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1. Introduction

The classical two-species Lotka-Volterra competition model takes the form Ẋ(t) = X(t)
(
a1 − b1X(t) − b12Y(t)

)
,

Ẏ(t) = Y(t)
(
a2 − b2Y(t) − b21X(t)

)
,

(1.1)

where all parameters are positive with clear biological meanings in literature. It has been one of the
most popular models in ecology and its dynamic behaviors have been fully studied as summarized in
[1]. In fact, only when b12

b2
< a1

a2
< b1

b21
or b1

b21
< a1

a2
< b12

b2
, the unique positive equilibrium (X∗,Y∗) exists.
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In reality, population dynamics are inevitably affected by environmental noises. Different kinds
of random perturbations have been considered in literature, such as [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and
references therein. Persistence and extinction of a competitive system with linear random perturbations
have been studied in [4, 9].

In particular, a Lotka-Volterra competition system with nonlinear random perturbations dX(t) = X(t)
(
a1 − b1X(t) − c1Y(t)

)
dt + α1X2(t)dB1(t) + β1X(t)Y(t)dB2(t),

dY(t) = Y(t)
(
a2 − b2Y(t) − c2X(t)

)
dt + α2Y2(t)dB3(t) + β2X(t)Y(t)dB2(t),

(1.2)

was studied in [8], where Bi(t) (i = 1, 2, 3) are three independent Brownian motions. The authors
constructed two threshold values λi (i = 1, 2) that only depend on the coefficients of (1.2) by using
the invariant probability densities of diffusions on the axes, and obtained that the signs of λi (i = 1, 2)
determine if the two species could coexist or one species excludes the other, and additionally estimated
the Lyapunov exponents.

In [12], a stochastic competition model with time-dependent delays dX(t) = X(t)
[
r1 − a11X(t) − a12X(t − τ1(t)) − a13Y(t − τ2(t))

]
dt + σ1X(t)

(
X(t) − X∗

)
dB1(t),

dY(t) = Y(t)
[
r2 − a21Y(t) − a22Y(t − τ3(t)) − a23X(t − τ4(t))

]
dt + σ2Y(t)

(
Y(t) − Y∗

)
dB2(t),

was considered, where the random perturbations were related to the coexistence equilibrium state
(X∗,Y∗) of the corresponding deterministic system. Here the intrinsic rates ri (i = 1, 2) are subject
to the environmental noises, and clearly (X∗,Y∗) is also the equilibrium of the above stochastic system.
The sufficient conditions of the asymptotic stability of its positive equilibrium were obtained by using
the method of Lyapunov function.

In [13], we studied the following stochastic system dX(t) = X(t)
(
a1 − b1X(t) − b12Y(t)

)
dt + σ1X(t)

(
Y(t) − Y∗

)
dB1(t),

dY(t) = Y(t)
(
a2 − b2Y(t) − b21X(t)

)
dt + σ2Y(t)

(
X(t) − X∗

)
dB2(t),

(1.3)

which was obtained by perturbing b12 and b21 in (1.1), and investigated the asymptotic stability of its
positive equilibrium by constructing an appropriate Lyapunov function. However, due to the limitation
of methods, the case of competitive exclusion had not been considered in [13], and we will investigate
this case completely in this paper.

In fact, the two-species Lotka-Volterra competition model (1.1) can be simplified as Ẋ(t) = X(t)
(
1 − X(t) − k1Y(t)

)
,

Ẏ(t) = rY(t)
(
1 − Y(t) − k2X(t)

)
,

(1.4)

where r is the ratio of the intrinsic rates of the two species, and k1, k2 represent the abilities of their
competition between each other. Clearly, only when k1, k2 < 1 or k1, k2 > 1, the positive equilibrium
exists, and the corresponding results are showed as follows:

(i) if k1, k2 < 1, all positive solutions
(
X(t),Y(t)

)
to (1.4) converge to the unique positive equilibrium

(X∗,Y∗) =
(

1−k1
1−k1k2

, 1−k2
1−k1k2

)
;
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(ii) if k1, k2 > 1, there is an unstable manifold (called the separatrix) splitting the interior of the
positive quadrant R2,o

+ into two regions. Solutions above the separatrix converge to (0, 1), while
solutions below the separatrix converge to (1, 0).

In this paper, for simplicity we assume r = 1 and consider the following stochastic system

 dX(t) = X(t)
(
1 − X(t) − k1Y(t)

)
dt + σ1X(t)

(
Y(t) − Y∗

)
dB1(t),

dY(t) = Y(t)
(
1 − Y(t) − k2X(t)

)
dt + σ2Y(t)

(
X(t) − X∗

)
dB2(t),

(1.5)

where (X∗,Y∗) =
(

1−k1
1−k1k2

, 1−k2
1−k1k2

)
is the coexistence (or positive) equilibrium of the corresponding de-

terministic system (1.4), and the inter-specific competition rates k1, k2 are subject to white noises. In
reality, the stochasticity in inter-specific competition is more important than that in intra-specific com-
petition. In fact, system (1.5) is a special case of system (1.3).

In this paper, we consider a Lotka-Volterra competition model with special stochastic terms related
to its positive equilibrium, which implies that system (1.5) makes sense only for k1, k2 < 1 or k1, k2 > 1.
Above all, (X∗,Y∗) is also the unique positive equilibrium of the stochastic differential equation (1.5),
which is the main difference between our model and other stochastic models. Thus it is significant to
investigate whether and how the existence of such environmental noises regulates the dynamic behav-
iors of the deterministic system.

We first pose an assumption (H0) about the restriction on σi (i = 1, 2), which guarantees that all
solutions to system (1.5) remain positive and non-explosive in any finite time. Subsequently, we use
the main ideas in [8] to consider the equations on the two axes and calculate two critical values λ1

and λ2 via these coefficients of (1.5) under another assumption (H1). We obtain that if they are both
positive, the two species coexist, and moreover all solutions converge to the coexistence equilibrium
(X∗,Y∗), and while they are both negative, the two species go extinct with positive probabilities and
these two probability values add up to one. Moreover, if Y(t) (or X(t)) converges to zero, its Lyapunov
exponent is exactly λ1 (or λ2), that is also the rate at which the corresponding species goes extinct.

Following the same logic in [8], we obtain quite different results due to the special stochastic terms,
that is, (X∗,Y∗) is also the positive equilibrium of the stochastic system (1.5). In this paper, we just
consider the stochastic system under the two cases of the corresponding deterministic system in which
(X∗,Y∗) is globally asymptotically stable or the bistability occurs. Here the intensity of noises σi (i =

1, 2) cannot be too strong (the assumption (H0) is a restriction), otherwise the solutions to system
(1.5) make no biological sense. Moreover, assumption (H1) guarantees the existence of λi (i = 1, 2),
which have precise expressions. Different from that in [8], λ1λ2 < 0 should not happen according to
many numerical trials, and we find that the dynamic behaviors of the deterministic system will not be
destroyed if the random perturbations are relatively small, which will be discussed in the final part.

