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Abstract: The stochastic extinction and stability in the mean of a family of SEIRS malaria models
with a general nonlinear incidence rate is presented. The dynamics is driven by independent white
noise processes from the disease transmission and natural death rates. The basic reproduction number
R∗0, the expected survival probability of the plasmodium E(e−(µvT1+µT2)), and other threshold values are
calculated, where µv and µ are the natural death rates of mosquitoes and humans, respectively, and T1

and T2 are the incubation periods of the plasmodium inside the mosquitoes and humans, respectively. A
sample Lyapunov exponential analysis for the system is utilized to obtain extinction results. Moreover,
the rate of extinction of malaria is estimated, and innovative local Martingale and Lyapunov functional
techniques are applied to establish the strong persistence, and asymptotic stability in the mean of the
malaria-free steady population. Moreover, for either R∗0 < 1, or E(e−(µvT1+µT2)) < 1

R∗0
, whenever R∗0 ≥ 1,

respectively, extinction of malaria occurs. Furthermore, the robustness of these threshold conditions to
the intensity of noise from the disease transmission rate is exhibited. Numerical simulation results are
presented.

Keywords: disease-free steady state; stability in the mean; basic reproduction number; sample
lyapunov exponent; survival probability

1. Introduction

Despite all technological advances to control malaria, the disease continues to exhibit an alarming
high mortality rate. In fact, the latest WHO-World Malaria Report 2017 [1] estimates a total of 216
million cases of malaria from 91 countries in 2016, which constitutes a 5 million increase in the total
malaria cases from the malaria statistics obtained previously in 2015. Moreover, the total death count
was 445000, and sub-Saharan Africa accounts for 90% of the total estimated malaria cases. This rising
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prevalence trend in the malaria data continues to signal a need for more learning about the disease,
improvement of the existing control strategies and equipment, and also a need for more advanced
resources etc. to fight and eradicate, or ameliorate the burdens of the malaria.

The following facts about malaria given in [2] are recalled. Malaria like other mosquito-borne
diseases such as dengue fever, yellow fever, zika fever, lymphatic filariasis, and the different types of
encephalitis etc. exhibits some unique biological characteristics. For instance, the incubation of the
disease requires two hosts - the mosquito vector and human hosts. Therefore, the total latent time lapse
of disease incubation extends over two segments of delay incubation times namely:- (1) the incubation
period of the malaria plasmodium ( or the half-life cycle) inside the vector, and (2) the incubation
period of the plasmodium (or the other half-life cycle) inside the human being. See references [3, 4].

In particular, the malaria plasmodium undergoes the first developmental half-life cycle called the
sporogonic cycle inside the female Anopheles mosquito lasting approximately 10–18 days, following
a successful blood meal obtained from an infectious human being through a mosquito bite. Moreover,
the mosquito becomes infectious. The parasite completes the second developmental half-life cycle
called the exo-erythrocytic cycle lasting about 7–30 days inside the exposed human being, whenever
the parasite is transferred to the human being in the process of the infectious mosquito foraging for
another blood meal. See the references[3, 4, 5].

The exposure and successful recovery from a malaria parasite, for example, falciparum vivae in-
duces natural immunity against the disease which can protect against subsequent severe outbreaks
of the disease. Moreover, the effectiveness and duration of the naturally acquired immunity against
malaria is determined by several factors such as the species and the frequency of exposure to the par-
asites. Furthermore, it has been determined that other biological factors such as the genetics of the
human being, for instance, sickle-cell anaemia, duffy negative blood types have bearings on the natu-
rally acquired immunity against different species of malaria. See the references[4, 6, 7].

Compartmental mathematical epidemic dynamic models play a vital role to understand the dy-
namics of infectious diseases (cf. [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]). More-
over, mathematical modeling is one special way of understanding malaria, and malaria models go
as far back as 1911 with Ross[22] who studied mosquito control. Several other authors such as
[2, 23, 24, 25, 26, 27, 28, 29, 30] have also made strides in the understanding of malaria mathematically.

Some studies have shown the presence of noise in the dynamics of malaria. Noise can be seen
in seasonal variations of the malaria incidence over yearly data, and over spatial disparities. In fact,
some authors such as [31] studying the seasonality of P. falciparum transmission have shown that there
are several climatic drivers responsible for the temporal variation and spatial distribution of malaria
transmission rates, for instance, temperature, rainfall, and vegetation indices etc. The randomness in
the malaria incidence over time, and spatially is a good reason to consider stochastic representations
of the disease dynamics.

From global malaria data (cf.[1, 32]), there are also apparent disparities in the geographical preva-
lence rates of malaria, in association to the economic growth, wealth and modern infrastructure of
countries in the world etc. In fact, several studies (cf. [32] ) show the association between poverty
and malaria prevalence rates, modern infrastructure and malaria endemicity or eradication, across the
same population in a country, the world, and also over calendar years etc. For instance, the poorest
Sub-Sahara countries also exhibit the highest malaria prevalence rates (cf. [1, 32]), and within a single
malaria endemic region, the poorer are predisposed to live in naturally unhealthy, and malaria vulner-
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able conditions compared to the rich. Thus, using natural death rate as indicator for living standards,
there is evident temporal and spatial variability in the natural death rate of populations in which malaria
is prevalent. Therefore, there is also good reason to consider the stochastic perturbations in the malaria
dynamics owing to the natural death rates in the populations.

There are several different ways to introduce white noise into infectious dynamic systems, for exam-
ple, as random perturbation of the driving parameters of the infectious system known as environmental
white noise (see [20, 21, 33]), or perturbation of the density of the system also known demographic
white noise (see [34]). Some other authors such as [35, 36] have suggested a mean-reverting process
technique to include white noise processes. Also, some stochastic models for malaria involving white
noise perturbations include [37, 38, 39].

An important investigation in the study of infectious population dynamic systems influenced by
white noise is the extinction of the disease, and the asymptotic stability of the disease-free population
over sufficiently long time. Several papers in the literature[40, 41, 42, 43, 44, 45] have addressed
these topics. Investigations about the extinction of disease from the population seek to find conditions
that favor the extinction of the disease-related classes such as the exposed and infectious classes in
the population, and consequently lead to the survival of the susceptible and infection-free population
classes over sufficiently long time. The techniques used to investigate extinction of the disease in
stochastic systems include examining the sample paths of the system near a disease-free steady state,
and computing the sample Lyapunov exponent of the trajectories of the system[40, 41, 42, 43, 44, 45].

Cooke [46] presented a deterministic epidemic dynamic model for vector-borne diseases, where the
bilinear incidence rate defined as βS (t)I(t − T ) represents the number of new infections occurring per
unit time during the disease transmission process. It is assumed in the formulation of this incidence rate
that the number of infectious vectors Vi(t) at time t interacting and effectively transmitting infection
to susceptible human beings, S (t), after β number of effective contacts per unit time per infective is
proportional to the infectious human population, I(t − T ), at earlier time t − T . Cook’s method of
studying the dynamics of a vector-borne disease in a human population without directly including the
vector population dynamics has been utilized by several other authors, for example [2, 14, 20, 47, 48].
Some criticism of the Cooke model concerns the absence of a rationale for the assumption about
the proportionality between Vi(t) and I(t − T ) used as an approximation for the force of infection.
Furthermore, there is the question whether the Cooke model emerges from the combined vector-host
dynamics. Takeuchi et. al. [48] answered this question and presented an extension of the Cooke
model, with a joint dynamics for the vector-host populations, and under the assumption of a large
constant vector population present, the proportionality between the states Vi(t) and I(t − T ) is justified.

Recently, applying similar reasoning of the Cooke model, Wanduku[2] developed and studied a
novel family of SEIRS dynamic models for malaria with three distributed delays, structured similarly
as (1.1)–(1.4) below.

The malaria model in [2] was simplified by omitting the mosquito dynamics, and applying other
assumptions about the death rates of mosquitoes and humans. Moreover, timescales to measure model
parameters were not well-specified, and the model was not applied to reliable malaria data. Further-
more, as earlier highlighted above, the temporal and spatial variabilities in the malaria transmission and
natural death rates, suggest that the deterministic model in [2] cannot effectively fit and describe most
realistic malaria scenarios, where environmental variability is inevitable. Thus, to improve the applica-
bility of [2], it is essential to add more epidemiologically sound assumptions, and define timescales for

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3771–3806.



3774

the model parameters in (1.1)–(1.4), and also derive the malaria model from the mosquito vs. human
dynamics perspective. Moreover, a stochastic dynamical model should be considered, incorporating
the noises from the disease transmission and natural death rates. The modified family of malaria SEIRS
dynamic models (in [2]) is given as follows:

dS (t) =

[
B − βS (t)

∫ h1

t0
fT1(s)e−µv sG(I(t − s))ds − µS (t) + α

∫ ∞

t0
fT3(r)I(t − r)e−µrdr

]
dt,

(1.1)

dE(t) =

[
βS (t)

∫ h1

t0
fT1(s)e−µv sG(I(t − s))ds − µE(t)

−β

∫ h2

t0
fT2(u)S (t − u)

∫ h1

t0
fT1(s)e−µv s−µuG(I(t − s − u))dsdu

]
dt,

(1.2)

dI(t) =

[
β

∫ h2

t0
fT2(u)S (t − u)

∫ h1

t0
fT1(s)e−µv s−µuG(I(t − s − u))dsdu − (µ + d + α)I(t)

]
dt,

(1.3)

dR(t) =

[
αI(t) − µR(t) − α

∫ ∞

t0
fT3(r)I(t − r)e−µsdr

]
dt, (1.4)

where the initial conditions are given in the following: let h = h1 + h2 and define

(S (t), E(t), I(t),R(t)) = (ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t)) , t ∈ (−∞, t0],
ϕk ∈ C((−∞, t0],R+),∀k = 1, 2, 3, 4, ϕk(t0) > 0,∀k = 1, 2, 3, 4,

(1.5)

where C((−∞, t0],R+) is the space of continuous functions with the supremum norm

||ϕ||∞ = sup
t≤t0
|ϕ(t)|. (1.6)

Also, the function G satisfies the conditions of Assumption 1.1. The epidemiologically sound as-
sumptions for the model (1.1)–(1.4), and the full derivation of the malaria dynamics from the mosquito
vs. human interaction is given in the A.

In the malaria dynamics (1.1)–(1.4), the disease spreads in the normalized human population of
total size N(t) = S (t) + E(t) + I(t) + R(t) ∈ (0, 1], where S (t), E(t), I(t) and R(t) represent the suscep-
tible, exposed, infectious and naturally acquired immunity classes at time t, respectively. The positive
constants B, and µ represent the constant birth and natural death rates, respectively. Furthermore, the
disease related deathrate is denoted d. The rate β is the average effective contact rate per infected
mosquito per unit time. The recovery rate from malaria with acquired immunity is α.

Also, the incubation delays inside the mosquito and human hosts are denoted T1 and T2, respec-
tively, and the period of effective naturally acquired immunity is denoted T3. Moreover, the delays
T1,T2 and T3, are random variables with arbitrary densities denoted fT1(s), fT2(u) and fT3(r), and their
supports given as s ∈ [t0, h1], u ∈ [t0, h1] and r ∈ [t0,+∞), respectively. All parameters in (1.1)–(1.4)
are dimensionless, and defined in (A.42). The nonlinear incidence function G which signifies the re-
sponse to disease transmission by the susceptible class as malaria increases in the population, satisfies
the following assumptions
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Assumption 1.1. A1 G(0) = 0; A2: G(I) is strictly monotonic on [0,∞); A3: G′′(I) < 0;A4.
limI→∞G(I) = C, 0 ≤ C < ∞; and A5: G(I) ≤ I,∀I > 0.

Note, in this paper, the derivation of (1.1)–(1.4) in A applies similar reasoning in [48]. Furthermore,
the malaria model (1.1)–(1.4) is extended by incorporating the independent white noise perturbations
of the disease transmission rate β, and the natural deathrates of the susceptible, exposed, infectious and
removal populations.

The primary focus of this study is to investigate the extinction of malaria over time in a class of
stochastic models for vector-borne diseases in a very noisy environment comprising of variability from
the disease transmission and natural death rates.

