to estimate the maximum likelihood estimates (MLE) of Θ, (see
[37, 40, 41, 42, 43, 44, 45, 46]. We use the fixed-time-step Euler-multinomial algorithm to simulate
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the ODE system (5.1) [14, 34, 37, 38, 40], We compared different models using the small-sample-size
corrected Akaike’s Information Criterion (AICc) [44] as a measurement of the trade-off between model
complexity and the goodness-of-fit. The AICc is given by

AICc = −2l(Θ̂) + 2k +
2k(k + 1)
N − k − 1

, (5.5)

where N is the number of data points and k is the number of free parameters.

5.2. Fitting results
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Figure 4. Fitting results of the model (5.1) using synchronized cubic spline function. The
parameter estimates are summarized in Tables 3 and A1.
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Figure 5. Fitting results of the model (5.1) using synchronized square wave function. The
parameter estimates are summarized in Tables 3 and A2.
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The (simplified) epidemic model (5.1) is fitted to the dengue cases time series in Kaohsiung and
Tainan cities in 2014-2016. We proposed the time-dependent basic reproduction number (i.e., R0(t))
driven by variable mosquito abundance and dengue transmission rate (e.g., mosquito biting rate, etc).
Here, we compared two numerical approaches to fit the epidemic data and reconstruct the R0(t) series,
namely,

• the cubic spline reconstruction approach, and
• the square wave reconstruction approach.

The cubic spline approach is defined from the previous studies [14, 47]. We used nm to denote the
number of nodes in the cubic spline of R0(t) to be reconstructed. We tested different possible nm’s
with the aim to find the value of nm that leads to the lowest AICc. We further restrict that Kaohsiung
and Tainan shared exactly the same cubic spline function of R0(t). Hence, the two cities were fitted
simultaneously with the same set of parameter estimates. For the cubic spline approach, the fitting is
conducted with completely the same time series of R0(t) (i.e., same timing, scale, and all settings are
the same) for both cities. And we find the goodness-of-fit (in term of the MLL) can still be improved
for both cities. Even though the spline can yield a relatively flexible (in term of the degree of freedom
of the parameters to be estimated) R0(t) reconstruction outcome, the fittings are still not satisfied.
Thus, we speculate a non-synchronized R0(t) would be more reasonable. The fitting results of the
R0(t) reconstructed by the cubic spline function are shown in Figure 4, and the parameter estimates are
summarized in Table A1. The square wave is defined as a baseline transmission rate plus a constant
additional value for each year. The additional values are different for both Kaohsiung and Tainan in the
same year, and also vary in different years. To explore the possible non-synchronization of R0(t)’s in
Kaohsiung and Tainan cities, we further allow the changing time of the square wave to have different
estimates in the two cities. Thus, the reconstructed R0(t)s in Kaohsiung and Tainan are expected to
have different shape which indicates that the R0(t)’s of the two cities are not perfectly synchronized.
In Tainan, we fix the time of the occurrence of the R0(t) high values (i.e., with the additional value) to
be May 1 and October 31 in both 2014 and 2015. In Kaohsiung, our estimates are that the high values
of R0(t) occurred between March 16 and October 31 in 2014, and between May 1 and November 25
in 2015. These time shifts are crucial to achieve good fitting outcomes in Kaohsiung city. Thus, this
finding indicates that the DENV outbreaks in Kaohsiung turned on early in 2014, and turned off late in
2015. For the square-wave approach, the fitting is conducted with similar series of R0(t)’s for the two
cities. The timing (of change) and the scale of R0(t)’s were slightly different. Although this approach
is less flexible as the spline approach (i.e., with 4 degrees of freedom decreased), it leads to better
fitting results with MLL improved by 10 units. And together, the AIC improves (i.e., decreases) by
24 units. This indicates that the non-synchronized square-wave approach is a strong and significant
improvement from the synchronized spline approach. The fitting results of R0(t) reconstructed by the
square wave function are shown in Figure 5, and the parameter estimates are summarized in Table A2.
Therefore, for the spline versus square-wave approach, the non-synchronized square-wave approach
has better goodness-of-fit (i.e., higher MLL) with less flexibility (i.e., less degree of freedom). In other
words, the non-synchronized square-wave approach has better fitting performance (in term of the AIC).
Hence, we conclude that non-synchronized R0(t)’s were likely to occur in the two cities.

Our (simplified) DENV epidemic model well-explained the temporal patterns of the DENV out-
breaks in the two cities in Taiwan under biologically reasonable conditions (i.e., set of model param-
eters). We discovered that the epidemics in the two cites can be reconstructed by similar transmission
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series (i.e., R0(t)), and also estimated with the same model structure. The square wave approach not
only reduced the number of free parameters by 4, but also increased the log likelihood by 10 units.
Hence, its AICc decreases roughly by 24 units from the cubic spline reconstruction, which is a signifi-
cant improvement.

