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Abstract: The present work compares two types of configurations for a two-reaction (acidogene-
sis and methanogenesis) anaerobic digestion model. These configurations are as follows: (i) a single
bioreactor, where the acidogenesis and methanogenesis reactions occur inside and, (ii) two bioreactors
connected sequentially, where each reaction occurs separately in each reactor. The mathematical mo-
dels that describe the mentioned configurations are analyzed at steady state, comparing the following
criteria: the stability of the processes (stability properties of desired equilibria) and soluble organic
matter removal performance (substrate levels at steady states), concluding that separation of the reac-
tions in two bioreactors does not improve the stability of the process nor the soluble organic matter
removal capacity, unless the improvement of the growth functions of both microorganism populations
is considerably important at the moment of separating them into two reactors.
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1. Introduction

Anaerobic digestion has become a widely used bioprocess to obtain bioenergy from second gen-
eration biomass, making it one of the most sustainable biotechnological processes. It comprises a
series of biochemical reactions carried out by a variety of microorganisms. As it is usually done for a
well-established and consolidated technology, such as anaerobic digestion, ongoing and future research
studies focus on maximizing the reactor’s performance, for instance, the organic matter removal ca-
pacity or the biogas production, by evaluating different reactor configurations or operating conditions.
In the case of anaerobic digestion, the one-reaction mesophilic treatment is the most used system.
However, the separation of the treatment in two reactions, i.e., hydrolytic/acidogenic followed by a
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methanogenic reactor, has shown interesting results [1, 2].
The use of mathematical modeling for bioprocesses appeared to be a useful tool because it allows for

the application of mathematical optimization theory. Nevertheless, as modeling necessarily implies an
approximation of the studied process, there is difficulty in choosing the level of accuracy of the model,
and it is quite admitted that the more precise the model is, the more difficult it is to study. In the last
thirty years, complex models of anaerobic digestion have been developed and fitted with experimental
data to predict, for example, the organic matter removal and biogas production rates. This is true in
the case of the Anaerobic Digestion Model 1 (ADM1) [3], a model that consists of 29 dynamic state
variables, which makes it very difficult to carry out qualitative analysis. Simpler models focusing on
different subprocesses of ADM1 have been proposed, as in [4] (two reactions considered: acidogenesis
and methanogenesis), [5] (three reactions considered: acidogenesis, acetogenesis, and methanogene-
sis), and [6] (four reactions considered: hydrolysis, acidogenesis, acetogenesis, and methanogenesis).
Mathematical analyses have been carried out for these models in [7, 8, 9, 10, 5, 6].

In the case of wastewater, acidogenesis and methanogenesis are considered the key steps of the
entire process, and one of the most used models is introduced in [4]. Concerning this model, in [10],
the authors present a complete analysis developed in a generic manner related to the existence of
steady states and their stability properties. The problem of optimizing biogas production for the model
proposed in [4] is studied in [12, 13, 7, 8, 9]. This issue is also analyzed in [5] and [6], where models
with more reactions for the anaerobic digestion process are considered. In these works, one observes
that steady states can be characterized as follows: (i) the extinction (washout) of one or more of the
involved microorganisms and (ii) the coexistence of microorganisms. The coexistence steady states
are referred to as nominal operating points, and they are typically viewed as the desired operating
conditions.

Due to the fact that the acidogenic and methanogenic microorganisms possess different growth rates,
pH optima has led to the development of a two-phase (or two-stage) anaerobic digestion configuration,
wherein each reaction takes place separately in a different reactor. The product of the first reaction in
the first reactor is then transferred to the second reactor ([15, 14]). To our knowledge, there have been
no studies addressing the mathematical analysis of a single reactor compared to the mentioned sequen-
tial configuration, wherein two reactors are sequentially connected, and the reactions of the anaerobic
digestion process are separated. The objective of this work is to use the two-reaction anaerobic di-
gestion model introduced in [4] and to compare at steady state the two mentioned configurations with
regard to the following criteria: stability issues and soluble organic matter removal performance.

The paper is organized as follows. In the next section, we introduce the two-stage anaerobic di-
gestion model established in [4] and specifically the one-reactor and two-reactor models to be studied.
In Section 3, we present the stability analysis for the steady states of the one-reactor model and two-
reactor model, comparing the sets of parameters for these two models ensuring stability properties
of the desired stable coexistence steady state. In Section 4, we compare the soluble organic matter
removal performance of the two models analyzed.

2. Two-stage anaerobic digestion models

A representation of the two-reaction anaerobic digestion model is based on the coupling of two
main reactions called acidogenesis and methanization. These two reactions can be described by the
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so-called Anaerobic Digestion Model AM2 (see [4]) represented by the following dynamical system:

ẋA = µA(sA)xA − DxA

ṡA = −k1µA(sA)xA + D(sin
A − sA)

ẋM = µM(sM)xM − DxM

ṡM = k2µA(sA)xA − k3µM(sM)xM − DsM

(2.1)

which is based on the chemostat model (see [16, 11] or also [17]). Here, xA and xM denote the microor-
ganism concentrations associated with the acidogenesis and methanogenesis processes, respectively;
sA is the concentration of the organic substrate characterized by its COD (chemical oxygen demand)
and measured in [g/l]; and sM is the total concentration of VFA (volatile fatty acids) measured in
[mmol/l]. The dilution rate of the continuously operated bioreactor is denoted by D (i.e., D = Q/V ,
where Q is the input and output flow rate of water and V is the constant volume of water present in
the bioreactor). The parameter sin

A represents the input acidogenesis substrate concentration∗. Coeffi-
cients k j, j = 1, 2, 3 are positive parameters called pseudostochiometric coefficients associated with the
bioreactions, and the functions µA(·) and µM(·) are the so-called growth rate functions.

