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Abstract: In this paper, we investigate the effect of the gestation delay on the spatiotemporal pattern
formation in a prey-predator system with monotonic functional response with saturation and intra-
specific competition among the predator population in presence of the additive Allee effect in prey
growth. In this regard, we present rigorous analytical results for determining the delay-induced Hopf
bifurcation threshold and the associated properties of the Hopf-bifurcating periodic solutions and verify
them with the help of numerical simulations. We derive analytically the delay-induced Hopf bifurca-
tion threshold by employing the linear stability analysis about the unique spatially uniform coexistence
steady state. Also, we provide the expressions for determining the direction and stability of the Hopf-
bifurcating periodic solutions by using the normal form theory and center manifold reduction. The
numerical simulation results reveal that the Hopf bifurcation can potentially lead to spatially homoge-
neous periodic in time distribution of the populations which will eventually settles to chaotic in space
and time distribution for sufficiently large value of the time delay. Further, our numerical investigations
reveal that the time delay can change one stationary pattern to another through the loss of monotonicity
property of the spatially averaged densities.

Keywords: prey-predator system; Allee effect; gestation delay; diffusion; stationary patterns;
spatiotemporal chaos.

1. Introduction

Incorporation of spatial components into a prey-predator system can potentially lead to very rich
and complex spatiotemporal dynamics than the corresponding non-spatial counterpart which is in ac-
cordance with experimental observations and theoretical studies. For instance, Gause [1] performed
a laboratory experiment regarding the growth of paramecium and didinum and identified the signifi-
cance of heterogeneous spatial distribution on the stabilization and long term survival of certain species.
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Working on the theoretical setup introduced by Turing [2], Levin and Segel [3] explained the patchy
distribution of plankton ecosystem and Klausmeier [4] investigated vegetation patterns in semiarid
region. Diffusive prey-predator systems are able to produce a wide class of spatiotemporal patterns
such as stationary (spots, labyrinthine, and mixture of stripes and spots) and non-stationary (periodic,
quasi-periodic and chaotic etc.) patterns. Another class of non-stationary patterns includes traveling
wave, periodic traveling wave and wave of invasion [5]. Prey-predator model with specialist predator,
prey dependent functional response and linear death rate for predator is unable to produce stationary
patterns through Turing instability. On the other hand, this type of models are capable to produce
spatiotemporal chaotic patterns for equal diffusivity of both the species [6]. However, models with
predator dependent functional response, density dependent death rate for predator or generalist preda-
tor are able to exhibit stationary patterns generated through Turing instability [7, 8, 9]. In this direction,
transition from stationary pattern to different types of non-stationary patterns is getting lots of atten-
tion recently from researchers as the real instances of non-stationary patterns in ecological community
are growing significantly. For example, plankton population in the Naroch Lakes in Belarus and vole
population in northern Fennoscandia exhibit chaotic patterns [10, 11].

There have been numerous evidences of Allee effect in ecological communities due to several eco-
logical mechanisms such as difficulty in finding mates, habitat alteration and cooperative defense etc.
[12, 13, 14]. Basically, Allee effect represents a positive correlation between population density and
individual fitness of a species [12, 13, 14]. It is classified as the strong when the growth rate of a species
becomes negative below a certain threshold density and the weak when the growth rate stays positive
and increasing at low population density [13, 15, 16]. Incorporation of Allee effect in the modeling
approach for prey-predator interactions is actually able to produce very rich temporal dynamics. For
example, the classical Rosenzweig-MacArthur model exhibits temporal extinction scenario through
homoclinic bifurcation in presence of the strong Allee effect [17]. Existence of two and three limit
cycles in a temporal Leslie-Gower type prey-predator model with additive Allee effect in prey growth
was shown in [18, 19]. In case of two limit cycles, sub-critical Hopf bifurcation leads to an unstable
limit cycle which is surrounded by a stable limit cycle [18]. In case of three limit cycles, homoclinic
bifurcation leads to one limit cycle and Hopf bifurcation gives rise to other two [19]. Recently, we have
identified that the temporal extinction for both the populations occurs through heteroclinic bifurcation
in a prey-predator system with additive Allee effect, monotonic functional response with saturation
and density dependent death rate for predators in [20].

Understanding the spatiotemporal dynamics of prey-predator interactions in presence of Allee effect
and the corresponding spatial pattern formation has been emerging as an intriguing research theme in
ecology and attracting the attention of many researchers. Du and Shi [21] studied a spatially heteroge-
nous reaction-diffusion prey-predator system and found that the prey population can become extinct
or persist or even blow-up depending on the initial conditions, heterogeneity of environment and cer-
tain parametric restrictions while the predator population maintains its density about a constant level.
Further, they identified that heterogeneous environment can lead to the existence of Allee effect in
case of strong prey growth. Wang et al. [22] considered a diffusive prey-predator system with strong
Allee effect in prey growth and studied bifurcations of the spatially uniform, heterogeneous periodic
and non-constant equilibrium solutions. In order to estimate the parametric region for spatial pattern
formation, they examined the non-existence of the non-constant positive equilibrium solutions. In [23],
the authors investigated the local and global asymptotic stability of positive homogeneous steady state

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2411–2446



2413

and derived the conditions for Hopf bifurcation for a prey-predator model with Holling type II func-
tional response and additive Allee effect in prey growth. An extension of this model by incorporating
the density dependent death rate for predators was presented in [24]. The authors studied the dissipa-
tion and persistence property, stability of the homogeneous steady states, and derived the conditions
for the Hopf bifurcation of the positive homogeneous steady state. Further, they investigated the exis-
tence and non-existence of positive non-constant solutions of the system and presented some stationary
Turing patterns only for the case of weak Allee effect. They found that density dependent death rate
for predators plays a key role in producing different types of stationary patterns through Turing insta-
bility. Recently, a wide class of stationary and dynamic patterns for this model was reported in [20]
in presence of both weak and strong Allee effect. They argued that the half-saturation constant plays
a prominent role for the formation of this wide variety of patterns and identified the Hopf bifurcation
as a necessary component to induce spatiotemporal chaos. Apart from these, they successfully found
patchy invasion scenario for this model. Rao and Kang [25] studied a prey-predator system with mul-
tiplicative Allee effect in prey growth and Michaelis-Menten type functional response, and identified
the strength of the Allee effect as the key component in formation of different types of stationary and
dynamic patterns.

Mathematical modeling of ecological interactions is an evolving area where exposed discrepancies
lead to alteration or reconstruction of the models. One important observation is almost all biological
processes are not instantaneous in nature and require time delays such as time involved in the process
of fertilization stage to birth and gestation period etc [26, 27]. Time delay is incorporated into a prey-
predator system with the understanding that the change in a specific population density at a particular
time is regulated by both past and present population densities. Generally, the time delay is included
in a prey-predator model through two different assumptions. For example, one can consider time delay
in the prey growth term such that the prey population in absence of the predator population follows the
well-known Hutchinson’s equation which is actually the delayed logistic equation [28, 29]. Another
way to incorporate delay in a prey-predator model is to consider delayed numerical response term for
the predator population and this type of time delay is known as the gestation delay [29, 30]. That is,
prey consumption does not immediately reflect in predator population in terms of offsprings but a time
lag is required in order to take care of the gestation period. Kuang [27] has mentioned that non-delayed
models of prey-predator interactions act as mere approximations of the real situations and ignore the
reality. Therefore, it is necessary to investigate the consequences of time delay on the spatiotemporal
pattern formation.

For the past few years, a considerable amount of efforts has been dedicated to investigate the dy-
namics of delayed spatiotemporal system for prey-predator interactions. According to the best of
our knowledge, Roy Choudhury [31, 32] first studied the spatial structure in a prey-predator model
with Volterra-type distributed delays in the inter-species interaction terms by using linear analysis
and multiple-scales perturbation method. Hadeler and Ruan [33] investigated the combined effects
of delay and diffusion for delayed reaction-diffusion equations. Sen et al. [34] introduced a general-
ized approach to investigate the delay-induced spatiotemporal instability and reported the formation
of spirals through Hopf-Turing transition. In [35], the authors considered a realistic modeling ap-
proach to explore the complex spatiotemporal behavior of populations and accordingly studied the
stability and Hopf bifurcation for a spatiotemporal model with logistic type growth, nonlocal delay
effect and Dirichlet boundary condition. Tian and Zhang [36] studied the spatiotemporal patterns
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in a delayed plankton system and identified that delay-induced Hopf bifurcation can lead to irregu-
lar spatial patterns. Banerjee and Zhang [37] investigated how Turing and delay-induced Hopf bi-
furcations together influence the spatial patterns for a ratio-dependent prey-predator model. They
identified that comparatively large values of time delay and the ratio of diffusivity play prominent
roles in destabilizing the system’s dynamics. In a subsequent study [38], they explored the role of
time delay in producing spatiotemporal chaotic patterns for a prey-predator model with Holling type
II functional response and density dependent death rate for predators. Apart from the chaotic pat-
terns, the existence of stationary, quasi-periodic patterns were also reported in this study. Song et
al. [39] presented results regarding persistence, stability and delay-induced Hopf bifurcation in a
delayed diffusive ratio-dependent prey-predator model. They also calculated the formulae for de-
termining the direction and stability of the Hopf-bifurcating periodic solutions and showed the ex-
istence of spatially homogeneous and inhomogeneous periodic solutions through numerical illustra-
tions. For other related works on delay-induced Hopf bifurcation and its stability and direction for
reaction-diffusion systems of prey-predator interactions, interested readers are referred to the articles
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. Recently, Jankovic et al. [57]
showed that the delay-induced spatiotemporal chaos is possible for single species population models.
They considered the spatiotemporal dynamics of a single species population using two different math-
ematical formulations such as delayed diffusive logistic equation and integro-differential equation in-
corporating a spatial convolution. Also, spatiotemporal dynamics of delayed three-species food-chain
models were investigated in [58, 59, 60].

