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Abstract: The aim of this work is to study the impact of sex and gender disparity on the overall
dynamics of influenza A virus infection and to explore the direct and indirect effect of influenza A mass
vaccination. To this end, a deterministic SIR model has been formulated and throughly analysed, where
the equilibrium and stability analyses have been explored. The impact of sex disparity (i.e., disparity
in susceptibility and in recovery rate between females and males) on the disease outcome (i.e., the
basic reproduction number R0 and the endemic prevalence of influenza in females and males) has been
investigated. Mathematical and numerical analyses show that sex and gender disparities affect on the
severity as well as the endemic prevalence of infection in both sexes. The analysis shows further that
the efficacy of the vaccine for both sexes (e1&e2) and the response of the gender to mass-vaccination
campaigns ψ play a crucial role in influenza A containment and elimination process, where they impact
significantly on the protection ratio as well as on the direct, indirect and total effect of vaccination on
the burden of infection.

Keywords: SIR model; sex disparity; gender disparity; mass vaccination; local and global stability;
controllability.

1. Introduction

Influenza A is a highly contagious respiratory viral disease caused by influenza viruses. It is
sometimes called ”the flu”. It can easily spread from person to another by direct contact, where an
infected individual can spread it to others up to about 6 feet away. The virus spreads by droplets made
by infected individuals when they cough, sneeze or talk. Such droplets may land in the mouth or the
nose of nearby susceptible people or they could even be inhaled by them to enter their lungs, which
finally lead them to catch the flu [1, 2]. Among the three types of influenza (namely, influenza A,

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2019131


2614

influenza B and influenza C), influenza A is the most common one that is known to cause widespread
outbreaks. It has many subtypes of which the two subtypes H1N1 and H3N2 are mostly circulating
among humans [1, 3].

Due to its ability to rapidly evolve and mutate, seasonal flu epidemics and (rarely) pandemics do
occur. Such epidemics and pandemics impact significantly on the public health as well as on the
economy over the globe. For example, in the united states, seasonal influenza infections are
responsible for thousands of deaths and for hundreds of thousands of hospitalisations every year [4].
It is also responsible for the loss of billions of dollars yearly, as a cost of treatment or due to lost days
of work and/or education. Consequently, public health communities are always interested in finding
not only strategies to mitigate the impact of seasonal influenza but also strategies aiming at reducing
morbidity and mortality in the case of pandemics [3, 5].

Numerous studies have been done to understand more about the epidemiology of influenza. In
particular, mathematical models have been extensively used to extend our understanding about the
transmission dynamics of influenza and to help find public health strategies aiming at
preventing/containing it [6]. Some models are used to study the epidemic situation of influenza A,
where its severity is explored by estimating the (basic) reproduction number (a threshold quantity that
is defined to determine the average number of secondary infected individuals who get infected due to
successful contacts occurring between susceptible individuals and an infected one, during the
infectious period) based on data collected during outbreaks [7–9]. Other models study the endemic
situation, where the demographic parameters (births and natural deaths) are taken into
account [4, 10, 11].

The general motivation behind these studies is to help find strategies to contain influenza A. Some
strategies are individually-based (in the sense that individuals are aware of the way influenza is
transmitted and they avoid catching it) and others are based on intervention programmes (e.g.,
isolation/quarantine or vaccination) directed by the governments and public health decision makers.
For example, some control strategies are based on treating infected individuals by either resting in
bed, drinking plenty of liquids or taking mild pain killers to relieve the pain. Other strategies may be
educational, based on reducing the successful contacts through staying at home while being sick,
covering the face when sneezing or coughing, and regularly washing the hands. Isolating or
quarantining infected individuals is another strategy [4, 12]. Also, applying mass vaccination
programmes could be helpful [13]. Influenza vaccine is particularly helpful for those suffering from
influenza complications or those being at high risk of getting infected with the flu.

A review paper on influenza epidemics and pandemics [6] discussed the usefulness of
mathematical models in understanding the spatial-temporal transmission dynamics of influenza and in
helping evaluate the potential effectiveness of public health interventions in controlling pandemics of
varying severity. The review deduced that ”the current models may not be useful in identifying
interventions for epidemics generated by strains” (e.g., influenza A H1N1) and recommends that
further studies taking into account more biological complexities are needed. One of such complexities
is the sex and gender disparity.

The terms sex and gender are often used interchangeably [14]. However, the literature shows that
they refer to different meanings. The term sex refers to the human biology, while the term gender
refers to the human behaviour and activities that are determined by the societies or the cultures [15].
The biology literature shows that the gender can affect the health seeking behaviours, while the
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biological sex affects the exposure to pathogens, vulnerability and immune response to influenza and
consequently to vaccination [15–19]. All these effects together result in differences between males
and females in response to influenza-vaccination-campaigns as well as the susceptibility, severity and
duration of influenza. Moreover, biological studies show that females are less susceptible to influenza
than males (as they develop higher innate, humoral and cellular immune responses than males), while
the influenza-vaccine efficacy is higher in females than in males [20–23]. On the other hand, the
influenza-vaccine uptake is influenced by the gender, where there is evidence that males are more
likely to take the vaccine than females [20]. More details about sex and gender differences and their
relation to influenza are shown in the July 2010 WHO report [14]. It is noteworthy that the report
strikingly highlights that the role of sex and gender in acute infectious diseases, including influenza,
has not been explored extensively and further work that takes these factors in consideration is lacked
so that a more effective public health influenza control programme is produced.

To the best of our knowledge, neither the sex nor the gender has been considered while
formulating a mathematical model for studying the transmission dynamics of respiratory infections
(e.g., influenza) and this is the first work that takes these factors into consideration. Here, the impact
of sex and gender on the transmission dynamics and possibility to contain influenza A infection is
explored. To this end, we constructed a deterministic SIR influenza model in which it is differentiated
between both females and males through two sex-difference factors (namely, the susceptibility and
recovery rates), see section 2. In addition to carrying out equilibrium and stability analysis, the impact
of disparities in these parameters on the influenza infection outcome has been explored, section 3.
Moreover, the possibility to contain/eliminate influenza with a public health strategy based on the
application of influenza-mass-vaccination programme solely has been investigated. Therefore, the
model has been generalised to take into account disparity in the influenza-vaccine efficacy (that is
sex-difference factor) and in the response to influenza-mass vaccination campaigns (i.e, the
vaccination rate, which is a gender behavioural difference factor), section 4. The paper closes with a
summary and conclusion of our results in section 5.
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µ
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Figure 1. Flowchart for the transition between model states.
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Table 1. State variables for our model.

State variable Description

x1 = S 1/N Proportion of susceptible females at time t.
y1 = I1/N Proportion of infected females at time t.
z1 = R1/N Proportion of recovered females at time t.
x2 = S 2/N Proportion of susceptible males at time t.
y2 = I2/N Proportion of infected males at time t.
z2 = R2/N Proportion of recovered males at time t.
N1(t) Total female population size at time t.
N2(t) Total male population size at time t.
N = N1 + N2 Total population size at time t, assumed to be constant.

Table 2. Physical meaning, value, dimension and references for model parameters. (Dim. =

Dimension, Ref. = References, Est. = Estimated, Arbit. = Arbitrary)

Parameters Description Value Dim. Ref.
B(t) Total number of newborns. – Time−1 –
µ Per-capita death rate. 1/70 Year−1 [4]
β̄ Per-capita contact rate between individuals – Year−1 –
β Per-capita effective contact rate at which

susceptible males acquire influenza.
181.173 Year−1 Est.

γ Per-capita recovery rate for infected males. 365/3.38 Year−1 [24]
R0 The basic reproduction number for model (2.6). 1.525 – [24]
ψ Per-capita vaccination rate for susceptible males. 0.57 Year−1 Arbit.
r1 The susceptibility of females. – – –
r2 The susceptibility of males. – – –
g = r1/r2 Relative susceptibility of females with respect to

males.
0.9 < 1 – Arbit.

[13]
a A rescaling parameter representing the relative

recovery rate of infected females with respect to
infected males.

1.1 – Arbit.

e0 Relative response to vaccination campaigns of
females with respect to males.

0.9 – Arbit.
[20]

e1(> e2) Influenza vaccine efficacy in females. 0.9 – Arbit.
[20]

e2 Influenza vaccine efficacy in males. 0.8 – Arbit.
[20]

2. Model building

Consider a closed homogeneously mixing heterosexual population of constant size N, for which
both the female and male subpopulations are splitted, according to their epidemiological status, into
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susceptible S , infected I and recovered with full immunity R. State variables for the female population
are denoted by the subscript ”1”, while those of the male population have the subscript ”2”. If B(t)
is the total number of births at time t, q is the probability that a newborn is female, while µ is the
per-capita death rate, then the demographic dynamics of the populations could be described by

dN
dt

= B(t) − µN ,
dN1

dt
= qB(t) − µN1 ,

dN2

dt
= (1 − q)B(t) − µN2 (2.1)

where N1(t) and N2(t) denote the total number of females and males, respectively, at time t and N1(t) +

N2(t) = N(t). Since the total population size is assumed constant, then B(t) = µN. If we further assume
that the male-to-female newborns ratio is 1- to - 1, then q = 1/2. This assumption implies that the
equilibrium proportion of females as well as males is 1/2.

As influenza is not vertically transmitted, it is assumed that all newbirths are susceptible. Female
newborns (whose number at time t is µN/2) enter the class of susceptible females S 1(t). They either die
naturally (at per-capita rate µ) or acquire influenza infection due to successful contacts with infected
males and females at rate λ1(t) and transit to the infected females class. Infected females either die at
per-capita rate µ or recover and acquire full immunity against the attacking influenza strain at a per-
capita rate γ1. Once they recover, females acquire full immunity against the strain and die naturally at
rate µ. Therefore, the dynamics of the female population is governed by the system

dS 1

dt
=

1
2
µN − (λ1 + µ)S 1,

dI1

dt
= λ1S 1 − (γ1 + µ)I1, (2.2)

dR1

dt
= γ1I1 − µR1.