This work is presented as follows:- in A, a proper malaria model is derived. In Section 3, the
stochastic extended dynamic model is derived. In Section 4, the model validation results are presented.
In Section 5, the extinction conditions for the disease are presented for the case where the noise stems
jointly from the disease transmission and natural death rates. In Section 6, the extinction conditions
for the disease are presented for the case where the noise stems only from the disease transmission
rate. Moreover, the asymptotic stability in the mean of the disease-free equilibrium is also presented.
Finally, in Section 7, numerical simulation results are given.

2. Validation results for (1.1)–(1.4) and some model properties

Since the system (1.1)–(1.4) is structured similarly as [2], some ideas from [2] can be applied. The
following result presents model validation results.

Theorem 2.1. Given the initial conditions in (1.5)–(1.6), there exists a unique positive solution Y(t) =

(S (t), E(t), I(t),R(t))T for the system (1.1)–(1.4), for all t ≥ t0. Moreover, the solution lies in the closed
ball in R4

+ centered at zero and radius B
µ

= 1, whenever N(t0) ≤ B
µ

= 1. That is, for N(t0) ≤ B
µ

= 1, the
solution Y(t) ∈ B̄R4

+
(0, B

µ
= 1), where

B̄R4
+
(0,

B
µ

= 1) =

{
Y(t) ∈ R4

+|N(t) = S (t) + E(t) + I(t) + R(t) ≤
B
µ

= 1,∀t ≥ t0

}
. (2.1)

Furthermore, the unit closed ball (subspace) B̄R4
+
(0, B

µ
= 1) is self-invariant with respect to the system

(1.1)–(1.4).

Proof: See [Theorem 3.1, [2]] and apply the dimensionless parameters in (A.42).
The disease-free equilibrium of the system is given in the following result.

Theorem 2.2. The system (1.1)–(1.4) has a disease-free equilibrium E0 = (S ∗0, E
∗
0, I
∗
0) = (S ∗0, 0, 0),

where S ∗0 = B
µ

= 1, and E∗0 = I∗0 = 0.

From the analysis of the malaria model (1.1)–(1.4) with initial conditions in (1.5)–(1.6) in [2], the
threshold values for disease eradication such as the basic reproduction number for the disease dynamics
when the system is in steady state are obtained in both cases where the delays in the system T1,T2 and
T3 are constant, and also arbitrarily distributed.

From [Lemma 4.3 and Theorem 4.2, [2]], for S ∗0 = B
µ

= 1, when the delays in the system are all
constant, the basic reproduction number of the disease is given by

R̂∗0 =
βS ∗0

(µ + d + α)
. (2.2)
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Furthermore, the threshold condition R̂∗0 < 1 is required for the disease-free equilibrium E0 = (S ∗0, 0, 0)
in Theorem 2.2 to be asymptotically stable, and for the disease to be eradicated from the steady state
human population.

On the other hand, from [Lemma 4.3 and Theorem 4.2, [2]], when the delays in the system Ti, i =

1, 2, 3 are random, and arbitrarily distributed, the basic reproduction number is given by

R0 =
βS ∗0K̂0

(µ + d + α)
+

α

(µ + d + α)
, (2.3)

where, K̂0 > 0 is a constant that depends only on S ∗0 (in fact, K̂0 = 4 + S ∗0). In addition, malaria is
eradicated from the system in the steady state, whenever R0 ≤ 1.

The results in [Theorem 5.1, [2]] also show that when R0 > 1, and the expected survival probability
rate E(e−µ(T1+T2)) of the parasites over their complete life cycle is significant, the deterministic system
(1.1)–(1.4) establishes a unique endemic equilibrium state denoted by E1 = (S ∗1, E

∗
1, I
∗
1).

3. Derivation of the stochastic model

As mentioned earlier in the introduction, there are several different techniques to introduce gaussian
noise processes into a dynamic system. The approach in [39] is applied to model the environmental
fluctuations in the disease transmission rate β, and the natural death rates µ of the different states S (t),
E(t) , I(t) and R(t) of the human population. This approach entails the construction of a random walk
process for the rates β, and µ over an infinitesimally small interval [t, t + dt] and applying the central
limit theorem. In the book chapter [49], the author has illustrated in details the derivation of the noise
in the disease transmission and natural death rates β, and µ, respectively, for the system (1.1)–(1.4).
Therefore, only the basics expressions are given in this section, and the reader is directed to [[49], pp
12-13] for a full development of the stochastic model from the random walk approximation perspective.

For t ≥ t0, let (Ω,F, P) be a complete probability space, and Ft be a filtration (that is, sub σ- algebra
Ft that satisfies the following: given t1 ≤ t2 ⇒ Ft1 ⊂ Ft2; E ∈ Ft and P(E) = 0 ⇒ E ∈ F0 ). The
variability in the disease transmission and natural death rates are represented by independent white
noise or Wiener processes with drifts, and the rates are expressed as follows:

µ→ µ + σiξi(t), ξi(t)dt = dwi(t), i = S , E, I,R, β→ β + σβξβ(t), ξβ(t)dt = dwβ(t), (3.1)

where ξi(t) and wi(t) represent the standard white noise and normalized wiener processes for the ith

state at time t, with the following properties: w(0) = 0, E(w(t)) = 0, var(w(t)) = t. Furthermore, σi, i =

S , E, I,R, represents the intensity of the white noise process due to the random natural death rate of the
ith state, and σβ is the intensity of the white noise process due to the random disease transmission rate.
Moreover, the wi(t), i = S , E, I,R, β,∀t ≥ t0, are all independent. In this study the words “strength”
and “intensity” of the white noise are used synonymously. Also, the constructions “strong noise” and
“weak noise” are used to refer to white noise with high and low intensities, respectively.

Substituting (3.1) into the deterministic system (1.1)–(1.4) leads to the following generalized sys-
tem of Ito-Doob stochastic differential equations describing the dynamics of malaria in the human
population.

dS (t) =

[
B − βS (t)

∫ h1

t0
fT1(s)e−µsG(I(t − s))ds − µS (t) + α

∫ ∞

t0
fT3(r)I(t − r)e−µrdr

]
dt
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−σS S (t)dwS (t) − σβS (t)
∫ h1

t0
fT1(s)e−µsG(I(t − s))dsdwβ(t) (3.2)

dE(t) =

[
βS (t)

∫ h1

t0
fT1(s)e−µsG(I(t − s))ds − µE(t)

−β

∫ h2

t0
fT2(u)S (t − u)

∫ h1

t0
fT1(s)e−µs−µuG(I(t − s − u))dsdu

]
dt

−σEE(t)dwE(t) + σβS (t)
∫ h1

t0
fT1(s)e−µsG(I(t − s))dsdwβ(t)

−σβ

∫ h2

t0
fT2(u)S (t − u)

∫ h1

t0
fT1(s)e−µs−µuG(I(t − s − u))dsdudwβ(t) (3.3)

dI(t) =

[
β

∫ h2

t0
fT2(u)S (t − u)

∫ h1

t0
fT1(s)e−µs−µuG(I(t − s − u))dsdu − (µ + d + α)I(t)

]
dt

−σI I(t)dwI(t) + σβ

∫ h2

t0
fT2(u)S (t − u)

∫ h1

t0
fT1(s)e−µs−µuG(I(t − s − u))dsdudwβ(t)

(3.4)

dR(t) =

[
αI(t) − µR(t) − α

∫ ∞

t0
fT3(r)I(t − r)e−µsdr

]
dt − σRR(t)dwR(t), (3.5)

where the initial conditions are given in the following: Let h = h1 + h2 and define

(S (t), E(t), I(t),R(t)) = (ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t)) , t ∈ (−∞, t0],
ϕk ∈ C((−∞, t0],R+),∀k = 1, 2, 3, 4,
ϕk(t0) > 0,∀k = 1, 2, 3, 4,

(3.6)

where C((−∞, t0],R+) is the space of continuous functions with the supremum norm

||ϕ||∞ = sup
t≤t0
|ϕ(t)|. (3.7)

Furthermore, the random continuous functions ϕk, k = 1, 2, 3, 4 are F0 − measurable, or independent
of w(t) for all t ≥ t0.

It can be observed that (3.3) and (3.5) decouple from the other equations for S and I in the system
(3.2)–(3.5). It is customary to show the results for this kind of decoupled system using the simplified
system containing only the non-decoupled system equations for S and I, and then infer the results to
the states E and R, since these states depend exclusively on S and I. Nevertheless, for convenience, the
existence results of the system (3.2)–(3.5) will be shown for the vector X(t) = (S (t), E(t), I(t)), and the
extinction results presented for the decoupled system (S (t), I(t)). The following notations will be used
throughout this study: 

Y(t) = (S (t), E(t), I(t),R(t))
X(t) = (S (t), E(t), I(t))
N(t) = S (t) + E(t) + I(t) + R(t).

(3.8)
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4. Stochastic model validation results

The existence and uniqueness of solution of the stochastic system (3.2)–(3.5) is exhibited in the
following theorem. Moreover, the feasibility region of the the solution process {X(t), t ≥ t0} of the
system (3.2)–(3.5) is defined. The standard methods utilized in the earlier studies[20, 33, 50, 51] are
applied to establish the results.

It should be noted that the existence and qualitative behavior of the positive solution process of the
system (3.2)–(3.5) depend on the sources (natural death or disease transmission rates) of variability
in the system. As it is shown below, certain sources of variability lead to very complex uncontrolled
behavior of the sample paths of the system. In the book chapter [49], the detailed proof of the existence,
and uniqueness of the solution process {X(t), t ≥ t0} of the system (3.2)–(3.5) is given. Thus, only the
results are presented below:

The following Lemma describes the behavior of the positive local solutions for the system (3.2)–
(3.5). This result will be useful in establishing the existence and uniqueness results for the global
solutions of the stochastic system (3.2)–(3.5).

Lemma 4.1. Suppose for some τe > t0 ≥ 0 the system (3.2)–(3.5) with initial condition in (3.6) has a
unique positive solution Y(t) ∈ R4

+, for all t ∈ (−∞, τe], then if N(t0) ≤ B
µ

= 1, it follows that

(a.) if the intensities of the independent white noise processes in the system satisfy σi = 0, i ∈ {S , E, I}
and σβ ≥ 0, then N(t) ≤ B

µ
= 1, and in addition, the set denoted by

D(τe) =

{
Y(t) ∈ R4

+|N(t) = S (t) + E(t) + I(t) + R(t) ≤
B
µ

= 1,∀t ∈ (−∞, τe]
}

= B̄(−∞,τe]
R4

+,

(
0,

B
µ

= 1
)
, (4.1)

is locally self-invariant with respect to the system (3.2)-(3.5), where B̄(−∞,τe]
R4

+,

(
0, B

µ

)
is the closed ball in

R4
+ centered at the origin with radius B

µ
containing the local positive solutions defined over (−∞, τe].

(b.) If the intensities of the independent white noise processes in the system satisfy σi > 0, i ∈ {S , E, I}
and σβ ≥ 0, then N(t) ≥ 0, for all t ∈ (−∞, τe].

Proof:
It follows directly from (3.2)–(3.5) that when σi = 0, i ∈ {S , E, I} and σβ ≥ 0, then

dN(t) = [B − µN(t) − dI(t)]dt (4.2)

The result in (a.) follows easily by observing that for Y(t) ∈ R4
+, the equation (4.2) leads to N(t) ≤

B
µ
− B

µ
e−µ(t−t0) + N(t0)e−µ(t−t0). And under the assumption that N(t0) ≤ B

µ
, the result follows immediately.

The result in (b.) follows directly from Theorem 4.1. The following theorem presents the existence
and uniqueness results for the global solutions of the stochastic system (3.2)–(3.5).

Theorem 4.1. Given the initial conditions (3.6) and (3.7), there exists a unique solution process
X(t,w) = (S (t,w), E(t,w), I(t,w))T satisfying (3.2)–(3.5), for all t ≥ t0. Moreover,
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(a.) the solution process is positive for all t ≥ t0 a.s. and lies in D(∞), whenever the intensities of the
independent white noise processes in the system satisfy σi = 0, i ∈ {S , E, I} and σβ ≥ 0. That is,
S (t,w) > 0, E(t,w) > 0, I(t,w) > 0,∀t ≥ t0 a.s. and X(t,w) ∈ D(∞) = B̄(−∞,∞)

R4
+,

(
0, B

µ

)
, where D(∞) is

defined in Lemma 4.1, (4.1).