Although we find that the estimated transmission rates exhibited similar seasonal patterns in Kaoh-
siung and Tainan, they are neither completely synchronized between the two cities despite their prox-
imity, nor periodically in-phase perfectly. If they were completely synchronized or perfectly periodic,
the cubic spline approach would identify such a pattern reflected by an equivalent level of goodness-
of-fit as in the square wave approach. We conclude that the time lags between the seasonal waves of
the transmission rates (R0(t)) in the two cities are likely to occurred. Other than the pathogenic factors
that can causes the phase difference in the transmissibility [48], these time lags could be due to the
heterogeneity in the local conditions in Kaohsiung and Tainan cities.

6. Conclusions

We formulated and analyzed a mathematical model to study the transmission dynamics of the
dengue outbreaks in Kaohsiung and Tainan cities in Taiwan in 2014–2015. We showed that the
model (2.1) has two equilibria, of which the disease-free equilibrium (DFE) is locally asymptotically
stable (LAS) whenever the basic reproduction number (R0 < 1), and unstable if the R0 > 1. And
the endemic equilibrium (EE) is globally asymptotically stable (GAS) in the region of attraction, Ω,
whenever the R0 > 1 (numerical examples, see Figure 2, is used to demonstrate the analytical re-
sults obtained). Our analysis shows the existence of backward bifurcation (BB) phenomenon of the
model (2.1), a situation where a stable disease free-equilibrium co-exists with a stable endemic equilib-
rium even when the basic reproduction number (R0) is less than one, which makes the disease control
even more difficult and is no longer dependent on the basic concept of the R0 (i.e., R0 < 1 the disease
dies out in time, while R0 > 1 the disease persist to the community). In this paper, the analysis suggest
that the backward bifurcation can be removed when the basic reproduction number is equal to one (i.e.,
R0 = 1).

We employed the plug-and-play statistical inference framework on the special case of the
model (2.1) in the absence of mosquito. We fitted the simplified model (5.1) to the weekly number
of cases in the Kaohsiung and Tainan Cities in Taiwan (obtained from the National Infectious Disease
Statistics System [49], see Figures. 4 and 5). Our (simplified) dengue epidemic model is able to ex-
plained the temporal patterns of the dengue outbreaks in the two cities in Taiwan under biologically
reasonable conditions (i.e., set of model parameters). We obtained that the epidemics in the two cites
can be reconstructed by the same transmission series (i.e., R0(t)) and also estimated with the same
model structure. This findings suggests the similarity of the dengue outbreak in a two different places
during the same period of time, which could be due to the similar demographic and/or meteorological
conditions. The proposed two reconstruction approaches presents (roughly) equivalent goodness-of-fit
in terms of the values of the log-likelihood. However, the AICc improves (decreases) roughly by 24
units from the cubic spline to the square wave reconstruction. We also found that despite the proxim-
ity in Kaohsiung and Tainan, the estimated transmission rates were neither completely synchronized,
nor periodically in-phase perfectly in the two cities. The time lags between the seasonal waves of the
transmission rates in the two cities were likely to occur. These time lags could be due to the differences
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in their local conditions. Furthermore, we show that the non-synchronized square-wave approach has
better goodness-of-fit (i.e., higher MLL) with less flexibility (i.e., less degree of freedom). In other
words, the non-synchronized square-wave approach has a better fitting performance (in term of the
AIC) than the cubic spline approach. Hence, we concluded that non-synchronized R0(t)s were likely
to occur in the two cities.

The sensitivity analysis results shows the top three ranked parameters (i.e., a, b and Πm), that is,
the mosquito biting rate, the maximum number of bites a human can receive per unit time, and the
mosquito recruitment rate are the key parameters to be prioritized for controlling the Taiwan dengue
outbreaks. This further suggests that proper sanitation of mosquito breeding sites and avoiding the
mosquito bites are the key control measures to future dengue outbreaks in Taiwan.

List of Abbreviations

We listed the abbreviations used in Table 4.