Similarly, susceptible males increase due to male newbirths (of size µN/2) and decrease due to
either natural death (at rate µ) or acquiring influenza infection at rate λ2. Infected males either die
at rate µ or they recover from the attacking strain at rate γ2. Recovered males acquire full immunity
against the attacking strain and die naturally at rate µ. A flowchart for the transition between the model
states is shown in Figure 1, while model states and parameters’ physical meaning are shown in Tables
1 and 2, respectively. Hence, the male population’s dynamics is described through

dS 2

dt
=

1
2
µN − (λ2 + µ)S 2,

dI2

dt
= λ2S 2 − (γ2 + µ)I2, (2.3)

dR2

dt
= γ2I2 − µR2.

Assume now that β̃ denotes the average number of contacts that an individual has with other
individuals in the total population. Also, r1 is the susceptibility of females (which is proportional to
the probability of success that a susceptible female gets infected due to contacts with infected males
and females [25]), while r2 is the susceptibility of males (which is proportional to the probability that
a susceptible male gets successfully infected as a result of contacts with infected individuals [25]).
Assume also that ri j accounts for the transmissibility of influenza from infected individuals in the
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population i to susceptible individuals in the population j, for all i, j ∈ {1, 2}. Hence, the rate at which
susceptible females acquire infection λ1(t) and that at which susceptible males acquire infection read

λ1(t) = r1β̃
(
r11

I1

N
+ r21

I2

N

)
and λ2(t) = r2β̃

(
r12

I1

N
+ r22

I2

N

)
. (2.4)

Assume further that infected males and females are equally likely to transmit influenza, in the sense
that the effective rate at which infected females infect susceptible males/females equals that at which
infected males infect susceptible males/females (i.e., r11 = r12 = r21 = r22 := r). Hence, β = r2rβ̃ :=
r2β̄ accounts for the effective contact rate at which susceptible males acquire influenza and r1rβ̃ =

(r1/r2)r2β̄ := gβ is the effective contact rate at which susceptible females acquire influenza virus. Here,
g = r1/r2 accounts for the relative susceptibility [26,27] of females with respect to males. Hence, (2.4)
reads

λ1(t) = gβ
( I1

N
+

I2

N

)
:= gλ(t) and λ2(t) = β

( I1

N
+

I2

N

)
:= λ(t). (2.5)

The recovery rates could also be rescaled by assuming that γ2 = γ and γ1 = aγ. Hence, a is a
dimensionless parameter accounting for the relative recoverability of females with respect to males.
Thus, the populations’ overall dynamics is described by the following system of ordinary differential
equations

dS 1

dt
=

1
2
µN − (gλ + µ)S 1,

dI1

dt
= gλS 1 − (aγ + µ)I1,

dR1

dt
= aγI1 − µR1,

dS 2

dt
=

1
2
µN − (λ + µ)S 2,

dI2

dt
= λS 2 − (γ + µ)I2, (2.6)

dR2

dt
= γI2 − µR2.

It is noteworthy that this modelling approach could be applied to several other infectious diseases,
including but not limited to tuberculosis (TB), pertussis (whooping cough) and human
immunodeficiency virus (HIV) infection, where the literature shows evidence that sex and gender
have significant impact on their spread. For example, in most countries, TB notification is twice as
high in men as in women (with a male/female ratio of 1.96 ± 0.6 for the worldwide case notification
rate) [28, 29]. However, in case of pertussis, females have been shown to be more affected than males
with male-to-female ratio of 0.8 : 1 [30]. On the other hand, although the proportion of females living
with HIV is about 51% of the global total, it varies from region to another. For example, in the United
States, one in four people having HIV is a woman. However, women account for a proportion of 56%
of those having HIV in Western and Central Africa. Moreover, in Eastern and Southern Africa,
females account for more than 59% of the total number of people having HIV in that region [31–33].

3. Rescaled model and equilibria

Let
x1 =

S 1

N
, y1 =

I1

N
, z1 =

R1

N
, x2 =

S 2

N
, y2 =

I2

N
, z2 =

R2

N
.

Hence,
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dx1

dt
=

1
2
µ − (gλ + µ)x1,

dy1

dt
= gλx1 − (aγ + µ)y1,

dz1

dt
= aγy1 − µz1,

dx2

dt
=

1
2
µ − (λ + µ)x2,

dy2

dt
= λx2 − (γ + µ)y2,

dz2

dt
= γy2 − µz2, (3.1)

where the rescaled force of infection λ is a function of both variables y1 and y2 with

λ(y1, y2) = β(y1 + y2) (3.2)

and x1 + y1 + z1 + x2 + y2 + z2 = 1.
If we assume that p1 = N1/N = x1 + y1 + z1 and p2 = N2/N = x2 + y2 + z2, then the rate of change

in the proportion of females and males at time t is given by

dp1

dt
=

1
2
µ − µp1,

dp2

dt
=

1
2
µ − µp2. (3.3)

Its solution is given by

p1(t) =
1
2

[
1 − (1 − 2p1(0))e−µt] ,

p2(t) =
1
2

[
1 − (1 − 2p2(0))e−µt] , (3.4)

where p1(0) and p2(0) are the initial proportions of females and males, respectively, and p1(0)+ p2(0) =

1. It is easy to check that the fact that p1(t) + p2(t) = 1 implies that p1(0) = p2(0) = 1/2. Thus,
p1(t) = p2(t) = 1/2. I.e., the female-to-male ratio at any time t is 1 : 1. Hence, x1(t) + y1(t) + z1(t) =

x2(t) + y2(t) + z2(t) = 1/2.

3.1. Influenza-free equilibrium and the basic reproduction number R0

Simple computations show that model (3.1) has the influenza-free equilibrium
E0 = (x1,0, y1,0, z1,0, x2,0, y2,0, z2,0)T = (1/2, 0, 0, 1/2, 0, 0)T , where the prime T here means vector
transpose.

The basic reproduction number is computed by following the approach shown in Diekmann et
al [34]. The linearised infection subsystem, at the influenza-free equilibrium, is

dy1

dt
=

1
2

gβ(y1 + y2) − (aγ + µ)y1,

dy2

dt
=

1
2
β(y1 + y2) − (γ + µ)y2,

which is two-dimensional. Hence, the corresponding non-negative matrix for the new-infection terms
T and the non-singular matrix for the remaining transfer terms Σ are two-dimensional too, with

T =

(
gβ/2 gβ/2
β/2 β/2

)
and Σ =

(
−(aγ + µ) 0

0 −(γ + µ)

)
.
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Therefore, the next-generation matrix with large domain KL = −TΣ−1 reads

KL =

(
gβ/2(aγ + µ) gβ/2(γ + µ)
β/2(aγ + µ) β/2(γ + µ)

)
.

Thus, the basic reproduction number R0 is the dominant eigenvalue of KL and is given by

R0 =
β

2

(
1

µ + γ
+

g
µ + aγ

)
. (3.5)

The local stability analysis of the influenza-free equilibrium E0 is investigated by considering the
eigenvalues of the corresponding Jacobian matrix J0 evaluated at E0. The computations show that J0

has four multiple eigenvalues −µ, −µ, −µ, −µ in addition to those of the matrix

Jsub =

(
gβ/2 − (aγ + µ) gβ/2

β/2 β/2 − (γ + µ)

)
.

Hence, the local stability of E0 depends on the determinant and trace of the matrix Jsub. Now,

det(Jsub) = (γ + µ)(aγ + µ)(1 − R0).

Hence, det(Jsub) > 0 if and only if R0 < 1. Moreover, if R0 < 1, then β/2 < γ + µ and gβ/2 < aγ + µ.
Hence, tr(Jsub) = [β/2 − (γ + µ)] + [gβ/2 − (aγ + µ)] < 0. Thus, E0 is locally asymptotically stable for
R0 < 1 and we show the following proposition.

Proposition 1. Model (3.1) has an influenza-free equilibrium E0 = (1/2, 0, 0, 1/2, 0, 0)T that is locally
asymptotically stable if and only if the basic reproduction number R0 is less than unity.

3.2. Existence of a unique endemic equilibrium

To find the endemic equilibrium of system (3.1), we put the derivatives in the left hand side of its
equations equal zero and solve to get

x1 =
µ

2(gλ̄ + µ)
, y1 =

µ

2(aγ + µ)
gλ̄

(gλ̄ + µ)
, z1 =

aγ
2(aγ + µ)

gλ̄
(gλ̄ + µ)

, (3.6)

x2 =
µ

2(λ̄ + µ)
, y2 =

µ

2(γ + µ)
λ̄

(λ̄ + µ)
, z2 =

γ

2(γ + µ)
λ̄

(λ̄ + µ)
(3.7)

where λ̄ ∈ [0,∞) is the equilibrium force of infection and is the unique feasible solution of the equation

1 =
βµ

2

(
1

(γ + µ)(λ̄ + µ)
+

g
(aγ + µ)(gλ̄ + µ)

)
. (3.8)

It is clear that the equilibrium proportion of the subpopulations depend on the equilibrium force of
infection λ̄ which is determined by the solution of equation (3.8). Once a solution of equation (3.8) is
obtained, we get the endemic equilibrium of the model (3.1). The uniqueness of the feasible solution
of equation (3.8) could be proven by rewriting it as

H1(λ̄) =: 1 −
βµ

2(γ + µ)(λ̄ + µ)
=

gβµ
2(aγ + µ)(gλ̄ + µ)

:= H2(λ̄). (3.9)
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Figure 2. The curves of both functions H1 and H2 intersect in a unique point only if H1(0) <
H2(0) (i.e., when R0 > 1). The figure is produced with parameter values as shown in Table 2.

It is easy to check the following

H1(0) = 1 −
β

2(γ + µ)
, H2(0) =

gβ
2(aγ + µ)

and
dH1

dλ̄
=

βµ

2(γ + µ)(λ̄ + µ)2
> 0,

dH2

dλ̄
= −

g2βµ

2(aγ + µ)(gλ̄ + µ)2
< 0.

Hence, equation (3.9) has a unique nonnegative solution if and only if H1(0) ≤ H2(0), while otherwise
it has no feasible solution, see Figure 2. The condition H1(0) ≤ H2(0) is equivalent to R0 ≥ 1 and we
show the following proposition.

Proposition 2. Model (3.1) has a unique endemic equilibrium if and only if the basic reproduction
number R0 > 1, while otherwise it has no endemic steady state.