The dilution rate D is the decision variable due to the fact that one can control the input and output
flow rates, both being equal in a continuously operated bioreactor.

The growth functions or kinetics µA(·) and µM(·) are usually of a Monod and Haldane type (see
Example 1 for the definitions), respectively, as in [4, 7, 8]. However, in this paper, we consider generic
kinetics µA(·) and µM(·), satisfying the following qualitative properties:

Assumption 1. The function µA : [0,+∞) −→ R is concave, increasing, and continuously differen-
tiable, with µA(0) = 0 and lim

sA→+∞
µA(sA) = µ̄A, for some µ̄A > 0.

Assumption 2. The function µM : [0,+∞) −→ R is continuously differentiable, and for some S max
M > 0,

it is concave and increasing over [0, S max
M ] and decreasing over (S max

M ,+∞), with µM(0) = 0, µM(sM) >
0 for all sM > 0, and also lim

sM→+∞
µM(sM) = 0.

Observe that under Assumptions 1 and 2, the set D′ := [0,+∞)4 is invariant under (2.1), which
allows us to study only positive state variables.

Example 1. It is straightforward to check that if µA(·) is a Monod function and µM(·) is of Haldane
type, then they satisfy Assumptions 1 and 2. Recall that the Monod function is defined (see [11]) by

µA(sA) =
µ̄AsA

kA + sA
,

and the Haldane function by

µM(sM) =
µ̄M sM

kM + sM + s2
M/kI

,

where µ̄A, kA, µ̄M, kM, and kI are positive parameters. In this case, the value S max
M in Assumption 2 is

given by S max
M =

√
kMkI .

∗The input concentration of methanogenic substrate in the influent is usually considered negligible; thus, for simplicity, it is not
considered in this work.
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We shall call the one-reactor model the system presented in (2.1), where the two reactions (acido-
genesis and methanogenesis) of the anaerobic digestion process occur in one bioreactor (see Figure
1).

sA sM

sinA Q Q sA

sM

V
xA xM

Q
V = D

Figure 1. Scheme of operation of the one-reactor model (2.1).

2.1. Sequential two-reactor anaerobic digestion model

In this section, we introduce a variation of (2.1), considering the two reactions (acidogenesis and
methanogenesis) of the anaerobic digestion process, separated in two bioreactors connected sequen-
tially, with separation of the two biomass populations. Thus, the acidogenesis process takes place
in the first reactor, where only the acidogenic microorganism is located. The output flow of the first
bioreactor is filtered† to the input flow to the second bioreactor, which consists only of acidogenic
and methanogenic substrates. Finally, the methanogenic process takes place in the second bioreactor,
where only the methanogenic microorganism is present as a biomass. The scheme of this sequential
configuration is depicted in Figure 2.

sA1 sM1 sA2 sM2

sinA

Q Q Q

sA2

sM2

rV (1− r)V
xA xM

Q
V = D

Figure 2. Scheme of operation of the two-reactor model (2.2).

The described configuration is represented by the following dynamical system:

First reactor


Second reactor



ẋA = µA(sA1)xA −
D
r xA

ṡA1 = −k1µA(sA1)xA + D
r (sin

A − sA1)

ṡM1 = k2µA(sA1)xA −
D
r sM1

ẋM = µM(sM2)xM −
D

1−r xM

ṡA2 = D
1−r (sA1 − sA2)

ṡM2 = −k3µM(sM2)xM + D
1−r (sM1 − sM2).

(2.2)

†We neglect the effect of the filter device on the flow rate.
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The notations used in (2.2) are basically the same as those in (2.1). The subscripts 1 and 2, for
the substrate concentrations, refer to which bioreactor these concentrations are in. Recall that in
the first reactor, there is only acidogenic microorganisms, and in the second bioreactor, there is only
methanogenic microorganisms. The notation D stands for the global dilution rate of the system, which
is given by the input flow divided by the sum of the volumes of each bioreactor, the volumes being
denoted by V1 and V2, respectively. The parameter r represents the ratio of the total volume V = V1 +V2

attributed to the first tank, i.e., r = V1
V1+V2

= V1
V ∈ (0, 1).

The growth functions µA(·) and µM(·) in (2.2) are the same as those used in (2.1). Thus, as with the
one-reactor model (2.1), one can prove straightforwardly that the set D := [0,+∞)6 is invariant under
(2.2), reducing our study to only positive state variables.

3. Stability analysis

In this section, we recall the stability analysis carried out in [10] for the one-reactor model (2.1),
and we study the stability properties of equilibria corresponding to the two-reactor model (2.2).

3.1. Stability analysis of the one-reactor model

In [10], the authors study the steady states of the one-reactor model (2.1), analyzing their local and
global stability behaviors. We will first recall these results, which will be needed in the next sections.
Let us first introduce some notations. It is well known that in a chemostat model, the existence and
value of a steady state depends on the value of the dilution rate, the substrate input concentration and
the growth functions considered. If D < µ̄A, then we define

seq
A := µ−1

A (D), xeq
A :=

1
k1

(sin
A − seq

A ) and seq
Mw :=

k2

k1
(sin

A − seq
A ).