Being motivated by the works discussed above, we aim to investigate the inherent relationship be-
tween time delay and emerging spatial patterns for a delayed diffusive prey-predator system with addi-
tive Allee effect in prey growth, monotonic functional response with saturation and density dependent
death rate for predators. Majority of the existing literature on the delayed spatiotemporal dynamics
of prey-predator interactions have considered one-dimensional spatial components and this simplifica-
tion takes the outcome away from the reality. In this paper, our goal is to provide both the analytical
and numerical results for the delayed spatiotemporal model with two-dimensional spatial components.
Also as far as our knowledge is concerned, work on the delayed spatiotemporal dynamics in presence
of the Allee effect, which is quite commonly observed for several ecological communities, is rare in
literature. These facts actually make our investigation more complicated and interesting, and also set
apart our proposed works in this paper from any other existing work in literature. We aim to provide
verification of the analytical results regarding the direction and stability of the Hopf-bifurcating pe-
riodic solutions through numerical simulations and construction of relevant bifurcation diagram. In
this study, we are especially interested in the onset of delay-mediated spatiotemporal chaos. Also,
we would like to explore when the spatial and corresponding non-spatial systems will produce similar
qualitative dynamical behaviors in presence of the time delay. We will present a comparative study
between the spatial and non-spatial systems.

The remaining part of this paper is organized in the following fashion. We present the model and its
description in the next section. Section 3 deals with the well-posedness of the problem and discusses
about the associated spatially homogeneous steady states. In Section 4, we present linear analysis
and derive the analytical expression for the delay induced Hopf bifurcation threshold. The succeeding
section discusses about the analytical results regarding the properties of the Hopf bifurcating periodic
solutions. In order to support our theoretical findings and to investigate the effect of time delay on
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stationary patterns, we present several numerical illustrations in Section 6. Finally, Section 7 ends this
paper with a brief discussion.

2. The delayed spatiotemporal model

In this section, we extend the spatiotemporal prey-predator model presented in [20, 24] with ad-
ditive Allee effect in prey growth, prey-dependent monotonic functional response with saturation and
density dependent death rate for predator by incorporating the gestation delay for predator population
as follows:

∂N(x, t)
∂t

= rN(x, t)
(
1 −

N(x, t)
K

)
−

mN(x, t)
N(x, t) + b

−
cN(x, t)P(x, t)

N(x, t) + a
+ d1∆N(x, t), (2.1)

∂P(x, t)
∂t

=
csN(x, t − τ)P(x, t − τ)

N(x, t − τ) + a
− sP(x, t)(q + δP(x, t)) + d2∆P(x, t), (2.2)

subjected to the non-negative initial conditions:

N(x, θ) = φ1(x, θ) ≥ 0, P(x, θ) = φ2(x, θ) ≥ 0, for (x, θ) ∈ Ω × [−τ, 0], (2.3)

and zero-flux boundary conditions:

∂N
∂ν

= 0,
∂P
∂ν

= 0, for x ∈ ∂Ω, t > 0. (2.4)

Here Ω is a bounded spatial domain in Rn with smooth boundary ∂Ω and Ω = Ω ∪ ∂Ω. The zero-
flux boundary conditions indicate that no individual can move across the boundary with ∂

∂ν
being the

outward drawn normal derivative on the boundary ∂Ω. The prey and predator population densities
at position x ∈ Ω ⊂ Rn and time instant t are represented by N(x, t) and P(x, t), respectively. The
parameters r and K stand for the intrinsic growth rate and the environmental carrying capacity in
absence of the Allee effect, respectively, for the prey population. However, the effective environmental
carrying capacity for prey population with additive Allee effect is actually different from K [61, 62,
63, 64]. The expression of effective carrying capacity for prey population is explicitly given below.
The rate of severity of the Allee effect and the prey population size at which fitness is half of its
maximum value are respectively represented by the parameters m and b. Predator captures prey at a
rate c while a denotes the half saturation constant. The parameter s represents feed concentration for
predator with q and δ as natural and density dependent death rate for predator, respectively. Therefore,
the quantities sq and sδ represent respectively the effective natural and density dependent death rates
for predator. All these parameters are positive constants. Further, τ represents the gestation delay for
predator population which reflects the fact that the consumption of prey can not lead to instantaneous
reproduction of predator. The fractional terms m

N+b and cN
N+a in the model (2.1)-(2.2) represent additive

Allee effect in prey growth and prey density dependent functional response for predator, respectively.
The constant diffusion coefficients of prey and predator populations are respectively denoted by d1 and
d2, and ∆ represents the Laplacian operator.

Depending on the parameter values the Allee effect can act as weak or strong in nature, which
has been thoroughly investigated in [24]. Here, we reiterate these parameter restrictions for weak and
strong Allee effects briefly as follows:
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(a) If the parameters obey the inequality b2r
K < m < br, then the Allee effect is weak. In this case

without any predator, prey population can survive for a very tiny positive initial prey population

size and eventually approaches to N1 =
r(K−b)+

√
r2(K − b)2 + 4rK(br − m)

2r . Also, N1 acts as the ef-
fective environmental carrying capacity in presence of the additive Allee effect for prey population
[61, 62, 63, 64].

(b) If the parameters obey the inequality b2r
K < br < m < r2(K−b)2+4br2K

4rK , then the Allee effect
is strong. In this case without any predator, the prey population persists and approaches to
N1 for any positive initial prey population size greater than a critical prey population threshold
Ncrit and goes to extinction for any positive initial prey population size less than Ncrit, where

Ncrit =
r(K−b)−

√
r2(K − b)2 + 4rK(br − m)

2r . This Ncrit acts as the Allee effect threshold for strong
Allee effect.

In the following sections, we will examine the system (2.1)-(2.4) both analytically and numerically.
We would like to mention here that numerical simulations will be carried out in two-dimensional space
though all analytical results hold for n-dimensional space.

3. Well-posedness and steady states

In this study, we are dealing with prey and predator populations and for this reason it is pertinent to
establish the existence, uniqueness, non-negativity and boundedness of the solutions of the concerned
system (2.1)-(2.4). In this section, we discuss these issues along with the existence of possible spatially
homogeneous steady states. Before proceeding further, let us introduce some useful notations. Let
X = C(Ω,R2) be a Banach space of continuous functions from Ω to R2 and C = C([−τ, 0],X) denote
the Banach space of continuous functions from [−τ, 0] to X equipped with the usual supremum norm.
For the sake of convenience, an element φ ∈ C is a function from Ω × [−τ, 0] into R2 and is defined
by φ(x, θ) = φ(θ)(x). We define ωt ∈ C by ωt(θ) = ω(t + θ), θ ∈ [−τ, 0] for any continuous function
ω : [−τ,T )→ X where T > 0.

Theorem 3.1. For any given φ ∈ C satisfying the initial conditions (2.3), the delayed spatiotemporal
system (2.1)-(2.4) admits a unique solution defined on [0,+∞) and this solution remains non-negative
and bounded for all t ≥ 0.

Proof. For any φ = (φ1, φ2)T ∈ C and x ∈ Ω, we define F = (F1, F2) : C → X by

F1(φ)(x) = rφ1(x, 0)
(
1 −

φ1(x, 0)
K

)
−

mφ1(x, 0)
φ1(x, 0) + b

−
cφ1(x, 0)φ2(x, 0)
φ1(x, 0) + a

,

F2(φ)(x) =
csφ1(x,−τ)φ2(x,−τ)

φ1(x,−τ) + a
− sφ2(x, 0)(q + δφ2(x, 0)).

Then we can rewrite the system (2.1)-(2.4) in terms of the following abstract functional differential
equation:

U′(t) = AU + F(Ut), t > 0, (3.1)
U(0) = φ ∈ X, (3.2)
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where U = (N, P)T , φ = (φ1, φ2)T and AU = (d1∆N, d2∆P)T . One can easily observe that F is locally
Lipschitz in X. It follows from [65, 66, 67, 68, 69] that the system (3.1)-(3.2) admits a unique local
solution on the interval [0,Tmax) where Tmax represents the maximal existential time for solution of the
system (3.1)-(3.2). Also, since 0 = (0, 0) is a lower solution of the system (2.1)-(2.2), we can easily
obtain that N(x, t) ≥ 0 and P(x, t) ≥ 0.

Now, it remains to prove the boundedness of the solutions of the system (2.1)-(2.4). From the
equation (2.1), we can easily obtain that

∂N
∂t
− d1∆N ≤ rN

(
1 −

N
K

)
,

∂N
∂ν

= 0,

N(x, 0) = φ1(x, 0) ≥ 0.

Let N̂(t) be a solution to the following ordinary differential equation:

dN̂
dt

= rN̂
1 − N̂

K

 ,
N̂(0) = max

x∈Ω
φ1(x, 0).

Thus, we have N̂(t) ≤ max
{
K,maxx∈Ω φ1(x, 0)

}
for all t ∈ [0,Tmax) [24, 70]. Then by using the

comparison principle for parabolic partial differential equations [71], we obtain that N(x, t) ≤ N̂(t).
Therefore,

N(x, t) ≤ max
{

K,max
x∈Ω

φ1(x, 0)
}
, ∀ (x, t) ∈ Ω × [0,Tmax).

Now, from the equation (2.2) and using the bound for N, we deduce that P(x, t) satisfies the following
system:

∂P
∂t
− d2∆P ≤

csρ
ρ + a

P(x, t − τ) − sP(x, t) (q + δP(x, t)) ,

∂P
∂ν

= 0,

P(x, θ) = φ2(x, θ) ≥ 0,

where ρ = max
{
K,maxx∈Ω φ1(x, 0)

}
. Further, let P̂(t) be a solution to the following delay differential

equation:

dP̂
dt

=
csρ
ρ + a

P̂(t − τ) − sP̂(t)(q + δP̂(t)),

P̂(θ) = max
x∈Ω

φ2(x, θ), θ ∈ [−τ, 0].