To find the unique feasible solution of equation (3.8), we rewrite it in the quadratic form

A2λ̄
2 + A1λ̄ + A0 = 0 (3.10)

where

A2 = 2g(γ + µ)(aγ + µ),
A1 = µ[2(1 + g)(γ + µ)(aγ + µ) − gβ((aγ + µ) + (γ + µ))],
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A0 = µ2[2(γ + µ)(aγ + µ) − β(aγ + µ + g(γ + µ))].

Hence,

λ̄ =
µ

2

{
R0

(
1 +

(1 − g)(γ + µ)
aγ + µ + g(γ + µ)

)
−

(
1 +

1
g

)

+

√(
R0

(
1 +

(1 − g)(γ + µ)
aγ + µ + g(γ + µ)

)
−

(
1 +

1
g

))2

+
4
g

(R0 − 1)

 . (3.11)

3.3. Local stability of the endemic equilibrium

Since x1 + y1 + z1 = x2 + y2 + z2 = 1/2 and both z1 and z2 do not appear in the other equations,
we consider the four equations of x1, y1, x2 and y2 only. Hence, the Jacobian matrix evaluated at the
endemic equilibrium, for these four equations, reads

J =



−(gλ̄ + µ) −
gβµ

2(gλ̄ + µ)
0 −

gβµ
2(gλ̄ + µ)

gλ̄
gβµ

2(gλ̄ + µ)
− (aγ + µ) 0

gβµ
2(gλ̄ + µ)

0 −
βµ

2(λ̄ + µ)
−(λ̄ + µ) −

βµ

2(λ̄ + µ)

0
βµ

2(λ̄ + µ)
λ̄

βµ

2(λ̄ + µ)
− (γ + µ)


.

If ρ is the eigenvalue of J, then the characteristic polynomial of J is of degree four and reads

ρ4 + C1ρ
3 + C2ρ

2 + C3ρ + C4 = 0 (3.12)

where

• the coefficient of ρ3 is

C1 = (gλ̄ + µ) + (aγ + µ) −
gβµ

2(gλ̄ + µ)
+ (λ̄ + µ) + (γ + µ) −

βµ

2(λ̄ + µ)
.

Using (3.9), we get

C1 = (λ̄ + µ) + (gλ̄ + µ) +
βµ(aγ + µ)

2(λ̄ + µ)(γ + µ)
+

gβµ(γ + µ)
2(gλ̄ + µ)(aγ + µ)

. (3.13)

• the coefficient of ρ2 is

C2 = (λ̄ + µ)(γ + µ) + (gλ̄ + µ)(aγ + µ) −
βµ2

2(λ̄ + µ)
−

gβµ2

2(gλ̄ + µ)

+

(
(gλ̄ + µ) + (aγ + µ) −

gβµ
2(gλ̄ + µ)

) (
(λ̄ + µ) + (γ + µ) −

βµ

2(λ̄ + µ)

)
−

gβ2µ2

4(λ̄ + µ)(gλ̄ + µ)
.
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Using (3.9), we obtain

C2 = (gλ̄ + 2µ)(γ + µ)
gβµ

2(gλ̄ + µ)(aγ + µ)
+ (λ̄ + 2µ)(aγ + µ)

βµ

2(λ̄ + µ)(γ + µ)
+λ̄(γ + µ) + gλ̄(aγ + µ) + (λ̄ + µ)(gλ̄ + µ). (3.14)

• the coefficient of ρ is

C3 =

(
(λ̄ + µ) + (γ + µ) −

βµ

2(λ̄ + µ)

) (
(gλ̄ + µ)(aγ + µ) −

gβµ2

2(gλ̄ + µ)

)
+

(
(gλ̄ + µ) + (aγ + µ) −

gβµ
2(gλ̄ + µ)

) (
(λ̄ + µ)(γ + µ) −

βµ2

2(λ̄ + µ)

)
−

gβ2µ3

2(λ̄ + µ)(gλ̄ + µ)
.

Using (3.9), it simplifies to

C3 = λ̄(γ + µ)(gλ̄ + µ) + gλ̄(aγ + µ)(λ̄ + µ) + gλ̄(γ + µ)
gβµ

2(gλ̄ + µ)
+

λ̄(aγ + µ)
βµ

2(λ̄ + µ)
+
βµ2(aγ + µ)

2(γ + µ)
+

gβµ2(γ + µ)
2(aγ + µ)

. (3.15)

• the term-free of ρ reads

C4 =

(
(λ̄ + µ)(γ + µ) −

βµ2

2(λ̄ + µ)

) (
(gλ̄ + µ)(aγ + µ) −

gβµ2

2(gλ̄ + µ)

)
−

gβ2µ4

4(λ̄ + µ)(gλ̄ + µ)

which, using (3.9), simplifies to

C4 =
βµλ̄(aγ + µ)(gλ̄ + µ)

2(λ̄ + µ)
+

g2βµλ̄(γ + µ)(λ̄ + µ)
2(gλ̄ + µ)

. (3.16)

Since, all model parameters are non-negative and since λ̄ is positive for R0 > 1, then the relations
(3.13), (3.14), (3.15), and (3.16) imply that the coefficients C1,C2,C3 and C4 are all positive, for R0 > 1.
Hence, based on the Routh-Hurwitz criterion (see appendix A.5 of [35]), the roots of the characteristic
polynomial (3.12) have strictly negative real parts if and only if the determinant ∆ = C1C2C3−C2

3−C2
1C4

is strictly positive. To this end, we compute ∆. On performing some tedious calculations and with the
use of the relation (3.9), it is shown in appendix A that ∆ > 0. We show the following proposition.

Proposition 3. The unique endemic equilibrium of model (3.1) is locally asymptotically stable
whenever it exists.
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3.4. Global stability of the influenza-free equilibrium

Global stability analysis of the disease-free equilibrium (for R0 < 1) is established by following the
approach shown in section 3 of Castillo-Chavez et al [36]. Model (3.1) can be rewritten as

dx
dt

= F(x, y),

dy
dt

= G(x, y) (3.17)

where

x =


x1

z1

x2

z2

 , y =

(
y1

y2

)

and

F(x, y) =


µ/2 − (gλ + µ)x1

aγy1 − µz1

µ/2 − (λ + µ)x2

γy2 − µz2

 , G(x, y) =

(
gλx1 − (aγ + µ)y1

λx2 − (γ + µ)y2

)
.

The components of x ∈ R4 denote the uninfected (susceptible) subpopulations, while those of y ∈ R2

denote the infected subpopulations. The disease-free equilibrium (DFE) of model (3.17) is U0 =

(x∗, 0)T which corresponds to the DFE of the original model (3.1). Thus, the global stability of U0 is
equivalent to that of E0 and vice-versa. Castillo-Chavez et al [36] showed that the global stability of
U0 (provided that R0 < 1) is guaranteed if the following two conditions are held

(H1) For dx
dt = F(x, 0), x∗ is globally asymptotically stable (g. a. s.),

(H2) G(x, y) = By − Ĝ(x, y), Ĝ(x, y) ≥ 0 for (x, ȳ) ∈ Ω,

where B = DyG(x∗, 0) is an M-matrix and Ω = {(x1, z1, x2, z2, y1, y2) : x1 + z1 + x2 + z2 +y1 +y2 = 1, x1 >

0, x2 > 0, z1 ≥ 0, z2 ≥ 0, y1 ≥ 0, y2 ≥ 0} is the region where model (3.17) makes biological sense. To
this end, we prove each condition separately. Condition (H1) is proven by considering the following
Lyapunov function

V(x1, z1, x2, z2) = x1 − x∗1 − x∗1 ln
x1

x∗1
+ x2 − x∗2 − x∗2 ln

x2

x∗2
+ z1 + z2. (3.18)

Clearly, V(x1, z1, x2, z2) ≥ 0 along the solution of the system

d
dt


x1

z1

x2

z2

 =


µ/2 − µx1

−µz1µ/2 − µx2

−µz2

 (3.19)
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and is zero if and only if 
x1

z1

x2

z2

 =


x∗1
z∗1
x∗2
z∗2

 =


1/2
0

1/2
0

 .
The time derivative of the Lyapunov function V(x1, z1, x2, z2), computed along the solutions of system
(3.19), is

V̇ = −µ

x1

(
1 −

1
2x1

)2

+

(
1 −

1
2x2

)2

+ z1 + z2

 . (3.20)

Thus, V̇ < 0 so that x∗ is globally asymptotically stable for the system (3.19).
Condition (H2) is proven by rewriting the vector matrix G(x, y) in the form By − Ĝ(x, y), where

B = DyG(x∗, 0) =

(
gβ/2 − (aγ + µ) gβ/2

β/2 β/2 − (γ + µ)

)
is an M-matrix (as the off-diagonal elements are non-negative) and

Ĝ(x, y) =

(
g(1/2 − x1)

1/2 − x2

)
λ ≥ 0.

Thus, the disease-free equilibrium U0 = (x∗, 0)T for model (3.17) is globally asymptotically stable for
R0 < 1 and we have shown the following proposition.

Proposition 4. The influenza-free equilibrium E0 is globally asymptotically stable if and only if the
basic reproduction number R0 < 1.

3.5. Impact of sex disparity on the overall outcome of the disease

In this subsection we study the impact of sex disparity on the overall outcome of influenza. More
specifically, we study how the basic reproduction number R0 and the equilibrium force of infection λ̄
depend on the variance in susceptibilities r1, r2 (of females and males, respectively) and in recovery
rates if their means are kept constant. Before going into details, we study the qualitative behaviour of
R0, λ̄, ȳ1 and ȳ2 on the relative susceptibility g. Formula (3.5) shows clearly that the basic reproduction
number R0 increases monotonically with the increase of the relative susceptibility g, if all other
parameters are kept constant. However, numerical simulations have been done to show the
dependence of ȳ1 and ȳ2 on g and R0. Figure 3 shows the qualitative behaviour of the endemic
prevalence of both infected females ȳ1 (see part(a)) and infected males ȳ2 (see part (b)). For fixed g,
both the endemic prevalence of infected females and males increase monotonically with the increase
of R0. The behaviour of ȳ2 looks similar to that of λ̄, while that of ȳ1 looks different. There is a slow
increase in the prevalence of infected males followed by a slow decrease in it, if g is allowed to
change from 0 to 1. A different behaviour is noticed for the case of females, especially for high values
of R0, where the endemic prevalence of infected females increases quickly, with the increase of the
relative susceptibility g, till reaching a maximum at g = 1.
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Figure 3. The qualitative dependence of the equilibrium proportion of infected females and
males λ̄ on the relative susceptibility g and the basic reproduction number R0, with parameter
values as shown in Table 2. Part (a) represents the case of females, while part (b) represents
the case of males.