Notice that seq
A is well defined because, from Assumption 1, the acidogenic growth function µA(·) is

increasing.
From Assumption 2, D < µM(S max

M ) ensures the existence of two solutions of the equation µM(s) =

D, which will be denoted by seq
Ms and seq

Mu, such that seq
Ms < seq

Mu (the subscript s stands for stable, while
u stands for unstable). Then, assuming D < µ̄A, we can define

Xeq
Ms :=

1
k3

(seq
Mw − seq

Ms) and Xeq
Mu :=

1
k3

(seq
Mw − seq

Mu).

It can be proven (see [10]) that the following are the only possible steady states (x∗A, s
∗
A, x

∗
M, s

∗
M) of

the one-reactor model (2.1):

e0 := (0, sin
A , 0, 0) (total washout);

e1 := (xeq
A , s

eq
A , 0, s

eq
Mw) (washout of the methanogenic microorganism);

e2s := (xeq
A , s

eq
A , X

eq
Ms, s

eq
Ms) (stable coexistence);

e2u := (xeq
A , s

eq
A , X

eq
Mu, s

eq
Mu) (unstable coexistence).

Finally, to present the stability results, we define the setsD′ := [0,+∞)4,D′∗ := (0,+∞) × [0,+∞)3

andD′∗∗ := (0,+∞) × [0,+∞) × (0,+∞) × [0,+∞).

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2447–2465



2452

Theorem 3.1 ([10]). The stability behavior of steady states corresponding to the one-reactor model
(2.1), depending on the values of D, sin

A and growth functions µA(·) and µM(·), is the following:

D > µA(sin
A ) D < µA(sin

A )
D > µM(S max

M ) D < µM(S max
M )

seq
Mw < seq

Ms seq
Ms < seq

Mw < seq
Mu seq

Mu < seq
Mw

e0 GAS onD′ Unstable Unstable Unstable Unstable

e1 < D′ GAS onD′∗ GAS onD′∗ Unstable LAS

e2s < D′ < D′ < D′ GAS onD′∗∗ LAS

e2u < D′ < D′ < D′ < D′ LAS

where GAS stands for Globally Asymptotically Stable and LAS stands for Locally Asymptotically
Stable.

Usually, the stable coexistence steady states e2s (which exist for the range of dilution rates D in-
dicated in the above table) are referred to as nominal operating points, and they are typically viewed
as the desired operating conditions. One of our objectives is to compare the conditions ensuring the
stability (at least local) of this steady state between the one-reactor model and the two-reactor model.
For this purpose, in the next section, we develop the same analysis carried out in [10] but for the
two-reactor model (2.2).

3.2. Stability analysis of the two-reactor model

To provide an equivalent result of Theorem 3.1 in the context of the two-reactor model, it is worth
noting that the model consists of two usual chemostat models connected in series. Consequently, the
existence of the steady states depends on the value of the dilution rate and on the growth functions (see,
for instance, [18]). Therefore, we introduce the following notations. If D

r < µ̄A, then we define

seq
A1 := µ−1

A

(D
r

)
, Xeq

A :=
1
k1

(sin
A − seq

A1) and seq
M1 :=

k2

k1
(sin

A − seq
A1).

As emphasized before, seq
A1 is well defined from Assumption 1.

Assuming that D
1−r ≤ µM(S max

M ), Assumption 2 implies the existence of two solutions of the equation
µM(s) = D

1−r , which will be denoted by seq
M2s and seq

M2u such that seq
M2s < seq

M2u. Then, if one has D
r < µ̄A,

one can define
Xeq

Ms :=
1
k3

(seq
M1 − seq

M2s) and Xeq
Mu :=

1
k3

(seq
M1 − seq

M2u).

The next result characterizes the existence of steady states under hypotheses on the dilution rate and
the growth functions.

Proposition 1. The sequential model (2.2) admits at most four steady states, denoted in the form
(x∗A, s

∗
A1, s

∗
M1, x

∗
M, s

∗
A2, s

∗
M2):

E0 := (0, sin
A , 0, 0, s

in
A , 0) (total washout);

E1 := (Xeq
A , s

eq
A1, s

eq
M1, 0, s

eq
A1, s

eq
M1) (washout of the methanogenic microorganism);

E2s := (Xeq
A , s

eq
A1, s

eq
M1, X

eq
Ms, s

eq
A1, s

eq
M2s) (stable coexistence);
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E2u := (Xeq
A , s

eq
A1, s

eq
M1, X

eq
Mu, s

eq
A1, s

eq
M2u) (unstable coexistence).

Moreover,

1. If D
r ≥ µA(sin

A ), then the system only admits E0.

2. If D
r < µA(sin

A ) with D
1−r > µM(S max

M ) or with D
1−r ≤ µM(S max

M ) and seq
M1 < seq

M2s, then the system only
admits E0 and E1.

3. If D
r < µA(sin

A ) with D
1−r ≤ µM(S max

M ) and seq
M2s ≤ seq

M1 ≤ seq
M2u, then the system admits E0, E1 and

E2s.

4. If D
r < µA(sin

A ) with D
1−r ≤ µM(S max

M ) and seq
M1 ≥ seq

M2u, then the system admits the four steady states
E0, E1, E2s and E2u.

Proof. See the proof in the Appendix. �

In the previous result, we use coexistence to refer to those steady states where the concentration of
both microorganisms is positive, even though these populations are not in the same bioreactor.