In order to find a bound for P̂(t), we recall a related result presented in [72, 73]. This result states that for
an equation of the form du(t)

dt = Au(t − τ) − Bu(t) −Cu2(t) with A, B,C > 0 and u(θ) > 0 for θ ∈ [−τ, 0],
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we get limt→+∞ u(t) = A−B
C when A > B and limt→+∞ u(t) = 0 when A < B. Now, we assume that

M = max
{
0, (c−q)ρ−aq

δ(ρ+a)

}
. Hence, using this result we obtain P̂(t) ≤ max

{
M,max(x,θ)∈Ω×[−τ,0] φ2(x, θ)

}
for

all t ∈ [0,Tmax). Then again using the comparison principle for parabolic partial differential equations
[71], we obtain that P(x, t) ≤ P̂(t). Therefore,

P(x, t) ≤ max
{

M, max
(x,θ)∈Ω×[−τ,0]

φ2(x, θ)
}
, ∀ (x, t) ∈ Ω × [0,Tmax).

From the above discussion, we obtain that N(x, t) and P(x, t) are bounded on Ω̄ × [0,Tmax) and also
we have Tmax = +∞ from the standard theory of semi-linear parabolic partial differential equations
[74]. This completes the proof. �

Now, we discuss about the spatially homogeneous steady states of the model (2.1)-(2.2). Any steady
state of the model (2.1)-(2.2) satisfies the following system of coupled partial differential equations:

−d1∆N = rN
(
1 −

N
K

)
−

mN
N + b

−
cNP
N + a

,

−d2∆P =
csNP
N + a

− sP(q + δP),

∂N
∂ν

=
∂P
∂ν

= 0, x ∈ ∂Ω.

But in this study, we are only concerned with the spatially homogeneous steady states. Then, any non-
negative solution of the following system of coupled algebraic equations corresponds to a spatially
homogeneous steady state E = (N̂, P̂) of the model (2.1)-(2.2):

rN̂
1 − N̂

K

 − mN̂

N̂ + b
−

cN̂P̂

N̂ + a
= 0,

csN̂P̂

N̂ + a
− sP̂(q + δP̂) = 0.

From the above two algebraic equations, one can easily notice that there always exists a trivial ex-
tinction steady state E0 = (0, 0). For weak Allee effect, there exists a unique prey-only axial

steady state E1 =

(
r(K−b)+

√
r2(K − b)2 + 4rK(br − m)

2r , 0
)
≡

(
N1, 0

)
. But in case of strong Allee

effect, apart from the steady state E1 there exists another additional prey-only axial steady state

E2 =

(
r(K−b)−

√
r2(K − b)2 + 4rK(br − m)

2r , 0
)
≡

(
Ncrit, 0

)
, whose prey component actually indicates

the threshold value for prey population below which prey species can not persist in the non-spatial
counterpart of the considered model (2.1)-(2.2). In order to find a spatially homogeneous coexisting
steady state E∗ = (N∗, P∗), we need to solve a quartic equation in N∗ as follows:

A4N4
∗ + A3N3

∗ + A2N2
∗ + A1N∗ + A0 = 0,

where A4 = rδ
K , A3 =

(2a+b)rδ
K − rδ, A2 =

a(a+2b)rδ
K + mδ + c(c − q) − (2a + b)rδ, A1 = a2brδ

K + 2amδ +

bc(c − q) − a(a + 2b)rδ − acq and A0 = a2mδ − a2brδ − abcq. The corresponding component for
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predator population, i.e. P∗, is evaluated through P∗ = 1
δ

(
cN∗

N∗+a − q
)
. In this study, we use numerical

computation for obtaining coexisting steady state since it is very difficult to compute coexisting steady
state analytically from a quartic equation. Also, note that depending on the parameter values we can
obtain one or more than one spatially homogeneous coexisting steady states for the model (2.1)-(2.2).
For detailed discussion on steady states one can go through the works presented in [24]. In this study,
we concentrate only on the case when there exists a unique spatially homogeneous coexisting steady
state for the model (2.1)-(2.2).

4. Linear stability analysis and Hopf bifurcation

In this section, we investigate the delay induced Hopf bifurcation in the delayed spatiotemporal sys-
tem (2.1)-(2.4) around a typical spatially homogeneous coexisting steady state E∗ = (N∗, P∗) through
the linearization technique. Before proceeding further, let us introduce some useful notations for the
sake of convenience. Let us consider 0 = λ0 < λ1 < λ2 < · · · < λn < · · · be the eigenvalues of the
operator −∆ on Ω under the zero-flux boundary conditions and let F (λi) be the space of eigenfunctions
corresponding to λi in C1(Ω). Let {ψi j : j = 1, 2, . . . , dimF (λi)} be an orthonormal basis of F (λi),
Xi j = {κψi j : κ ∈ R2} and X = {U ∈ [C1(Ω)]2 | ∂U

∂ν
= 0 on ∂Ω}. Then we can write

X =

∞⊕
i=1

Xi and Xi =

dimF (λi)⊕
j=1

Xi j.

Linearizing the model (2.1)-(2.2) about the spatially homogeneous coexisting steady state E∗ =

(N∗, P∗), we obtain

∂U(x, t)
∂t

= D∆U(x, t) + J1U(x, t) + J2U(x, t − τ), (4.1)

whereD = diag(d1, d2), U(x, t) ≡ (U1(x, t),U2(x, t)), U(x, t − τ) ≡ (U1(x, t − τ),U2(x, t − τ)) and

J1 =

N∗ ( m
(N∗+b)2 −

r
K + cP∗

(N∗+a)2

)
−

cN∗
(N∗+a)

0 −s(q + 2δP∗)

 ≡ [
A11 A12

A21 A22

]
,

J2 =

[
0 0

acsP∗
(N∗+a)2

csN∗
N∗+a

]
≡

[
B11 B12

B21 B22

]
.

Let us define LU = D∆U(x, t) + J1U(x, t) + J2U(x, t − τ). Note that Xi is invariant under the operator
L for each i ≥ 0. Further, µ is an eigenvalue of the operator L if and only if µ satisfies the equation
det(Ji−µI2) ≡ det(−λiD+J1 +J2e−µτ−µI2) = 0 for some i ≥ 0 and there exists an eigenvector inXi for
this case. Since our model is subjected to the zero-flux boundary conditions, a typical eigenfunction of
(4.1) is of the form

(U1,U2) = (η1, η2)eµt
n∏

j=1

cos(k jx j),
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where x = (x1, x2, · · · , xn) ∈ Rn and k = (k1, k2, · · · , kn) represents the n-dimensional wave-vector.
Then, the characteristic equation is given by

∆(µ, τ) ≡ µ2 + C1µ + C0 + (D1µ + D0)e−µτ = 0, (4.2)

where C1 = −(A11 + A22) + k2(d1 + d2), C0 = (A11 − k2d1)(A22 − k2d2), D1 = −B22, D0 = (A11B22 −

A12B21) − k2d1B22 and k2 = k · k.
In absence of the time delay (that is, when τ = 0), the characteristic equation reduces to the follow-

ing quadratic equation:

∆(µ, 0) ≡ µ2 + (C1 + D1)µ + (C0 + D0) = 0. (4.3)

Working on the equation (4.3), one can obtain the conditions for Turing and spatiotemporal Hopf
bifurcation for the corresponding non-delayed model which have been investigated earlier in [20, 24].
Since the main goal of this study is to understand the destabilizing role of discrete time delay, we
assume that the coexisting homogeneous steady state E∗ = (N∗, P∗) is locally asymptotically stable for
the non-delayed model. That is, we assume the following conditions hold: C1+D1 > 0 and C0+D0 > 0.

Now, we investigate the effect of time delay and deduce the conditions under which the model (2.1)-
(2.2) undergoes delay induced Hopf bifurcation. In order to find the delay induced Hopf bifurcation
threshold, we follow the procedure presented in [75]. Substituting µ = iω into the characteristic
equation (4.2) and separating the real and imaginary parts, we arrive at the following two equations:

ω2 −C0 = D0 cosωτ + D1ω sinωτ, (4.4)
C1ω = D0 sinωτ − D1ω cosωτ. (4.5)

Eliminating the trigonometric functions from the above two equations, we arrive at the following quar-
tic equation in ω:

ω4 + (C2
1 − 2C0 − D2

1)ω2 + (C2
0 − D2

0) = 0. (4.6)

Now, note that one can visualize the equation (4.6) as a quadratic equation of ω2 and if both the
values of ω2 are negative or imaginary, the time delay can not able to alter the stability property of
the homogeneous coexisting steady state. But if we have at least one positive real value of ω2, then
destabilization of the homogeneous coexisting steady state is possible through τ. In order to find the
Hopf bifurcation threshold in terms of the delay parameter τ, we assume ω∗ denotes a positive root of
the equation (4.6). The simplest possible assumptions that would give us a unique positive root ω∗ of
the equation (4.6) is C2

1 − 2C0 − D2
1 > 0 and C2

0 − D2
0 < 0. The expression for the unique positive root

ω∗ is given by

ω∗ =
1
√

2

√
−(C2

1 − 2C0 − D2
1) +

√
(C2

1 − 2C0 − D2
1)2 − 4(C2

0 − D2
0).

Then eliminating sinωτ from the equations (4.4)-(4.5) and solving for τ, we obtain

τ(n) =
1
ω∗

arccos
(

D0(ω∗2 −C0) −C1D1ω
∗2

D2
0 + D2

1ω
∗2

)
+

2nπ
ω∗

, (4.7)
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for n = 0, 1, 2, 3, · · ·. Now, setting

τ∗ = τ(0) =
1
ω∗

arccos
(

D0(ω∗2 −C0) −C1D1ω
∗2

D2
0 + D2

1ω
∗2

)
, (4.8)

and by using the Butler’s lemma [76], we obtain that the homogeneous coexisting steady state E∗ =

(N∗, P∗) is unstable for τ > τ∗. On the other hand, the characteristic equation (4.2) does not have
any root on the imaginary axis for τ ∈ [0, τ∗). In conclusion, we obtain that E∗ = (N∗, P∗) is locally
asymptotically stable for τ ∈ [0, τ∗) and becomes unstable for τ > τ∗. But in order to ensure that
the occurrence of instability is due to delay driven Hopf bifurcation, we need to verify the associated
transversality condition:

d
dτ

(Re(µ(τ))) |τ=τ∗ > 0. (4.9)

Differentiating the both sides of the characteristic equation (4.2) with respect to τ, we get

(2µ + C1)
dµ
dτ
− τ(D1µ + D0)e−µτ

dµ
dτ

+ D1e−µτ
dµ
dτ
− µ(D1µ + D0)e−µτ = 0,

which eventually leads to(
dµ
dτ

)−1

=
2µ + C1

µ(D1µ + D0)e−µτ
+

D1

µ(D1µ + D0)
−
τ

µ

=
2µ + C1

−µ(µ2 + C1µ + C0)
+

D1

µ(D1µ + D0)
−
τ

µ
.