3.5.1. Analysis in terms of the mean and variance of susceptibilities

Motivated by the work shown in [37], we assume that µr and νr are, respectively, the weighted mean
and variance in susceptibilities of females and males. Since the proportion of females likewise that of
males is 1/2, then

µr =
r1 + r2

2
and νr =

1
2

(r1 − µr)2 +
1
2

(r2 − µr)2 =

(r1 − r2

2

)2
(3.21)

where 0 < r1 ≤ r2. Hence,

r1 = µr −
√
νr, r2 = µr +

√
νr and g =

r1

r2
=
µr −

√
νr

µr +
√
νr

(3.22)

where 0 ≤ νr ≤ µ
2
r := νmax

r . It is clear that g = 1 when νr = 0. Moreover, g decreases with the increase
of νr. On substituting from (3.22) into (3.5), we get

R0 =
β̄

2

((
1

γ + µ
+

1
aγ + µ

)
µr +

(
1

γ + µ
−

1
aγ + µ

)
√
νr

)
. (3.23)

It is clear that

R0|νr=0 =
β̄

2

(
1

γ + µ
+

1
aγ + µ

)
µr > 0,
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Figure 4. The impact of disparity in susceptibility of females and males on the value of the
basic reproduction number R0 for different levels of the recovery rate rescaling parameter
a, if the mean µr of female and male susceptibilities is kept constant. The figure shows
that if a < 1, then the initial value of R0 is bigger than its final value. Therefore, we have
monotonically decreasing curves. However, if a > 1, then R0(νr = 0) < R0(νmax

r ). Therefore,
we get monotonically increasing curves. The figure is produced with parameter values µ, γ
as shown in Table 2 and with β̄ = 6 × 365 year−1, µr = 0.07.
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Figure 5. Impact of disparity in females and males susceptibilities on the equilibrium force
of infection λ̄ and the endemic prevalence of infected females ȳ1 and males ȳ2, if their mean
µr is kept constant. The figure is produced with parameter values µ, γ as shown in Table 2
and with β̄ = 6 × 365 year−1, µr = 0.07.

∂R0

∂νr
|νr=0 =

β̄

4
√
νr

(
1

γ + µ
−

1
aγ + µ

) {
> 0 if a > 1,
< 0 if a < 1.
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R0|νr=µ
2
r

=
β̄µr

γ + µ
which does not depend on a.

If a < 1, then 1/(aγ + µ) > 1/(γ + µ). Therefore, R0(νr = 0) > R0(νr = νmax
r ) and we get monotonically

decreasing curves, see Figure 4. However, if a > 1, we get the opposite behaviour. Hence, if the mean
of females and males susceptibilities is kept fixed, then the basic reproduction number R0 increases
with the increase of the variance in susceptibilities between females and males if infected females
recover faster than infected males (i.e., if the duration of influenza in females is less than it in males).
Conversely, if infected males recover quicker than infected females (i.e., a < 1), then any increase
in the variance of susceptibility of females and males increases the value of the basic reproduction
number R0. Therefore, we show the following proposition.

Proposition 5. If influenza duration in females is shorter than its duration in males, then (for constant
mean of females and males susceptibilities) the basic reproduction number R0 increases with the
increase of the variance in females and males susceptibilities and vice versa.

Similarly, we substitute from (3.22) into (3.11) to get

λ̄ =
µ

2

{
β̄

2

(
1

γ + µ
+

1
aγ + µ

)
(µr +

√
νr) −

2µr

µr −
√
νr

+√(
β̄

2

(
1

γ + µ
+

1
aγ + µ

)
(µr +

√
νr) −

2µr

µr −
√
νr

)2

+ 4
µr +

√
νr

µr −
√
νr

(R0 − 1)


(3.24)

where R0 in (3.24) is given by (3.23). It is easy to check that

λ̄|νr=0 =
β̄ µ µr

2

(
1

γ + µ
+

1
aγ + µ

)
,

λ̄|νr=µ
2
r

=
β̄ µ µr

γ + µ
.

Moreover, if a < 1, then λ̄|νr=0 > λ̄|νr=µ
2
r

and vice versa.
Simulations have been done to study the impact of disparity in females and males susceptibilities

on the equilibrium force of infection λ̄ (Figure 5(a)) as well as on the endemic prevalence of infected
females and males, Figure 5(b). The simulations show (for different values of the recovery rescaling
parameter a) that λ̄ increases initially with the increase of the variance in susceptibilities νr till reaching
a maximum and then it decreases again to reach its final value. It is clear that the value of λ̄, ȳ1 and ȳ2 at
the maximum possible variance νmax

r does not depend on the value of a. Part (b) of the figure shows that
the infected male population ȳ2 has a similar behaviour to the equilibrium force of infection λ̄, while
the endemic prevalence of infected females is always decreasing with the increase of the variance νr.

3.5.2. Analysis in terms of the mean and variance of recovery rates

To study the impact of disparity in the recovery rates on the disease outcome, we assume that µγ, νγ
are, respectively, the weighted mean and variance [37] of recovery rates aγ and γ of infected females
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Figure 6. The basic reproduction number as a function of the variance νγ in recovery rate
of females aγ and of males γ, when their mean µγ is kept constant. When infected females
recover quicker than males (i.e., a > 1), then R0 increases with the increase of the disparity
parameter. However, if infected males recover faster than infected females (i.e., a < 1),
then the basic reproduction number R0 decreases initially with the increase of νγ and then it
increases again. The figure is produced with parameter values of µ, β and g as shown in Table
2 and with µγ = 365/3.38 year−1.

and males. Thus,

µγ =
(1 + a)γ

2
and νγ =

1
2

(aγ − µγ)2 +
1
2

(γ − µγ)2 =

(
(1 − a)γ

2

)2

. (3.25)

Hence,

µγ =
(1 + a)γ

2
and

√
νγ =

γ

2
|1 − a|.

Thus, there are two cases: either a < 1 or a > 1.

• Let a < 1. Then

γ = µγ +
√
νγ, a =

µγ −
√
νγ

µγ +
√
νγ

(3.26)

where 0 ≤ νγ < µ2
γ.

• If a > 1, then

γ = µγ −
√
νγ, a =

µγ +
√
νγ

µγ −
√
νγ

(3.27)

where 0 ≤ νγ < µ2
γ.

It is clear that a = 1 when νγ = 0. On using (3.26) and (3.27) in (3.5), we get

R0|a<1 =
β

2

(
1

µ + µγ +
√
νγ

+
g

µ + µγ −
√
νγ

)
, (3.28)
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Figure 7. Impact of disparity in recovery rates of infected females and males on the
equilibrium force of infection λ̄ = β(ȳ1 + ȳ2) as well as on the endemic prevalence of infected
females and males, when the mean of their recovery rates is kept constant. The figure is
produced with parameter values of µ, β and g as shown in Table 2 and with µγ = 365/3.38
year−1.

R0|a>1 =
β

2

(
1

µ + µγ −
√
νγ

+
g

µ + µγ +
√
νγ

)
. (3.29)

Hence,

∂R0

∂νγ
|a<1 =

β

4√νγ

(
−1

(µ + µγ +
√
νγ)2 +

g
(µ + µγ −

√
νγ)2

)
,

∂R0

∂νγ
|a>1 =

β

4√νγ

(
1

(µ + µγ −
√
νγ)2 −

g
(µ + µγ +

√
νγ)2

)
.

It is easy to check that

∂R0

∂νγ
|a<1 > 0 if and only if νγ >

(
1 −
√

g
1 +
√

g
(µ + µγ)

)2

:= ν?γ (3.30)

while
∂R0

∂νγ
|a>1, νγ>0 > 0 holds under no condition.

Moreover, ∂R0
∂νγ
|a<1, νγ=0 < 0. It is noteworthy that ν?γ < ν

max
γ = µ2

γ if and only if

µγ >
µ

2


√

1
g
− 1

 := µ?γ .
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It is worth noting that formula (3.28) could be rewritten as

R0|a<1 = R01 + R02

where
R01 =

gβ
2(µ + µγ −

√
νγ)

and R02 =
β

2(µ + µγ +
√
νγ)

. (3.31)

The first expression R01 represents the basic reproduction number for female population, while the
second expression R02 denotes the basic reproduction number for male population, if males recover
faster than females (i.e., a < 1). As it is assumed that females are less susceptible than males (i.e.,
g < 1), it holds that R01 < R02 for small enough disparity in recovery rates between both sexes,
precisely, for

0 ≤ νγ <
(
1 − g
1 + g

(µ + µγ)
)2

.

If νγ increases, then R01 increases, while R02 decreases. It is easy to check that |dR01
dνγ
| > | dR02

dνγ
|, which

means that the rate of increase in R01 is higher than the rate of decrease of R02 with respect to νγ.
This interprets the initial reduction in the value of R0|a<1, see the dashed-dotted curve in Figure 6. In
epidemiological terms, and motivated by formulae (3.31), any increase in the recovery rates disparity
enlarges (shrinks) the infectious period of infected females (males) and therefore extends (shortens)
the time window during which infected individuals are capable of transmitting the infection, which in
turn increases (decreases) the female (male) reproduction number.

On the other hand, formula (3.29) could be rewritten as

R0|a>1 = R̃01 + R̃02

where
R̃01 =

gβ
2(µ + µγ +

√
νγ)

and R̃02 =
β

2(µ + µγ −
√
νγ)

. (3.32)

At νγ = 0, we have R̃01 < R̃02. Moreover, R̃01 decreases while R̃02 increases, with the increase of νγ.
Also, the rate of increase in R̃02 is higher than the rate of decrease in R̃01, with respect to νγ. In other
words, it holds that |dR̃01

dνγ
| < |dR̃02

dνγ
|. This clarifies the monotone increase in the basic reproduction

number R0|a>1, see the solid curve in Figure 6. Epidemiologically, formulae (3.32) say that increasing
the disparity in recovery rates between both sexes enlarges (shrinks) the infectious period of infected
males (females) and therefore extends (shortens) the time window during which infected individuals
are capable of transmitting the infection, which in turn increases (decreases) the male (female)
reproduction number. Hence, the above result is summarised in the following proposition.