Remark 1. It is worth noting that even if Proposition 1 is given for general growth functions satisfying
Assumptions 1 and 2, explicit expressions of those functions are usually needed to know which of the
four cases of the same proposition is fulfilled. Minding this fact, it can be observed that assumption
seq

M2s ≤ seq
M1 ≤ seq

M2u in the third case in Proposition 1 can be substituted by µM(seq
M1) ≤ D

1−r .

To establish the stability behaviors of the steady states in the two-reactor model, similar to the
analysis in the previous section, we define the sets D = [0,+∞)6, D∗ := (0,+∞) × [0,+∞)5 and
D∗∗ := (0,+∞) × [0,+∞)2 × (0,+∞) × [0,+∞)2 .

Theorem 3.2. The stability properties of steady states corresponding to the two-reactor model (2.2),
depending on the values of D, r, sin

A and growth functions µA(·) and µM(·), are presented in the following
table:

D
r > µA(sin

A ) D
r < µA(sin

A )
D

1−r > µM(S max
M ) D

1−r < µM(S max
M )

seq
M1 < seq

M2s seq
M2s < seq

M1 < seq
M2u seq

M2u < seq
M1

E0 GAS onD Unstable Unstable Unstable Unstable

E1 < D GAS onD∗ GAS onD∗ Unstable LAS

E2s < D < D < D GAS onD∗∗ LAS

E2u < D < D < D < D Unstable

Proof. See the proof in the Appendix. �

Regarding theorems 3.1 and 3.2, we prove in the next result that the bioprocess in one reactor (given
by (2.1)) is more stable than the sequential process in two reactors (given by (2.2)) in the sense that,
whenever stable coexistence exists in the two-reactor model and is locally or globally stable, then this
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Figure 3. Sets P∪ P̂ and Pr ∪ P̂r for different values of r (left: r = 0.9; center: r = 0.5; right:
r = 0.1). These sets were obtained with the parameters indicated in [4] shown in Table 1.

steady state also exists in the one-reactor model, being locally or globally stable too. To prove this
result, consider the following sets of parameters:

P := {(D, sin
A ) | the coexistence steady state E2s in model (2.1) is LAS} (3.1)

P̂ := {(D, sin
A ) | the coexistence steady state E2s in model (2.1) is GAS} (3.2)

Pr := {(D, sin
A ) | the coexistence steady state e2s in model (2.2) is LAS} (3.3)

P̂r := {(D, sin
A ) | the coexistence steady state e2s in model (2.2) is GAS} (3.4)

where r ∈ (0, 1) is the parameter that characterizes the two-reactor model (2.2).

Proposition 2. For the sets defined by (3.1)-(3.4), one has

Pr ∪ P̂r ⊆ P ∪ P̂ ∀ r ∈ (0, 1).

Proof. See the proof in the Appendix. �

The previous result indicates that for parameters (D, sin
A ) for which the steady state E2s of model

(2.2) is stable (at least locally), the corresponding steady state e2s of (2.1) (associated with (D, sin
A )) is

also stable, independently of the distribution of volumes in the two-reactor model, with a distribution
parameterized by r ∈ (0, 1). In other words, there are more parameters (D, sin

A ) ensuring the stability of
the coexistence steady state for the one-reactor model than for the two-reactor model. In Figure 3, we
depict the sets Pr ∪ P̂r and P∪ P̂ in the plane of parameters sin

A −D for different values of r. These sets
were obtained considering the growth functions introduced in Example 1 and parameter values found
in [4], also presented in Table 1.

We can obtain a similar result to that in Proposition 2 regarding the global stability of the stable
coexistence in both models. For this purpose, let us introduce the following set:

C :=
{

(D, sin
A ) |

k2

k1
(sin

A − µ
−1
A (D)) < µ−1

M (D)+

}
(3.5)

where µ−1
M (D)+ represents the greatest solution s of the equation µM(s) = D.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2447–2465



2455

Table 1. Values of parameters used for Figures 3 and 4.

Parameter Value Unit
µ̄A 1.2 d−1

kA 7.1 g/l
µ̄M 0.74 d−1

kM 9.28 mmol/l
kI 256 mmol/l
k1 42.14
k2 116.5 mmol/g
k3 268 mmol/g

Figure 4. Sets P̂ and P̂r ∩ C for different values of r (left: r = 0.9; center: r = 0.5; right:
r = 0.1) and parameter values from Table 1.

Proposition 3. For the sets defined in (3.2), (3.4), and (3.5), one has the following inclusion:

P̂r ∩C ⊆ P̂ ∀ r ∈ (0, 1),

Proof. See the proof in the Appendix. �

In the previous result, the intersection with the set C is necessary because the inclusion of P̂r ⊆ P̂ is
not true. That is, there could exist some parameters (D, sin

A ) for which the stable coexistence is globally
stable in the two-reactor model, but for these parameters, the stable coexistence steady state of the
one-reactor model can be just locally stable.

In Figure 4, we depict sets P̂r∩C and P̂ for different values of r using the parameter values of Table
1. One can observe that these sets do not differ so much with sets presented in Figure 3.

4. Comparison of the organic matter removal performance

Finally, in this section, we compare substrate concentrations at steady state in both models. First,
regarding the possible steady states in the one-reactor and two-reactor models, the desired equilibria
correspond to stable coexistence because, if one or two species are washed out, there is no removal
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of soluble organic matter. Therefore, to compare the soluble organic matter removal performance of
the two configurations under study, it is sufficient to compare the substrate concentrations of the stable
coexistence equilibria.