(b.) Also, the solution process is positive for all t ≥ t0 a.s. and lies in R4
+, whenever the intensities of

the independent white noise processes in the system satisfy σi > 0, i ∈ {S , E, I} and σβ ≥ 0. That is,
S (t,w) > 0, E(t,w) > 0, I(t,w) > 0,∀t ≥ t0 a.s. and X(t,w) ∈ R4

+.

Proof: See [Theorem 2, [49]].

Remark 4.1. Theorem 4.1 signify that the stochastic system (3.2)–(3.5) has a unique positive solution
Y(t) ∈ R4

+ globally for all t ∈ (−∞,∞). Furthermore, it follows that a positive solution of the stochastic
system that starts in the closed ball centered at the origin with a radius of B

µ
, D(∞) = B̄(−∞,∞)

R4
+,

(
0, B

µ

)
,

will continue to oscillate and remain bounded in the closed ball for all time t ≥ t0, whenever the
intensities of the independent white noise processes in the system satisfy σi = 0, i ∈ {S , E, I} and
σβ ≥ 0. Hence, the set D(∞) = B̄(−∞,∞)

R4
+,

(
0, B

µ

)
is a positive self-invariant set for the stochastic system

(3.2)–(3.5). In the case where the intensities of the independent white noise processes in the system
satisfy σi > 0, i ∈ {S , E, I} and σβ ≥ 0, the solution are positive and unique, and continue to oscillate in
the unbounded space of positive real numbers R4

+. In other words, the positive solutions of the system
are bounded, whenever σi = 0, i ∈ {S , E, I} and σβ ≥ 0 and unbounded, whenever σi > 0, i ∈ {S , E, I}
and σβ ≥ 0.

The implication of this result to the disease dynamics represented by (3.2)–(3.5) is that the oc-
currence of noise exclusively from the disease transmission rate allows a controlled situation for the
disease dynamics, since the positive solutions exist within a positive self invariant space. The addi-
tional source of variability from the natural death rate can lead to more complex and uncontrolled
situations for the disease dynamics, since it is obvious that the intensities of the white noise processes
from the natural death rates of the different states in the system are driving the positive solutions of the
system unbounded. Some examples of uncontrolled disease situations that can occur when the positive
solutions are unbounded include:- (1) extinction of the population, (2) failure to find an infection-free
steady population state, wherein the disease be controlled by bringing the population into that state,
and (3) a sudden significant random flip of a given state such as the infectious state from a low to high
value, or vice versa over a short time interval etc. These facts become more apparent in the subsequent
sections where conditions for disease eradication are derived.

5. Extinction of disease with noise from both disease transmission and natural death rates

The extinction of the vector-borne disease from the population described by the stochastic epidemic
dynamic model (3.2)–(3.5) is exhibited in this section. Noting that (3.3) and (3.5) decouple from
the system (3.2)–(3.5), it follows that the two other equations for S (t) and I(t) in (3.2) and (3.4),
respectively, depend only on the states (S (t), I(t)). Therefore, it suffices to show extinction of the
disease from the population by showing the extinction of the infectious population I(t).

Recall Theorem 4.1(b), asserts that the system (3.2)–(3.5) has a unique solution process {Y(t), t ≥ t0}

with positive solution paths for the malaria dynamics. Furthermore, all paths that start in R4
+ continue

to oscillate in the space R4
+. Moreover, it was remarked in Remark 4.1 that the solution paths are
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potentially liable to become unbounded in the space R4
+, whenever the strength of the noise from the

natural death rates is strong.
In this section, the threshold conditions for the intensities σi, i ∈ {S , E, I,R}, and other parameters of

the disease dynamics in (3.2)–(3.5), which are sufficient for extinction are presented. Recall [52, 53],
the following definition of the extinction of a species denoted by the process Z(t), t ≥ t0 in a stochastic
dynamic system:

Definition 5.1.

(1.) Z(t) is said to be extinct if limt→∞ Z(t) = 0, a.s.

(2.) Z(t) is said to be stable in the mean if limt→∞
1
t

∫ t

t0
Z(s)ds = c > 0, a.s.

(3.) Z(t) is said to be strongly persistent in the mean if lim inft→∞
1
t

∫ t

t0
Z(s)ds > 0, a.s.

That is, the species is extinct if every path for the process Z(t), t ≥ t0 converges to zero with prob-
ability one, and stable in the mean, if every path converges in the mean asymptotically to a constant,
with probability one. Note that if the species is stable in the mean, then it is also strongly persistent,
but the converse is not always true.

Also, the following lemma from [54] known as the exponential martingale inequality will be used
to establish the extinction results, whenever Theorem 4.1(b) holds.

Lemma 5.1. Let g = (g1, g2, . . . , gm) ∈ L2(R+,R
1×m), and T, c, θ be any positive numbers. Then

P
(

sup
0≤t≤T

[∫ t

0
g(s)dB(s) −

c
2

∫ t

0
|g(s)|2ds

]
> θ

)
≤ e−cθ. (5.1)

Proof: See [54]

Theorem 5.1. Let σi > 0,∀i ∈ {S , E, I,R, β}, and let (S (t), I(t)) be the solution of the decoupled system
(3.2) and (3.4) with initial conditions in (3.6) and (3.7), that satisfies Theorem 4.1(b). Suppose further
that the following relationship holds

σ2
β >

β2

2(µ + d + α) + σ2
I

. (5.2)

Then it follows that the solution of the decoupled system (3.2) and (3.4) satisfies

lim sup
t→∞

1
t

log (I(t)) ≤
β2

2σ2
β

− (µ + d + α +
1
2
σ2

I ) < 0 a.s. (5.3)

That is, I(t) tends to zero exponentially almost surely. In other words, the infectious population is
extinct and the disease dies out with probability one.

Proof:
The differential operator dV applied to the function

V(t) = log I(t), (5.4)
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with respect to the system (3.2) and (3.4) leads to the following

dV(t) = f (S , I)dt − σIdwI(t) + σβ

∫ h2

t0

∫ h1

t0
fT2(u) fT1(s)e−(µv s+µu)S (t − u)

G(I(t − s − u))
I(t)

dsdudwβ(t),

(5.5)
where,

f (S , I) = β

∫ h2

t0
fT2(u)

∫ h1

t0
fT1(s)e−(µv s+µu)S (t − u)

G(I(t − s − u))
I(t)

dsdu − (µ + d + α +
1
2
σ2

I )

−
1
2
σ2
β

(∫ h2

t0
fT2(u)

∫ h1

t0
fT1(s)e−(µv s+µu)S (t − u)

G(I(t − s − u))
I(t)

dsdu
)2

. (5.6)

Define the following

Z(t) =

∫ h2

t0

∫ h1

t0
fT2(u) fT1(s)e−(µv s+µu)S (t − u)

G(I(t − s − u))
I(t)

dsdu (5.7)

M1(t) =

∫ t

t0
σIdwI(ξ) = σI(wI(t) − wI(t0)), (5.8)

M2(t) = σβ

∫ t

t0

∫ h2

t0

∫ h1

t0
fT2(u) fT1(s)e−(µv s+µu)S (ξ − u)

G(I(ξ − s − u))
I(ξ)

dsdudwβ(ξ)

= σβ

∫ t

t0
Z(ξ)dwβ(ξ). (5.9)

It is easy to see that M2(t) is a local martingale with a quadratic variation given by

< M2(t),M2(t) >= σ2
β

∫ t

t0
Z2(ξ)dξ. (5.10)

Furthermore, utilizing the exponential martingale inequality in Lemma 5.1, it follows that for any
random integer k ≡ k(w),w ∈ Ω, and constant 0 < c < 1, the probability of the event Ak defined below

P(Ak) = P
({

w ∈ Ω : sup
t0≤t≤k(w)

[
M2(t) −

c
2
< M2(t),M2(t) >

]
>

2
c

log k(w)
})
≤

1
(k)2 . (5.11)

The sequence of events {Ak}
∞
k=0 satisfies

∑
k P(Ak) < ∞, and consequently by Borel-Cantelli

Lemma[54], there exists a random integer k0 ≡ k0(w) > t0 such that

sup
t0≤t≤k

[
M2(t) −

c
2
< M2(t),M2(t) >

]
≤

2
c

log k, a.s., (5.12)

whenever k > k0. And (5.12) further leads to

M2(t) ≤
1
2

cσ2
β

∫ t

t0
Z2(ξ)dξ +

2
c

log k,∀t ∈ [t0, k]. (5.13)

Now, integrating both sides of (5.5) over the interval [t0, t], it follows from (5.6)–(5.13) and some
algebraic manipulations and simplifications that for any t ∈ [t0, k],

log I(t) ≤ log I(t0) +

∫ t

t0

 β2

2σ2
β(1 − c)

− (µ + d + α +
1
2
σ2

I )

 dξ +
2
c

log k
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−
1
2
σ2
β(1 − c)

∫ t

t0

Z(ξ) −
β

σ2
β(1 − c)

2

dξ − M1(t). (5.14)

Moreover, (5.14) simplifies to

log I(t) ≤ log I(t0) +

 β2

2σ2
β(1 − c)

− (µ + d + α +
1
2
σ2

I )

 (t − t0) +
2
c

log k

−M1(t). (5.15)

Diving both sides of (5.15) by t, it follows that for k − 1 ≤ t ≤ k, one obtains the following inequality

1
t

log I(t) ≤
1
t

log I(t0) +

 β2

2σ2
β(1 − c)

− (µ + d + α +
1
2
σ2

I )

 (1 −
t0

t
) +

2
c

log k
k − 1

−
1
t

M1(t). (5.16)

It follows further that for sufficiently large k (i.e. k → ∞), then t → ∞, and consequently, taking the
limit supremum of (5.16) as t → ∞, it is easy to see that (5.16) reduces to

lim sup
t→∞

1
t

log I(t) ≤

 β2

2σ2
β(1 − c)

− (µ + d + α +
1
2
σ2

I )

 − lim sup
t→∞

1
t

M1(t). (5.17)

But, it is easy to see from the strong law of large numbers for local martingales (see, e.g. [54]) that

lim sup
t→∞

1
t

M1(t) = 0, a.s. (5.18)

Consequently, (5.16) reduces to

lim sup
t→∞

1
t

log I(t) ≤

 β2

2σ2
β(1 − c)

− (µ + d + α +
1
2
σ2

I )

 . (5.19)

Thus, for c infinitesimally small, that is, c→ 0, (5.3) follows immediately from (5.19).

Remark 5.1. Theorem 5.1 and Theorem 4.1[b] signify that when the intensities of the disease trans-
mission and natural death rates, σβ and σI , respectively, are positive, then all sample paths of the
solution process {(S (t), I(t)), t ≥ t0} of the decoupled system (3.3) and (3.5) that start in R2

+ continue
to oscillate in R2

+. Moreover, the sample paths of the infectious state I(t), t ≥ t0 of the solution process
{(S (t), I(t)), t ≥ t0} ultimately turn to zero exponentially, almost surely, whenever the intensities of the
disease transmission and natural death rates, σβ and σI , respectively, are related as shown in (5.2).
Furthermore, the sample Lyapunov exponent from (5.3) is estimated by the term Q, expressed as a
function of σβ and σI as follows

lim sup
t→∞

1
t

log (I(t)) ≤ −Q(σ2
β, σ

2
I ) a.s., (5.20)

where

Q(σ2
β, σ

2
I ) = (µ + d + α +

1
2
σ2

I ) −
β2

2σ2
β

. (5.21)

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3771–3806.



3783

It follows from (5.20)–(5.21) that when the condition (5.2) holds, then the infectious population I(t)
dies out exponentially, almost surely, whenever the function Q in (5.21) is positive, that is, Q > 0. In
addition, the rate of the exponential decay of each sample path of the infectious population I(t) is given
by the estimate Q(σ2

β, σ
2
I ) of the sample Lyapunov exponent in (5.20).