Thus, we obtain

Re
(
dµ
dτ

∣∣∣∣∣ τ=τ∗)−1

= Re
[

(2iω∗ + C1)
−iω∗(−ω∗2 + iC1ω∗ + C0)

+
D1

iω∗(iD1ω∗ + D0)
−
τ∗

iω∗

]
= Re

[
C1 + 2iω∗

C1ω∗2 + iω∗(ω∗2 −C0)
+

D1

−D1ω∗2 + iD0ω∗

]
=

2ω∗2 + C2
1 − 2C0

C2
1ω
∗2 + (ω∗2 −C0)2

−
D2

1

D2
1ω
∗2 + D2

0

. (4.10)

Now, from equations (4.4)-(4.5) we have

C2
1ω
∗2 + (ω∗2 −C0)2 = D2

1ω
∗2 + D2

0. (4.11)

Hence, equation (4.10) leads to

Re
(
dµ
dτ

∣∣∣∣∣ τ=τ∗)−1

=
2ω∗2 + C2

1 − 2C0 − D2
1

D2
0 + D2

1ω
∗2

. (4.12)

Thus, from the assumptions for the occurrence of the unique positive root ω∗ of the equation (4.6), we

obtain Re
(

dµ
dτ

∣∣∣ τ=τ∗)−1
> 0. Further, we know that sign

[
d
dτ (Re(µ(τ)))

∣∣∣ τ=τ∗] = sign
[
Re

(
dµ
dτ

∣∣∣ τ=τ∗)−1
]

and
therefore, we conclude that the inequality (4.9) is satisfied.

Therefore, summarizing the above detailed analysis we arrive at the following theorem:
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Theorem 4.1. The delayed spatiotemporal system (2.1)-(2.4) undergoes Hopf bifurcation around the
spatially homogeneous coexisting steady state E∗ = (N∗, P∗) at τ = τ∗ when C1 + D1 > 0, C0 + D0 > 0
and the assumptions for the unique positive ω∗ hold.

Remark 4.1. From the expression (4.8) for τ∗, we can notice that τ∗ depends on the value of k for the
considered spatiotemporal system (2.1)-(2.4). In other words, for the considered system (2.1)-(2.4),
there will exist a non-negative k for which we will have our theoretical Hopf bifurcation threshold τ∗.
Also, it is important to note that for different values of system parameters the system (2.1)-(2.4) will
need different non-negative k-values in order to achieve the Hopf bifurcation threshold. This fact will
be demonstrated more clearly in Section 6. Here, we would like to mention that by considering k = 0 we
can eventually achieve the Hopf bifurcation threshold for the corresponding non-spatial counterpart of
the spatial model (2.1)-(2.2). We denote this threshold by τ∗0, where the subscript “0” signifies the fact
k = 0. Hence, we conclude that the corresponding non-spatial model undergoes the Hopf bifurcation
at the coexisting steady state E∗ = (N∗, P∗) at τ = τ∗0 provided the conditions and assumptions given in
Theorem 4.1 are true when k = 0. Also, as per our knowledge there is no literature where the dynamics
of the non-spatial counterpart of the model (2.1)-(2.2) have been investigated. Therefore, our findings
in this section also provide key insights about the dynamics of the corresponding non-spatial model.

(a) (b) (c)

Figure 1. Phase diagrams of the non-spatial version of the model (2.1)-(2.2) in presence of
strong Allee effect in prey growth for different values of the gestation delay τ: (a) τ = 1.0;
(b) four different values of τ mentioned in the figure; and (c) τ = 2.1. Other parameter values
are r = 1.0, K = 10.0, m = 1.0, b = 0.5, c = 1.0, q = 0.35, δ = 0.0425, a = 4.0 and s = 2.0.

Now we briefly corroborate the conclusions made about the dynamics of the non-spatial model cor-
responding to the model (2.1)-(2.2) in the above remark through numerical illustration. For numerical
illustration, we restrict ourselves to the case of strong Allee effect. The three figures presented in the
Figure 1 have been obtained by varying the value of the gestation delay parameter τ in an increasing
manner while all other system parameters were kept fixed (all the parameter values are mentioned in
the caption of the Figure 1). Figure 1(a) represents a bistable scenario for a lower value of τ (for ex-
ample, τ = 1.0), where the total extinction steady state E0 = (0, 0) is a stable node and the coexisting
steady state E∗ = (3.665, 3.015) is a stable focus. In this case, the basins of attraction of these two
steady states are kept apart by the stable manifold of the prey-only steady state E2 = (0.559, 0) whose
prey component acts as a threshold prey population density characterizing the strong Allee effect. For
the considered parameter values, we have computed the Hopf bifurcation threshold as τ∗0 = 1.275.
Also, we have obtained dµ

dτ = 0.0321 − 0.0674i at τ = τ∗0 which eventually confirms the occurrence
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Figure 2. Single parameter bifurcation diagram for prey population with respect to the ges-
tation delay τ as the bifurcation parameter for the corresponding temporal version of the
system (2.1)-(2.2). Other parameter values are mentioned in the caption of the Figure 1.

of the Hopf bifurcation. Therefore, we can expect the existence of Hopf-bifurcating limit cycles by
setting the value of τ to be lower or greater than 1.275 and Figure 1(b) shows the existence of the Hopf-
bifurcating limit cycles for τ > 1.275. From this figure we can observe that the size of the limit cycle
is gradually increasing with the increment in the value of τ. Here, we would like to mention that the
emerging limit cycles around the coexisting steady state E∗ = (3.665, 3.015) is stable in nature. There-
fore, the Hopf bifurcation can be classified as the supercritical Hopf bifurcation. With this increasing
limit cycles another interesting feature such as the heteroclinic orbit emerges and this orbit connects the
two prey-only steady states E2 = (0.559, 0) and E1 = (8.941, 0) when τ = 2.0623. We have estimated
numerically the threshold value of τ for the heteroclinic bifurcation to be approximately τHO = 2.0623
(see the green colored orbit presented in Figure 1(b)). Through this bifurcation the basin of attraction
for the stable limit cycles around the coexisting steady state E∗ = (3.665, 3.015) is demolished and
E0 = (0, 0) becomes the sole attractor. This scenario can be easily noticeable from the Figure 1(c).
These scenarios are presented in a summarized fashion in Figure 2 by a one parameter (τ) bifurcation
diagram. In this figure, the blue and black vertical straight lines represent the Hopf and heteroclinic
bifurcation thresholds, respectively. Two completely red horizontal straight lines respectively stand for
the prey-only steady states E1 and E2 which are always saddle points and hence unstable. The com-
pletely green horizontal straight line along the τ-axis stands for the extinction steady state E0 = (0, 0)
which is always a stable equilibrium point. The partially green and partially red straight line in the
middle denotes the coexisting steady state E∗ = (3.665, 3.015) which is a stable focus for τ less than
τ∗0 and an unstable focus for τ greater than τ∗0. The green curve, which lies between the blue and black
vertical lines, represents the existence of stable limit cycle that arises through Hopf bifurcation and
disappears through heteroclinic bifurcation. Note that the green and red colors signify stability and
instability properties of the steady states and limit cycles, respectively. In the next section, we derive
the analytical conditions for the stability of the Hopf-bifurcating limit cycle and its direction for the
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system (2.1)-(2.4).

5. Direction and stability of the Hopf bifurcation

In this section, we investigate direction and stability of the Hopf bifurcating limit cycles by using
center manifold reduction and normal form theory for partial functional differential equation [69, 75,
77].

Let us consider Ñ(·, t) = N(·, t) − N∗, P̃(·, t) = P(·, t) − P∗, Ũ(t) ≡ (Ñ(·, t), P̃(·, t)) and τ = τ∗ + ς

for ς ∈ R. Then, ς = 0 corresponds to the Hopf bifurcation threshold of the system (2.1)-(2.4). In
order to normalize the delay we rescale the time t by t

τ
and also recall the Banach space decomposition

X =
⊕∞

i=1Xi. Now, applying these new variables in the system (2.1)-(2.2) and then dropping the tildes
for the simplicity of notation, we obtain the following transformed system in space C = C([−1, 0],R2):

dU(t)
dt

= Lς(Ut) + f (Ut, ς), (5.1)

where for ϕ = (ϕ1, ϕ2)T ∈ C, Lς : C→ R2 and f : C × R→ R2 are respectively given by

Lς(ϕ) = (τ∗ + ς)
[
−d1k2 + A11 A12

0 −d2k2 + A22

] [
ϕ1(0)
ϕ2(0)

]
+ (τ∗ + ς)

[
0 0

B21 B22

] [
ϕ1(−1)
ϕ2(−1)

]
,

f (ϕ, τ) = (τ∗ + ς)

 ∑
i+ j≥2

1
i! j! f (1)

i j ϕ
i
1(0)ϕ j

2(0)∑
i+ j+l≥2

1
i! j!l! f (2)

i jl ϕ
i
1(−1)ϕ j

2(0)ϕl
2(−1)

 ,
where

f (1) = rN
(
1 −

N
K

)
−

mN
N + b

−
cNP
N + a

,

f (2) =
csN1P1

N1 + a
− sP(q + δP),

and

f (1)
i j =

∂i+ j f (1)

∂N i∂P j (N∗, P∗), f (2)
i jl =

∂i+ j+l f (2)

∂N i
1∂P j∂Pl

1

(N∗, P∗, P∗).