Proposition 4. For r ∈ (0, 1), consider (D, sin
A ) in the set Pr defined by (3.3), e2s = (xeq

A , s
eq
A , X

eq
Ms, s

eq
Ms) the

stable coexistence steady state for the one-reactor model (2.1) and E2s = (Xeq
A , s

eq
A1, s

eq
M1, X

eq
Ms, s

eq
A1, s

eq
M2s)

the stable coexistence steady state for the two-reactor model (2.2), with steady states associated with
parameters (D, sin

A ); then,
seq

A < seq
A1 and seq

Ms < seq
M2s.

Proof. See the proof in the Appendix. �

The above results simply establish that the organic matter removal capacity is better in the one-
reactor model. Nevertheless, if separating the two microorganism populations in two reactors, allow-
ing for improvement of the performances of both populations in term of their growth functions (e.g.,
adapting in each reactor the best pH and temperature for each microorganism), the organic matter
removal capacity could be better in the two-reactor configuration. Indeed, if µA(·) and µM(·) are the
growth functions for the microorganisms in the one-reactor configuration and µ̂A(·) and µ̂M(·) are the
growth functions in the two-reactor configuration, with µA(·) < µ̂A(·) and µM(·) < µ̂M(·), one could
find r ∈ (0, 1) (distribution of the volume V into two volumes rV and (1 − r)V) to improve the organic
matter removal capacity, as is established in the next result.

Proposition 5. Consider εA > 0 and εM > 0 such that

(1 + εA)µA(·) ≤ µ̂A(·) and (1 + εM)µM(·) ≤ µ̂M(·) (4.1)

and r ∈ (0, 1) is such that
1

1 + εA
≤ r ≤

εM

1 + εM
, (4.2)

then, the organic matter removal performance is better for the two-reactor configuration (associated
with the distribution of volume r satisfying (4.2)).

Proof. See the proof in the Appendix. �

In the above proposition, notice that the improvement of the growth functions in separating both
populations, measured with εA > 0 and εM > 0, must not be too low. In fact, from (4.2), one deduces
that εAεM ≥ 1. For instance, if the improvements are equal, εA = εM = ε, then ε ≥ 1, meaning
that (from (4.1)) the growth functions of the microorganisms separated have to be at least double
the growth functions when the populations are in the same reactor. In this case, defining I(ε) :=
[1/(1 + ε), ε/(1 + ε)], the interval established in (4.2) (when εA = εM = ε), where r has to belong, one
has that I(ε) , ∅ if and only if ε ≥ 1, also I(1) = {1/2}, and I(ε)→ (0, 1) when ε→ +∞, as is depicted
in Figure 5.

5. Conclusions

In this work, using the two-reaction anaerobic digestion model proposed in [4], we have studied
two configurations: (i) a single bioreactor, where the acidogenesis and methanogenesis reactions occur
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Figure 5. Interval I(ε) = [1/(1 + ε), ε/(1 + ε)], where r has to belong if the improvement of
growth functions (see conditions in (4.1) with εA = εM = ε) in separating both populations
in two different reactors is at least (1 + ε).

inside, and (ii) two bioreactors connected sequentially, where each reaction occurs separately in each
reactor. We have proven that the set of operating conditions consisting of dilution rates D and input
acidogenic substrate concentrations sin

A , which ensure that the coexistence steady state is stable (at least
locally), is larger for the one-reactor model than the two-reactor model, implying that larger dilution
rates can be applied in the one-reactor model. Furthermore, the soluble organic matter removal perfor-
mance of the one-reactor model is better than that of the two-reactor model, leading to the conclusion
that dividing the reactions in two reactors does not improve the stability of the anaerobic digestion pro-
cess or the soluble organic matter removal capacity unless the improvement of the growth functions of
both microorganisms populations is considerably important (established in a precise manner in Propo-
sition 5) at the moment of separating them into two reactors. This may partly explain why this type
of configuration has not reached the same level of development as that reached by the conventional
one-phase reactor. In fact, two-stage systems are in decline, at least for municipal solid waste [19].
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Appendix

5.1. Proof of Proposition 1

We are interested in finding the positive solutions of the algebraic system

0 = µA(sA1)xA −
D
r xA

0 = −k1µA(sA1)xA + D
r (sin

A − sA1)

0 = k2µA(sA1)xA −
D
r sM1

0 = µM(sM2xM) − D
1−r xM

0 = D
1−r (sA1 − sA2)

0 = −k3µM(sM2)XM + D
1−r (sM1 − sM2),

(5.1)

that is, with (xA, sA1, sM1, xM, sA2, sM2) ∈ D.
One can observe that the two first equations of (5.1) describe the steady state of an usual one

specific chemostat with an increasing bounded growth function. Therefore, it is well known (see [18]
for instance) that if D

r ≥ µA(sin
A ), then the only positive steady state for this submodel is (0, sin

A ), whereas
if D

r < µA(sin
A ), it admits (0, sin

A ) and (Xeq
A , s

eq
A1) as positive steady states.