The rest of the paper is organized as follows. Some preliminaries and the main ideas are presented
in Section 2, and the main results in this paper are listed in Sections 3. In Sections 4 and 5, the
cases of coexistence and competitive exclusion are considered, respectively. Finally in Section 6, some
discussions about this model and some numerical examples are provided to illustrate our mathematical
results.
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2. Preliminaries

Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space with the filtration {Ft}t≥0 satisfying the
usual condition, i.e. it is increasing and right continuous while F0 contains all P-null sets. Throughout
this paper, we denote R2,o

+ = {(x, y) : x > 0, y > 0} and let Zz(t) =
(
Xz(t),Yz(t)

)
be the solution to system

(1.5) with initial value z = (x, y).
First of all, we pose an assumption under which all solutions to system (1.5) are reasonable in

biological sense, the similar proof can be found in [13] and we omit it here.

Lemma 2.1. Under the assumption (H0) : σ1 <
√

2, σ2 <
√

2, there is a unique global positive
solution

(
X(t),Y(t)

)T to system (1.5) on R2,o
+ for any given initial value

(
X0,Y0

)
∈ R2,o

+ a.s..

Therefore the rest of this paper is carried out under this assumption and below we provide some
important properties of the solutions to system (1.5). In fact, they are based on the results in Lemma
2.1 and the detailed proofs are similar to that in [2].

Corollary 2.2. For any ε > 0, H > 1, T > 0, there is an H = H(ε,H,T ) > 1 such that

P
{
H
−1
≤ Xz(t) ≤ H, t ∈ [0,T ]

}
≥ 1 − ε, z ∈ [H−1,H] × [0,H],

and
P
{
H
−1
≤ Yz(t) ≤ H, t ∈ [0,T ]

}
≥ 1 − ε, z ∈ [0,H] × [H−1,H].

Now we consider the equations on the boundary. On the x-axis,

dϕ(t) = ϕ(t)
[
1 − ϕ(t)

]
dt − σ1Y∗ϕ(t)dB1(t). (2.1)

Let ξt = lnϕ(t), where ξt is a function of t, then

dξt =

[
1 −

1
2
σ2

1(Y∗)2 − eξt

]
dt − σ1Y∗dB1(t).

According to the method in [7], if σ1 <
√

2
Y∗ , the diffusion (2.1) has a unique invariant probability

measure π∗1 in (0,∞) with density

f ∗1 (φ) = c∗1φ
2

σ2
1(Y∗)2

−2
exp

(
−

2
σ2

1(Y∗)2
φ

)
,

where c∗1 is the normalizing constant and

1
c∗1

=

∫ ∞

0
u

2
σ2

1(Y∗)2
−2

exp
(
−

2
σ2

1(Y∗)2
u
)

du.

According to the Ergodic Theorem in [14, 15], for any measurable function g(·) : R+ → R satisfying
that

∫ ∞
0
|g(φ)| f ∗1 (φ)dφ < ∞, we have

P

{
lim
T→∞

1
T

∫ T

0
g
(
ϕx(t)

)
dt =

∫ ∞

0
g(φ) f ∗1 (φ)dφ

}
= 1, x > 0, (2.2)
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where ϕx(t) is the solution to (2.1) starting at x. In particular, for any p ∈ (−∞, 3),

P

{
lim
T→∞

1
T

∫ T

0
ϕp

x(t)dt = Qp :=
∫ ∞

0
φp f ∗1 (φ)dφ < ∞

}
= 1, x > 0. (2.3)

In fact, Q1 and Q2 can be calculated directly by the expression of c∗1, that is,

Q1 =

∫ ∞

0
φ

[
c∗1φ

2
σ2

1(Y∗)2
−2

exp
(
−

2
σ2

1(Y∗)2
φ

)]
dφ

= c∗1

∫ ∞

0
φ

2
σ2

1(Y∗)2
−1

exp
(
−

2
σ2

1(Y∗)2
φ

)
dφ

= c∗1

(
2

σ2
1(Y∗)2

− 1
)
σ2

1(Y∗)2

2

∫ ∞

0
φ

2
σ2

1(Y∗)2
−2

exp
(
−

2
σ2

1(Y∗)2
φ

)
dφ

= 1 −
1
2
σ2

1(Y∗)2.

Analogously, Q2 = 1 − 1
2σ

2
1(Y∗)2. Define

λ1 =

∫ ∞

0

(
1 −

1
2
σ2

2(X∗)2 −
(
k2 − σ

2
2X∗

)
φ −

1
2
σ2

2φ
2
)

f ∗1 (φ)dφ

= 1 −
1
2
σ2

2(X∗)2 −
(
k2 − σ

2
2X∗

)
Q1 −

1
2
σ2

2Q2

= 1 −
1
2
σ2

2(X∗)2 −
(
k2 − σ

2
2X∗

) (
1 −

1
2
σ2

1(Y∗)2
)
−

1
2
σ2

2

(
1 −

1
2
σ2

1(Y∗)2
)

= 1 −
1
2
σ2

2(X∗)2 −

(
k2 − σ

2
2X∗ +

1
2
σ2

2

) (
1 −

1
2
σ2

1(Y∗)2
)
.

(2.4)

Similarly, the diffusion equation on the y-axis is

dψ(t) = ψ(t)
(
1 − ψ(t)

)
dt − σ2X∗ψ(t)dB2(t),

which has a unique invariant probability measure π∗2 in (0,∞) if σ2 <
√

2
X∗ . Likewise, define

λ2 = 1 −
1
2
σ2

1(Y∗)2 −

(
k1 − σ

2
1Y∗ +

1
2
σ2

1

) (
1 −

1
2
σ2

2(X∗)2
)
.

Below we explain the definitions of λi (i = 1, 2) and how to use them. To investigate whether
Yz(t) converges to zero or not, we consider the Lyapunov exponent of Yz(t) when Yz(t) is small for a
sufficiently long time. Therefore, we consider the following equation

ln Yz(T )
T

=
ln y
T

+
1
T

∫ T

0

[
1 −

1
2
σ2

2 (Xz(t) − X∗)2
− Yz(t) − k2Xz(t)

]
dt

+
1
T

∫ T

0
σ2 (Xz(t) − X∗) dB2(t),

(2.5)
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which is derived from Itô’s formula. Moreover, it can be rewritten as

ln Yz(T )
T

=
ln y
T

+
1
T

∫ T

0

[
1 −

1
2
σ2

2(X∗)2 − Yz(t) −
(
k2 − σ

2
2X∗

)
Xz(t) −

1
2
σ2

2X2
z (t)

]
dt

+
1
T

∫ T

0
σ2 (Xz(t) − X∗) dB2(t).

(2.6)

When T is sufficiently large, on the right side of (2.6), the first term tends to zero, and the third term
is also very small according to the strong law of large numbers for martingales. Intuitively, if Yz(t) is
small in [0,T ], then Xz(t) is close to ϕx(t). By the ergodicity, ln Yz(T )

T is close to λ1.
In order to study the relationship between the two values λi (i = 1, 2) and the survival situation of

the two species, the assumption

(H1) : σ1 <

√
2

Y∗
, σ2 <

√
2

X∗

should be satisfied, because it guarantees the existence of λ1 and λ2. Moreover, the following assump-
tion

(H2) : σ1 ≤

√
k1

Y∗
, σ2 ≤

√
k2

X∗

is essential in the latter sections.