Now by the Riesz representation theorem [75], there exists a 2× 2 matrix function η(θ, ς) for −1 ≤ θ ≤
0, whose elements are of bounded variation such that

Lς(ϕ) =

∫ 0

−1
dη(θ, ς)ϕ(θ) for ϕ ∈ C. (5.2)

As a matter of fact, one can choose

η(θ, τ∗) = (τ∗ + ς)
[
−d1k2 + A11 A12

0 −d2k2 + A22

]
δ(θ) + (τ∗ + ς)

[
0 0

B21 B22

]
δ(θ + 1), (5.3)
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where δ represents a Dirac delta function. For ϕ ∈ C1([−1, 0],R2), let us define

A(ς)ϕ =

 dϕ(θ)
dθ , for θ ∈ [−1, 0),∫ 0

−1
dη(γ, ς)ϕ(γ), for θ = 0,

(5.4)

and

R(ς)ϕ =

{
0, for θ ∈ [−1, 0),
f (ς, ϕ), for θ = 0.

(5.5)

Thus, the system (5.1) is equivalent to the following system:

U̇t = A(ς)(Ut) + R(ς)(Ut), (5.6)

where Ut(θ) = U(t + θ) for θ ∈ [−1, 0]. Now for ψ ∈ C1([0, 1], (R2)∗), we define

A∗ψ(γ) =

 −dψ(γ)
dγ , for γ ∈ (0, 1],∫ 0

−1
ψ(−t)dηT (t, 0), for γ = 0,

(5.7)

and a bilinear inner product

〈ψ(γ), ϕ(θ)〉 = ψ(0)ϕ(0) −
∫ 0

−1

∫ θ

0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ, (5.8)

where η(θ) = η(θ, 0). Then, we have A(0) and A∗ as adjoint operators. From the discussion in the
previous section, we notice that ±iτ∗ω∗ are eigenvalues of A(0) and hence, they are also eigenvalues
ofA∗.

Let us assume that p(θ) = (p1, p2)T eiτ∗ω∗θ be the eigenvector ofA(0) corresponding to the eigenvalue
iτ∗ω∗. Then, we haveA(0)p(θ) = iτ∗ω∗p(θ). Now, from the definition ofA(0) we obtain[

−d1k2 + A11 − iω∗ A12

B21e−iτ∗ω∗ −d2k2 + A22 + B22e−iτ∗ω∗ − iω∗

] [
p1

p2

]
=

[
0
0

]
.

Solving the above matrix equation, we have

p(θ) =

(
1,−

d1k2 − A11 + iω∗

A12

)T

eiτ∗ω∗θ. (5.9)

Similarly, let us assume that p∗(γ) = D(p∗1, p∗2)eiτ∗ω∗γ be the eigenvector of A∗ corresponding to the
eigenvalue −iτ∗ω∗. Then, we haveA∗p∗(γ) = −iτ∗ω∗p∗(γ). From the definition ofA∗, we obtain[

−d1k2 + A11 + iω∗ B21eiτ∗ω∗

A12 −d2k2 + A22 + B22eiτ∗ω∗ + iω∗

] [
p∗1
p∗2

]
=

[
0
0

]
.

Therefore, from the above matrix equation, we obtain

p∗(γ) = D
(
1,−
−d1k2 + A11 + iω∗

B21
e−iτ∗ω∗

)
eiτ∗ω∗γ. (5.10)
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In order to ensure 〈p∗(γ), p(θ)〉 = 1, we need to determine D. From the equation (5.8), we deduce that

〈p∗(γ), p(θ)〉 = p∗(0)p(0) −
∫ 0

−1

∫ θ

ξ=0
p∗(ξ − θ)dη(θ)p(ξ)dξ

= D
{

(p∗1, p∗2)(p1, p2)T −

∫ 0

−1

∫ θ

ξ=0
(p∗1, p∗2)e−iτ∗ω∗(ξ−θ)dη(θ)(p1, p2)T eiτ∗ω∗ξdξ

}
= D

{
p∗1 p1 + p∗2 p2 −

∫ 0

−1
(p∗1, p∗2)θeiτ∗ω∗θdη(θ)(p1, p2)T

}
= D

{
p∗1 p1 + p∗2 p2 + τ∗e−iτ∗ω∗ p∗2(B21 p1 + B22 p2)

}
= D

{
1 + p∗2 p2 + τ∗e−iτ∗ω∗ p∗2(B21 + B22 p2)

}
.

Therefore, we can take D as

D =
1

1 + p∗2 p2 + τ∗eiτ∗ω∗ p∗2(B21 + B22 p2)

such that 〈p∗(γ), p(θ)〉 = 1 and 〈p∗(γ), p(θ)〉 = 0.
For the rest of this section, we will closely follow the notations as described in [75]. Now, we

compute the coordinates to describe the center manifold C0 at ς = 0. For this purpose, we define

z(t) = 〈p∗,Ut〉, W(t, θ) = Ut(θ) − 2Re{z(t)p(θ)}. (5.11)

On the center manifold C0, we have

W(t, θ) = W(z(t), z(t), θ),

where

W(z(t), z(t), θ) = W20(θ)
z2

2
+ W11(θ)zz + W02(θ)

z2

2
+ · · · , (5.12)

and z and z represent local coordinates for the center manifold C0 in the direction of p∗ and p∗, re-
spectively. We are only concerned with the real solutions and note that W is real if Ut is real. For the
solution Ut ∈ C0 of the equation (5.6), since ς = 0 and using (5.11), we obtain

ż(t) = 〈p∗, U̇t〉

= iτ∗ω∗z + p∗(0) f (0,W(z, z, θ) + 2Re{zp(θ)})
, iτ∗ω∗z + p∗(0) f0(z, z). (5.13)

Now, we rewrite the above equation (5.13) as follows:

ż(t) = iτ∗ω∗z + g(z, z), (5.14)

where

g(z, z) = p∗(0) f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z
2

+ · · · . (5.15)

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2411–2446



2427

Also from the equations (5.11) and (5.12), we get

Ut(θ) = W(t, θ) + 2Re{z(t)p(θ)}

= W20(θ)
z2

2
+ W11(θ)zz + W02(θ)

z2

2
+ zp + z p + · · ·

= W20(θ)
z2

2
+ W11(θ)zz + W02(θ)

z2

2
+ (p1, p2)T eiτ∗ω∗θz + (p1, p2)T e−iτ∗ω∗θz + · · · . (5.16)

Then, it follows that

g(z, z) = p∗(0) f0(z, z)

= Dτ∗(p∗1, p∗2)

 ∑
i+ j≥2

1
i! j! f (1)

i j ϕ
i
1(0)ϕ j

2(0)∑
i+ j+l≥2

1
i! j!l! f (2)

i jl ϕ
i
1(−1)ϕ j

2(0)ϕl
2(−1)


= b1z2 + b2zz + b3z2

+ b4z2z + · · · , (5.17)

where

b1 = Dτ∗
{(

1
2

f (1)
20 + f (1)

11 p2

)
+ p∗2

(
f (2)
101 p2e−2iτ∗ω∗ +

1
2

f (2)
200e−2iτ∗ω∗ +

1
2

f (2)
020 p2

2

)}
,

b2 = Dτ∗
{(

f (1)
20 + f (1)

11 (p2 + p2)
)

+ p∗2
(

f (2)
101(p2 + p2) + f (2)

200 + f (2)
020 p2 p2

)}
,

b3 = Dτ∗
{(

1
2

f (1)
20 + f (1)

11 p2

)
+ p∗2

(
f (2)
101 p2e2iτ∗ω∗ +

1
2

f (2)
200e2iτ∗ω∗ +

1
2

f (2)
020 p2

2

)}
,

b4 = Dτ∗
[{

f (1)
20

(
W (1)

11 (0) +
1
2

W (1)
20 (0)

)
+ f (1)

11

(
W (2)

11 (0) +
1
2

W (2)
20 (0) + p2W (1)

11 (0) +
1
2

p2W (1)
20 (0)

)
+

1
2

f (1)
30 + f (1)

21

(
p2 +

1
2

p2

)}
+ p∗2

{
f (2)
101

(
e−iτ∗ω∗W (2)

11 (−1) +
1
2

eiτ∗ω∗W (2)
20 (−1)+

p2e−iτ∗ω∗W (1)
11 (−1) +

1
2

p2eiτ∗ω∗W (1)
20 (−1)

)
+ f (2)

200

(
e−iτ∗ω∗W (1)

11 (−1) +
1
2

eiτ∗ω∗W (1)
20 (−1)

)
+ f (2)

020

(
p2W (2)

11 (0) +
1
2

p2W (2)
20 (0)

)
+

1
2

f (2)
300e−iτ∗ω∗ + f (2)

201

(
p2 +

1
2

p2

)
e−iτ∗ω∗

}]
.