Next, we can observe that if we consider (0, sin
A ) for the solution of the first two equations of (5.1),

then one necessarily has that (0, sin
A , 0, 0, s

in
A , 0). Indeed, if xA = 0, then it is straightforward that sM1 = 0

and sA2 = sin
A . Moreover, multiplying the fourth equation of (5.1) by k3 and then adding it to the sixth

one yields sM2 + k3xM = 0, which implies that sM2 = xM = 0.
Let us suppose now that D

r < µA(sin
A ) and consider (Xeq

A , s
eq
A1) as the solutions of the first two equations

of (5.1). Then, it is obvious that the third equation of (5.1) vanishes for sM1 = seq
M1, which is positive

because sin
A ≥ seq

A1 by D
r < µA(sin

A ) and the fact that µA(·) is increasing.
Moreover, we observe that the fourth and sixth equations of (5.1) describe the steady state of an

usual chemostat of one species under a Haldane-type growth function with substrate input seq
M1 (see

[18]). Thus, if D
1−r > µM(S max

M ), one can define seq
M2s, s

eq
M2u, X

eq
Ms, X

eq
Mu such that seq

M2s < seq
M2u, and we have

the three following cases:

• if Xeq
Ms ≤ 0, that is, seq

M1 ≤ seq
M2s, then the only steady state of the submodel is (0, seq

M1);

• if Xeq
Mu ≤ 0, that is, seq

M2s ≤ seq
M1 ≤ seq

M2u, then (0, seq
M1) and (Xeq

Ms, s
eq
M2s) are the two steady states of

the submodel;

• if Xeq
Mu ≥ 0, that is seq

M1 ≥ seq
M2u then (0, seq

M1), (Xeq
Ms, s

eq
M2s), and (Xeq

Mu, s
eq
M2u) are the three steady states

of the model.

Finally, we observe that the fifth equation of (5.1) always leads to seq
A2 = seq

A1, which concludes our
determination of the steady states.
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5.2. Proof of Theorem 3.2

First, we compute the Jacobian matrix of the model (2.2):

J(xA, sA1, sM1, xM , sA2.sM2) =

µA(sA1) − D
r µ′A(sA1)xA 0 0 0 0

−k1µA(sA1) −k2µ
′
A(sA1)xA −

D
r 0 0 0 0

k2µA(sA1) k2µ
′
A(sA1)xA −D

r 0 0 0
0 0 0 µM(sM2) − D

1−r 0 µ′M(sM2)
0 D

1−r 0 0 − D
1−r 0

0 0 D
1−r −k3µM(sM2) 0 −k3µ

′
M(sM2)xM −

D
1−r


and we evaluate this Jacobian in each of the four steady states, E0, E1, E2s, E2u defined in Proposition

1, deducing the conditions for the stability of each one.

1. For λ ∈ R, one has that

det(J(E0) − λI) =

(
−

D
1 − r

− λ
)3 (D

r
+ λ

)2 (
µA(sin

A ) −
D
r
− λ

)
,

hence, the eigenvalues of J(E0) are − D
1−r , −D

r and µA(sin
A ) − D

r . This implies that if µA(sin
A ) < D

r ,
then E0 is LAS; if µA(sin

A ) > D
r , then E0 is unstable; and if µA(sin

A ) = D
r , it is nonhyperbolic.

2. Suppose now that D
r < µA(sin

A ) so that E1 is well defined inD. Then, one has that

det(J(E1) − λI) =

(D
r

+ λ
)2 (

µM(seq
M1) −

D
1 − r

− λ
) (
−

D
1 − r

− λ
)

det(A − λI),

where:

A :=

 0 µ′A(seq
A1)Xeq

A

−k1 −k2µ
′
A(seq

A1)Xeq
A −

D
r

 .
Therefore, the eigenvalues of J(E1) are − D

1−r , −D
r , µM(seq

M1) < D
1−r and also the eigenvalues of

A. However, it can be observed that A is the Jacobian matrix of the usual chemostat model with
Monod-type growth function described by Equations 1 and 2 of (2.2) evaluated at (Xeq

A , s
eq
A1). Thus,

it is well known that the eigenvalues of A are with negative real part whenever D
r < µA(sin

A ) (see
[18]).

Consequently, we deduce that E1 is LAS if µM(seq
M1) < D

1−r , unstable if µM(seq
M1) > 0 and nonhy-

perbolic if µM(seq
M1) = 0.

Therefore, if µM(S max
M ) < D

1−r , then µM(seq
M1) < D

1−r , and E1 is LAS.

Suppose from now on that D
1−r ≤ µM(S max

M ) so that seq
M2s and seq

M2u are well defined. If seq
M1 < seq

M2s
or seq

M1 > seq
M2u, then µM(seq

M1) < D
1−r and E1 is LAS. If seq

M2s < seq
M1 < seq

M2u, then µM(seq
M1) > D

1−r and
E1 is unstable. If seq

M1 = seq
M2s or seq

M1 = seq
M2u, then E1 is nonhyperbolic.
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3. Suppose now that seq
M1 > seq

M2s. Therefore, E2s ∈ D. Then, one has

det(J(E2s) − λI) =

(D
r

+ λ
) (
−

D
1 − r

− λ
)

det(A − λI)det(Bs − λI),

where

Bs :=

 0 µ′M(seq
M2s)X

eq
Ms

−k3
D

1−r −k3µ
′
M(seq

M2s)X
eq
Ms −

D
1−r

 .
First, we observe that if seq

M1 = seq
M2s or seq

M2s = S max
M , then one has, respectively, that Xeq

Ms = 0 or
µ′M(seq

M2s) = 0, which implies that det(Bs − λI) = λ(λ + D
1−r ), leading to E2s being nonhyperbolic.