The function Q can be used to evaluate the qualitative effects of the intensities σβ and σI on the rate
of extinction of the disease from the system. Indeed, observe that the function Q increases monotoni-
cally with respect to continuous changes in each intensity σβ and σI . This observation suggests that
larger values of the intensities σβ and σI , lead to larger values of Q, and consequently lead to a larger
rate of extinction of the disease from the population. Figure 1 illustrates the behavior of the decay rate
Q, as the intensities σβ and σI of the independent white noise processes in the system continuously
increase in value.

The following assumptions hold for the example exhibited in Figure 1: (1) the intensities of the
random fluctuations in the disease transmission rate and natural death rate of infectious individuals,
σβ and σI , respectively, continuously change equally, that is, σβ = σI , (2) the other parameters of
the system (3.2)–(3.5) are selected conveniently as follows: the expected effective disease transmission
rate β = 6.277E − 5, recovery rate α = 0.55067, average natural death rate of human beings µ = 0.6,
and disease related death rate d = 0.11838.
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Figure 1. (i) shows the behavior of the extinction function (rate) Q when the values of
σ2
β = σ2

I = σ2 continuously increase over the range [0, 1]. It can be seen that larger values
of σ2

β = σ2
I = σ2 correspond to larger values of Q. This suggests that as the values of

σ2
β = σ2

I = σ2 continuously increase, the disease population becomes extinct at a faster rate.

6. Extinction and stability of equilibrium with noise from disease transmission rate

Recall Theorem 4.1(a), asserts that the system (3.2)–(3.5) has a unique solution process {Y(t), t ≥ t0}

with positive solution paths for the malaria dynamics. In addition, all paths that start in D(∞) continue
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to oscillate in the space D(∞). Also, it was remarked earlier in Remark 4.1 that with noise in the disease
dynamics exclusively from the disease transmission rate, that is, σβ > 0 and σi = 0, i ∈ {S , E, I,R},
the unique solution paths are relatively more ”well-behaved” with lesser tendency to drift outside of
the self-invariant space D(∞), regardless whether the noise in the disease dynamics from the disease
transmission rate is strong.

In this section, it will be shown that the conditions for the extinction of the disease from the popu-
lation have no bearings on the intensity σβ of the noise in the disease transmission rate. In fact, it will
is shown that the extinction of the disease from the population depends only on the basic reproduction
number R∗0 in (2.2) and (2.3), or on the survival probability rate of the malaria parasites. The following
lemmas will be used to establish the extinction results, whenever Theorem 4.1(a) holds.

Lemma 6.1. Suppose Theorem 4.1(a) holds, then the unique solution process Y(t) ∈ D(∞), t ≥ t0 of
the stochastic system (3.2)-(3.5) also lies in the space

Dexpl(∞) =

{
Y(t) ∈ R4

+ :
B

µ + d
≤ N(t) = S (t) + E(t) + I(t) + R(t) ≤

B
µ
,∀t ∈ (−∞,∞)

}
, (6.1)

where Dexpl(∞) ⊂ D(∞). Moreover, the space Dexpl(∞) is also self-invariant with respect to the
stochastic system (3.2)–(3.5).

Proof:
Suppose Theorem 4.1(a) holds, then it follows from (4.2) that the total population N(t) = S (t) + E(t) +

I(t) + R(t) satisfies the following inequality

[B − (µ + d)N(t)]dt ≤ dN(t) ≤ [B − (µ)N(t)]dt. (6.2)

It is easy to see from (6.2) that

B
µ + d

≤ lim inf
t→∞

N(t) ≤ lim sup
t→∞

N(t) ≤
B
µ
, (6.3)

and (6.1) follows immediately.

Lemma 6.2. Let Theorem 4.1(a) hold, and define the following Lyapunov functional in Dexpl(∞),

Ṽ(t) = V(t) + β

[∫ h2

t0

∫ h1

t0
fT2(u) fT1(s)e−(µv s+µu)

∫ t

t−u
S (θ)

G(I(θ − s))
I(t)

dθdsdu

+

∫ h2

t0

∫ h1

t0
fT2(u) fT1(s)e−(µv s+µu)

∫ t

t−s
S (t)

G(I(θ))
I(t)

dθ
]
, (6.4)

where V(t) is defined in (5.4). It follows that

lim sup
t→∞

1
t

log (I(t)) ≤ β
B
µ

E(e−(µvT1+µT2)) − (µ + d + α), a.s. (6.5)

Proof:
The differential operator dV applied to the Lyapunov functional Ṽ(t) with respect to the system (3.2)-
(3.5) leads to the following

dṼ(t) = f (S , I)dt + σβ

∫ h2

t0

∫ h1

t0
fT2(u) fT1(s)e−(µv s+µu)S (t − u)

G(I(t − s − u))
I(t)

dsdudwβ(t), (6.6)
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where,

f (S , I) = β

∫ h2

t0
fT2(u)

∫ h1

t0
fT1(s)e−(µv s+µu)S (t)

G(I(t))
I(t)

dsdu − (µ + d + α)

−
1
2
σ2
β

(∫ h2

t0
fT2(u)

∫ h1

t0
fT1(s)e−(µv s+µu)S (t − u)

G(I(t − s − u))
I(t)

dsdu
)2

. (6.7)

Since S (t), I(t) ∈ Dexpl(∞), and G satisfies the conditions of Assumption 1.1, it follows easily that

f (S , I) ≤ β
B
µ

E(e−(µvT1+µT2)) − (µ + d + α). (6.8)

Now, integrating both sides of (6.6) over the interval [t0, t], it follows from (5.9) and (6.4) that

log I(t) ≤ Ṽ(t)

≤ Ṽ(t0) +

[
β

B
µ

E(e−(µvT1+µT2)) − (µ + d + α)
]

(t − t0) + M2(t), (6.9)

where M2(t) is defined in (5.9). Diving both sides of (6.9) by t, and taking the limit supremum as
t → ∞, it is easy to see that (6.9) reduces to

lim sup
t→∞

1
t

log I(t) ≤
[
β

B
µ

E(e−(µvT1+µT2)) − (µ + d + α)
]

+ lim sup
t→∞

1
t

M2(t). (6.10)

But, from (5.10), applying Assumption 1.1 and Hölder inequality to the quadratic variation of M2(t),
it is easy to see that

< M2(t),M2(t) >≤ σ2
β

∫ t

t0

∫ h2

t0

∫ h1

t0
fT2(u) fT1(s)e−2(µv s+µu)S 2(ξ − u)

(I(ξ − s − u))2

I2(ξ)
dsdudξ. (6.11)

Furthermore, in Dexpl(∞),(
B
µ+d

)4(
B
µ

)2 ≤
S 2(ξ − u)I2(ξ − s − u)

I2(ξ)
≤

(
B
µ

)4(
B
µ+d

)2 ,∀ξ ∈ [t0, t], s ∈ [t0,T1], u ∈ [t0,T2]. (6.12)

Thus, from (6.11), the quadratic variation of M2(t) satisfies

lim sup
t→∞

1
t
< M2(t),M2(t) >≤ σ2

β

(
B
µ

)4(
B
µ+d

)2 E(e−2(µvT1+µT2)) < ∞. (6.13)

Therefore, it is easy to see by the strong law of large numbers for local martingales (see, e.g. [54]) that

lim sup
t→∞

1
t

M2(t) = 0, a.s. (6.14)

And the result (6.5) follows immediately from (6.14) and (6.10).
The conditions for extinction of the infectious population over time can be expressed in terms of two

important parameters for the disease dynamics namely - (1) the basic reproduction number R∗0 in (2.2),
and (2) the expected survival probability rate of the parasites E(e−(µvT1+µT2)), defined in [Theorem 5.1,
Wanduku[2]].
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Theorem 6.1. Suppose the conditions for Lemma 6.2 are satisfied, and let the basic reproduction
number R∗0 be defined as in (2.2). In addition, let one of the following conditions hold

1. R∗0 ≥ 1 and E(e−(µvT1+µT2)) < 1
R∗0

, or

2. R∗0 < 1.
Then

lim sup
t→∞

1
t

log (I(t)) < −λ, a.s. (6.15)

where λ > 0 is some positive constant. In other words, I(t) converges to zero exponentially, almost
surely.

Proof:
Suppose Theorem 6.1 [1.] holds, then from (6.5),

lim sup
t→∞

1
t

log (I(t)) < β
B
µ

(
E(e−(µvT1+µT2)) −

1
R∗0

)
≡ −λ, (6.16)

where the positive constant λ > 0 is taken to be as follows

λ ≡ (µ + d + α) − β
B
µ

E(e−(µvT1+µT2)) = β
B
µ

(
1
R∗0
− E(e−(µvT1+µT2))

)
> 0. (6.17)

Also, suppose Theorem 6.1 [2.] holds, then from (6.5),

lim sup
t→∞

1
t

log (I(t)) ≤ β
B
µ

E(e−(µvT1+µT2)) − (µ + d + α)

< β
B
µ
− (µ + d + α) = −(1 − R∗0)(µ + d + α) ≡ −λ, (6.18)

where the positive constant λ > 0 is taken to be as follows

λ ≡ (1 − R∗0)(µ + d + α) > 0. (6.19)

Remark 6.1. Theorem 6.1, Theorem 4.1[a] and Lemma 6.1 signify that when the intensity of the noise
from the disease transmission rate σβ is positive, and the intensities of the noises from the natural death
rates satisfy σi = 0, i ∈ {S , E, I,R}, then all sample paths of the solution process {(S (t), I(t)), t ≥ t0} of
the decoupled system (3.3) and (3.5) that start in Dexpl(∞) ⊂ D(∞) continue to oscillate in Dexpl(∞).
Moreover, the sample paths of the infectious state I(t), t ≥ t0 of the solution process {(S (t), I(t)), t ≥ t0}

ultimately turn to zero exponentially, almost surely, whenever either the expected survival probability
rate of the malaria parasites satisfy E(e−(µvT1+µT2)) < 1

R∗0
, or whenever the basic production number of

the disease satisfy R∗0 < 1. Furthermore, the sample Lyapunov exponent from (6.15) is estimated by the
term λ, defined in (6.17) and (6.19).

It follows from (6.15) that when either of the conditions in Theorem 6.1[1.-2.] hold, then the infec-
tious population I(t) dies out exponentially, almost surely, whenever λ in (6.17) and (6.19) is positive,
that is, λ > 0. In addition, the rate of the exponential decay of each sample path of the infectious
population I(t) in each scenario of Theorem 6.1[1.-2.] is given by the estimate λ > 0 of the sample
Lyapunov exponent in (6.17) and (6.19).
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The conditions in Theorem 6.1[1.-2.] can also be interpreted as follows. Recall [[2], Remark 4.2],
the basic reproduction number R∗0 in (2.2) (similarly in (2.3)) represents the expected number of sec-
ondary malaria cases that result from one infective placed in the steady state disease free population
S ∗0 = B

µ
. Thus, 1

R∗0
=

(µ+d+α)
βS ∗0

, for R∗0 ≥ 1, represents the probability rate of infectious persons in the sec-
ondary infectious population βS ∗0 leaving the infectious state either through natural death µ, diseases
related death d, or recovery and acquiring natural immunity at the rate α. Thus, 1

R∗0
is the effective prob-

ability rate of surviving infectiousness until recovery with acquisition of natural immunity. Moreover,
1

R∗0
is a probability measure provided R∗0 ≥ 1.
In addition, recall [[2], Theorem 5.1&5.2] asserts that when R∗0 ≥ 1, and the expected survival

probability E(e−(µvT1+µT2)) is significantly large, then the outbreak of malaria establishes a malaria
endemic steady state population E1. The conditions for extinction of disease in Theorem 6.1[1.], that
is R∗0 ≥ 1 and E(e−(µvT1+µT2)) < 1

R∗0
suggest that in the event where R∗0 ≥ 1, and the disease is aggressive,

and likely to establish an endemic steady state population, if the expected survival probability rate
E(e−(µvT1+µT2)) of the malaria parasites over their complete life cycle of length T1 + T2, is less than 1

R∗0
-

the effective probability rate of surviving infectiousness until recovery with natural immunity, then the
malaria epidemic fails to establish an endemic steady state, and as a result, the disease ultimately dies
out at an exponential rate λ in (6.17). This result suggests that, malaria control policies should embark
on vector control strategies such as genetic modification techniques in order to reduce the chances of
survival of the malaria parasites inside the mosquitos, and in the human beings.