3. Main results

Recall that (X∗,Y∗) =
(

1−k1
1−k1k2

, 1−k2
1−k1k2

)
, then X∗,Y∗ < 1 whether k1, k2 < 1 or k1, k2 > 1. Obviously, as-

sumption (H1) implies assumption (H0), which implies that λi (i = 1, 2) can exist with assumption (H0).
Interestingly, we find that assumption (H1) also implies assumption (H2), but there is no relationship
between assumptions (H0) and (H2).

From now on, we always assume that assumptions (H0) and (H2) are satisfied. In addition, we use
the definitions of stochastic coexistence and competitive exclusion in [8] as follows.

Definition 3.1. The populations of two species modeled by (1.5) are said to stochastically coexist if for
any ε > 0, there is an M = M(ε) > 1 such that

lim inf
t→∞

P
{
M−1 ≤ X(t), Y(t) ≤ M

}
≥ 1 − ε.

The competitive exclusion is said to take place almost surely if

P
{
lim
t→∞

X(t) = 0 or lim
t→∞

Y(t) = 0
}

= 1.

Below we present our main results of the coexistence and the competitive exclusion of the two
species in system (1.5), the detailed proofs are provided in the next two sections, respectively.

Theorem 3.2. Under assumptions (H0) and (H2), if λ1 > 0 and λ2 > 0, then the two species coexist.
Moreover, all solutions converge to the positive equilibrium (X∗,Y∗).
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Theorem 3.3. Under assumptions (H0) and (H2), if λ1 < 0 and λ2 < 0, then X(t) or Y(t) goes extinct.
For any z ∈ R2,o

+ , we have

P

{
lim
t→∞

ln Xz(t)
t

= λ2

}
= pz, P

{
lim
t→∞

ln Yz(t)
t

= λ1

}
= qz,

where pz > 0, qz > 0 and pz + qz = 1. Moreover, if Yz(t) converges to zero, then the distribution of Xz(t)
converges weakly to π∗1, and the other case is analogous.

Remark 3.4. We remark that since λ1 and λ2 can be rewritten as

λ1 = λ1(σ1, σ2) =
(
1 − k2

)
− σ2

2

[
1
2

(X∗)2 +

(
1
2
− X∗

) (
1 −

1
2
σ2

1(Y∗)2
)]
,

λ2 = λ2(σ1, σ2) =
(
1 − k1

)
− σ2

1

[
1
2

(Y∗)2 +

(
1
2
− Y∗

) (
1 −

1
2
σ2

2(X∗)2
)]
,

then when σi (i = 1, 2) are relatively small, k1, k2 < 1 leads to λ1, λ2 > 0, while k1, k2 > 1 leads to
λ1, λ2 < 0. Therefore, relatively small random perturbations will not destroy the dynamic behaviors of
the deterministic system.

4. Stochastic coexistence

In this section, we consider the stochastic coexistence of system (1.5) and prove Theorem 3.2.
Define the stopping time

τσz = inf
{
t ≥ 0 : Yz(t) ≥ σ

}
.

Lemma 4.1. For any T > 1, ε > 0, σ > 0, there is a δ = δ(T, ε, σ) > 0 such that

P
{
τσz ≥ T

}
≥ 1 − ε, z ∈ (0,∞) × (0, δ].

Proof. By the exponential martingale inequality, we have P(Ωz
1) ≥ 1 − ε, where

Ωz
1 =

{∫ t

0
σ2

(
Xz(s) − X∗

)
dB2(s) < ln

1
ε

+
1
2

∫ t

0
σ2

2
(
Xz(s) − X∗

)2ds, t ≥ 0
}
.

In view of (2.5), for any ω ∈ Ωz
1 we have

ln Yz(t) < ln y + ln
1
ε

+

∫ t

0
ds = ln y + ln

1
ε

+ t, t ≥ 0.

By choosing δ = σεe−T , moreover if y < δ, then Yz(t) < σ for any t < T and any ω ∈ Ωz
1. �

Lemma 4.2. For any H > 1, T > 1, ε > 0, ν > 0, there is aσ > 0 such that for all z ∈ [H−1,H]×(0, σ],

P
{∣∣∣ϕx(t) − Xz(t)

∣∣∣ < ν, 0 ≤ t ≤ T ∧ τσz
}
≥ 1 − ε.
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Proof. According to Corollary 2.2, there is an H = H(H,T, ε) sufficiently large such that

P
{(
ϕx(t)

)
∨

(
Xz(t)

)
≤ H, t ≤ T

}
≥ 1 −

ε

2
, z ∈ [H−1,H] × (0, 1].

It follows from Itô’s formula that

d
(
ϕx(t) − Xz(t)

)
=

[(
ϕx(t) − Xz(t)

)
−

(
ϕ2

x(t) − X2
z (t)

)
+ k1Xz(t)Yz(t)

]
dt

−
[
σ1Xz(t)Yz(t) + σ1Y∗

(
ϕx(t) − Xz(t)

)]
dB1(t),

which leads to∣∣∣ϕx(t) − Xz(t)
∣∣∣ ≤ ∫ t

0

∣∣∣ϕx(u) − Xz(u)
∣∣∣du +

∫ t

0

∣∣∣ϕ2
x(u) − X2

z (u)
∣∣∣du + k1

∫ t

0
Xz(u)Yz(u)du

+ σ1

∣∣∣∣∣∣
∫ t

0
Xz(u)Yz(u)dB1(u)

∣∣∣∣∣∣ + σ1Y∗
∣∣∣∣∣∣
∫ t

0

(
ϕx(u) − Xz(u)

)
dB1(u)

∣∣∣∣∣∣ .
Together with the elementary inequality

(
n∑

i=1
ai

)2

≤ 2n
n∑

i=1
a2

i , we have

E sup
s≤t

(
ϕx(s ∧ ξz) − Xz(s ∧ ξz)

)2

≤ 32E
∫ t∧ξz

0

∣∣∣ϕx(u) − Xz(u)
∣∣∣2du + 32k2

1E

∫ t∧ξz

0
X2

z (u)Y2
z (u)du

+ 32E
(∫ t∧ξz

0

∣∣∣ϕx(u) − Xz(u)
∣∣∣(ϕx(u) + Xz(u)

)
du

)2

+ 32σ2
1E sup

s≤t

∣∣∣∣∣∣
∫ s∧ξz

0
Xz(u)Yz(u)dB1(u)

∣∣∣∣∣∣2 + 32σ2
1E sup

s≤t

∣∣∣∣∣∣
∫ s∧ξz

0

(
ϕx(u) − Xz(u)

)
dB1(u)

∣∣∣∣∣∣2 ,
(4.1)

where ξz := τσz ∧ inf
{
u :

(
ϕx(u)

)
∨

(
Xz(u)

)
≥ H

}
.