Therefore, let us suppose that seq
M1 > seq

M2s and seq
M2s < S max

M . Then, µ′M(seq
M2s) > 0, implying that

tr(Bs) < 0 and det(Bs) > 0 and leading to E2s being LAS.

4. Finally, we suppose that seq
M1 ≥ seq

M2u so that E2u ∈ D. Then, one has

det(J(E2u) − λI) =

(D
r

+ λ
) (
−

D
1 − r

− λ
)

det(A − λI)det(Bu − λI),

where

Bu :=
(

0 µ′M(seq
M2u)Xeq

Mu
−k3

D
1−r −k3µ

′
M(seq

M2u)Xeq
Mu −

D
1−r

)
.

As done in the previous case, it can be observed that seq
M1 = seq

M2u or seq
M2u = S max

M implies that E2u

is nonhyperbolic.

Therefore, we assume that seq
M1 > seq

M2u and seq
M2u < S max

M . This implies that det(Bu) < 0. Conse-
quently we have that the discriminant of the characteristic polynomial of Bu is positive, yielding

that the greatest eigenvalue of Bu is defined by λ =
−tr(Bu)+

√
tr2(Bu)−det(Bu)

2 , which is positive. There-
fore, E2u is unstable.

Now, we establish under what conditions steady states E0, E1, and E2s are GAS. For this purpose,
the idea is to use the cascade structure of (2.2) to separately study the global asymptotic behavior of the
state variables. Indeed, one can observe that (2.2) admits two independent subsystems: one composed
by Equations 1 and 2 only, and the other, by Equations 1, 2, 3 and 5. This implies that once the initial
condition (x0

A, s
0
A1) of the two first state variables are fixed, the state variables sM1 and sA2 satisfy the

nonautonomous system

ṡM1 = k2µA(sA1(t))xA(t) −
D
r

sM1

ṡA2 =
D

1 − r
(sA1(t) − sA2)

(5.2)

where (xA(t), sA1(t)) is the solution of the first independent subsystem associated with the initial condi-
tion (x0

A, s
0
A1).
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Then, one can fix an initial condition (s0
M1, s

0
A2) of the third and fifth state variables and obtain that

xM and sM2 satisfy the nonautonomous system

ẋM = µM(sM2)xM −
D

1 − r
xM

ṡM2 = −k3µM(sM2)xM +
D

1 − r
(sM1(t) − sM2)

(5.3)

where (xA(·), sA1(·), sM1(·), sA2(·)) is the solution of the second independent subsystem associated with
the initial condition (x0

A, s
0
A1, s

0
M1, s

0
A2).

Let (xA(·), sA1(·), sM1(·), xM(·), sA2(·), sM2(·)) be the solution of (2.2) associated with an initial condi-
tion (x0

A, s
0
A1, s

0
M1, x

0
M, s

0
A2, s

0
M2) ∈ D = [0,+∞)6.

Suppose for the moment that D
r > µA(sin

A ). We claim that E0 is GAS on D. Indeed, because
D
r > µA(sin

A ), it is well known that (xA(·), sA1(·)) converges to (0, sin
A ). Therefore, (5.2) is asymptotically

autonomous (see [18]) with the limit system

ṡM1 = −
D
r

sM1

ṡA2 =
D

1 − r
(sin

A1 − sA2),

which only admits (0, sin
A ) as steady state, which is GAS on [0,+∞)2. Therefore, one can apply the

Thieme theorem (see Theorem A.9 of [18]) to obtain that (sM1(·), sA2(·)) converges to (0, sin
A ).

This in turn implies that (5.3) is also asymptotically autonomous with the limit system

ẋM = µM(sM2)xM −
D

1 − r
xM

ṡM2 = −k3µM(sM2)xM −
D

1 − r
sM2

which only admits (0, 0) as steady state, which is GAS on [0,+∞)2. Therefore, one can apply the
Thieme theorem once again to obtain that (xM(·), sM2(·)) converges to (0, 0), which proves the claim.

Suppose now that D
r < µA(sin

A ) with x0
A , 0. Then, it is well known that (xA(·), sA1(·)) converges to

(xeq
A , s

eq
A1). Therefore, (5.2) is asymptotically autonomous with the limit system

ṡM1 =
D
r

(seq
M1 − sM1)

ṡA2 =
D

1 − r
(seq

A1 − sA2),

which only admits (seq
M1, s

eq
A1) as steady state, which is GAS on [0,+∞)2. Therefore, by the Thieme

theorem, one has that (sM1(·), sA2(·)) converges to (seq
M1, s

eq
A1).

Then, one obtains that (5.3) is once again asymptotically autonomous, but this time with the limit
system
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ẋM = µM(sM2)xM −
D

1 − r
xM

ṡM2 = −k3µM(sM2)xM +
D

1 − r
(seq

M1 − sM2).
(5.4)

Then, assuming that D
1−r > µM(S max

M ), it is well known that (0, seq
M1) is the only steady state of (5.4),

which is GAS on [0,+∞)2, implying by Thieme theorem that E1 is GAS onD∗ as wanted.
Assuming that D

1−r < µM(S max
M ) with seq

M1 < seq
M2s also implies that (0, sM1) is the only steady state of

(5.4), which is GAS on [0,+∞)2, also yields that e1 is GAS onD∗.
Finally, if D

1−r < µM(S max
M ) with seq

M2s < seq
M1 < seq

M2u, it well known that supposing x0
M , 0 gives that

(Xeq
Ms, s

eq
M2s) is the only steady state of (5.4), which is GAS on (0,+∞) × [0,+∞). Therefore, applying

the Thieme theorem once again implies that E2s is GAS onD∗∗ and concludes the proof.