Now, comparing the coefficients of the equations (5.15) and (5.17), we obtain

g20 = 2b1, g11 = b2, g02 = 2b3, and g21 = 2b4. (5.18)

We need to compute the values of W11(θ) and W20(θ) as the expression for g21 involves both W11(θ) and
W20(θ) for θ ∈ [−1, 0]. It follows from the equations (5.6) and (5.11) that

Ẇ = U̇t − żp − ż p

=

{
A(0)W − 2Re{p∗(0) f0 p(θ)}, θ ∈ [−1, 0),
A(0)W − 2Re{p∗(0) f0 p(θ)} + f0, θ = 0

, A(0)W + H(z, z, θ), (5.19)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ · · · . (5.20)
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On the other hand, from the equation (5.12) on C0, we obtain

Ẇ = Wzż + Wzż

= (W20(θ)z + W11(θ)z + · · ·) (iτ∗ω∗z(t) + g(z, z)) +

(W11(θ)z + W02(θ)z + · · ·) (−iτ∗ω∗z(t) + g(z, z)) . (5.21)

Also, using the expressions (5.12) and (5.20) in the equation (5.19), we obtain

Ẇ = A(0)
(
W20(θ)

z2

2
+ W11(θ)zz + W02(θ)

z2

2
+ · · ·

)
+ H20(θ)

z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ · · ·

= (A(0)W20(θ) + H20(θ))
z2

2
+ (A(0)W11(θ) + H11(θ))zz + (A(0)W02(θ) + H02(θ))

z2

2
+ · · · .(5.22)

Now, comparing the coefficients of z2 and zz from the equations (5.21) and (5.22), we obtain

(A(0) − 2iτ∗ω∗I2)W20(θ) = −H20(θ), A(0)W11(θ) = −H11(θ). (5.23)

For θ ∈ [−1, 0), it follows from the equations (5.15) and (5.19) that

H(z, z, θ) = −2Re{p∗(0) f0(z, z)p(θ)}
= −2Re{g(z, z)p(θ)}
= −g(z, z)p(θ) − g(z, z)p(θ)

= −

(
g20

z2

2
+ g11zz + g02

z2

2
+ · · ·

)
p(θ) −

(
g20

z2

2
+ g11zz + g02

z2

2
+ · · ·

)
p(θ). (5.24)

Again comparing the coefficients of z2 and zz from the equations (5.20) and (5.24), for θ ∈ [−1, 0) we
obtain

H20(θ) = −g20 p(θ) − g02 p(θ), (5.25)
H11(θ) = −g11 p(θ) − g11 p(θ). (5.26)

From the equations (5.23) and (5.25) and using the definition ofA(θ), we deduce that

Ẇ20(θ) = A(0)W20(θ) = 2iτ∗ω∗W20(θ) + g20 p(θ) + g02 p(θ). (5.27)

The relation p(θ) = (p1, p2)T eiτ∗ω∗θ = p(0)eiτ∗ω∗θ leads the equation (5.27) to the following first order
linear ordinary differential equation in W20(θ):

Ẇ20(θ) = 2iτ∗ω∗W20(θ) + g20 p(0)eiτ∗ω∗θ + g02 p(0)e−iτ∗ω∗θ. (5.28)

Solving the above differential equation (5.28) for W20(θ), we obtain

W20(θ) =
ig20

τ∗ω∗
p(0)eiτ∗ω∗θ +

ig02

3τ∗ω∗
p(0)e−iτ∗ω∗θ + V1e2iτ∗ω∗θ, (5.29)

where V1 = (V (1)
1 ,V (2)

1 ) ∈ R2 denotes a two-dimensional constant vector. In a similar manner, from the
equations (5.23) and (5.26) and using the definition ofA(θ), we deduce that

W11(θ) = −
ig11

τ∗ω∗
p(0)eiτ∗ω∗θ +

ig11

τ∗ω∗
p(0)e−iτ∗ω∗θ + V2, (5.30)
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where V2 = (V (1)
2 ,V (2)

2 ) ∈ R2 also denotes a two-dimensional constant vector. Next, we need to find the
appropriate values of the constant vectors V1 and V2. From the definition ofA(0) and (5.23), we derive∫ 0

−1
dη(θ)W20(θ) = 2iτ∗ω∗W20(0) − H20(0), (5.31)

and ∫ 0

−1
dη(θ)W11(θ) = −H11(0), (5.32)

where η(θ) = η(θ, 0). Taking θ = 0, we obtain from the equation (5.19) that

H(z, z, 0) = −2Re{p∗(0) f0(z, z)p(0)} + f0(z, z)
= −g(z, z)p(0) − g(z, z)p(0) + f0(z, z)

= −

(
g20

z2

2
+ g11zz + g02

z2

2
+ · · ·

)
p(0) −(

g20
z2

2
+ g11zz + g02

z2

2
+ · · ·

)
p(0) + f0(z, z). (5.33)

Then, we have

H20(0)
z2

2
+ H11(0)zz + H02(0)

z2

2
+ · · · = −

(
g20

z2

2
+ g11zz + g02

z2

2
+ · · ·

)
p(0) −(

g20
z2

2
+ g11zz + g02

z2

2
+ · · ·

)
p(0) + f0(z, z). (5.34)

Comparing the coefficients of z2 and zz from the both sides of the above equation (5.34), we obtain

H20(0) = −g20 p(0) − g02 p(0) + τ∗(ρ1, ρ2)T , (5.35)
H11(0) = −g11 p(0) − g11 p(0) + τ∗(ρ3, ρ4)T , (5.36)

where (ρ1, ρ2)T and (ρ3, ρ4)T represent the coefficients of z2 and zz of f0(z, z). Then, we have

ρ1 = f (1)
20 + 2 f (1)

11 p2,

ρ2 = 2 f (2)
101 p2e−2iτ∗ω∗ + f (2)

200e−2iτ∗ω∗ + f (2)
020 p2

2,

ρ3 = f (1)
20 + f (1)

11 (p2 + p2),
ρ4 = f (2)

101(p2 + p2) + f (2)
200 + f (2)

020 p2 p2.

Since iτ∗ω∗ represents the eigenvalue ofA(0) and p(0) denotes the corresponding eigenvector, we have(
iτ∗ω∗I2 −

∫ 0

−1
eiτ∗ω∗θdη(θ)

)
p(0) = 0, (5.37)(

−iτ∗ω∗I2 −
∫ 0

−1
e−iτ∗ω∗θdη(θ)

)
p(0) = 0. (5.38)
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Now, substituting the equations (5.29) and (5.35) in equation (5.31) yields(
2iτ∗ω∗I2 −

∫ 0

−1
e2iτ∗ω∗θdη(θ)

)
V1 = τ∗(ρ1, ρ2)T , (5.39)

which eventually leads to[
2iω∗ + d1k2 − A11 −A12

−B21e−iτ∗ω∗ 2iω∗ + d2k2 − A22 − B22e−iτ∗ω∗

] [
V (1)

1
V (2)

1

]
=

[
ρ1

ρ2

]
. (5.40)

Solving the above matrix equation (5.40), we obtain

V (1)
1 =

1
41

∣∣∣∣∣∣ρ1 −A12

ρ2 2iω∗ + d2k2 − A22 − B22e−iτ∗ω∗

∣∣∣∣∣∣ ,
and

V (2)
1 =

1
41

∣∣∣∣∣∣2iω∗ + d1k2 − A11 ρ1

−B21e−iτ∗ω∗ ρ2

∣∣∣∣∣∣ ,
where

41 =

∣∣∣∣∣∣2iω∗ + d1k2 − A11 −A12

−B21e−iτ∗ω∗ 2iω∗ + d2k2 − A22 − B22e−iτ∗ω∗

∣∣∣∣∣∣ .
In a similar manner, substituting the equations (5.30) and (5.36) in equation (5.32) we obtain[

d1k2 − A11 −A12

−B21 d2k2 − A22 − B22

] [
V (1)

2
V (2)

2

]
=

[
ρ3

ρ4

]
. (5.41)

Solving the above matrix equation (5.41), we obtain

V (1)
2 =

1
42

∣∣∣∣∣∣ρ3 −A12

ρ4 d2k2 − A22 − B22

∣∣∣∣∣∣ , V (2)
2 =

1
42

∣∣∣∣∣∣d1k2 − A11 ρ3

−B21 ρ4

∣∣∣∣∣∣ ,
where

42 =

∣∣∣∣∣∣d1k2 − A11 −A12

−B21 d2k2 − A22 − B22

∣∣∣∣∣∣ .
Thus, we can determine W20(θ) and W11(θ) from the equations (5.29) and (5.30). Furthermore, we can
also compute g21. In order to determine properties of Hopf-bifurcating periodic solution of the system
(2.1)-(2.4) at the critical value τ∗ on the center manifold, we compute the following quantities:

C1(0) =
i

2τ∗ω∗

(
g20g11 − 2|g11|

2−
|g02|

2

3

)
+

g21

2
,

ζ2 = −
Re{C1(0)}
Re{µ′(τ∗)}

,

β2 = 2Re{C1(0)},

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2411–2446



2431

T2 = −
Im{C1(0)} + ζ2Im{µ′(τ∗)}

τ∗ω∗
.

Here, ζ2 determines the direction of Hopf bifurcation, β2 determines the stability of the bifurcating
periodic solution and T2 determines the period of the Hopf-bifurcating periodic solution. Therefore,
following the results presented in [75], we summarize the properties of the Hopf bifurcation at the
critical value τ∗ in the following theorem:

Theorem 5.1. Let us assume that the system (2.1)-(2.4) undergoes Hopf bifurcation at the coexisting
steady state E∗ = (N∗, P∗) when τ = τ∗. Then the following results hold:

(i) If ζ2 > 0 (ζ2 < 0), then the Hopf bifurcation is forward (backward) and the bifurcating periodic
solutions exist for τ > τ∗ (τ < τ∗).

(ii) If β2 < 0 (β2 > 0), then the bifurcating periodic solutions are stable (unstable).

(iii) If T2 > 0 (T2 < 0), then the period of the periodic solutions increases (decreases).

Remark 5.1. In order to numerically compute the formulae derived in this section regarding the prop-
erties of the Hopf-bifurcating periodic solutions, we have to make use of the non-negative k-value for
which we will get the Hopf bifurcation threshold τ∗ for a particular parameter set. Further, to match the
numerical results presented in the preceding section, we have calculated the numerical values for these
formulae. Our computations give C1(0) = −0.8435−0.3956i, ζ2 = 26.3009 > 0, β2 = −1.6870 < 0 and
T2 = 6.0453 > 0. Detailed computations of these quantities are presented in Appendix II. Therefore,
we can expect that the Hopf bifurcation is forward in direction, i.e., the bifurcating periodic solutions
arise for τ > τ∗0; emerging periodic solutions are stable and their period increase. These conclusions
can be easily verified from the figures presented in the preceding section.