Proposition 6. In analysing the impact of recovery rate disparity, two cases arise.

1. If the duration of influenza in females is shorter than in males (i.e., a > 1), then the basic
reproduction number increases with the increase of the variance in recovery rate between
infected females and males, see the solid curve in Figure 6.

2. If the duration of influenza in females is longer than in males (i.e., a < 1), then we have the
following:
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• if µγ < µ?γ , then the basic reproduction number decreases with the increase of the variance in
recovery rates between infected females and males.
• if µγ > µ?γ , then the basic reproduction number decreases initially till reaching a minimum

at νγ = ν?γ and then it increases again, with the increase of the variance in recovery rates
between infected females and males, see the dashed-dotted curve in Figure 6.

On substituting from (3.26) and (3.27) into (3.11) we get

λ̄|a<1 =
µ

2

{
β

2

(
1

µ + µγ +
√
νγ

+
1

µ + µγ −
√
νγ

)
−

(
1 +

1
g

)

+

√(
β

2

(
1

µ + µγ +
√
νγ

+
1

µ + µγ −
√
νγ

)
−

(
1 +

1
g

))2

+
4
g

(R0|a<1 − 1)


and

λ̄|a>1 =
µ

2

{
β

2

(
1

µ + µγ −
√
νγ

+
1

µ + µγ +
√
νγ

)
−

(
1 +

1
g

)

+

√(
β

2

(
1

µ + µγ −
√
νγ

+
1

µ + µγ +
√
νγ

)
−

(
1 +

1
g

))2

+
4
g

(R0|a>1 − 1)

 .
The impact of increasing the variance νγ in recovery rates of infected females and males, while keeping
their mean constant, on the equilibrium force of infection λ̄ as well as on the endemic prevalence of
infected females ȳ1 and infected males ȳ2 is numerically investigated in Figure 7. Part(a) shows that
λ̄ and therefore the total proportion of infected individuals in the whole population at the endemic
situation (ȳ1 + ȳ2) behave similar to the basic reproduction number R0 if the variance νγ is allowed to
increase, while the mean of recovery rates µγ is kept fixed. However, the proportion of infected females
and males at the endemic situation behave differently, see Figure 7(b). If females recover faster than
males (a > 1), then the endemic prevalence of infected females ȳ1 decreases with the increase of
the variance νγ, while the endemic prevalence of infected males increases ȳ2. Such behaviour could
be because the increase in disparity in recovery rates νγ reduces (extends) the infected female (male)
infectious period and, consequently, speeds up (slows down) the process of infected females (males)
recovery, which in turn lowers (raises) the endemic prevalence of infected females (males) in the total
population, see Figure 7(b).

Conversely, if males recover faster than females (i.e., a < 1), then the prevalence of infected females
increases while that of males decreases, with the increase of the variance νγ in recovery rates, while
keeping their mean µγ constant. This dynamical behaviour is due to the fact that the increase in recovery
rates’ disparity extends (reduces) the length of infectious period in females (males) and in consequence
decelerates (accelerates) the recovery process of females (males), which in turn increases (reduces) the
endemic prevalence of infected females (males), see Figure 7(b).

The implication of the above results is summarised in the following items, giving that the mean
recovery rate in males and females is constant.

• The faster the recovery of females than males is, the higher the value of the basic reproduction
number is and the higher the prevalence of infection in the total population is, see figures 6, 7(a).
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• If the duration of infection is shorter in females than in males, then the greater the disparity in
recovery rates between females and males is, the higher the prevalence of infection in males is,
the lower the endemic prevalence of infection in females is, but the higher the overall prevalence
of infection in the total population is, see Figure 7. The converse is also true.
• If males recover quicker than females, then, as the disparity in recovery rates between both sexes

is allowed to increase, an initial decrease followed by a rapid increase in the levels of the basic
reproduction number as well as the total endemic prevalence of infection is remarkable, see figures
6, 7(a).
• In both male and female subpopulations, the higher the recovery rate in either subpopulations,

compared to that of the other, is (i.e., the shorter the infectious period is), the lower the endemic
prevalence of infection in that subpopulation is, see Figure 7(b).

S1 I1 

µ

λv

R1 

a γ

S2 I2 R2 

g λv

γµ
2
N

e0 ψ

ψ

µ
2
N

µ

µ
V2 

V1 

µ µ µ

(1−e1)g λv

(1−e2) λv
µ

µ

Figure 8. Flowchart for the transition between model states for the imperfect vaccination
model (4.1).

4. Effect of mass influenza vaccination

Vaccines can prevent or ameliorate morbidity from infections. They are the most effective and
cost-saving tools for disease prevention, preventing untold suffering and saving tens of thousands of
lives and billions of dollars in healthcare costs each year [38]. There are two ways to vaccinate
people. Either through the application of routine immunisation programmes or through the use of
mass vaccination where susceptible people receive the vaccine to protect them from a potential
infectious disease outbreak.

As influenza viruses mutate regularly, influenza vaccines are modified every year based on the
prevalent influenza virus strains. The modified vaccines are always ready before the beginning of the
seasons during which influenza display. However, due to the high mutation rates and frequent genetic
reassortments of influenza viruses that contribute to the appearance of new subtypes, influenza
vaccines are not included in routine immunisation programmes. Therefore, mass vaccination against
influenza is applied, where populations at risk are rapidly vaccinated before the epidemic season for
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influenza begins. However, the efficacy of influenza vaccines depends on the degree of antigenic
match to circulating viruses [39].

The WHO report [14] shows differences between the rate of vaccination against seasonal influenza
between females and males in some countries. For example, males are more likely to receive the
seasonal influenza vaccine in some european countries like the Czech Republic, France, Italy, Spain,
the Netherlands, Poland and Portugal. However, the report shows that males and females are equally
likely to get vaccinated against seasonal influenza in other countries like Austria, Finland, Germany
and Ireland. According to the report, the situation in the United States is different. The analysis of
vaccination data revealed that receiving seasonal influenza vaccine is age-dependent, where in some
age groups females are more likely to receive the vaccine than males, while the converse happens in
other age groups. A compartmental model for the transition between population states is shown in
Figure 8, where these disparities are taken into account. The mathematical model with population
proportions reads

dx1

dt
=

1
2
µ − (gλv + e0ψ + µ)x1,

dw1

dt
= e0ψx1 − ((1 − e1)gλv + µ)w1,

dy1

dt
= gλv(x1 + (1 − e1)w1) − (aγ + µ)y1,

dz1

dt
= aγy1 − µz1,

dx2

dt
=

1
2
µ − (λv + ψ + µ)x2,

dw2

dt
= ψx2 − ((1 − e2)λv + µ)w2, (4.1)

dy2

dt
= λv(x2 + (1 − e2)w2) − (γ + µ)y2,

dz2

dt
= γy2 − µz2,

where w1 and w2 represent the proportion of vaccinated females and males, respectively, and

1 = x1 + y1 + w1 + z1 + x2 + y2 + w2 + z2.

Similarly and as argued above, it holds that x1(t)+y1(t)+w1(t)+z1(t) = x2(t)+y2(t)+w2(t)+z2(t) = 1/2.

4.1. Trivial equilibrium and the effective reproduction number

It is easy to check that model (4.1) has the influenza-free (trivial) equilibrium

E0v =



x1,0v

w1,0v

y1,0v

z1,0v

x2,0v

w2,0v

y2,0v

z2,0v


=



µ/(2(µ + e0ψ))
e0ψ/(2(µ + e0ψ))

0
0

µ/(2(µ + ψ))
ψ/(2(µ + ψ))

0
0


.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2613–2649.



2635

Again, following the approach of Diekmann et al. [34], we compute the transmission matrix Tv and
the transition matrix Σv as

Tv =

(
gβ(µ + (1 − e1)e0ψ)/2(µ + e0ψ) gβ(µ + (1 − e1)e0ψ)/2(µ + e0ψ)
β(µ + (1 − e2)ψ)/2(µ + ψ) β(µ + (1 − e2)ψ)/2(µ + ψ)

)
and

Σv =

(
−(aγ + µ) 0

0 −(γ + µ)

)
.

Thus, the effective reproduction number Rψ is the dominant eigenvalue of the next generation matrix
with large domain KL

v = −TvΣ
−1
v , where

Rψ =
β

2

(
µ + (1 − e2)ψ
(γ + µ)(µ + ψ)

+
g[µ + (1 − e1)e0ψ]
(aγ + µ)(µ + e0ψ)

)
. (4.2)

4.2. Stability analysis of the trivial equilibrium E0v

Local stability:
The stability analysis of the influenza-free equilibrium in the presence of vaccination E0v shows that
E0v is locally asymptotically stable if and only if the effective reproduction number Rψ < 1. Therefore,
we state the following proposition, whose proof is shown in appendix B .

Proposition 7. Model (4.1) has an influenza-free equilibrium E0v that is locally asymptotically stable
if and only if the effective reproduction number Rψ < 1.

Global stability:
The global stability of the influenza-free equilibrium in the presence of vaccination E0v is established
using the fluctuation lemma [40], which we state below. To this end, we introduce some notations and
state the a proposition about the positivity of the solutions, whose proof is deferred to appendix C.
Assume that f is a real-valued function defined on the interval [0,∞). Then, we define

f∞ = lim
t→∞

inf f (t) and f∞ = lim
t→∞

sup f (t). (4.3)

Proposition 8. Model (4.1) has a unique solution with components x1(t), w1(t), y1(t), z1(t), x2(t), w2(t),
y2(t) and z2(t) that are non-negative for all forward times t ≥ 0, if the initial values of the components
are non-negative.

The proof of this proposition is deferred to appendix C.

Remark 1. Since all solutions x1(t), w1(t), y1(t), z1(t), x2(t), w2(t), y2(t) and z2(t) are non-negative and
their sum equals 1, then they are all bounded from above.

Now, we state (without proof) the fluctuation lemma [40] that is needed in the global stability
analysis of E0v.
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Lemma 1. Let f : [0,∞)→ R be bounded and differentiable and have no limit as t → ∞. Then, there
exist sequences {sn}

∞
n=1 and {tn}

∞
n=1, such that, for all n

d f
dt

(sn) =
d f
dt

(tn) = 0

and
lim
n→∞

f (sn) = f∞, lim
n→∞

f (tn) = f∞.