For any t ∈ [0,T ], it can be estimated that

E sup
s≤t

∣∣∣∣∣∣
∫ s∧ξz

0
Xz(u)Yz(u)dB1(u)

∣∣∣∣∣∣2 ≤ 4E

∣∣∣∣∣∣
∫ t∧ξz

0
Xz(u)Yz(u)dB1(u)

∣∣∣∣∣∣2 ≤ 4E
∫ t∧ξz

0
X2

z (u)Y2
z (u)du, (4.2)

E sup
s≤t

∣∣∣∣∣∣
∫ s∧ξz

0

(
ϕx(u) − Xz(u)

)
dB1(u)

∣∣∣∣∣∣2 ≤ 4E
∫ t∧ξz

0

∣∣∣ϕx(u) − Xz(u)
∣∣∣2du, (4.3)

E

∫ t∧ξz

0
X2

z (u)Y2
z (u)du ≤ H

2
σ2T, (4.4)

where (4.2) and (4.3) follow from Martingale inequality. By Hölder’s inequality,

E

(∫ t∧ξz

0

∣∣∣ϕx(u) − Xz(u)
∣∣∣(ϕx(u) + Xz(u)

)
du

)2

≤ 4H
2
TE

∫ t∧ξz

0

∣∣∣ϕx(u) − Xz(u)
∣∣∣2du. (4.5)
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Applying (4.2), (4.3), (4.4) and (4.5) to (4.1), we obtain that

E sup
s≤t

(
ϕx(s ∧ ξz) − Xz(s ∧ ξz)

)2

≤ m
(
σ2 + E

∫ t∧ξz

0

∣∣∣ϕx(u) − Xz(u)
∣∣∣2du

)
≤ m

(
σ2 +

∫ t

0
E sup

s≤u

(
ϕx(s ∧ ξz) − Xz(s ∧ ξz)

)2du
)
, t ∈ [0,T ]

for some m = m(H,T ) > 0. Then it follows from Gronwall’s inequality that

E sup
s≤T

(
ϕx(s ∧ ξz) − Xz(s ∧ ξz)

)2
≤ mσ2 exp(mT ).

Hence

P

{
sup
s≤T

(
ϕx(s ∧ ξz) − Xz(s ∧ ξz)

)2
≥ ν2

}
≤

mσ2emT

ν2 <
ε

2

for sufficiently small σ. Equivalently,

P

{
sup
s≤T

∣∣∣ϕx(s ∧ ξz) − Xz(s ∧ ξz)
∣∣∣ < ν} ≥ 1 −

ε

2
. (4.6)

In fact,

P
{
s ∧ ξz = s ∧ τσz , ∀s ∈ [0,T ]

}
≥ P

{
sup
s≤T

{(
ϕx(s)

)
∨

(
ϕx(s)

)}
≤ H

}
≥ 1 −

ε

2
. (4.7)

Applying (4.7) to (4.6), we have

P

{
sup
s≤T

∣∣∣ϕx(s ∧ τσz ) − Xz(s ∧ τσz )
∣∣∣ < ν} ≥ 1 − ε,

which yields the desired result. �

Lemma 4.3. For any H > 1, T > 0, ε > 0, there is an M̂ = M̂(ε,H,T ) > 0 such that

P


∣∣∣∣∣∣
∫ T

0
σ2

(
Xz(t) − X∗

)
dB2(t)

∣∣∣∣∣∣ ≤ M̂
ε

√
T

 ≥ 1 − ε.

Proof. Since

E

∣∣∣∣∣∣
∫ T

0
σ2

(
Xz(t) − X∗

)
dB2(t)

∣∣∣∣∣∣2 = E

∫ T

0
σ2

2
(
Xz(t) − X∗

)2dt,

together with Corollary 2.2, for H = H(ε,H,T ) > 1, we have

E

∫ T

0
σ2

2
(
Xz(t) − X∗

)2dt ≤ σ2
2
(
H + X∗

)2T.

Then

P


∣∣∣∣∣∣
∫ T

0
σ2

(
Xz(t) − X∗

)
dB2(t)

∣∣∣∣∣∣ ≥ M̂
ε

√
T

 ≤ σ2
2
(
H + X∗

)2Tε

M̂2T
.
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By choosing M̂ > σ2
(
H + X∗

)
, we have

P


∣∣∣∣∣∣
∫ T

0
σ2

(
Xz(t) − X∗

)
dB2(t)

∣∣∣∣∣∣ ≥ M̂
ε

√
T

 < ε.
Thus the above result is proved. �

Proposition 4.4. Assume that λ1 > 0, then for any ε > 0, H > 1, there are T = T (ε,H) > 0 and
δ0 = δ0(ε,H) > 0 satisfying that for any z ∈ [H−1,H] × (0, δ0], P(Ω̂z) > 1 − 4ε, where

Ω̂z =

{
ln Yz(t) − ln y ≥

λ1

5
T
}
.

Proof. By the definition of λ1, for sufficiently small ν,∫ ∞

0

(
1 −

1
2
σ2

2(X∗)2 −
(
k2 − σ

2
2X∗

)
(φ + ν) −

1
2
σ2

2(φ + ν)2
)

f ∗1 (φ)dφ ≥
4λ1

5
.

Let M̂ be in Lemma 4.3 and by the ergodicity of ϕx(t) [see (2.2)], there is a T = T (ε,H) > 25M̂2

ε2λ2
1

such
that

P

{
1
T

∫ T

0

(
1 −

1
2
σ2

2(X∗)2 −
(
k2 − σ

2
2X∗

) (
ϕH(t) + ν

)
−

1
2
σ2

2
(
ϕH(t) + ν

)2
)
dt ≥

3λ1

5

}
≥ 1 − ε.

In fact, ϕx(t) < ϕH(t) a.s. for all x ∈ (H−1,H). Otherwise there is a t0 ∈ (0,+∞) such that ϕx(t0) = ϕH(t0)
because of the continuity of ϕ(t), which contradicts the uniqueness of solutions. Hence, according to
assumption (H2), we have P(Ωz

2) ≥ 1 − ε, where

Ωz
2 =

{∫ T

0

(
1 −

1
2
σ2

2(X∗)2 −
(
k2 − σ

2
2X∗

) (
ϕx(t) + ν

)
−

1
2
σ2

2
(
ϕx(t) + ν

)2
)
dt ≥

3λ1

5
T
}
.

By Lemma 4.2, there is a σ = σ(ε,H) > 0 such that σ < λ1
5 and P(Ωz

3) ≥ 1 − ε, where

Ωz
3 =

{∣∣∣ϕx(t) − Xz(t)
∣∣∣ < ν, 0 ≤ t ≤ T ∧ τσz

}
.

According to Lemma 4.1, for definite σ, there is a δ0 = δ0(ε,H) > 0 satisfying that for all z ∈
[H−1,H] × (0, δ0], P(Ωz

4) ≥ 1 − ε, where Ωz
4 =

{
τσz ≥ T

}
. Since T > 25M̂2

ε2λ2
1

, it follows from Lemma 4.3
that P(Ωz

5) ≥ 1 − ε, where

Ωz
5 =

{∣∣∣∣∣∣
∫ T

0
σ2

(
Xz(t) − X∗

)
dB2(t)

∣∣∣∣∣∣ ≤ λ1

5
T
}
.

Hence, for any z ∈ [H−1,H] × (0, δ0], ω ∈ Ω̂z = ∩5
i=2Ω

z
i , we obtain

ln Yz(T ) − ln y ≥
∫ T

0

(
1 −

1
2
σ2

2(X∗)2 −
(
k2 − σ

2
2X∗

)
Xz(t) −

1
2
σ2

2X2
z (t)

)
dt

−

∫ T

0
Yz(t)dt −

∣∣∣∣∣∣
∫ T

0
σ2

(
Xz(t) − X∗

)
dB2(t)

∣∣∣∣∣∣
≥

∫ T

0

(
1 −

1
2
σ2

2(X∗)2 −
(
k2 − σ

2
2X∗

) (
ϕx(t) + ν

)
−

1
2
σ2

2
(
ϕx(t) + ν

)2
)
dt −

λ1

5
T −

λ1

5
T ≥

λ1

5
T.
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The proof is completed by noting that P(Ω̂z) = P(∩5
i=2Ω

z
i ) > 1 − 4ε. �

Proposition 4.5. Suppose that λ1 > 0, then for any ρ > 0, there is a T = T (ρ) > 0 and a δ2 = δ2(ρ) > 0
such that

lim sup
n→∞

1
n

n−1∑
k=0

P
{
Yz(kT ) ≤ δ2

}
≤ ρ, z ∈ R2,o

+ .