In the event where R∗0 < 1 in Theorem 6.1[2.], extinction of disease occurs exponentially over
sufficiently long time, regardless of the survival of the parasites. Moreover, the rate of extinction is
λ in (6.19). Also observe that the conditions in Theorem 6.1[1.-2.] for extinction of the infectious
population I(t) in the case of noise originating exclusively from the disease transmission rate β has no
bearings on the intensity of the noise from the disease transmission rate σβ. That is, the size of σβ is
not likely to reverse the extinction of malaria from the population, provided that R∗0 < 1. This implies
that the condition for extinction R∗0 < 1 is robust to external influence from perturbations in the malaria
transmission rate. This fact is also exhibited in Figure 3.

As it can be observed from several simulation studies involving white noise processes, in many
occasions, the extinction of the infectious population over time coincides with extinction of the sus-
ceptible population, if the intensity of the noise in the epidemic dynamic system is high. And this
suggests that the extinction of the disease from the population does not always imply the survival of
the disease free population over time.

The following result describes the average behavior of the trajectories of the susceptible population
over sufficiently long time in the phase plane of the solution process {(S (t), I(t)), t ≥ t0} of the decou-
pled system (3.3) and (3.5), and also states conditions for the asymptotic stability in the mean of the
trajectories (see Definition 5.1(2)), in the event where the conditions of Theorem 6.1 are satisfied.

Theorem 6.2. Suppose any of the conditions in the hypothesis of Theorem 6.1[1.-2.] are satisfied. It
follows that in Dexpl(∞), the paths of the susceptible population in the solution process {(S (t), I(t)), t ≥
t0} of the decoupled system (3.3) and (3.5) satisfy

lim
t→∞

1
t

∫ t

t0
S (ξ)dξ =

B
µ
, a.s. (6.20)

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3771–3806.



3788

That is, the susceptible population is strongly persistent over long-time in the mean, and almost sure
asymptotically stable on average. Moreover, the average value of the susceptible population over
sufficiently long time is the disease-free equilibrium S ∗0 = B

µ
.

Proof:
Suppose either of the conditions in Theorem 6.1[1.-2.] hold, then if we further let

Ω1 = {w ∈ Ω : lim sup
t→∞

I(w, t) = 0}, (6.21)

then it follows clearly from Theorem 6.1 that P(Ω1) = 1. That is, for every ε > 0, there is a positive
constant K1(w, ε) ≡ K1 > 0, such that

I(w, t) < ε, a.s. ∀w ∈ Ω1, whenever t > K1. (6.22)

It follows from (6.22) that

I(w, t − s) < ε, a.s. ∀w ∈ Ω1, whenever t > K1 + h1,∀s ∈ [t0, h1]. (6.23)

In Dexpl(∞), define

V1(t) = S (t) + α

∫ ∞

t0
fT3(r)eµr

∫ t

t−r
I(θ)dθdr. (6.24)

The differential operator dV1 applied to the Lyapunov functional V1(t) in (6.24) leads to the following

dV1(t) =
[
g(S , I) − µS (t)

]
dt − σβS (t)

∫ h1

t0
fT1(s)e−µv sG(I(t − s))dsdwβ(t), (6.25)

where

g(S , I) = B − βS (t)
∫ h1

t0
fT1(s)e−µv sG(I(t − s))ds + αE(e−µT3)I(t). (6.26)

Estimating the right-hand-side of (6.25) in Dexpl(∞), and integrating over [t0, t], it follows from (6.22)-
(6.23) that

V1(t) ≤ V1(t0) + B(t − t0) +

∫ K1

t0
αI(ξ)dξ +

∫ t

K1

αI(ξ)dξ − µ
∫ t

t0
S (ξ)dξ − M3(t),

≤ V1(t0) + B(t − t0) + α
B
µ

(K1 − t0) + α(t − K1)ε − µ
∫ t

t0
S (ξ)dξ − M3(t), (6.27)

where

M3(t) = σβ

∫ t

t0
S (ξ)

∫ h1

t0
fT1(s)e−µv sG(I(ξ − s))dsdwβ(ξ). (6.28)

Observe that similarly to (6.11)-(6.14), it is easy to see by the strong law of large numbers for local
martingales (see, e.g. [54]) that

lim
t→∞

1
t

M3(t) = 0, a.s. (6.29)

Thus, dividing both sides of (6.27) by t and taking the limit supremum as t → ∞, it follows that

lim sup
t→∞

1
t

∫ t

t0
S (ξ)dξ ≤

B
µ

+
α

µ
ε, a.s. (6.30)
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On the other hand, estimating g(S , I) in (6.26) from below and using the conditions of Assumption 1.1
and (6.23), it is easy to see that in Dexpl(∞),

g(S , I) ≥ B − βS (t)
∫ h1

t0
fT1(s)e−µv s(I(t − s))ds

≥ B − β
B
µ

E(e−µvT1)ε,∀w ∈ Ω1 and t > K1 + h1,

≥ B − β
B
µ
ε. (6.31)

Moreover, for t ∈ [t0,K1 + h1], then

g(S , I) ≥ B − β
(

B
µ

)2

. (6.32)

Therefore, applying (6.31)–(6.32) into (6.25), then integrating both sides of (6.25) over [t0, t], and
diving the result by t, it is easy to see from (6.25) that

1
t
V1(t) ≥

1
t
V1(t0)+B(1−

t0

t
)−

1
t
β

(
B
µ

)2

(K1+h1−t0)−β
B
µ
ε[1−

K1 + h1

t
]−

1
t
µ

∫ t

t0
S (ξ)dξ−

1
t

M3(t). (6.33)

Observe that in Dexpl(∞), limt→∞
1
t V1(t) = 0, a.s., and limt→∞

1
t V1(t0) = 0. Moreover, from (6.29),

limt→∞
1
t M3(t) = 0, a.s. Therefore, rearranging (6.33), and taking the limit infinimum of both sides

as t → ∞, it is easy to see that

lim inf
t→∞

1
t

∫ t

t0
S (ξ)dξ ≥

B
µ
−

1
µ
β

B
µ
ε, a.s. (6.34)

It follows from (6.30) and (6.34) that

B
µ
−

1
µ
β

B
µ
ε ≤ lim inf

t→∞

1
t

∫ t

t0
S (ξ)dξ ≤ lim

t→∞

1
t

∫ t

t0
S (ξ)dξ ≤ lim sup

t→∞

1
t

∫ t

t0
S (ξ)dξ ≤

B
µ

+
α

µ
ε, a.s. (6.35)

Hence, for ε arbitrarily small, the result in (6.20) follows immediately from (6.35).

Remark 6.2. Theorem 6.2, Theorem 6.1, Theorem 4.1[a] and Lemma 6.1 signify that when the in-
tensity of the noise from the disease transmission rate σβ is positive, and the intensities of the noises
from the natural death rates satisfy σi = 0, i ∈ {S , E, I,R}, then all sample paths of the solution process
{(S (t), I(t)), t ≥ t0} of the decoupled system (3.3) and (3.5) that start in Dexpl(∞) ⊂ D(∞) continue to os-
cillate in Dexpl(∞). Moreover, the sample paths of the infectious state I(t), t ≥ t0 of the solution process
{(S (t), I(t)), t ≥ t0} ultimately turn to zero exponentially, almost surely, whenever either the expected
survival probability rate the malaria parasite satisfy E(e−(µvT1+µT2)) < 1

R∗0
, for R∗0 ≥ 1, or whenever

the basic production number satisfy R∗0 < 1. Furthermore, the rate of the exponential decrease of the
infectious population from (6.15) is estimated by the term λ, defined in (6.17) and (6.19).

In addition, Theorem 6.2 asserts that when either the expected survival probability rate the malaria
parasites satisfy E(e−(µvT1+µT2)) < 1

R∗0
, for R∗0 ≥ 1, or whenever the basic production number satisfy

R∗0 < 1, the susceptible population remains persistent in the mean over sufficiently large time, moreover,
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every sample path of the susceptible population S (t) that starts in Dexpl(∞) continues to oscillate
in Dexpl(∞), and on average all sample paths converge to the disease free steady state population
S ∗0 = B

µ
= 1.

In other words, over sufficiently long time, the population that remains will be all susceptible
malaria-free people, and the population size will be equal to the disease free steady state population
S ∗0 = B

µ
= 1 of the system (3.2)-(3.5).

6.1. Sensitivity of the extinction results to the probability densities fTi , i = 1, 2

Recall Remark 6.1 explains that the fraction 1
R∗0

is a probability measure, whenever R∗0 ≥ 1. Observe
that various types of lifetime probability densities fTi , i = 1, 2 will model different behaviors of the
malaria plasmodium during the incubation periods Ti, i = 1, 2, and lead to different interpretations of
the expected survival probability rate E(e−(µvT1+µT2)).

For instance, consider a hypothetical scenario, where the exposed mosquitoes incubating the par-
asites in the sporogonic cycle, independently survive natural death, and attain the full maturation pe-
riod of the parasites over the sporogonic cycle (between 10–18 days[3]), at a constant arrival rate
of γ1 mosquitoes/day, and the exposed human beings incubating the parasites undergoing the exo-
erythrocytic cycle (over 7-30 days[3]), also survive natural death, and independently attain the full
maturation period of the parasites in the exo-erythrocytic cycle, with constant arrival rate of γ2 hu-
mans/day. Then, it follows that the independent Poisson processes {Mi(t), t ≥ t0}, i = 1, 2, respectively,
describe the number of mosquitoes and humans, respectively, incubating the parasites, which attain
maturity at any time t ≥ t0, from the onset of the sporogonic cycle, where susceptible mosquitos V̂s bite
and obtain infected blood meal from an infectious human I(t), and the onset of the exo-erythrocytic
cycle, where the mosquitos in the infectious state V̂i(t), bite and transmit the plasmodium into a sus-
ceptible human S (t), respectively. Moreover, V̂i(t), V̂s(t), S (t) and I(t) are defined in A.

Thus, the random variables Ti, i = 1, 2 indicating the time until the parasites in the different de-
velopmental stages in the two separate half-life cycles attain maturity (equivalently, T1 is time until
an exposed mosquito attains maturity of the parasites in the sporogonic cycle, and T2 is time until an
exposed human being attains the maturity point of the parasites in the exo-erythrocytic cycle), follow
independent exponential distributions with means 1

γi
, i = 1, 2, respectively. Recall [2] gives justification

for independence between T1 and T2, and implying that the Poisson processes {Mi(t), t ≥ t0}, i = 1, 2
are independent.

For the given scenario of the incubating malaria parasites above, the expected survival probability

E(e−(µvT1+µT2)) =

 γ1
µv

γ1
µv

+ 1

  γ2
µ

γ2
µ

+ 1

 , (6.36)

can be interpreted as a probability of two independent events inside the exposed mosquitos and inside
the exposed human beings.

Indeed, the term γ1
µv

represents the total exposed mosquitoes incubating malaria parasites in the
sporogonic cycle, that survive natural death, and attain maturity stage of the parasites called sporo-
zoites, inside the mosquitos, and totaled over the average life span of a mosquito 1

µv
. The denominator

γ1

µv
+ 1 =

γ1

µv
+
µv

µv
=
γ1 + µv

µv
, (6.37)
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represents the total mosquitoes that survive natural death, γ1
µv

, until maturation of the parasites, and the

total mosquitoes that die naturally, µv
µv

, over the average life span of a mosquito 1
µv

. Thus,
( γ1

µv
γ1
µv

+1

)
is the

probability that an exposed mosquito, survives natural death, and attains the full maturation period of
the parasites in the sporogonic cycle.

Applying similar reasoning above, the term
( γ2

µ
γ2
µ +1

)
is the probability that an exposed human being

incubating the plasmodium, survives natural death, and attains the full maturation period of the par-
asites in the exo-erythrocytic cycle. Therefore, the expected survival probability (6.36) is interpreted
as the probability that the parasites will survive in the exposed mosquitoes attaining their half-life
cycle(sporogonic cycle), and survive in the exposed human beings, completing their second half-life
cycle (exo-erythrocytic cycle).