It is noteworthy that f∞ = limn→∞ f (sn) = limt→∞ sup f (t), f∞ = limn→∞ f (tn) = limt→∞ inf f (t) and
that f∞ ≤ f∞. In the following, we introduce a proposition showing our result on the global stability of
the influenza-free equilibrium in the presence of vaccination E0v.

Proposition 9. The influenza-free equilibrium in the presence of vaccination E0v is globally stable if
and only if the effective reproduction number Rψ < 1.

Proof. Before going into details, we recall that all state variables are non-negative and bounded from
above. From the x1 equation in (4.1), it is clear that x1 satisfies the differential inequality

dx1

dt
<

1
2
µ − (e0ψ + µ)x1. (4.4)

On applying the above fluctuation lemma, there exists a sequence {sn}
∞
n=1 such that sn → ∞, x1(sn) →

x∞1 , ẋ1(sn)→ 0, as n→ ∞. Hence, from the differential inequality (4.4) we get

x∞1 ≤
µ/2

µ + e0ψ
.

Similarly, we apply the fluctuation lemma to the differential equations of x2,w1,w2, y1 and y2 in (4.1).
Accordingly,

• we can find a sequence {sn}
∞
n=1 such that sn → ∞, x2(sn)→ x∞2 , ẋ2(sn)→ 0, as n→ ∞. Hence,

x∞2 ≤
µ/2
µ + ψ

.

• we can find another sequence {sn}
∞
n=1 such that sn → ∞, w1(sn) → w∞1 , ẇ1(sn) → 0, as n → ∞.

Hence,

w∞1 ≤
e0ψ

µ
x∞1 ≤

e0ψ/2
µ + e0ψ

• there can exist a different sequence {sn}
∞
n=1 such that sn → ∞, w2(sn) → w∞2 , ẇ2(sn) → 0, as

n→ ∞. Hence,

w∞2 ≤
ψ

µ
x∞2 ≤

ψ/2
µ + ψ

• there can also exist another sequence {sn}
∞
n=1 such that sn → ∞, y1(sn) → y∞1 , ẏ1(sn) → 0, as

n→ ∞. Hence,
0 ≤ gλ∞v (x∞1 + (1 − e1)w∞1 ) − (aγ + µ)y∞1 .

Hence,

y∞1 ≤
gλ∞v (µ + (1 − e1)e0ψ)
2(aγ + µ)(µ + e0ψ)

.
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• there exists also another different sequence {sn}
∞
n=1 such that sn → ∞, y2(sn)→ y∞2 , ẏ2(sn)→ 0, as

n→ ∞. Hence,
0 ≤ λ∞v (x∞2 + (1 − e2)w∞2 ) − (γ + µ)y∞2 .

Hence,

y∞2 ≤
λ∞v (µ + (1 − e2)ψ)
2(γ + µ)(µ + ψ)

.

Now,

λ∞v = β(y∞1 + y∞2 ) ≤
βλ∞v

2

(
g[µ + (1 − e1)e0ψ]
(aγ + µ)(µ + e0ψ)

+
µ + (1 − e2)ψ
(γ + µ)(ψ + µ)

)
Hence,

λ∞v

[
β

2

(
g[µ + (1 − e1)e0ψ]
(aγ + µ)(µ + e0ψ)

+
µ + (1 − e2)ψ
(γ + µ)(ψ + µ)

)
− 1

]
≥ 0

I.e.,
λ∞v (Rψ − 1) ≥ 0.

Since Rψ < 1, it should be held that λ∞v ≤ 0. On the other hand, it is shown in proposition 8 that
y1(t) ≥ 0 and y2(t) ≥ 0 for all forward times t ≥ 0, which implies that y1∞ ≥ 0 and y2∞ ≥ 0. Therefore,
λv∞ ≥ 0. Since λv∞ ≤ λ

∞
v , then it should hold that λv∞ = λ∞v = 0. Hence, y∞1 = y∞2 = 0. Thus, the proof

is complete.
�

4.3. Existence and uniqueness of an endemic equilibrium E1v for model(4.1)

As the rate of change in model states vanishes at equilibrium, we put the left hand side of (4.1)
equal zero and solve the resulting system with respect to the model’s state variables, we get (if λ̄v , 0)
the endemic equilibrium

E1v = (x1v, y1v,w1v, z1v, x2v, y2v,w2v, z2v)T (4.5)

where

x1v =
µ

2(µ + e0ψ + gλ̄v)
,

w1v =
e0ψµ

2(µ + (1 − e1)gλ̄v)(µ + e0ψ + gλ̄v)

y1v =
gλ̄vµ[µ + e(1 − e1)ψ + (1 − e1)gλ̄v]

2(µ + aγ)(µ + (1 − e1)gλ̄v)(µ + e0ψ + gλ̄v)
,

z1v =
1
2
− x1v − w1v − y1v,

x2v =
µ

2(µ + ψ + λ̄v)
, (4.6)

w2v =
ψµ

2(µ + (1 − e2)λ̄v)(µ + ψ + λ̄v)

y2v =
λ̄vµ[µ + (1 − e2)ψ + (1 − e2)λ̄v]

2(µ + γ)(µ + (1 − e2)λ̄v)(µ + ψ + λ̄v)
,
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z2v =
1
2
− x2v − w2v − y2v

and λ̄v ∈ (0,∞) is the equilibrium force of infection for model (4.1) and is the unique positive solution
of

1 =
βµ

2

(
µ + (1 − e2)λ̄v + (1 − e2)ψ

(γ + µ)(µ + ψ + λ̄v)(µ + (1 − e2)λ̄v)
+

g[µ + (1 − e1)gλ̄v + (1 − e1)e0ψ]
(aγ + µ)(µ + e0ψ + gλ̄v)(µ + (1 − e1)gλ̄v)

)
. (4.7)

The analysis shows that (4.7) has a unique positive solution if and only if Rψ > 1. It is clear that there
is a one-to-one correspondence between the solution of (4.7) and the states in (4.6). Once the feasible
solution of (4.7) is found, we substitute in (4.6) to get the unique endemic equilibrium of model (4.1).

To prove the existence of a unique positive solution for (4.7), we rewrite it as

G1(λ̄v) = G2(λ̄v)

where

G1(λ̄v) =
2
βµ
−

1
(γ + µ)(µ + ψ + λ̄v)

−
g

(aγ + µ)(µ + e0ψ + gλ̄v)
,

G2(λ̄v) =
(1 − e2)ψ

(γ + µ)(µ + ψ + λ̄v)(µ + (1 − e2)λ̄v)

+
g(1 − e1)e0ψ

(aγ + µ)(µ + e0ψ + gλ̄v)(µ + (1 − e1)gλ̄v)
.

It is clear that

G1(0) =
2
βµ
−

1
(γ + µ)(µ + ψ)

−
g

(aγ + µ)(µ + e0ψ)
,

G2(0) =
(1 − e2)ψ

µ(γ + µ)(µ + ψ)
+

g(1 − e1)e0ψ

µ(aγ + µ)(µ + e0ψ)
,

and

dG1(λ̄v)
dλ̄v

=
1

(γ + µ)(µ + ψ + λ̄v)2
+

g
(aγ + µ)(µ + e0ψ + gλ̄v)2

,

dG2(λ̄v)
dλ̄v

= −
(1 − e2)ψ[µ + (1 − e2)(2λ̄v + µ + ψ)]
(γ + µ)(µ + ψ + λ̄v)2(µ + (1 − e2)λ̄v)2

−
g2(1 − e1)e0ψ[µ + (1 − e1)(2gλ̄v + µ + e0ψ)]
(aγ + µ)(µ + e0ψ + gλ̄v)2(µ + (1 − e1)gλ̄v)2

.

Hence, G1 is monotonically increasing, while G2 is monotonically decreasing in λ̄v. Thus, equation
(4.7) has a unique positive solution if and only if G1(0) < G2(0), while otherwise it has no positive
solution. Simple computations show that the existence condition G1(0) < G2(0) is equivalent to Rψ >

1.Hence, we show the following proposition.

Proposition 10. Model (4.1) has a unique endemic equilibrium that exists if and only if the effective
reproduction number Rψ > 1.
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4.4. Direct and indirect effect of influenza mass vaccination

The direct effect of vaccination is the number of vaccinated individuals who caught the infection
due to imperfection of the vaccine, but would have been completely protected if the vaccine was totally
perfect (i.e., it is the infection incidences in vaccinees). However, the indirect effect of vaccination is
the difference between its total effect and its direct effect [41]. The total effect of vaccination is the
reduction in the number of incidences due to vaccination. To quantify the total effect of influenza mass
vaccination in our models, we assume that Ia is the influenza incidences in the absence of vaccination
and Ip is the influenza incidences in the presence of vaccination. Hence, models (2.6) and (3.1) imply
that

Ia = gλS 1 + λS 2 = Nλ(gx1 + x2).

Similarly, model (4.1) implies that

Ip = N(gλv(x1 + (1 − e1)w1) + λv(x2 + (1 − e2)w2)).

Thus, the total effect of vaccination (i.e., the reduction in the total number of incidences due to
vaccination) is

IT = Ia − Ip = N{λ(gx1 + x2) − gλv(x1 + (1 − e1)w1) − λv(x2 + (1 − e2)w2)}.

The infection incidences in vaccinee (due to the imperfection of vaccination) is denoted by ID and is
given by

ID = N(gλv(1 − e1)w1 + λv(1 − e2)w2)

which accounts also for the direct effect. Thus, the indirect effect of vaccination is

IIND = IT − ID.

If we look at the equilibrium state, then

Ia =
µNλ̄

2

(
g

gλ̄ + µ
+

1
λ̄ + µ

)
,

Ip =
µNλ̄v

2

(
g(µ + (1 − e1)(e0ψ + gλ̄v))

(µ + (1 − e1)gλ̄v)(µ + e0ψ + gλ̄v)
+

µ + (1 − e2)(ψ + λ̄v)
(µ + (1 − e2)λ̄v)(µ + ψ + λ̄v)

)
,

ID =
µψNλ̄v

2

(
e(1 − e1)g

(µ + (1 − e1)gλ̄v)(µ + e0ψ + gλ̄v)
+

(1 − e2)
(µ + (1 − e2)λ̄v)(µ + ψ + λ̄v)

)
where λ̄ is given by (3.11), while λ̄v is the solution of (4.7).