Table 4. Summary of the abbreviations used in this work.

abbreviation explanation / full name
AICc corrected Akaike’s Information Criterion
BB Backward bifurcation
CI Confidence interval
DENV Degue virus
DENV-1 Dengue virus serotype 1
DENV-2 Dengue virus serotype 2
DENV-3 Dengue virus serotype 3
DENV-4 Dengue virus serotype 4
DFE Disease-free equilibrium
DHF Dengue hemorrhagic fever
DSS Dengue shock syndrome
EE Endemic equilibrium
EIP Extrinsic incubation period
GAS Globally-asymptotically stable
HMM Hidden Markov Model
IIP Intrinsic incubation period
LAS Locally-asymptotically stable
MLE Maximum likelihood estimates
MLL Maximum log-likelihood
NB Negative binomial (distribution)
ODE Ordinary differential equation
POMP partially observed Markov process
PRCC Partial rank correlation coefficient
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Appendices

A1. The proof of theorem 3.3

Proof. Define a Lyapunov function as follows

V(t) =J1(S h − S ∗h − S ∗h ln
S h

S ∗h
) + J2(Eh − E∗h − E∗h ln

Eh

E∗h
) + J3(Ah − A∗h − A∗h ln

Ah

A∗h
)+

J4(Ih1 − I∗h1
− I∗h1

ln
Ih1

I∗h1

) + J5(Ih2 − I∗h2
− I∗h2

ln
Ih2

I∗h2

) + K1(S m − S ∗m − S ∗m ln
S m

S ∗m
)+

K2(Em − E∗m − E∗m ln
Em

E∗m
) + K3(Im − I∗m − I∗m ln

Im

I∗m
),

(A1-1)

where J1 = 2, J2 = 1
1−θ , J3 = 1

(θ) , J4 =
λ∗hS ∗h
vhE∗h

, J5 =
λ∗hS ∗h

(1−η)γ1I∗h1
, K1 = K2 = 1, and K3 =

λ∗mS ∗m
σmE∗m

.
Thus, the Lyapunov derivative computed along solutions of the system (2.1) is given by

V̇(t) =J1(1 −
S ∗h
S h

)Ṡ h + J2(1 −
A∗h
Ah

)Ȧh + J3(1 −
E∗h
Eh

)Ėh + J4(1 −
I∗h1

Ih1

) ˙Ih1+

J5(1 −
I∗h2

Ih2

) ˙Ih2 + K1(1 −
S ∗m
S m

)Ṡ m + K2(1 −
E∗m
Em

)Ėm + K3(1 −
I∗m
Im

)İm.

(A1-2)

Hence,
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V̇(t) = − J1
µh(S h − S ∗h)2

S h
+

J1λ
∗
hS ∗h[1 −

λhS h

λ∗hS ∗h
−

S ∗h
S h

+
λh

λ∗h
]+

J2(1 − θ)λ∗hS ∗h[
λhS h

λ∗hS ∗h
−

Ah

A∗h
−

A∗hλhS h

Ahλ
∗
hS ∗h

+ 1]+

J3θλ
∗
hS ∗h[

λhS h

λ∗hS ∗h
−

Eh

E∗h
−

E∗hλhS h

Ehλ
∗
hS ∗h

+ 1]+

J4vhE∗m[
Eh

E∗h
−

Ih1

I∗h1

−
I∗h1Eh

Ih1E∗h
+ 1]+

J5(1 − η)γ1Ihh1∗[
Ih1

I∗h1

−
Ih2

I∗h2

−
I∗h2Ih1

Ih2I∗h1

+ 1]+

− K1
µm(S m − S ∗m)2

S m
+

K1λ
∗
mS ∗m[1 −

λmS m

λ∗mS ∗m
−

S ∗m
S m

+
λm

λ∗m
]+

K2λ
∗
mS ∗m[

λmS m

λ∗mS ∗m
−

Em

E∗m
−

E∗mλmS m

Emλ∗mS ∗m
+ 1]+

K3σmE∗m[
Em

E∗m
−

Im

I∗m
−

I∗mEm

ImE∗m
+ 1].

(A1-3)

Following [50, 51], the function v(x) = 1 − x + ln x, if x > 0, it leads to v(x) 6 0. And if x = 1, we
have v(x) = 0. Thus, x − 1 > ln(x) for any x > 0. Then, we also have that

λ∗hS ∗h[2 −
S ∗h
S h
−

Eh

E∗h
−
λhS hE∗h
λ∗hS ∗hEh

+
λh

λ∗h
]

= λ∗hS ∗h[−(1 −
λh

λ∗h
)(1 −

Ih1λ
∗
h

I∗λh
) + 3 −

S ∗h
S h
−
λhS hE∗h
λ∗hS ∗hEh

−
Ih1λ

∗

I∗h1λh
−

Eh

E∗h
+

Ih1

I∗h1

]

6 λ∗hS ∗h[−(
S ∗h
S h
− 1) − (

λhS hE∗h
λ∗hS ∗hEh

− 1) − (
Ih1λ

∗
h

I∗h1λh1
− 1) −

Eh

E∗h
+

Ih1

I∗h1

]

6 λ∗hS ∗h[− ln(
S ∗h
S h

λhS hE∗h
λ∗S ∗hEh

Ih1λ
∗
h

I∗h1λh
) −

Eh

E∗h
+

Ih1

I∗h1

]

= λ∗hS ∗h[
Ih1

I∗h1

− ln(
Ih1

I∗h1

) + ln(
Eh

E∗h
) −

Eh

E∗h
].