The above result indicates that if λ1 > 0, then Y(t) will not go extinct in finite time. The similar
proof can be found in [8], thus we omit the details here.

Proof of Theorem 3.2. Similar to that in [8], for any ε > 0 and z ∈ R2,o
+ , there is a T = T (ε) > 0 and a

sufficiently large M, such that

lim inf
n→∞

1
nT

∫ nT

0
P
{
M−1 ≤ Xz(t), Yz(t) ≤ M

}
dt ≥ 1 − ε.

Then

lim inf
t→∞

1
t

∫ t

0
P
{
M−1 ≤ X(s), Y(s) ≤ M

}
dt ≥ 1 − ε,

which implies the existence of an invariant probability measure µ∗ and indicates that the two species
coexist. Moreover, (X∗,Y∗) is also the unique positive equilibrium of the stochastic system (1.5), it has
invariant Dirac measure, thus µ∗ = δ(X∗,Y∗), which implies that all solutions converge to (X∗,Y∗) and
remain unchanged afterwards. �

5. Competitive exclusion

In this section, we consider the competitive exclusion of system (1.5). If one species goes extinct,
we estimate the corresponding Lyapunov exponent of the population, and analyze the behaviors of the
other one. For example, if Yz(t) converges to zero, we can obtain the difference between Xz(t) and ϕx(t)
by estimating

∣∣∣ lnϕx(t) − ln Xz(t)
∣∣∣ for t ≥ 0.

Lemma 5.1. For any H > 1, T > 1, ε > 0, γ > 0, there is a σ̃ > 0 such that for any z ∈ [H−1,H] ×
(0, σ̃],

P
{∣∣∣ lnϕx(t) − ln Xz(t)

∣∣∣ < γ, 0 ≤ t ≤ T ∧ τσ̃z
}
≥ 1 − ε.

Proof. In view of Corollary 2.2, there is an H = H(ε,H,T ) > 1 sufficiently large such that for any
z ∈ [H−1,H] × [0,H],

P
{
H
−1
≤ ϕx(t), Xz(t) ≤ H, t ≤ T

}
≥ 1 −

ε

2
.

It follows from H
−1
≤ ϕx(t), Xz(t) ≤ H that

H
−1∣∣∣ϕx(t) − Xz(t)

∣∣∣ ≤ ∣∣∣ lnϕx(t) − ln Xz(t)
∣∣∣ ≤ H

∣∣∣ϕx(t) − Xz(t)
∣∣∣.

Thus the desired result is obtained from Lemma 4.2. �
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Proposition 5.2. Assume that λ1 < 0. For any H > 1, ε > 0, γ > 0, and λ ∈ (0,−λ1), there is a δ̃ > 0
such that for any z ∈ [H−1,H] × [0, δ̃],

P

({
lim sup

t→∞

ln Yz(t)
t
≤ −λ

}
∩

{∣∣∣ lnϕx(t) − ln Xz(t)
∣∣∣ ≤ γ, t ≥ 0

})
≥ 1 − 4ε.

Proof. From the definition of λ1, we have∫ ∞

0

(
1
2
σ2

2(X∗)2 +
(
k2 − σ

2
2X∗

)
φ +

1
2
σ2

2φ
2
)

f ∗1 (φ)dφ = 1 − λ1 < ∞.

For any λ ∈ (0,−λ1), let d = −λ1−λ
4 , then by the continuity of integration there are η1, η2, η3 ∈ (0, 1)

sufficiently small such that∫ ∞

η1

(1
2
σ2

2(X∗)2(1 − η3) +
(
k2 − σ

2
2X∗

)
(φ − η1) +

1
2
σ2

2(1 − η3)(φ − η1)2
)

f ∗1 (φ)dφ

≥ 1 − λ1 − d = 1 + λ + 3d,∫ ∞

η−1
2

(1
2
σ2

2(X∗)2(1 − η3) +
(
k2 − σ

2
2X∗

)
(φ − η1) +

1
2
σ2

2(1 − η3)(φ − η1)2
)

f ∗1 (φ)dφ ≤ d.

By the ergodicity in (2.2), there is a T1 = T1(ε,H) such that with a probability greater than 1− ε we
have

1
t

∫ t

0
1{ϕH−1 (s)≥η1}

(1
2
σ2

2(X∗)2(1 − η3) +
(
k2 − σ

2
2X∗

) (
ϕH−1(s) − η1

)
+

1
2
σ2

2(1 − η3)
(
ϕH−1(s) − η1

)2
)
ds ≥ 1 + λ + 2d, t ≥ T1,

(5.1)

1
t

∫ t

0
1{ϕH(s)≥η−1

2 }

(1
2
σ2

2(X∗)2(1 − η3) +
(
k2 − σ

2
2X∗

) (
ϕH−1(s) − η1

)
+

1
2
σ2

2(1 − η3)
(
ϕH−1(s) − η1

)2
)
ds ≤ 2d, t ≥ T1.

(5.2)

The uniqueness of solutions implies that for any x ∈ [H−1,H], ϕH−1(s) ≤ ϕx(s) ≤ ϕH(s) a.s. s ≥ 0.
According to assumption (H2), with a probability greater than 1 − ε, we have that ϕx(t) also satisfies
(5.1) and (5.2). Then for any t ≥ T1, P(Ωz

6) ≥ 1 − ε, where

Ωz
6 =

{
a2 −

1
t

∫ t

0
1{η1≤ϕx(t)≤η−1

2 }

(1
2
σ2

2(X∗)2(1 − η3) +
(
k2 − σ

2
2X∗

) (
ϕx(s) − η1

)
+

1
2
σ2

2(1 − η3)
(
ϕx(s) − η1

)2
)
ds ≤ −λ

}
.

In fact, x ≥ (φ − η1)1{η1≤φ≤η
−1
2 }

if | ln φ − ln x| ≤ η1η2. Define the stopping time

ϑz = inf
{
t > 0 :

∣∣∣ lnϕx(t) − ln Xz(t)
∣∣∣ ≥ γ0 := γ ∧ (η1η2)

}
.

Consequently, for any ω ∈ Ωz
6 ∩ {ϑz ≥ T1} and t ∈ [T1, ϑz], we have

1
t

∫ t

0

(
1 −

1
2
σ2

2(X∗)2(1 − η3) −
(
k2 − σ

2
2X∗

)
Xz(s) −

1
2
σ2

2(1 − η3)X2
z (s)

)
ds ≤ −λ. (5.3)
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Recall that

ln Yz(t) = ln y +

∫ t

0

(
a2 −

1
2
σ2

2(X∗)2 − b2Yz(s) −
(
b21 − σ

2
2X∗

)
Xz(s) −

1
2
σ2

2X2
z (s)

)
ds

+

∫ t

0
σ2

(
Xz(s) − X∗

)
dB2(s).