Figure 9(a) shows the total effect IT , direct effect ID and indirect effect IIND of vaccination as
functions of the effective reproduction number Rψ. Both the indirect effect and total effect are
monotonically decreasing in Rψ, while the direct effect is monotonically increasing in Rψ. Part (b) of
Figure 9 shows the ratio of the indirect to direct protection IIND/ID as a function of Rψ. Since Rψ

decreases with the increase of the vaccination rate ψ, we then deduce that the higher the vaccination
rate is, the higher the total effect IT , the indirect effect IIND and the protection ratio IIND/ID are, the
lower the direct effect ID is.

Simulations have also been done for various levels of vaccination efficacies e1 and e2. Figure 10
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Figure 9. As functions of the effective reproduction number Rψ, the total, direct and indirect
effects of vaccination are shown in part (a). The ratio of the indirect to direct effect of
vaccination is shown in part (b). The figure is produced with parameter values as shown in
Table 2 and with N = 1 to present the results as proportions.

shows that (for fixed e2 and other model parameters) increasing the vaccine efficacy in females e1

increases the total effect, the indirect effect and the ratio of indirect to direct effects, but decreases the
direct effect ID of vaccination. Hence, the higher the efficacy of females vaccine is, the more
reduction in the total number of new incidences is. However, if the vaccine efficacy in females e1 is
kept fixed with the other parameters, while the vaccine efficacy in males e2 is allowed to change,
simulations in Figure 11 show that the behaviour of these effects depends on the value of the effective
reproduction number Rψ. For low levels of Rψ (slightly above one, but less than certain level),
increasing the efficacy e2 increases the protection ratio of indirect to direct effect as well as the direct,
indirect, and total effect. Conversely, for high enough values of Rψ, these effects as well as that ratio
decrease with the increase of the vaccine efficacy in males e2.

5. Summary and conclusions

Mathematical models have been extensively used to explore the evolutionary dynamics of
influenza viruses. However, to the best of our knowledge, the role of sex and/or gender in respiratory
infections (e.g., influenza) transmission dynamics has not been explored mathematically and a greater
understanding of the influence of sex and gender disparity on the overall outcome of influenza is
lacking. Therefore, a mathematical model to describe the transmission dynamics of influenza A
viruses, taking into account sex and gender disparity, has been formulated and thoroughly analysed.
The model we considered is of type SIR (Susceptible - Infected - Recovered) in which it is
differentiated between females and males through their susceptibility, duration of infection (based on
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Figure 10. The total, direct and indirect effects of vaccination and the ratio of the indirect to
direct vaccination effect for different levels of the vaccine efficacy in females. The figure is
produced with parameter values as shown in Table 2 and with N = 1 to present the results as
proportions.

different recovery rates), response to vaccination campaigns and their immune response to the
vaccine.

In the absence of vaccination, the model has the influenza-free equilibrium E0 that is shown to be
globally asymptotically stable if and only if the basic reproduction number R0 is less than one.
However, it has a unique endemic equilibrium that exists if and only if R0 > 1. This endemic
equilibrium is proved to be locally asymptotically stable whenever it exists. Moreover, the impact of
sex disparity (represented by differential susceptibility and differential recovery rates of infected
females and males) on the influenza virus disease outcome has been studied. The analysis shows that,
irrespective of the value of the rescaling recovery rate parameter a which represents the ratio of the
recovery rate of infected females to that of infected males, the basic reproduction number R0 increases
with the increase of the relative susceptibility g of females with respect to males. Moreover,
simulations show that the endemic prevalence of infected males ȳ2 as well as the total proportion of
infected individuals (ȳ1 + ȳ2) in the whole population increase initially with the increase of g till
reaching a maximum (approximately at around g = 0.5) and then they decrease again. However, for
slightly high values of R0, the endemic prevalence of infected females ȳ1 grows monotonically as g
increases.

On the other hand, the disease outcomes have been analysed in terms of the mean and variance of
susceptibilities as well as of recovery rates of females and males. The analysis shows that if the
duration of influenza A in females is shorter than in males a > 1, then the basic reproduction number
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Figure 11. The total, direct and indirect effects of vaccination and the ratio of the indirect
to direct vaccination effect for different levels of the vaccine efficacy in males. The figure is
produced with parameter values as shown in Table 2 and with N = 1 to present the results as
proportions.

R0 increases as the variance νr in susceptibilities of both sexes increases, given that their mean µr is
kept constant. However, if males recover faster than females (i.e., a < 1), then R0 decreases with the
increase of νr. The analysis shows further that the endemic prevalence of infected males increases
initially with the increase of the variance νr and then it decreases again to reach its final value (at
νr = µ2

r = νmax
r ) that does not depend on a, while the endemic prevalence of infected females decreases

monotonically to vanish at νr = µ2
r .

In analysing the disease outcomes in terms of mean and variance of recovery rates of females and
males, it is shown that if females recover faster than males, then R0 increases with the increase of the
variance νγ in recovery rates of females and males (given that their mean µγ is kept constant).
However, if males recover faster than females, then R0 decreases initially till reaching a minimum and
then it increases again with the increase of the variance νγ. The equilibrium force of infection λ̄ and
therefore the total proportion of infected population at equilibrium ȳ1 + ȳ2 behave similar to R0,
although ȳ1 and ȳ2 have opposite behaviours.

The possibility to apply mass vaccination as a prevention strategy to contain influenza A has been
studied, where it is differentiated between vaccine efficacy in both sexes. Also, the gender disparity
(represented by disparity in individuals’ response to vaccination campaigns) has been taken into
account. A thorough equilibrium analysis of the model has been performed and the local and global
stability analysis of the influenza-free equilibrium (in the presence of vaccination) have been
established, when the effective reproduction number Rψ is less than one.

The direct effect (i.e., the reduction in the incidences of vaccinated individuals if the vaccine was
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totally perfect) and indirect effect (i.e., the rest of the total incidences) of influenza mass vaccination
have been studied. The analysis revealed that the efficacy of the vaccine for both sexes (e1&e2) and
the response of the gender to mass-vaccination campaigns ψ play a crucial role in influenza A
containment and elimination process. High response to vaccination campaigns and high efficacy of
the vaccine in females imply to high effect of vaccination on the burden of the infection, which
implies to a more reduction in the total number of new incidences. However, high efficacy of the
vaccine in males would cause much reduction in the number of new incidences if the effective
reproduction number Rψ is small (slightly above one, but less than certain level), while it reduces the
effect of vaccination (i.e., it increases the occurrence of new incidences) for high enough values of Rψ.

Limitation of the work

It is worth noting that influenza could pose a significant mortality burden to vulnerable populations
and lead to changes in the demographic makeup of the population. In other words, influenza dynamics
and the severity of epidemics is not only affected by the underlying population characteristics, but
yearly epidemics also induce changes in population demographics. One more important component
for studying epidemic effects on demographic characteristics of populations is the inclusion of age-
structure factor, as the transmission rates, susceptibility, risk of death, and vaccination coverage rates
vary across age groups. These factors could probably be taken into account in a future work.
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Appendix A The Hurwitz determinant ∆ for the stability of the unique endemic equilibrium
for model (3.1)

Before going into details, we assume that

X =
βµ

2(γ + µ)(λ̄ + µ)
and Y =

gβµ
2(aγ + µ)(gλ̄ + µ)

where, according to (3.9), X + Y = 1. Using the formulae of C1,C2 and C3, we have

C1C2 −C3 = (λ̄ + µ)(gλ̄ + µ)((1 + g)λ̄ + 2µ)
+ (γ + µ)

[
(λ̄ + µ)(λ̄ + (gλ̄ + 2µ)Y) + Y(gλ̄ + µ)((1 + g)λ̄ + 2µ)

]
+ (aγ + µ)

[
(gλ̄ + µ)(gλ̄ + (λ̄ + 2µ)X) + X(λ̄ + µ)((1 + g)λ̄ + 2µ)

]
+ (γ + µ)2Y[λ̄ + Y(gλ̄ + 2µ)] + (aγ + µ)2X[gλ̄ + X(λ̄ + 2µ)]
+ (γ + µ)(aγ + µ)XY((1 + g)λ̄ + 4µ) > 0.

Thus, after some tedious calculations, we get

∆ = (C1C2 −C3)C3 −C4C2
1

= [(γ + µ)λ̄(λ̄ + µ)(gλ̄ + µ)2 + (aγ + µ)gλ̄(gλ̄ + µ)(λ̄ + µ)2]((1 + g)λ̄ + 2µ)
+ (γ + µ)2λ̄(gλ̄ + µ)[λ̄(λ̄ + µ) + Y(λ̄ + µ)(gλ̄ + 2µ) + Y(gλ̄ + µ)((1 + g)λ̄ + 2µ)]
+ (aγ + µ)2gλ̄(λ̄ + µ)[gλ̄(gλ̄ + µ) + X(gλ̄ + µ)(λ̄ + 2µ) + X(λ̄ + µ)((1 + g)λ̄ + 2µ)]
+ (γ + µ)(aγ + µ)

[
gλ̄2(X(λ̄ + µ)2 + Y(gλ̄ + µ)2)+

(λ̄ + µ)(gλ̄ + µ)(λ̄X + gλ̄Y)((1 + g)λ̄ + 2µ)
]

+ (γ + µ)3λ̄Y(gλ̄ + µ)[λ̄ + Y(gλ̄ + 2µ)] + (aγ + µ)3gλ̄X(λ̄ + µ)[gλ̄ + X(λ̄ + 2µ)]
+ (γ + µ)2(aγ + µ)

[
gλ̄Y2(gλ̄ + µ)((1 + g)λ̄ + 2µ) + Xλ̄2(λ̄ + µ)+

λ̄XY(2(gλ̄ + µ)(λ̄ + 2µ) + gλ̄(λ̄ + µ))
]

+ (γ + µ)(aγ + µ)2
[
λ̄X2(λ̄ + µ)((1 + g)λ̄ + 2µ) + Yg2λ̄2(gλ̄ + µ)+

gλ̄XY(2(λ̄ + µ)(gλ̄ + 2µ) + λ̄(gλ̄ + µ))
]

+ µ[(aγ + µ)(λ̄ + µ)X + (γ + µ)(gλ̄ + µ)Y](C1C2 −C3)
+ (γ + µ)(aγ + µ)∆sub

where

∆sub = (γ + µ)2[XYλ̄(λ̄ + µY) + gλ̄Y2(λ̄X + (gλ̄ + µ)Y)]
+ (aγ + µ)2[XYgλ̄(gλ̄ + µX) + λ̄X2(gλ̄Y + (λ̄ + µ)X)]
+ (γ + µ)(aγ + µ)[X2Yλ̄(2µ + (1 − g)λ̄) + Y2Xgλ̄(2µ + gλ̄ − λ̄)].