(A1-4)

Similarly, we have

λ∗hS ∗h[2 −
S ∗h
S h
−

Ah

A∗h
−
λhS hA∗h
λ∗hS ∗hAh

+
λh

λ∗h
] 6 λ∗hS ∗h[

Ih2

I∗h2

− ln(
Ih2

I∗h2

) + ln(
Ah

A∗h
) −

Ah

A∗h
], (A1-5)

and

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3841–3863.



3862

λ∗mS ∗m[2 −
S ∗m
S m
−

Em

E∗m
−
λmS mE∗m
λ∗mS ∗mEm

+
λm

λ∗m
] 6 λ∗mS ∗m[

Im

I∗m
− ln(

Im

I∗m
) + ln(

Em

E∗m
) −

Em

E∗m
]. (A1-6)

Furthermore, we have that

λ∗hS ∗h(
Eh

E∗h
−

Ih1

I∗h1

−
I∗h1Eh

Ih1E∗h
+ 1) 6 λ∗hS ∗h(

Eh

E∗h
− ln(

Eh

E∗h
) + ln(

Ih1

I∗h1

) −
Ih1

I∗h1

), (A1-7)

and also

λ∗hS ∗h(
Ih1

I∗h1

−
Ih2

I∗h2

−
I∗h2Ih1

Ih2I∗h1

+ 1) 6 λ∗hS ∗h(
Ih1

I∗h1

− ln(
Ih1

I∗h1

) + ln(
Ih2

I∗h2

) −
Ih2

I∗h2

), (A1-8)

as well as

λ∗mS ∗m(
Em

E∗m
−

Im

I∗m
−

I∗mEm

ImE∗m
+ 1) 6 λ∗mS ∗m(

Em

E∗m
− ln(

Em

E∗m
) + ln(

Im

I∗m
) −

Im

I∗m
). (A1-9)

Hence, the equations (A1-1)-(A1-9) together with condition (3.8) ensure that dV
dt 6 0. Furthermore,

the strict inequality dV
dt = 0 holds only for S h = S ∗h, Eh = E∗h, Ah = A∗h, Ih1 = I∗h1

, Ih2 = I∗h2
, Rh = R∗h,

S m = S ∗m Em = E∗m and Im = I∗m. Thus, the endemic equilibrium state E∗ is the only positive invariant

set to the system (2.1) contained entirely in
{
(S h, Eh, Ah, Ih1 , Ih2 ,Rh, S m, Em, Im) ∈ Ω : S h = S ∗h, Eh =

E∗h, Ah = A∗h, Ih1 = I∗h1
, Ih2 = I∗h2

,Rh = R∗h, S m = S ∗m, Em = E∗m, Im = I∗m
}
. Therefore, it follows from the

LaSalle’s invariance principle [52] that every solutions to the equations in (A1-2) with initial conditions
in Ω converge to stable endemic equilibrium point, E∗, as t → ∞. Hence, the positive endemic
equilibrium is globally asymptotically stable. �

A2. Summary table of initial state values and parameters estimation results of the model (5.1)

Table A1. Summary table of initial state values and parameters estimation results of the
model (5.1) with cubic spline function.

Parameter Value (Kaohsiung) Value (Tainan) Source
S h(0) 0.93212 0.8774 estimated
Eh(0) 3.229552 × 10−6 3.241949 × 10−6 estimated
Ah(0) 3.229552 × 10−6 3.241949 × 10−6 estimated
Ih1(0) 3.229552 × 10−6 3.241949 × 10−6 estimated
Ih1(0) 3.229552 × 10−6 3.241949 × 10−6 estimated
Rh(0) 0.0688 0.1226 estimated
β 1 × 10−20 1 × 10−20 estimated
ρ 0.0631 0.0631 [53, 54, 55]
nm 9 9 estimated

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3841–3863.



3863

Table A2. Summary table of initial state values and parameters estimation results of the
model (5.1) with the square wave function.

Parameter Value (Kaohsiung) Value (Tainan) Source
S h(0) 0.9483 0.9161 estimated
Eh(0) 2.773339 × 10−6 3.24338 × 10−6 estimated
Ah(0) 2.773339 × 10−6 3.24338 × 10−6 estimated
Ih1(0) 2.773339 × 10−6 3.24338 × 10−6 estimated
Ih1(0) 2.773339 × 10−6 3.24338 × 10−6 estimated
Rh(0) 0.0517 0.0839 estimated
β 1.9986 1.9986 estimated
ρ 0.0837 0.0837 estimated
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