6. Numerical simulations

In this section, we carry out numerical simulations in order to demonstrate the impact of gestation
delay on the spatial structures exhibited by the prey and predator populations and to corroborate the
theoretical results obtained. Numerical simulations were performed over a square spatial domain Ω =

[0, 200] × [0, 200] along with grid sizes 4x = 1.0 and 4y = 1.0. We have considered time increment
as 4t = 0.01 which is adequate in taking care of the numerical artifacts. For each numerical result,
we have used small random perturbations about the homogeneous coexistence steady state as initial
population distribution by using the usual Gaussian white noise terms. For the numerical integration
of the reaction part, we employ the first order Euler scheme [38, 59]. We discretize the Laplacian term
at the lattice site (i, j) by the following formula

∆N(i, j) =
1

(4x)2

[
Cl(i, j)N(i − 1, j) + Cr(i, j)N(i + 1, j) + Cd(i, j)N(i, j − 1)

+Cu(i, j)N(i, j + 1) − 4N(i, j)
]
,

where the matrix elements of Cl, Cr, Cd and Cu take the value 1 except at the boundary [59]. Further
in order to guarantee the zero-flux boundary conditions, we define Cl(i, j)N(i − 1, j) ≡ N(i + 1, j) and
we use similar definitions for Cr, Cd and Cu [59]. As we have observed that both the prey and predator
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populations exhibit patterns with the similar qualitative property and a change in scale, we chose to
present the patterns only for the prey population. Also, in this section we restrict ourselves only to the
case of strong Allee effect in prey growth. For this reason, we chose the following parameter values:
r = 1.0, K = 10.0, m = 1.0, b = 0.5, c = 1.0, q = 0.35, δ = 0.0425, s = 2.0, d1 = 0.15 and d2 = 10.0
[20, 24]. Here we would like to mention that we have chosen the value of the parameter b different
from the value taken in [20, 24] in order to make Ncrit visible better. For these parameter values, we
obtain b2r

K = 0.025, br = 0.5 and r2(K−b)2+4br2K
4rK = 2.756. Therefore, our choice of the parameter value

m = 1.0 gives rise to the strong Allee effect in prey growth.

(a) (b)

Figure 3. Plots of limit cycles for the system (2.1)-(2.4) at τ = 1.7. Left panel (a) exhibits the
limit cycle generated by spatially averaged population densities and right panel (b) exhibits
the same at a particular spatial location (100, 100). The other parameter values are given by
r = 1.0, K = 10.0, m = 1.0, b = 0.5, c = 1.0, q = 0.35, δ = 0.0425, a = 4.0, s = 2.0,
d1 = 0.15 and d2 = 10.0.

(a) (b) (c)

Figure 4. Comparison of the limit cycles appearing around the steady state E∗ =

(3.665, 3.015) for the spatial and non-spatial systems. Red solid circle represents E∗, blue
colored limit cycle is for spatial system and green colored limit cycle is for the non-spatial
system. Sub-figures (b) and (c) represent the zoomed versions of the sub-figure (a). All
parameter values are the same as in the Figure 3.
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(a) (b) (c)

Figure 5. Spatiotemporal chaotic pattern exhibited by the prey population at τ = 2.0. Left
panel (a) shows the emerging pattern for the prey population at t = 5000, middle panel (b)
shows the corresponding temporal evolution of the spatially averaged densities of both the
species (i.e., < N > and < P >), and right panel (c) shows the corresponding phase diagram
of the spatially averaged densities for t ∈ [4000, 5000]. All other parameter values are the
same as in the Figure 3.

Figure 6. Single parameter bifurcation diagram for prey population with respect to the ges-
tation delay τ as the bifurcation parameter for the considered delayed spatiotemporal system
(2.1)-(2.4). Other parameter values are mentioned in the caption of the Figure 3.

Firstly, we aim to provide numerical results which support our theoretical findings on the Hopf bi-
furcation and the associated properties derived in the preceding sections. For this purpose, we have
considered a = 4.0 along with the other parameter values mentioned above. In this case, the corre-
sponding non-delayed spatial system exhibits spatially homogeneous distribution of both the popula-
tions at the homogeneous coexistence steady state E∗ = (3.665, 3.015). For the sake of brevity, we
restrict ourselves from displaying these numerical results. Thus, this choice of the parameter values
acts as a desired parameter set to determine the Hopf bifurcation threshold induced by τ numerically.
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(a) (b)

(c) (d)

Figure 7. Stationary, quasi-periodic and spatiotemporal chaotic patterns over space at t =

5000 for the prey population with strong Allee effect in prey growth for four different values
of τ: (a) τ = 0.5; (b) τ = 1.0; (c) τ = 1.48; and (d) τ = 2.0. All other parameter values are
same as the Figure 3 except the value of a (here a = 3.5).

Our numerical investigations suggest that for lower values of τ, the system (2.1)-(2.4) retains the ho-
mogeneous distribution of both the populations as it was the case for the non-delayed system and we
chose not to display them here. Gradually increasing the value of τ, we have achieved the space in-
dependent periodic in time population distribution through Hopf bifurcation. In order to check this
space independence of the periodic distributions, we present the plots of the limit cycles for τ = 1.7
in case of spatially averaged densities and densities at a particular spatial location (100, 100) in Figure
3. From these two figures, we can easily observe that the limit cycles are exactly the same in both
the cases. Also, one can get similar results for the plots of the density of prey against that of predator
at other spatial locations instead of (100, 100). This eventually confirms the space independence of
the periodic patterns. Through numerical simulations we have arrived at the Hopf bifurcation thresh-
old which is approximately τ∗ = 1.275 in this case and it is actually the same as the threshold τ∗0 for
the corresponding non-spatial system. Therefore, in this case we can directly compute τ∗ by taking
k = 0 and any positive k does not have any role in determining τ∗. For the chosen parameter set,
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(a) (b)

(c) (d)

Figure 8. Plots of temporal evolution of spatial average densities of prey (< N >) and
predator (< P >) corresponding to the patterns presented in the above Figure 7 for four
different values of τ: (a) τ = 0.5; (b) τ = 1.0; (c) τ = 1.48; and (d) τ = 2.0.

non-delayed counterpart of the considered spatial model and its non-spatial version exhibit that the
coexistence steady state is stable in both the cases. Therefore, introduction of diffusion in non-delayed
temporal model does not play any prominent role in the resulting dynamics for this set of parameter
values. This is exactly the reason why any positive k does not contribute in determining the threshold
τ∗ for the considered spatial model. Therefore, computations of the quantities regarding the properties
of the Hopf bifurcation given in Section 5 follow directly from the computed values given in Remark
5.1 in this case. Hence, we can conclude from the computed values of the relevant quantities that the
Hopf bifurcation is forward, i.e., the bifurcating periodic solutions emerge when τ > 1.275, and these
solutions are stable for our delayed spatial model.

In order to compare these periodic solutions emerging for the spatial model with that of the corre-
sponding non-spatial model, we present Figure 4. Figure 4(a) shows that the limit cycles in both the
cases are almost the same whereas Figures 4(b) and (c) exhibits the small deviations between these
two limit cycles in different regions. We remark that this slight differences in these two limit cycles
arise due to the presence of the spatial components. Even bigger value of τ eventually leads to the
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(a) (b)

Figure 9. Phase diagrams of spatial average densities of both the species corresponding
to the quasi-periodic and spatiotemporal chaotic patterns presented in the Figure 7 for t ∈
[4000, 5000] and for the different values of τ: (a) τ = 1.48; (b) τ = 2.0. All other parameter
values are same as the Figure 7.

spatiotemporal chaotic pattern and these scenarios are depicted in Figure 5. Figure 5(a) exhibits the
chaotic pattern for the prey population and Figures 5(b) and (c) give us assurance regarding the chaotic
nature of this pattern. Also, we have cross-checked the chaotic patterns by examining the sensitivity
to initial distributions, estimation of Lyapunov exponent and power spectrum [78, 79, 80, 81] but did
not present the results here for the sake of briefness. All these transitions are clearly visible from
the bifurcation diagram presented in Figure 6. This bifurcation diagram (that is, Figure 6) has been
prepared by plotting the global maximum and minimum of the average prey density for stable homoge-
neous and periodic solutions and the local maxima and minima of the average prey density for chaotic
solutions after discarding the initial transients [57]. Also, from this figure we can observe that if τ is
sufficiently large beyond the Hopf bifurcation threshold τ∗ (or τ∗0) but less than the heteroclinic bifur-
cation threshold τHO then the periodic solution for the corresponding non-spatial system turns out to be
chaotic for the spatial counterpart. For this parameter set, chaotic distribution for both the populations
emerges when τ > 1.96. Comparing Figure 2 with Figure 6, we can easily notice that incorporation of
diffusion enhances the persistence of both the species as in the τ-range where the non-spatial system
exhibits extinction scenario for both the species, the corresponding spatial system leads to the chaotic
coexistence.

Now we investigate numerically the impact of gestation delay on the stationary Turing patterns. For
this reason, we chose the parameter value a = 3.5 along with all other parameter values the same as
above. From the conditions for Turing instability presented in [20, 24], one can easily compute that
these parameter values lie inside the Turing domain. A brief discussion about the analytical conditions
for Turing instability and the justification for the fact that these parameter values lie inside the Turing
domain of the non-delayed spatial system are presented in Appendix I. For these parameter values,
the non-delayed version of the system (2.1)-(2.4) exhibits stationary cold spot patterns for both the
species. But for the sake of brevity of this paper, we did not incorporate these patterns here. Figure 7
represents the effect of delay on this stationary cold spot pattern. From Figure 7(a), we can observe
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that for lower values of τ the considered delayed system (2.1)-(2.4) preserves the cold spot pattern. If
we increase the value of τ this cold spot pattern changes into mixture of stripes and cold spots pattern
which is exhibited in Figure 7(b). Both these patterns are stationary in nature which can be noticed
in Figures 8(a) and (b) for the corresponding temporal evolution of the spatial average densities of
both the species. Also, we would like to mention here that for the stationary patterns of both the
populations we have noticed almost one-to-one correspondence and accordingly we exhibit only the
patterns for the prey population. Another interesting dynamical feature arises in this transition of one
stationary pattern to another which is termed as the “loss of monotonicity”. This feature is evident
from the Figures 8(a) and (b). In Figure 8(a), we can see that the spatial average densities of both
the populations approaches the stationary state monotonically (monotonically increasing in case of
prey population and monotonically decreasing in case of predator population). Whereas in case of the
stationary mixture pattern, there are initial fluctuations in the temporal evolution of the spatial average
densities of both the populations before settling to the stationary state and this can be observed in the
Figure 8(b). Therefore, we conclude that the transition of stationary patterns for our considered system
(2.1)-(2.4) happens through the loss of monotonicity of the spatial average densities. Further gradual
increments in τ leads to quasi-periodic and spatiotemporal chaotic patterns for both the populations
respectively. These scenarios can be observed in Figures 7(c) and (d) for the prey population. The
corresponding spatial average densities of both the populations are exhibited in Figures 8(c) and (d). In
order to characterize these patterns efficiently we have incorporated the corresponding phase diagrams
of the spatial average densities in Figure 9. Since the phase diagram presented in Figure 9(a) shows
that the spatially averaged solution trajectory stays confined in an annular region, we have termed the
corresponding pattern as the quasi-periodic pattern though it looked quite similar to a stationary pattern.
Also, the annular domain will not change with the increase in the length of time interval. At this end, we
would like to specify that all the patterns reported in this paper are self-organized as we have studied the
considered system in homogeneous environment and there are no other external interferences. For the
other choices of the parameter values in the Turing domain for the corresponding non-delayed spatial
system, we have observed similar kind of transition of stationary patterns to spatiotemporal chaotic
patterns due to the effect of the gestation delay. But we did not incorporate them here deliberately in
order to make this paper concise.