Here, we have two cases, either g ≤ 1 or g > 1, and in each case we have two sub-cases: a ≤ 1 and
a > 1. Therefore, we study the sign of ∆sub in the following four cases.
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• Case (1): g ≤ 1 and a ≤ 1. Since we assume that a ≤ 1, then −gλ̄2XY2(γ + µ)(aγ + µ) ≥
−gλ̄2XY2(γ + µ)2. Hence,

∆sub|(g≤1&a≤1) ≥ (γ + µ)2[XYλ̄(λ̄ + µY) + gλ̄(gλ̄ + µ)Y3]
+ (aγ + µ)2[XYgλ̄(gλ̄ + µX) + λ̄X2(gλ̄Y + (λ̄ + µ)X)]
+ (γ + µ)(aγ + µ)[X2Yλ̄(2µ + (1 − g)λ̄) + Y2Xgλ̄(2µ + gλ̄)] > 0.

• Case (2): g ≤ 1 and a > 1. If we assume that a ≥ 1, then (γ + µ)(λ̄ + µ) ≤ (aγ + µ)(λ̄ + µ/g).
Hence, X ≥ Y . Also, a ≥ 1 implies that (γ + µ)(aγ + µ) ≤ (aγ + µ)2. Hence,

−gλ̄2XY2(γ + µ)(aγ + µ) ≥ −gλ̄2XY2(aγ + µ)2 ≥ −gλ̄2X2Y(aγ + µ)2.

Thus,

∆sub|(g≤1&a≥1) ≥ (γ + µ)2[XYλ̄(λ̄ + µY) + gλ̄Y2(λ̄X + (gλ̄ + µ)Y)]
+ (aγ + µ)2[XYgλ̄(gλ̄ + µX) + λ̄(λ̄ + µ)X3]
+ (γ + µ)(aγ + µ)[X2Yλ̄(2µ + (1 − g)λ̄) + Y2Xgλ̄(2µ + gλ̄)] > 0.

• Case (3): g > 1 and a ≤ 1. In this case, we have (γ+µ)(λ̄+µ) ≥ (aγ+µ)(λ̄+µ/g). Hence, X ≤ Y .
Also, a ≤ 1 implies that (γ + µ)(aγ + µ) ≤ (γ + µ)2. Hence,

−gλ̄2X2Y(γ + µ)(aγ + µ) ≥ −gλ̄2X2Y(γ + µ)2 ≥ −gλ̄2XY2(γ + µ)2.

Thus,

∆sub|(g>1&a≤1) ≥ (γ + µ)2[XYλ̄(λ̄ + µY) + gλ̄(gλ̄ + µ)Y3]
+ (aγ + µ)2[XYgλ̄(gλ̄ + µX) + λ̄X2(gλ̄Y + (λ̄ + µ)X)]
+ (γ + µ)(aγ + µ)[X2Yλ̄(2µ + λ̄) + Y2Xgλ̄(2µ + (g − 1)λ̄)] > 0.

• Case (4): g > 1 and a > 1. In this case, we have −gλ̄2X2Y(γ + µ)(aγ + µ) ≥ −gλ̄2X2Y(aγ + µ)2.
Hence,

∆sub|(g>1&a>1) ≥ (γ + µ)2[XYλ̄(λ̄ + µY) + gλ̄Y2(λ̄X + (gλ̄ + µ)Y)]
+ (aγ + µ)2[XYgλ̄(gλ̄ + µX) + λ̄(λ̄ + µ)X3]
+ (γ + µ)(aγ + µ)[X2Yλ̄(2µ + λ̄) + Y2Xgλ̄(2µ + (g − 1)λ̄)] > 0.

Hence, ∆sub > 0. Thus, ∆ > 0.

Appendix B Proof of proposition 7 on the local stability of the influenza-free equilibrium E0v

of model (4.1)

Proof. The local stability of the influenza-free equilibrium E0v of model (4.1) is investigated by
considering the eigenvalues of the Jacobian matrix J0v of the model evaluated at the influenza-free
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equilibrium E0v, where

J0v =



−Dx1 0 −J1,3 0 0 0 −J1,7 0
e0ψ −µ −J2,3 0 0 0 −J2,7 0
0 0 J3,3 0 0 0 J3,7 0
0 0 aγ −µ 0 0 0 0
0 0 −J5,3 0 −Dx2 0 −J5,7 0
0 0 −J6,3 0 ψ −µ −J6,7 0
0 0 J7,3 0 0 0 J7,7 0
0 0 0 0 0 0 γ −µ


where Dx1 = e0ψ + µ, J1,3 = gβx1,0v, J1,7 = gβx1,0v, J2,3 = g(1 − e1)βw1,0v, J2,7 = g(1 − e1)βw1,0v, J3,3 =

gβ[x1,0v + (1−e1)w1,0v]− (aγ+µ), J3,7 = gβ(x1,0v + (1−e1)w1,0v), J5,3 = βx2,0v, J5,7 = βx2,0v, Dx2 = µ+ψ,
J6,3 = (1−e2)βw2,0v, J6,7 = (1−e2)βw2,0v, J7,3 = β[x2,0v+(1−e2)w2,0v], J7,7 = β[x2,0v+(1−e2)w2,0v]−(γ+µ).
Its eigenvalues are −µ, −µ, −µ, −µ, −(ψ + µ), −(e0ψ + µ) and those of the matrix

Jv
sub =

(
J3,3 J3,7

J7,3 J7,7

)
.

Hence, the local stability of E0v depends on the determinant and trace of the matrix Jv
sub. Now,

det(Jv
sub) = J3,3J7,7 − J3,7J7,3 = (γ + µ)(aγ + µ)(1 − Rψ)

Hence, det(Jv
sub) > 0 if and only if Rψ < 1. Thus, to complete proving the local stability of E0v for

Rψ < 1, it remains to show that tr(Jv
sub) < 0. The inequality Rψ < 1 is equivalent to

β[x2,0v + (1 − e2)w2,0v]
γ + µ

+
gβ[x1,0v + (1 − e1)w1,0v]

aγ + µ
< 1

which implies that

β[x2,0v + (1 − e2)w2,0v]
γ + µ

< 1 and
gβ[x1,0v + (1 − e1)w1,0v]

aγ + µ
< 1.

Therefore,

β[x2,0v + (1 − e2)w2,0v] − (γ + µ) < 0 and gβ[x1,0v + (1 − e1)w1,0v] − (aγ + µ) < 0.

I.e.,
J3,3 < 0 and J7,7 < 0.

Thus,
tr(Jv

sub) = J3,3 + J7,7 < 0.

�
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Appendix C Proof of proposition 8 on the existence of unique positive solution for model (4.1)

Proof. As the right hand side of (4.1) is continuously differentiable functions, it is locally Lipschitz.
Therefore, model (4.1) has a unique local solution with components x1(t), w1(t), y1(t), z1(t), x2(t), w2(t),
y2(t) and z2(t) and with initial values x1(0), w1(0), y1(0), z1(0), x2(0), w2(0), y2(0), z2(0) ≥ 0, where
x1(t) + w1(t) + y1(t) + z1(t) + x2(t) + w2(t) + y2(t) + z2(t) = 1 for all t ≥ 0. This solution is defined on the
forward invariant set

Ω =
{
(x1(t),w1(t), y1(t), z1(t), x2(t),w2(t), y2(t), z2(t)) ∈ R8 : x1,w1, y1, z1, x2,w2,

y2, z2 ∈ [0, 1/2] and x1 + w1 + y1 + z1 = x2 + w2 + y2 + z2 = 1/2
}

To show that the state variables are non-negative for all t ≥ 0, we assume the converse. I.e., we
assume that x1(0) > 0, w1(0) > 0, y1(0) > 0, z1(0) > 0, x2(0) > 0, w2(0) > 0, y2(0) > 0, z2(0) > 0
and that at least one of the state variables x1(t), w1(t), y1(t), z1(t), x2(t), w2(t), y2(t) and z2(t) become(s)
negative for some t > 0. Assume further that t = tx

1 is the first time at which x1(t) = 0. Then

dx1

dt
(tx

1) =
1
2
µ > 0.

Since x1 is continuous in time, it implies that x1(t) < 0 for t < tx
1, which contradicts our assumption

that tx
1 is the first time at which x1 vanishes. Thus, x1(t) is non-negative for all t ≥ 0. Similarly, if we

assume that tw
1 , t

y
1, t

z
1, t

x
2, t

w
2 , t

y
2 and tz

2 represent the first times at which w1(t), y1(t), z1(t), x2(t), w2(t), y2(t)
and z2(t), respectively, become zero, then we compute

dw1

dt
(tw

1 ) = e0ψx1,
dy1

dt
(ty

1) = gβy2(x1 + (1 − e1)w1),
dz1

dt
(tz

1) = aγy1,
dx2

dt
(tx

2) =
1
2
µ,

dw2

dt
(tw

2 ) = ψx2,
dy2

dt
(ty

2) = rβy1(x2 + (1 − e2)w2),
dz2

dt
(tz

2) = γy2

which are all positive. Thus, by continuity of these state variables, it implies that w1(t) < 0 for t < tw
1 ,

y1(t) < 0 for t < ty
1, z1(t) < 0 for t < tz

1, x2(t) < 0 for t < tx
2, w2(t) < 0 for t < tw

2 , y2(t) < 0 for t < ty
2 and

z2(t) < 0 for t < tz
2 which contradict the above assumptions. Thus, all state variables are non-negative

for all forward times t ≥ 0. �
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