Since the distribution of the delays Ti, i = 1, 2 is not unique, it follows that every lifetime distribu-
tion, e.g. Weibull, Gamma, Beta, Lindley distributions, with completely different set of parameters,
will lead to different interpretations of the expected survival probability E(e−(µvT1+µT2)), and the extinc-
tion conditions E(e−(µvT1+µT2)) < 1

R∗0
, for R∗0 ≥ 1, in Theorem 6.1[1.].

Based on the observations from Theorem 6.2, the following proposition is made, which asserts
that the average behavior of the sample paths of (3.2)-(3.5) near the disease-free equilibrium, leads to
Lyapunov stability in probability. The proof appears in [55].

Proposition 6.3. Suppose the assumptions of Theorem 6.2 are satisfied, then the disease-free equilib-
rium E0 = (S ∗0, 0) = ( B

µ
, 0) of the decoupled system (3.3) and (3.5) is stochastically stable in probability.

In other words, if either the basic reproduction number R∗0, or the expected survival probability of the
malaria plasmodium E(e−(µvT1+µT2)), satisfy R∗0 < 1, or E(e−(µvT1+µT2)) < 1

R∗0
, whenever R∗0 ≥ 1, respec-

tively, then every trajectory for the solution process {(S (t), I(t)), t ≥ t0} of the decoupled system (3.3)
and (3.5) that starts near E0, tends to remains near E0.

7. Example: Application to P. vivax malaria

In this example, using ideas from the malaria model and data in [56], the stochastic extinction results
of this study are exhibited. This is accomplished by examining the sample paths of the decoupled
system (3.2) and (3.4) relative to the disease-free equilibrium E0 over sufficiently long time.

(a.) The model (3.2)–(3.5) is applied to P. vivax malaria, and the data in [56] for P. vivax will be
used. Also, since in A (B) it is assumed that V0 >> N̂((t), t ≥ t0, it is assumed that the sizes of the
total vector and human populations are consistent with one of the following countries Brazil, India,
Myanmar, or Papua New Guinea which experienced the highest P.vivax prevalence in 2010 (cf. [57]).
It is assumed that high P. vivax prevalence reflects high infestation by mosquitoes. In the absence of
Anopheles mosquito population data for Brazil, and to minimize unrealism, some useful information
about realistic sizes of other species of mosquitoes “unleashed” in a city of Brazil is used to simu-
late the hypothetical Anopheles mosquito population size. In 2015-2016, Oxitex conducted a project
themed “Friendly Aedes aegypti Project” for dengue fever control in Piracicaba, Brazil( cf. [58]).
It is reported that “friendly mosquitoes” were tried on an area of the city consisting of 12 neighbor-
hoods, and a total of 65,000 residents. The Oxitex mosquito production facility produced about 60
million “Friendly Mosquitoes” per week. It is assumed in this example that the hypothetical human
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and vector populations are comparable in features to those in Piracicaba, and the human population is
infested daily by V0 = (60/7)million anopheles mosquitoes. Moreover, the initial human population
size N̂(t0) = 65000. In addition, the per capita mortality rate µ̂v of mosquitos given in [56] lies in
µ̂v ∈ [0.2, 0.5], and here selected to be µ̂v = 0.5 per day.

(b.) The 2010 average lifespan for human beings in Piracicaba was 75.9 years or 27703.5 days
(cf. [59]). Thus, in this example, the natural deathrate of humans is assumed as µ̂ = 1/27703.5
per day. The 2010 estimated birthrate for Brazil was B̂ = 18.43 births/1,000 population per day (cf.
[60]), and this value is used for the hypothetical human population in this example. The 2010 malaria
related deathrate d̂ is estimated using data from 2011 WHO malaria [61] for Brazil. Indeed, the time-
series graph for Brazil death cases over years from 2000-2010 shows the normalized malaria deathrate
for 2010 was approximately 75/100, 000∗. Thus, daily malaria related deathrate here is estimated as
d̂ = 75/100, 000/365/day.

(c.) Using ideas from [56], the effective transmission rate from infectious human to mosquito Λ in
(A.2)-(A.3) can be expressed as Λ = a(

B̂
µ̂

)b, where a ∈ [0.2, 0.5] (cf.[56]) is rate of biting on humans

per mosquito per day, so that a(
B̂
µ̂

) - the smallest possible biting rate per human per day is assumed fixed

for the human population N̂(t) ∈ (0, B̂
µ̂
],∀t ≥ t0. The term b is the fraction of bites on humans that

result to infection in mosquito per day. In this example, it is assumed a = 0.2/day and the fraction
b = 500000/V0 of bites result in infection of the mosquito.

(d.)Furthermore, using ideas in [56] the effective transmission rate from infectious mosquitoes to
susceptible humans β̂ in (A.14)–(A.17) can be expressed as β̂ = a(

B̂
µ̂

)c, where c is the fraction of

mosquito bites on humans that result to infection in humans per day. Moreover, it is assumed for
Subsections 7.1, 7.2 that the fraction c = 10000/V0 of bites lead to infection of humans.

(e.) The range of values for the recovery rate α̂ is given in [56], and here selected as α̂ = 0.01/day.
(f.) Range of values for the incubation period for P.vivax in humans T2 ∈ [10, 100] days is given in
[56], and here selected as T2 = 15 days. Also, since the incubation period T1 for P.vivax in mosquitoes
varies with temperature, similar to [56], it is assumed to be T1 = 9 days. Furthermore, the naturally
acquired immunity (NAI) against malaria is determined by exposure to parasites, age and other biolog-
ical factors, and it is not clear how NAI affects the duration of blood-stage malaria infections (cf.[62]).
Since a plausible assumption in the instance of repeated malaria infections is that T3 ≥ T1 + T2, it will
be assumed that repeated malaria infections in the population results in constant effective NAI lasting
approximately T3 = 182.5 days ( or approximately 6 months).

The dimensional estimates for the parameters of the malaria model given in (a.)-(e.) are applied to
(A.42) to find the dimensionless parameters for the model (3.2)-(3.5) given in Table 1.

Moreover, the Euler-Maruyamas stochastic approximation scheme is used to generate paths for the
different states S (t), E(t), I(t),R(t) over the time interval [0, 1000] days. The special nonlinear inci-
dence functions G(I) = a1I

1+I , a1 = 0.05 in [63] is utilized to generate the numeric results. Furthermore,
the following initial fractions of susceptible, exposed, infectious and removed individuals in the initial
population size N̂(t0) = 65000 are used:

∗The malaria deathrate is calculated as number of cases reported, divided by the total population ×100, 000. (cf.[61])
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Table 1. A list of dimensionless values for the system parameters for Example 7.

Disease transmission rate β Subsection 7.1 (0.02146383), Subsection 7.2 (0.02146383)
Constant Birth rate B 8.476678e − 06
Recovery rate α 0.08571429
Disease death rate d 0.0001761252
Natural death rate µ, µv 8.476678e − 06, 42.85714
eIncubation delay in vector T1 0.105
Incubation delay in host T2 0.175
Immunity delay time T3 2.129167


S (t) = 10/23 ≈ 28261/65000,
E(t) = 5/23 ≈ 14131/65000,
I(t) = 6/23 ≈ 16957/65000,
R(t) = 2/23 ≈ 5653/65000,

∀t ∈ [−T, 0],T = max(T1 + T2,T3) = 2.129167. (7.1)

For the given set of dimensionless parameter estimates in Table 1, where β = 0.02146383, the disease-
free equilibrium is E0 = (S ∗0, 0, 0) = (1, 0, 0), and from (2.2), the basic reproduction number is R̂∗0 =

0.2498732 < 1.

7.1. Example 1: The joint effect of the intensity of white noise from disease transmission and natural
deathrates

Figure 2 can be used to verify the results about the extinction of the infectious population in The-
orem 5.1. Indeed, it can be observed that for the malaria data in Table 1, and the initial conditions
for the system (3.2)-(3.5) in (7.1), and also the intensity conditions exhibited in Figure 2, that is, (1)
solid blue line (σi = 0.05, σβ = 2.5),∀i ∈ {S , E, I,R}, (2) red solid-and-dotted line (σi = 0.59, σβ =

5.59),∀i ∈ {S , E, I,R}, and (3) black dotted line (σi = 1.07, σβ = 9.07),∀i ∈ {S , E, I,R}, it follows
from (5.20) that the estimates of the rate of extinction of the malaria population I(t) are respectively,
(1) Q = 0.08711203 > 0, (2) Q = 0.2599415 > 0, and (3) Q = 0.6583461 > 0. That is,

lim sup
t→∞

1
t

log (I(t)) ≤ −Q = −0.08711203,−0.2599415,−0.6583461 a.s. (7.2)

The Figure 2(b-1) and (d-1) confirm that over sufficiently large time, when Q > 0, then the infec-
tious population becomes extinct. Moreover, as the intensities increase across from (σi = 0.05, σβ =

2.5),∀i ∈ {S , E, I,R} to (σi = 1.07, σβ = 9.07),∀i ∈ {S , E, I,R}, the value of Q increases, and the
infectious population is extinct more rapidly. Furthermore, note that the basic reproduction number
in (2.2) for this scenario is R̂∗0 = 0.2498732 < 1, which signifies that the disease is getting eradi-
cated from the population over time, leading to the small rise in the susceptible population seen in
Figure 2(a-1) over sufficiently long time. Nevertheless, the general decrease in the paths of the sus-
ceptible population S (t) in Figure 2(c-1) over time is accounted for by the presence and rise in the
intensity of the noise in the natural death rate across from (σi = 0.05, σβ = 2.5),∀i ∈ {S , E, I,R} to
(σi = 1.07, σβ = 9.07),∀i ∈ {S , E, I,R}, respectively.
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Figure 2. (a-1), and (b-1), show the paths of the states (S , I), respectively, over sufficiently
long time t = 1000, whenever the intensity of the incidence of malaria is a = 0.05, and the
intensities of the noise processes take the values σi = 0.05,∀i ∈ {S , E, I,R}, and σβ = 2.5. (c-
1), and (d-1) depict three paths for S (t) and I(t), respectively, computed under the following
intensity conditions (1) solid blue line (σi = 0.05, σβ = 2.5),∀i ∈ {S , E, I,R} (solid blue line
given more explicitly in (a-1), and (b-1) ), (2) red solid-and-dotted line (σi = 0.59, σβ =

5.59),∀i ∈ {S , E, I,R}, (3) black dotted line (σi = 1.07, σβ = 9.07),∀i ∈ {S , E, I,R}.
Moreover, the estimated Lyapunov exponent or rate of extinction of the disease in (5.21)
for all three lines are respectively, (1) Q = 0.08711203 > 0, (2) Q = 0.2599415 > 0,
and (3) Q = 0.6583461 > 0. Also, the basic reproduction number in (2.2) in all cases in
R̂∗0 = 0.2498732 < 1, and the disease-free equilibrium is E0 = (S ∗0, 0) = (1, 0).

7.2. Example 2: The effect of the intensity of white noise from disease transmission rate and
stochastic stability

The list of parameter values in Table 1 are also used to examine the paths of the different states
of the stochastic system (3.2)–(3.5), whenever the conditions of Theorem 6.1 and Theorem 6.2 are
satisfied.