(5.4)

It follows from exponential martingale inequality that

P
{ ∫ t

0
σ2

(
Xz(s) − X∗

)
dB2(s) >

1
η3

ln
1
ε

+
η3

2

∫ t

0
σ2

2
(
Xz(s) − X∗

)2ds
}
≤ ε,

which implies that P(Ωz
7) ≥ 1 − ε, where

Ωz
7 =

{ ∫ t

0
σ2

(
Xz(s) − X∗

)
dB2(s) ≤

1
η3

ln
1
ε

+
η3

2

∫ t

0

(
σ2

2(X∗)2 + σ2
2X2

z (s)
)
ds

}
.

From (5.3) and (5.4), for any ω ∈ Ωz
6 ∩Ωz

7 ∩ {ϑz ≥ T1}, we have

ln Yz(t) ≤ ln y +
1
η3

ln
1
ε
− λt, t ∈ [T1, ϑz]. (5.5)

In particular, if y ≤ 1, putting m̃1 = exp( 1
η3

ln 1
ε
) =

exp(η−1
3 )

ε
, then

Yz(t) ≤ m̃1 exp(−λt), t ∈ [T1, ϑz], ω ∈ Ωz
6 ∩Ωz

7 ∩ {ϑz ≥ T1}. (5.6)

Next we estimate
∣∣∣ lnϕx(t) − ln Xz(t)

∣∣∣ for a larger time interval. It follows from Itô’s formula that

d
(

lnϕx(t) − ln Xz(t)
)2

= f
(
ϕx(t), Xz(t),Yz(t)

)
dt + g

(
ϕx(t), Xz(t),Yz(t)

)
dB1(t),

where
f (φ, x, y) := −2(φ − x)(ln φ − ln x) +

[
2
(
k1 − σ

2
1Y∗

)
y + 3σ2

1y2
](

ln φ − ln x
)

≤
[
2
(
k1 − σ

2
1Y∗

)
y + 3σ2

1y2
]∣∣∣ ln φ − ln x

∣∣∣,
and

g(φ, x, y) := −2σ1y(ln φ − ln x) ≤ 2σ1y
∣∣∣ ln φ − ln x

∣∣∣,
which implies that

d(ln φ − ln x)2 ≤
[
2
(
k1 − σ

2
1Y∗

)
y + 3σ2

1y2
]∣∣∣ ln φ − ln x

∣∣∣dt + 2σ1y
∣∣∣ ln φ − ln x

∣∣∣dB1(t). (5.7)

Set U =
∣∣∣ ln φ − ln x

∣∣∣2, then (5.7) becomes

dU ≤
[
2
(
k1 − σ

2
1Y∗

)
y + 3σ2

1y2
]√

Udt + 2σ1y
√

UdB1(t).

Let V =
√

U, it follows from Itô’s formula that

dV ≤
[ (

k1 − σ
2
1Y∗

)
y +

3
2
σ2

1y2 −
1
2
σ2

1y2 1
V

]
dt + σ1ydB1(t).
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In fact, V = | ln φ − ln x|, thus

d
∣∣∣ lnϕx(t) − ln Xz(t)

∣∣∣ ≤ [ (
k1 − σ

2
1Y∗

)
Yz(t) +

3
2
σ2

1Y2
z (t)

]
dt + σ1Yz(t)dB1(t).

By exponential martingale inequality, P(Ωz
8) ≥ 1 − ε, where

Ωz
8 =

{∫ t

0
σ1Yz(s)dB1(s) ≤

γ0

2
+

1
γ0

ln
1
ε

∫ t

0
σ2

1Y2
z (s)ds, t ≥ 0

}
.

Thus for any ω ∈ Ωz
8, we have

∣∣∣ lnϕx(t) − ln Xz(t)
∣∣∣ ≤ γ0

2
+

∫ t

0

[ (
k1 − σ

2
1Y∗

)
Yz(s) + m̃2Y2

z (s)
]
ds, (5.8)

where m̃2 = σ2
1

(
3
2 + 1

γ0
ln 1

ε

)
.

By assumption (H2), there is a T2 = T2(ε,H) ≥ T1 sufficiently large such that

(
k1 − σ

2
1Y∗

) ∫ t

T2

m̃1e−λsds + m̃2

∫ t

T2

m̃2
1e−2λsds <

γ0

4
, t ≥ T2 (5.9)

and a σ̃ = σ̃(ε,H) < 1 sufficiently small such that[ (
k1 − σ

2
1Y∗

)
σ̃ + m̃2σ̃

2
]
T2 ≤

γ0

4
. (5.10)

In view of Lemma 4.1 and Lemma 5.1, there is a δ̃ = δ̃(ε,H) so small that

ln δ̃ +
1
η3

ln
1
ε
− λT2 < ln σ̃, (5.11)

and
P(Ωz

9) ≥ 1 − ε, z ∈ [H−1,H] × (0, δ̃], where Ωz
9 =

{
ζz := ϑz ∧ τ

σ̃
z ≥ T2

}
.

Set Ω̃z = ∩9
i=6Ω

z
i , then P(Ω̃z) ≥ 1 − 4ε. For any ω ∈ Ω̃z, t ≥ T2, by using (5.6), (5.9) and (5.10) we

obtain ∫ t∧ζz

0

[ (
k1 − σ

2
1Y∗

)
Yz(s) + m̃2Y2

z (s)
]
ds

≤
[ (

k1 − σ
2
1Y∗

)
σ̃ + m̃2σ̃

2
]
T2 +

∫ t∧ζz

T2

[ (
k1 − σ

2
1Y∗

)
Yz(s) + m̃2Y2

z (s)
]
ds

≤
γ0

4
+

∫ t∧ζz

T2

[ (
k1 − σ

2
1Y∗

)
m̃1e−λs + m̃2m̃2

1e−2λs
]
ds

<
γ0

4
+
γ0

4
=
γ0

2
.

Therefore, together with (5.8), we have∣∣∣ lnϕx(t ∧ ζz) − ln Xz(t ∧ ζz)
∣∣∣ < γ0.
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As a result, in Ω̃z, t ∧ ζz < ϑz for any t ≥ T2, which implies that Ω̃z ⊂ {ζz ≤ ϑz}. Notice that
ζz = ϑz ∧ τ

σ̃
z , then Ω̃z ⊂ {τσ̃z ≤ ϑz}. For any z ∈ [H−1,H] × (0, δ̃] and ω ∈ Ω̃z, it follows from (5.5) and

(5.11) that

ln Yz(t ∧ τσ̃z ) ≤ ln y +
1
η3

ln
1
ε
− λ(t ∧ τσ̃z ) < ln σ̃, t ≥ T2,

which means that t ∧ τσ̃z < τσ̃z for any t ≥ T2, z ∈ [H−1,H] × (0, δ̃] and ω ∈ Ω̃z. In other word,
τσ̃z = ϑz = ∞.