5.3. Proof of Proposition 2

For r ∈ (0, 1), let us consider some values of D, sin
A such that (D, sin

A ) ∈ Pr ∪ P̂r. This implies that the
following conditions hold, according to Theorem 3.2:

(A1) D
r < µA(sin

A ),

(A2) D
1−r < µM(S max

M ),

(A3) seq
M2s < seq

M1.

Additionally, let us recall that by Theorem 3.1, the following conditions must hold for D, sin
A such

that (D, sin
A ) ∈ P ∪ P̂

(B1) D < µA(sin
A ),

(B2) D < µM(S max
M ),

(B3) seq
Ms < seq

Mw.

Given that D < D
r and D < D

1−r if r ∈ (0, 1), it is immediate that (A1) =⇒ (B1) and (A2) =⇒ (B2).
For the last implication, let us recall that:

seq
M1 =

k2

k1
(sin

A − seq
A1),

seq
Mw =

k2

k1
(sin

A − seq
A ).

The result of Proposition 4 indicates to us that seq
A1 > seq

A when r ∈ (0, 1), and this in turn implies
that seq

Mw > seq
M1. Alternately, Proposition 4 also implies that seq

Ms < seq
M2s. Taking into account these

inequalities and assuming condition (A3), one has:

seq
Ms < seq

M2s < seq
M1 < seq

Mw,

thus, (A3) =⇒ (B3), completing the proof.
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5.4. Proof of Proposition 3

Let us assume that (D, sin
A ) ∈ P̂r ∩C. This implies that the following conditions hold:

(C1) D
r < µA(sin

A ),

(C2) D
1−r < µM(S max

M ),

(C3) seq
M2s < seq

M1 < seq
M2u,

(C4) seq
Mw < seq

Mu.

Let us recall that for (D, sin
A ) ∈ P̂, the following conditions must hold:

(D1) D < µA(sin
A )

(D2) D < µM(S max
M )

(D3) seq
Ms < seq

Mw < seq
Mu

The result of Proposition 2 implies that (C1) =⇒ (D1) and (C2) =⇒ (D2). Additionally,
Proposition 2 implies that:

seq
Ms < seq

M2s < seq
M1 < seq

Mw.

All this, together with condition (C4), implies (D3), thus proving the inclusion.

5.5. Proof of Proposition 4

First, let us consider the steady states corresponding to acidogenic substrates in both models. We
recall that the formula for these equilibria are, for the one-reactor and two-reactor models, respectively:

seq
A = µ−1

A (D),

seq
A1 = µ−1

A

(D
r

)
.

From Assumption 1, the function µA(·) is increasing, and thus, given that, for r ∈ (0, 1), D
r > D, then

seq
A < seq

A1 must hold.
Now, let us consider the steady states corresponding to methanogenic substrates in both models.

Considering the steady states in each case, for the one-reactor and two-reactor models, the formula for
the equilibria are, respectively:

seq
Ms = µ−1

M (D),

seq
M2s = µ−1

M

( D
1 − r

)
,

where µ−1
M (d) represents the lowest solution of the equation µM(s) = d.

Consider Assumption 2 and the fact that for the one-reactor model, we have that seq
Ms ≥ seq

Mu, µ(seq
Ms) ≤

µ(S max
M ) and µ(seq

Mu) ≤ µ(S max
M ); thus, seq

Ms is in the increasing part of µM(·).
For the two-reactor model, we have that seq

M2s ≥ seq
M2u, µ(seq

M2s) ≤ µ(S max
M ) and µ(seq

M2u) ≤ µ(S max
M ).

This implies that seq
M2s is located in the increasing section of µM(·).

Given that both steady states are in the increasing section of µM(·) and given that D
1−r > D when

r ∈ (0, 1), it is implied that seq
M2s > seq

Ms, thus concluding the desired result.
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5.6. Proof of Proposition 5

Using the same notation as in Proposition 4, we have that seq
A and seq

Ms are the acidogenic and
methanogenic substrates (at steady states) for the one-reactor configuration and that seq

A1 and seq
M2s are

the corresponding concentrations in the two-reactor configuration. Then,

D = µA(seq
A ) = µM(seq

Ms);
D
r

= µ̂A(seq
A1) and

D
1 − r

= µ̂M(seq
M2s).

Alternately, from inequalities (4.2), one has

D ≥
1

(1 + εA)
D
r

and D ≥
1

(1 + εM)
D

(1 − r)
. (5.5)

Therefore,

µA(seq
A ) = D ≥

1
(1 + εA)

D
r

=
1

(1 + εA)
µ̂A(seq

A1) ≥ µA(seq
A1),

where the last inequality is obtained from the condition (4.1). Since µA(·) is increasing, we deduce that
seq

A ≥ seq
A1.

Similarly,

µM(seq
Ms) = D ≥

1
(1 + εM)

D
(1 − r)

=
1

(1 + εM)
µ̂M(seq

M2s) ≥ µM(seq
M2s).

As seq
Ms and seq

M2s are in the increasing part of the functions µM(·) and µ̂M(·), respectively, we obtain
seq

Ms ≥ seq
M2s, thus concluding that the organic matter removal performance is better for the two-reactor

configuration because seq
A ≥ seq

A1 and seq
Ms ≥ seq

M2s.
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