Figure 3 is used to verify the results about the extinction of the infectious population over time in
Theorem 6.1, and the long-term behavior of the susceptible population S (t) in Theorem 6.2. Indeed,
it can be observed that for the given malaria data in Table 1, and the initial conditions for the system
(3.2)-(3.5) in (7.1), and also the intensities of the white noise processes in the system- (1) solid blue line
(σi = 0.0, σβ = 10),∀i ∈ {S , E, I,R}, (2) red solid-and-dotted line (σi = 0.0, σβ = 15),∀i ∈ {S , E, I,R},
and (3) black dotted line (σi = 0, σβ = 20),∀i ∈ {S , E, I,R}, it follows that the basic reproduction
number in (2.2) in each scenario is R̂∗0 = 0.2498732 < 1. Therefore, the condition of Theorem 6.1(a.)
is satisfied, and from (6.19), the estimates for the rate of extinction of the malaria population I(t), for
the given lines (1)–(3) above, are respectively, (1) λ = 0.08589658 > 0, (2) λ = 0.08589786 > 0, and
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(3) λ = 0.08589831 > 0. That is,

lim sup
t→∞

1
t

log (I(t)) ≤ −λ = −0.08589658,−0.08589786,−0.08589831, a.s. (7.3)
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Figure 3. (a-2), and (b-2), show three paths of the states (S , I), respectively, over sufficiently
long time t = 1000, whenever the intensity of the incidence of malaria is a = 0.05, and the in-
tensities of the noise processes take the value σi = 0,∀i ∈ {S , E, I,R}, and σβ = {10, 15, 20}.
The three paths are computed under the following intensity conditions- (1) solid blue line
(σi = 0.0, σβ = 10),∀i ∈ {S , E, I,R}, (2) red solid-and-dotted line (σi = 0.0, σβ = 15),∀i ∈
{S , E, I,R}, and (3) black dotted line (σi = 0, σβ = 20),∀i ∈ {S , E, I,R}. Moreover, the esti-
mated Lyapunov exponent or rate of extinction of the disease in (5.21) for all three lines are
respectively, (1) λ = 0.08589658 > 0, (2) λ = 0.08589786 > 0, and (3) λ = 0.08589831 > 0.
Also, the basic reproduction number in (2.2) in all cases is R̂∗0 = 0.2498732 < 1, and the
disease-free equilibrium is E0 = (S ∗0, 0) = (1, 0). Note that for each state S , I, the three sam-
ple paths behave almost surely the same way, and this is reason for the nearly unique graph
for all three paths depicted in (a-2) and (b-2).

The Figure 3(b-2) confirms that over sufficiently large time, when λ > 0, then the infectious popula-
tion becomes extinct. Furthermore, note that the basic reproduction number in (2.2) in these scenarios
is R̂∗0 = 0.2498732 < 1, which signifies that the disease is getting eradicated from the population over
time, and the susceptible population seen in Figure 3(a-2) oscillates slightly over sufficiently long time,
and approaches the disease-free equilibrium state S ∗0 = B

µ
= 1.

Indeed, clearly, the three sample paths of S (t) in Figure 3(a-2) are monotonic increasing functions
over long time, and approach S ∗0 = B

µ
= 1 asymptotically, almost surely. This, suggests that the

susceptible population is almost surely path-wise stable on average over sufficiently long time near
S ∗0 = B

µ
= 1 as shown in Theorem 6.2.

The Figure 3 also confirms Theorem 6.1 that the extinction of the infectious population I(t) over
sufficiently large time has no bearing on the size of the intensity σβ, or the strength of the noise from
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the disease transmission rate, provided that the basic reproduction number R̂∗0 < 1. For all sample paths
depicted in Figure 3(a-2), the basic reproduction number remains the same value R̂∗0 = 0.2498732 < 1.
Moreover, the estimates of the rate of extinction are also approximately the same values for the lines
(1)-(3), that is, (1) λ = 0.08589658 > 0, (2) λ = 0.08589786 > 0, and (3) λ = 0.08589831 > 0,
respectively. Thus, the extinction conditions of Theorem 6.1 are robust, to external influence of noise
in disease transmission rate, as remarked early in Remark 6.1.

In addition, since clearly every path of the susceptible population in Figure 3(a-1) almost surely
approaches the disease-free equilibrium state S ∗0 = B

µ
= 1, regardless of the size of the intensity of the

noise (σβ) in disease transmission rate, there is numerical evidence that the disease-free steady state
E0 = (S ∗0, 0) = ( B

µ
, 0) = (1, 0), is stochastically asymptotically stable, whenever the basic reproduction

number R∗0 < 1, as proposed in Proposition 6.3.

8. Conclusion

A stochastic family of SEIRS models for malaria is derived and studied, where the noises in the
system represent the variability in the disease dynamics from the disease transmission and natural
death rates. The threshold conditions for the extinction of malaria in the population over sufficiently
long time are presented for both cases of (1) noises in the system from both the disease transmission
and natural death rates, and (2) noise exclusively from the disease transmission rate.

The analytic results show that the dynamics of the disease in the case of noise exclusively from the
disease transmission rate exhibits more profound characteristics such as (a) stability in the mean of the
disease free steady state population asymptotically, (b) the threshold conditions for the extinction of
malaria, and consequently for the asymptotic stability in the mean of the malaria-free population, are
robust to the intensity of the noise from the disease transmission rate. Finally, numerical simulation
results are presented to justify the analytical results of the study.
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Appendix

A. Derivation of the Model (1.1)–(1.4) from the vector-host dynamics

The assumptions for the family of malaria models in [2] are adopted and modified in the follow-
ing. (A) The delays represent the incubation period of the infectious agents (plasmodium or dengue
fever virus etc.) in the vector T1, and in the human host T2. The third delay represents the naturally
acquired immunity period of the disease T3, where the delays are random variables with density func-
tions fT1 , t0 ≤ T1 ≤ h1, h1 > 0, and fT2 , t0 ≤ T2 ≤ h2, h2 > 0 and fT3 , t0 ≤ T3 < ∞. All other assumptions
for T1,T2 and T3 are similar to the study [2].

(B) The vector (e.g. mosquito) population consists of two main classes namely: the susceptible
vectors Vs and the infectious vectors Vi. Moreover, it is assumed that the total vector population
denoted V0 is constant at any time, that is, Vs(t) + Vi(t) = V0,∀t ≥ t0, where V0 > 0 is a positive
constant. The susceptible vector population Vs are infected by infectious human beings Î, and after the
incubation period T1 of the infectious agent, the exposed vector become infectious Vi. Moreover, it is
assumed that there is homogenous mixing between the vector-host population. Therefore, the birth rate
and death rate of the vectors must be equal, and denoted µ̂v. It is further assumed that the turnover of the
vector population is very high, and the total number of vectors V0 at any time t, is very large, and as a
consequence, µ̂v is sufficiently large number. In addition, it is assumed that the total number of vectors
V0 is exceedingly larger than the total human population present at any time t, denoted N̂((t), t ≥ t0.
That is, V0 >> N̂((t), t ≥ t0.

(C) The human population is similarly defined as in Wanduku[2], and consists of susceptible (Ŝ ),
Exposed (Ê), Infectious (Î) and removed (R̂) classes. The susceptible humans are infected by the
infectious vectors Vi, and become exposed (E). The infectious agent incubates for T2 time units, and the
exposed individuals become infectious Î. The infectious class recovers from the disease with temporary
or sufficiently long natural immunity and become (R̂). Therefore, the total population present at time
t, N̂(t) = Ŝ (t) + Ê(t) + Î(t) + R̂(t),∀t ≥ t0.

Furthermore, it is assumed that the interaction between the infectious vectors Vi and susceptible
humans Ŝ exhibits nonlinear behavior, due to the overcrowding of the vectors as described in (B), and
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resulting in psychological effects on the susceptible individuals which leads to change of behavior that
limits the disease transmission rate, and consequently in a nonlinear character for the incidence rate
characterized by the nonlinear incidence function G. G satisfies the conditions of Assumption 1.1.

(D) There is constant birthrate of human beings B̂ in the population, and all births are susceptible
individuals. It is also assumed that the natural deathrate of human beings in the population is µ̂ and
individuals die additionally due to disease related causes at the rate d̂. From a biological point of
view, the average lifespan of vectors 1

µ̂v
, is much less than the average lifespan of a human being in

the absence of disease 1
µ̂
. It follows very easily that assuming exponential lifetime for all individuals

(both vector and host) in the population, then the survival probability over the time intervals of length
T1 = s ∈ [t0, h1], and T2 = s ∈ [t0, h2], satisfy

e−µ̂vT1 << e−µ̂T1 and e−µ̂vT1−µ̂T2 << e−µ̂(T1+T2). (A.1)

That is, (A.1) signifies that the survival chance of the mosquitoes, and consequently the parasites
or virus inside the mosquitoes over the complete life cycle of the parasites lasting for T1 + T2 time
units, is less than the survival chance of human beings over the same period of time. Furthermore,
recall [Theorem 5.1, [2]] asserts that it is necessary for the expected survival rate E(e−µ̂vT1−µ̂T2) to be
significant for the disease to establish a steady endemic population. All other assumptions for the
malaria model (1.1)-(1.4) remain the same as in [2].

Applying similar ideas in [48], the vector dynamics from (A)-(D) follows the system

dVs(t) = [−Λe−µ̂vT1 Î(t − T1)Vs(t − T1) − µ̂vVs(t) + µ̂v(Vs(t) + Vi(t))]dt, (A.2)
dVi(t) = [Λe−µ̂vT1 Î(t − T1)Vs(t − T1) − µ̂vVi(t)]dt, (A.3)

V0 = Vs(t) + Vi(t),∀t ≥ t0, t0 ≥ 0, (A.4)

where Λ is the effective disease transmission rate from an infectious human being to a susceptible vec-
tor. Observe that the incidence rate of the disease into the vector population Λe−µ̂vT1 Î(t − T1)Vs(t − T1)
represents the rate of new infectious vectors occurring at time t, which became exposed at earlier time
t − T1 after obtaining an infected blood meal from an infectious person, and surviving over the incu-
bation period T1, with the exponential survival probability rate e−µ̂vT1 , the vectors become infectious at
time t. The detailed host population dynamics is derived as follows.

At time t, it follows from (C) that when susceptible humans Ŝ and infectious vectors Vi interact
with β̂ effective contacts per vector, per unit time, then under the assumption of homogenous mixing,
the incidence rate of the disease into the human population is given by the term β̂Ŝ (t)Vi(t). With the
assumption of crowding effects of the vector population, it follows from (C) that the incidence rate of
the disease can be written as

β̂Ŝ (t)G(Vi(t)), (A.5)

where G is the nonlinear incidence function satisfying the conditions in Assumption 1.1.
The susceptible individuals Ŝ who have acquired infection from infectious vectors Vi, but are non

infectious form the exposed class Ê. The population of exposed individuals at time t is denoted Ê(t).
After the incubation period, T2 = u ∈ [t0, h2], of the infectious agent in the exposed human host,
the individual becomes infectious, Î(t), at time t. Applying similar reasoning in [64], the exposed
population, Ê(t), at time t can be written as follows

Ê(t) = Ê(t0)e−µ̂(t−t0) p1(t − t0) +

∫ t

t0
β̂Ŝ (ξ)G(Vi(ξ))e−µ̂(t−ξ) p1(t − ξ)dξ, (A.6)
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where

p1(t) =

{
0, t ≥ T2,

1, t < T2
(A.7)

represents the probability that an individual remains exposed over the time interval [0, t]. It is easy to
see from (A.6) that under the assumption that the disease has been in the population for at least a time
t > maxt0≤T1≤h1,t0≤T2≤h2 (T1 + T2), in fact, t > h1 + h2, so that all initial perturbations have died out, the
number of exposed individuals at time t is given by

Ê(t) =

∫ t

t−T2

β̂Ŝ (v)G(Vi(v))e−µ̂(t−T2)dv, (A.8)

Moreover, since T2 = u ∈ [t0, h2] is a random variable, it follows from (A.8) that the expected number
of exposed individuals at time t is given by

Ê(t) =

∫ h2

t0
fT2(u)

∫ t

t−u
β̂Ŝ (v)G(Vi(v))e−µ̂(t−u)dvdu. (A.9)

Similarly, for the removal population, R̂(t), at time t, individuals recover from the infectious state
Î(t) at the per capita rate α̂ and acquire natural immunity. The natural immunity wanes after the varying
immunity period T3 = r ∈ [t0,∞], and removed individuals become susceptible again to the disease.
Therefore, at time t, individuals leave the infectious state at the rate α̂Î(t) and become part of the
removal population R̂(t). Thus, at time t the removed population is given by the following equation