Hence, for any z ∈ [H−1,H] × (0, δ̃],

P

({
lim sup

t→∞

ln Yz(t)
t
≤ −λ

}
∩

{∣∣∣ lnϕx(t) − ln Xz(t)
∣∣∣ ≤ γ, t ≥ 0

})
≥ P(Ω̃z) ≥ 1 − 4ε,

which completes the proof. �

Proposition 5.3. Assume that λ1 < 0. For any H > 1, ε > 0, there is a δ > 0 such that for any
z ∈ [H−1,H] × (0, δ],

P

({
lim
t→∞

1
t

∫ t

0
Xz(s)ds = Q1

}
∩

{
lim
t→∞

1
t

∫ t

0
X2

z (s)ds = Q2

})
≥ 1 − ε.

Proof. For any ε > 0, let η1, η2 ∈ (0, 1) be sufficiently small such that∫ η−1
2

η1

(φ − η1) f ∗1 (φ)dφ ≥ Q1 −
ε

1 ∨ b1
.

According to Proposition 5.2, there is a δ > 0 such that for any z ∈ [H−1,H] × (0, δ], P(Ω
z
1) ≥ 1 − ε,

where
Ω

z
1 =

{
lim
t→∞

Yz(t) = 0
}
∩

{∣∣∣ lnϕx(t) − ln Xz(t)
∣∣∣ ≤ η1η2, t ≥ 0

}
.

Similar to (5.3), for ω ∈ Ω
z
1, we have

lim inf
t→∞

1
t

∫ t

0
Xz(s)ds ≥ Q1 −

ε

1 ∨ b1
. (5.12)

On the other hand, it follows from Itô’s formula that

ln Xz(t)
t

=
ln x

t
+ 1 −

1
2
σ2

1(Y∗)2 +
1
t

∫ t

0
σ1

(
Yz(s) − Y∗

)
dB1(s)

−
1
t

∫ t

0

[
Xz(s) +

(
k1 − σ

2
1Y∗

)
Yz(s) +

1
2
σ2

1Y2
z (s)

]
ds

and
lnϕx(t)

t
=

ln x
t

+ 1 −
1
2
σ2

1(Y∗)2 −
1
t

∫ t

0
σ1Y∗dB1(s) −

1
t

∫ t

0
ϕx(s)ds.

By the ergodicity of ϕx(t) and the strong law of large numbers for martingales, we have

lim
t→∞

[
1
t

∫ t

0
σ1Y∗dB1(s) +

1
t

∫ t

0
ϕx(s)ds

]
= Q1 = 1 −

1
2
σ2

1(Y∗)2 a.s.
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which implies that

lim
t→∞

lnϕx(t)
t

= 0 a.s..

Notice that for any ω ∈ Ω
z
1,

∣∣∣ lnϕx(t) − ln Xz(t)
∣∣∣ ≤ η1η2, then ln Xz(t) ≥ lnϕx(t) − η1η2. Therefore

lim inf
t→∞

ln Xz(t)
t

≥ 0 a.s. for ω ∈ Ω
z
1.

Moreover, Yz(t) converges to zero in Ω
z
1, then

lim sup
t→∞

1
t

∫ t

0
Xz(s)ds ≤ 1 −

σ2
1

2
= Q1 a.s. for ω ∈ Ω

z
1.

Together with (5.12), for ω ∈ Ω
z
1, we have

lim
t→∞

1
t

∫ t

0
Xz(s)ds = Q1 = lim

t→∞

1
t

∫ t

0
ϕx(s)ds. (5.13)

Recall that

d
(
ϕx(t) − Xz(t)

)
=

[(
ϕx(t) − Xz(t)

)
−

(
ϕ2

x(t) − X2
z (t)

)
+ k1Xz(t)Yz(t)

]
dt

−
[
σ1Xz(t)Yz(t) + σ1Y∗

(
ϕx(t) − Xz(t)

)]
dB1(t),

which implies that

1
t
(
ϕx(t) − Xz(t)

)
=

1
t

∫ t

0

(
ϕx(s) − Xz(s)

)
ds +

1
t

∫ t

0
k1Xz(s)Yz(s)ds −

1
t

∫ t

0

(
ϕ2

x(s) − X2
z (s)

)
ds

−
1
t

∫ t

0
σ1Xz(s)Yz(s)dB1(s) −

1
t

∫ t

0
σ1Y∗

(
ϕx(s) − Xz(s)

)
dB1(s).

Let t → ∞, then it follows from (2.3) and (5.13) that

lim
t→∞

1
t

∫ t

0
X2

z (s)ds = Q2.

Hence

P

({
lim
t→∞

1
t

∫ t

0
Xz(s)ds = Q1

}
∩

{
lim
t→∞

1
t

∫ t

0
X2

z (s)ds = Q2

})
≥ P(Ω

z
1) ≥ 1 − ε.

�

Proof of Theorem 3.3. Similar to that in [8], if λ1 < 0, λ2 < 0, then for any ε > 0 and z ∈ R2,o
+ we

obtain
P
{
lim
t→∞

Xz(t) = 0 or lim
t→∞

Yz(t) = 0
}
≥ 1 − ε.

Since ε is taken arbitrarily, and according to Proposition 5.2, we claim pz + qz = 1, where

P

{
lim
t→∞

ln Xz(t)
t

= λ2

}
= pz > 0, P

{
lim
t→∞

ln Yz(t)
t

= λ1

}
= qz > 0.

If for some z ∈ R2,o
+ , Yz(t) converges to zero, by Propositions 5.2 and 5.3, we obtain that

∣∣∣Xz(t)−ϕx(t)
∣∣∣

is sufficiently small and the distribution of Xz(t) converges weakly to π∗1. More details can be found in
[8], thus we omit here. �
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6. Discussion

In this paper, we consider a stochastic Lotka-Volterra competition model (1.5) and analyze the
cases of coexistence and competitive exclusion, respectively. Firstly, the model makes sense under the
assumption that the positive equilibrium (X∗,Y∗) of the corresponding deterministic system exists, and
it is obtained by perturbing inter-specific competition rates b12, b21, therefore this model is reasonable
mathematically. Secondly, (X∗,Y∗) is also the coexistence equilibrium of the stochastic system (1.5),
which implies that there is an invariant Dirac measure, and which is the biggest difference between
our model and other stochastic competitive models. Therefore, the survival analysis for model (1.5) is
significative.

Recall that only if k1, k2 < 1 or k1, k2 > 1, the unique positive (coexistence) equilibrium (X∗,Y∗)
of system (1.4) exists, which guarantees the rationality of the stochastic system (1.5). Therefore, we
consider system (1.5) in the above two cases.

Firstly, we provide an example to demonstrate the mathematical results of the deterministic system
(1.4) by choosing many different initial values.

Example 1. Consider the deterministic system (1.4) with r = 1 and parameters k1 = k2 = 0.5
and k1 = k2 = 2, respectively. Many solutions are obtained by choosing different initial points from
either side of the diagonal line. Moreover, the same set of initial points are used in both cases, which
is more convenient for comparison. In the former case, (X∗,Y∗) = ( 2

3 ,
2
3 ), and it can be seen from the

left panel of Figure 1 that all solutions converge to (X∗,Y∗). In the latter case, (X∗,Y∗) = (1
3 ,

1
3 ), and

solutions with different initial values converge to (1, 0) or (0, 1), which can be seen clearly from the
right panel of Figure 1.
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Figure 1. Phase portraits of the solutions to the deterministic system (1.4) in the two cases,
respectively.