R̂(t) = R̂(t0)e−µ̂(t−t0) p2(t − t0) +

∫ t

t0
α̂Î(ξ)e−µ̂(t−ξ) p2(t − ξ)dξ, (A.10)

where

p2(t) =

{
0, t ≥ T3,

1, t < T3
(A.11)

represents the probability that an individual remains naturally immune to the disease over the time
interval [0, t]. But it follows from (A.10) that under the assumption that the disease has been in the
population for at least a time t > maxt0≤T1≤h1,t0≤T2≤h2,T3≥t0 (T1 + T2,T3) = Tmax ≥ maxT3≥t0 (T3), in
fact, the disease has been in the population for sufficiently large amount of time so that all initial
perturbations have died out, then the number of removed individuals present at time t from (A.10), is
given by

R̂(t) =

∫ t

t−T3

α̂Î(v)e−µ̂(t−v)dv. (A.12)

Since T3 is distributed, the expected number of removal individuals at time t can be written as

R̂(t) =

∫ ∞

t0
fT3(r)

∫ t

t−r
α̂Î(v)e−µ̂(t−v)dvdr. (A.13)

It follows from the assumptions (A)-(D), (A.5), (A.8), (A.9), and (A.13) that for T j, j = 1, 2, 3 fixed in
the population, the dynamics of malaria in the human population is given by the system

dŜ (t) =
[
B̂ − β̂Ŝ (t)G(Vi(t)) − µ̂Ŝ (t) + α̂Î(t − T3)e−µ̂T3

]
dt,
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(A.14)
dÊ(t) =

[
β̂Ŝ (t)G(Vi(t)) − µ̂Ê(t)

−β̂Ŝ (t − T2)e−µ̂T2G(Vi(t − T2))
]

dt, (A.15)

dÎ(t) =
[
β̂Ŝ (t − T2)e−µ̂T2G(Vi(t − T2)) − (µ̂ + d̂ + α̂)Î(t)

]
dt,

(A.16)
dR̂(t) =

[
α̂Î(t) − µ̂R̂(t) − α̂Î(t − T3)e−µ̂T3

]
dt. (A.17)

Furthermore, the incidence function G satisfies the conditions in Assumption 1.1. And the initial
conditions are given in the following:-(

Ŝ (t), Ê(t), Î(t), R̂(t)
)

= (ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t)) , t ∈ (−Tmax, t0],
ϕk ∈ C((−Tmax, t0],R+),∀k = 1, 2, 3, 4,
ϕk(t0) > 0,∀k = 1, 2, 3, 4, and max

t0≤T1≤h1,t0≤T2≤h2,T3≥t0
(T1 + T2,T3) = Tmax

(A.18)

where C((−Tmax, t0],R+) is the space of continuous functions with the supremum norm

||ϕ||∞ = sup
t≤t0
|ϕ(t)|. (A.19)

It is shown in the following that the vector-host dynamics in (A.2)-(A.4) and (A.14)-(A.18) lead
to the model (1.1)-(1.4), which omits the dynamics of the vector population, under the assumptions
(A)-(D).

Firstly, observe that the system (A.14)-(A.18) satisfies [Theorem 3.1, [2]], and the total human
population N̂(t) = Ŝ (t) + Ê(t) + Î(t) + R̂(t),∀t ≥ t0 obtained from system (A.14)-(A.18) with initially
condition that satisfies N(t0) ≤ B̂

µ̂
, must satisfy

lim sup
t→∞

N̂(t) =
B̂
µ̂
. (A.20)

Therefore, the assumption (B) above, interpreted as N̂(t)
V0

<< 1,∀t ≥ t0 implies that

lim sup
t→∞

N̂(t) =
B̂
µ̂
, and

(
B̂
µ̂

)
V0

<< 1. (A.21)

Define

ε =

(
B̂
µ̂

)
V0

, (A.22)

then from (A.21)–(A.22), it follows that ε =

(
B̂
µ̂

)
V0
<< 1.

Employing similar reason in [48], define two natural dimensionless time scales η and % for the joint
vector-host dynamics (A.2)–(A.4) and (A.14)-(A.18) in the following.

η =

(
B̂
µ̂

)
Λt, (A.23)
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% = V0Λt. (A.24)

Note that since the total vector population V0 from (B) above is constant, that is, Vs(t) + Vi(t) =

V0,∀t ≥ t0, and from (A.20) and [Theorem 3.1, [2]] the total human 0 < N̂(t) ≤ B̂
µ̂
,∀t ≥ t0, whenever

N̂(t0) ≤ B̂
µ̂
, then the time scales η and % arise naturally to rescale the total vector and maximum total

human populations V0 and
(

B̂
µ̂

)
, respectively, at any time.

The time scales (A.23)-(A.24) can be distinguished as ”fast” and ”slow” using the following ex-
ample. A particle’s movement on the % time scale covers one unit of time % = 1 at much early time
t% = 1

V0Λ
on the t time scale, compared to the particle’s movement on the η time scale, where the particle

overs one unit of time η = 1 at much later time tη = 1(
B
µ

)
Λ
>> t%, since (A.21) holds. Thus, movement

on the time scale % is ”fast”, and on η is ”slow”. See [48] for more information.
Therefore, from above, let

V̂i(t) =
Vi(t)
V0

, and V̂s(t) =
Vs(t)
V0

, (A.25)

be the dimensionless vector variables, and

S (t) =
Ŝ (t)(

B̂
µ̂

) , I(t) =
Î(t)(

B̂
µ̂

) , E(t) =
Ê(t)(

B̂
µ̂

) ,R(t) =
R̂(t)(

B̂
µ̂

) and N(t) =
N̂(t)(

B̂
µ̂

) , (A.26)

be the dimensionless human variables. And since 0 < N̂(t) ≤ B̂
µ̂
,∀t ≥ t0, whenever N̂(t0) ≤ B̂

µ̂
, it follows

from (A.26) that
0 < S (t) + E(t) + I(t) + R(t) = N(t) ≤ 1,∀t ≥ t0. (A.27)

Applying (A.25)-(A.26) to (A.2)-(A.4) leads to the following

dV̂i(t) = ε

e−µ̂vT1 I(t − T1)V̂s(t − T1) −
µ̂v

Λ
(

B̂
µ̂

) V̂i(t)

 d%, (A.28)

dV̂s(t) = −dV̂i(t), (A.29)
1 = V̂s(t) + V̂i(t),∀t ≥ t0, t0 ≥ 0. (A.30)

Observe from (A.27)-(A.30) that for nonnegative values for the vector variables V̂i(t) ≥ 0, V̂s(t) ≥
0,∀t ≥ t0, and positive values for the human variables S (t), E(t), I(t),R(t) > 0,∀t ≥ t0, it is follows that

− ε
µ̂v

Λ
(

B̂
µ̂

) ≤ dV̂i(t)
d%

≤ εe−µ̂vT1 . (A.31)

Thus, on the time scale % which is ”fast”, it is easy to see from (A.28)-(A.31), that under the
assumption that ε from (A.22) is infinitesimally small, that is ε → 0, then

dV̂i(t)
d%

= −
dV̂s(t)

d%
= 0, (A.32)
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which implies that the dynamics of V̂i and V̂s behaves as in steady state. And thus, it follows from
(A.28)-(A.32) that

V̂i(t) =
e−µ̂vT1

µ̂v
Λ

(
B̂
µ̂

)
I(t − T1)V̂s(t − T1),

1 = V̂s(t) + V̂i(t). (A.33)

It follows further from (A.33), and V̂s in steady state (i.e. V̂s(t − T1) = V̂s(t)) that

V̂s(t) =
1

1 + e−µ̂vT1

µ̂v
Λ

(
B̂
µ̂

)
I(t − T1)

. (A.34)

For sufficiently large value of the birth-death rate µ̂v (see assumption (B)), such that µ̂veµ̂vT1 >> Λ
(

B̂
µ̂

)
,

then it follows from (A.34) that V̂s(t) ≈ 1, and consequently from (A.30) and (A.25), Vs(t) ≈ V0.
Moreover, it follows further from (A.33) that

V̂i(t) ≈
e−µ̂vT1

µ̂v
Λ

(
B̂
µ̂

)
I(t − T1), (A.35)

and equivalently from (A.25)-(A.26) that (A.35) can be rewritten as follows

Vi(t) ≈
e−µ̂vT1

µ̂v
ΛV0 Î(t − T1). (A.36)

While on the fast scale % the term Î(t−T1) behaves as the steady state, on the slow scale η, it is expected
to still be evolving. In the following, using (A.25)-(A.26), the dynamics for the human population in
(A.14)-(A.18) is nondimensionalized with respect to the slow time scale η in (A.23).

Without loss of generality(as it is usually the case), it is assumed that on the η timescale, the non-
linear term G(Vi(t)) expressed as G(V0V̂i(η)), can be rewritten from (A.36) as

G(V0V̂i(η)) ≡
ΛV0

(
B̂
µ̂

)
µ̂v

Ĝ(V̂i(η))e−µ̂vT1 , (A.37)

by factoring a constant term
ΛV0

(
B̂
µ̂

)
µ̂v

, and the function Ĝ carries all the properties of Assumption 1.1.
Thus, from the above and (A.36), the system (A.14)-(A.18) is rewritten in dimensionless form as
follows:

dS (η) = [B − βS (η)Ĝ(I(η − T1η))e−µvT1η − µS (η) + αI(η − T3η)e−µT3η]dη,
(A.38)

dE(η) = [βS (η)Ĝ(I(η − T1η))e−µvT1η − µE(η)
−βS (η − T2η)Ĝ(I(η − T1η − T2η))e−µvT1η−µT2η]dη, (A.39)

dI(η) = [βS (η − T2η)Ĝ(I(η − T1η − T2η))e−µvT1η−µT2η − µI(η)
−(µ + d + α)I(η)]dη, (A.40)

dR(t) = [αI(η) − µR(η) − αI(η − T3η)e−µT3η]dη, (A.41)
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where

B =
B̂(

B̂
µ̂

)2
Λ
, β =

β̂V0

µ̂v
, µ =

µ̂(
B̂
µ̂

)
Λ
, α =

α̂(
B̂
µ̂

)
Λ

µv =
µ̂v(

B̂
µ̂

)
Λ
, d =

d̂(
B̂
µ̂

)
Λ
, T jη =

(
B̂
µ̂

)
ΛT j,∀ j = 1, 2, 3. (A.42)

The system (A.38)-(A.41) describes the dynamics of malaria on the slow scale η. Furthermore, moving
forward, the analysis of the model (A.38)-(A.41) is considered only on the η timescale. To reduce
heavy notation, the following substitutions are made. Substitute t for η, and the delays T j,∀ j = 1, 2, 3
will substitute T jη,∀ j = 1, 2, 3. Moreover, since the delays are are distributed with density functions
fT j ,∀ j = 1, 2, 3, it follows from (A)-(D), (A.6)-(A.13), (A.38)-(A.41) and (A.18) that the expected
SEIRS model for malaria is given as follows:

dS (t) =

[
B − βS (t)

∫ h1

t0
fT1(s)e−µv sG(I(t − s))ds − µS (t) + α

∫ ∞

t0
fT3(r)I(t − r)e−µrdr

]
dt,

(A.43)

dE(t) =

[
βS (t)

∫ h1

t0
fT1(s)e−µv sG(I(t − s))ds − µE(t)

−β

∫ h2

t0
fT2(u)S (t − u)

∫ h1

t0
fT1(s)e−µv s−µuG(I(t − s − u))dsdu

]
dt,

(A.44)

dI(t) =

[
β

∫ h2

t0
fT2(u)S (t − u)

∫ h1

t0
fT1(s)e−µv s−µuG(I(t − s − u))dsdu − (µ + d + α)I(t)

]
dt,

(A.45)

dR(t) =

[
αI(t) − µR(t) − α

∫ ∞

t0
fT3(r)I(t − r)e−µsdr

]
dt, (A.46)

where the initial conditions are given in the following: let h = h1 + h2 and define

(S (t), E(t), I(t),R(t)) = (ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t)) , t ∈ (−∞, t0],
ϕk ∈ C((−∞, t0],R+),∀k = 1, 2, 3, 4, ϕk(t0) > 0,∀k = 1, 2, 3, 4,

(A.47)

where C((−∞, t0],R+) is the space of continuous functions with the supremum norm

||ϕ||∞ = sup
t≤t0
|ϕ(t)|. (A.48)

Also, the function G satisfies the conditions of Assumption 1.1.
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