In this paper, we construct two values λ1, λ2 that can be directly calculated via those coefficients
of system (1.5), and obtain that if they are both positive, all solutions to system (1.5) converge to the
unique positive (coexistence) equilibrium (X∗,Y∗), and if they are both negative, X(t) or Y(t) goes
extinct. Below we present two examples to illustrate the main mathematical results in this paper by
choosing appropriate parameters, and obtain corresponding figures according to the method in [16].
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In addition, we just consider the two cases k1, k2 < 1 and k1, k2 > 1, and choose some relatively small
values for σ1, σ2 such that assumptions (H0) and (H2) both hold.

Example 2. Consider system (1.5) with parameters k1 = 0.4, k2 = 0.5, then k1, k2 < 1 and
(X∗,Y∗) = (0.75, 0.625). Let σ1 = σ2 = 0.5, it can be easily verified that assumptions (H0) and (H2)
both hold. Moreover, by direct calculation, λ1 = 0.51 > 0, λ2 = 0.61 > 0. According to Theorem 3.2,
the two species coexist, moreover the solution converges to (X∗,Y∗) and keeps on it afterwards, which
can be seen clearly from Figure 2.
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z
(t)

Y
z
(t)

Figure 2. Sample paths of Xz(t) and Yz(t) of Example 2 with initial value z = (1.2, 0.1), and
green lines represent 0.625 and 0.75, respectively.

Example 3. Consider system (1.5) with parameters k1 = 2, k2 = 3, then k1, k2 > 1 and (X∗,Y∗) =

(0.2, 0.4). Let σ1 = σ2 = 0.5, clearly assumptions (H0) and (H2) are both satisfied, and λ1 = −2.02 <
0, λ2 = −1.03 < 0. By Theorem 3.3, X(t) or Y(t) goes extinct, and below two trials with initial values
z1 = (1.2, 0.2) and z2 = (0.2, 1.2) are provided, respectively. Here the two initial values are chosen
symmetrically, which makes it easier to be compared. See Figure 3 and Figure 4.
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Figure 3. Phase portraits of the solution and sample paths of ln Xz1(t), ln Yz1(t) in Example 3
with initial value z1 = (1.2, 0.2), and the green line in the right panel has the slope k = −2.02.
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Figure 4. Phase portraits of the solution and sample paths of ln Xz2(t), ln Yz2(t) in Example 3
with initial value z2 = (0.2, 1.2), and the green line in the right panel has the slope k = −1.03.

From Figure 3 we can see that Yz1(t) converges to zero and lim
t→∞

ln Yz1 (t)
t = λ1, and Xz1(t) keeps floating

up and down around one. Similarly, Figure 4 shows that Xz2(t) converges to zero and lim
t→∞

ln Xz2 (t)
t = λ2,

and Yz2(t) keeps floating up and down around one.
After many trials, we find that if σi (i = 1, 2) satisfy assumptions (H0) and (H2), k1, k2 < 1 will

lead to λ1, λ2 > 0, while k1, k2 > 1 leads to λ1, λ2 < 0. In other words, in either case, we cannot find
appropriate σ1, σ2 satisfying these two assumptions such that λ1λ2 < 0.

According to the results in [13], if the noise intensities σ1, σ2 satisfy assumption (H0) and

k1k2 <

(
k2

k1
−

1
2
σ2

2Y∗
) (

k1

k2
−

1
2
σ2

1X∗
)
,

then the positive (coexistence) equilibrium (X∗,Y∗) of the stochastic system (1.5) is globally asymptot-
ically stable. In this paper, similar results are obtained if λ1, λ2 > 0. The two kinds of conditions must
have some connections although there is no obvious relationship between their expressions.

Especially, if σ1 = σ2 = 0, system (1.5) actually becomes the deterministic system (1.4), and
λ0

1 = 1−k2, λ
0
2 = 1−k1. As claimed before, if k1, k2 < 1, then λ0

1, λ
0
2 > 0, and the positive (coexistence)

equilibrium (X∗,Y∗) is globally asymptotically stable; if k1, k2 > 1, then λ0
1, λ

0
2 < 0, and the case of

bistability occurs. It implies that our mathematical results for the stochastic system (1.5) can go back
to that of the corresponding deterministic system.

According to the above statements, we obtain that if the random perturbations are relatively weak,
the dynamic behaviors of the stochastic system (1.5) are similar to those of the corresponding determin-
istic system (1.4). However, the conjecture that there is no appropriate σ1, σ2 satisfying assumptions
(H0) and (H2) such that λ1λ2 < 0 has not been rigorously proved mathematically, and that will be our
future work.

Acknowledgments

This work was partially supported by an NSFC (11571041) and partially supported by an NSERC
grant (RGPIN-2015-04581).

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2717–2737.



2736

Conflict of interest

The authors declare that they have no competing interests.

References

1. J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, Heidelberg, 2002.

2. X. Mao, S. Sabais and E. Renshaw, Asymptotic behavior of stochastic Lotka-Volterra model, J.
Math. Anal. Appl., 287 (2003), 141–156.

3. N. H. Du and V. H. Sam, Dynamics of a stochastic Lotka-Volterra model perturbed by white noise,
J. Math. Anal. Appl., 324 (2006), 82–97.

4. D. Jiang, C. Ji, X. Li, et al., Analysis of autonomous Lotka-Volterra competition systems with
random perturbation, J. Math. Anal. Appl., 390 (2012), 582–595.

5. M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with
random perturbations, Discrete Contin. Dyn. Syst., 33 (2013), 2495–2522.

6. R. Rudnicki, Long-time behaviour of a stochastic prey-predator model, Stochastic Process. Appl.,
108 (2003), 93–107.

7. D. H. Nguyen, N. H. Du and T. V. Ton, Asymptotic behavior of predator-prey systems perturbed
by white noise, Acta Appl. Math., 115 (2011), 351–370.

8. D. H. Nguyen and G. Yin, Coexistence and exclusion of stochastic competitive Lotka-Volterra
models, J. Differ. Equations, 262 (2017), 1192–1225.

9. M. Liu, K. Wang and Q. Wu, Survival analysis of stochastic competitive models in a polluted
environment and stochastic competitive exclusion principle, Bull. Math. Biol., 73 (2011), 1969–
2012.

10. X. Mao, Stationary distribution of stochastic population systems, Syst. Control Lett., 60 (2011),
398–405.

11. A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl., 292 (2004),
364–380.

12. Q. Liu, The effects of time-dependent delays on global stability of stochastic Lotka-Volterra com-
petitive model, Physica A., 420 (2015), 108–115.

13. J. J. Xiong, X. Li and H. Wang, Global asymptotic stability of a Lotka-Volterra competition model
with stochasticity in inter-specific competition, Appl. Math. Letters., 89 (2019), 58–63.

14. A. V. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations, Amer-
ican Mathematical Society, Providence, 1989.

15. L. R. Bellet, Ergodic properties of Markov processes, in Open Quantum System II, Springer,
Berlin, Heidelberg, (2006), 1–39.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2717–2737.



2737

16. D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equa-
tions, SIAM Rev., 43 (2001), 525–546.

c© 2019 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2717–2737.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Stochastic coexistence
	Competitive exclusion
	Discussion