7. Discussion

Various research works were carried out to derive analytical expressions for the relevant quantities
to determine the stability of the Hopf-bifurcating periodic solutions for delayed temporal and spa-
tiotemporal prey-predator models [30, 39, 40, 41, 46, 48, 50, 51, 54, 55, 56, 58, 59, 60]. In some of
them, preliminary numerical simulations were carried out to explore the change in pattern formation
scenario due to the presence of time delay. So far as our knowledge goes, there is no literature where
the analytical results for the stability of Hopf-bifurcating periodic solutions for the non-spatial and
spatial models have been verified numerically and the results are compared with the help of bifurcation
diagrams for these two types of models.

In this paper, we have considered a delayed spatial prey-predator system with monotonic functional
response with saturation to describe grazing phenomena and density dependent death rate for preda-
tor along with the additive Allee effect in prey growth. The consideration of density dependent death
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rate for predator is a realistic assumption and it is crucial for pattern formation as it allows the system
to satisfy Turing instability conditions for certain choice of parameter values while models without it
cannot produce Turing patterns [82]. The non-delayed version of our model cannot produce Turing
patterns in absence of density dependent death rate for predators (i.e., δ = 0) [24]. Also, one can go
through the Note presented in Appendix I for a brief justification of this observation. But it produces
various kinds of Turing patterns in presence of density dependent death rate for predators (i.e., δ > 0)
[20, 24]. We have incorporated the discrete time delay in the predator’s growth to take care of gesta-
tion time period for predator species and studied the effect of time delay on the spatiotemporal pattern
formation. The well-posedness of the problem in terms of existence, uniqueness, non-negativity and
boundedness of the solutions has been established to ensure the mathematical model is appropriate.
Theoretically we have derived the Hopf bifurcation threshold for the model under suitable assumptions
and computed the analytical expressions in order to determine the properties of Hopf bifurcating pe-
riodic solutions with the help of center manifold reduction and normal form theory with discrete time
delay as bifurcation parameter. Although the computed results are for spatial system, we have dis-
cussed on how one can actually obtain the associated results for the corresponding non-spatial system
by taking k appropriately (i.e., k = 0). Accordingly, we have discussed the Hopf bifurcation threshold
and the corresponding properties of the limit cycle generated through Hopf bifurcation. Also, we have
observed another bifurcation, which is a global bifurcation, the heteroclinic bifurcation for larger value
of delay through which the periodic solution disappears and we have found the extinction scenario
for both the species in the non-spatial model. Further, numerical illustrations have been provided in
order to corroborate our theoretical results and to investigate the impact of time delay on the stationary
patterns.

Our present study confirms that the stable Hopf bifurcating periodic solution changes to homoge-
neous in space and oscillatory in time solution and remains stable in the presence of spatial component.
Further, we observe the emergence of the spatiotemporal chaotic distribution for both the species in
presence of sufficiently large value of the gestation delay. Time delay changes the spatially uniform
distribution of the populations to chaotic distribution through the periodic distribution. This periodic
distribution emerges through Hopf bifurcation with time delay as the bifurcation parameter. Delay
induced spatiotemporal pattern and enhancement of parametric domain for spatiotemporal chaotic pat-
tern are available in literature [36, 37, 38, 59] but its emergence from Hopf-bifurcating periodic solution
is not well explained in the existing literature. For the model under consideration and for chosen pa-
rameter values, we have observed Hopf bifurcation threshold for the spatial system is the same as that
for the corresponding non-spatial system. This phenomenon occurs since for the chosen parameter
values the corresponding non-delayed temporal system admits asymptotically stable unique coexis-
tence steady state and the corresponding non-delayed spatial system exhibits uniform distribution of
populations at this stable steady state. Therefore, incorporation of diffusion does not play a prominent
role on the destabilization of the dynamics when the parameter values are away from the Hopf bifur-
cation threshold for the temporal model and Turing bifurcation threshold for the spatial model. Hence,
the Hopf bifurcation threshold (which has been calculated by considering k = 0) is the same in both
non-spatial and spatial models. In this regard, we remark that positive k-values come into picture in
determining the Hopf bifurcation threshold when the unstable positive steady state for the non-delayed
temporal system is stabilized by the incorporation of spatial components into the model. Also, our
numerical results have indicated that incorporation of spatial components enhances the coexistence for
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both the species and this claim can be easily verified by comparing the results presented in the Figures
2 and 6. From these two figures, one can easily understand that the chaotic coexistence results in the
spatial model where the corresponding non-spatial counterpart exhibits extinction of both the species.
This chaotic coexistence appears in the spatial model due to the localized disappearance and restora-
tion at other nearby favorable patches in the natural habitat. Another interesting fact is that we have
obtained the chaotic pattern for much higher value of the ratio of predator’s diffusion coefficient to that
of the prey population. And we can safely associate the reason for this phenomenon to the presence of
the time delay as it is generally a common practice in literature to take this ratio to be equal to unity
(especially d1 = d2 = 1) in order to produce the chaotic distribution of populations [6, 8, 20, 78, 83].

Another interesting finding in this study is that, apart from the emergence of the chaotic patterns,
time delay can actually alter a stationary pattern to another stationary pattern. For smaller values of
the time delay the considered system retains the stationary pattern exhibited by the corresponding non-
delayed system in its Turing domain. With the increment in time delay the stationary pattern gets
converted into another one which eventually turns into chaotic pattern for sufficiently large time delay.
In our study, we have shown this transition where cold spot pattern turns into a stationary mixture pat-
tern (mixture of cold spots and stripes). In this case, the mixture pattern eventually settles into a chaotic
pattern through the quasi-periodic one with the increase in the magnitude of time delay. Further, we
have identified the loss of monotonicity property for the spatially averaged densities in this transition
from one stationary pattern to another. Generally, it is believed that both the local and external factors
acts together in shaping the spatial pattern formation for ecological community [84, 85]. By chemical-
physical limitations, environmental heterogeneity plays a crucial role in shaping population dynamics
as one of the most common external component [86]. However, there exist sufficient amount of em-
pirical manifestations where it is often very difficult to justify the observed spatial patterns through
environmental heterogeneity solely [57, 87, 88]. This fact eventually leads to the well-known concept
of “self-organized” spatiotemporal pattern formation. This type of patterns emerges due to internal
factors alone in an absolutely homogeneous environment [3, 83, 89, 90, 91]. Therefore, all the pat-
terns reported in this study has been classified as the self-organized patterns since we have considered
our system in a uniform environment and in absence of any other external factors like periodic and/or
fluctuating environmental conditions and stochasticity.

The works presented in this paper give rise to various relevant and interesting problems to investi-
gate regarding prey and predator interactions. An immediate future direction is to study the problem
with predator density dependent functional responses, namely, Beddington-DeAngelis and Michaelis-
Menten types of functional responses. Another important and interesting problem will be to consider
the system in presence of both time delay and external influencing factors (especially the environmental
heterogeneity) and study the corresponding dynamical behaviors. Also in reality, predator’s movement
is generally guided by some specific ingredients passed off by prey species such as pheromones and
odour etc. [92]. Therefore, it will be a problem of immense potential to study the problem presented in
this paper in presence of prey-taxis. We will take up and explore these problems as our future studies.
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Appendix I

For the sake of completeness of this paper, we briefly reiterate here the Turing instability conditions
at E∗ = (N∗, P∗) for the non-delayed version of the considered system (2.1)-(2.4). For elaborate analy-
sis, one can go through the works presented in [20, 24]. Turing instability occurs when E∗ is stable for
the corresponding temporal model but becomes unstable due to small heterogeneous perturbations at
this steady state [93]. In order to present the analytical conditions for Turing instability, we recall the
equation (4.3):

∆(µ, 0) ≡ µ2 + (C1 + D1)µ + (C0 + D0) = 0,

where C1 + D1 = −(A11 + A22 + B22) + k2(d1 + d2) and C0 + D0 = (A11 − k2d1)(A22 − k2d2) + (A11B22 −

A12B21) − k2d1B22. For Turing instability, we need to have stable E∗ for the corresponding temporal
model, i.e., we need to have the following conditions satisfied: −(A11 + A22 + B22) > 0 and A11(A22 +

B22) − A12B21 > 0. Therefore, for any k > 0 we have C1 + D1 > 0. In order to induce diffusion-driven
Turing instability we must have C0 + D0 < 0 for some k > 0. Now, minimum value of C0 + D0 occurs
at k2

crit =
d1(A22+B22)+d2A11

2d1d2
. Using this critical value k2

crit, we obtain the necessary condition for Turing
instability as

s < sT ≡
d2N∗
d1δP∗

(
m

(N∗ + b)2 −
r
K

+
cP∗

(N∗ + a)2

)
,

where sT represents the Turing instability threshold.
Now, we consider the parameter values for which we have investigated the impact of time delay on

the stationary Turing pattern in Section 6 to confirm that these parameter values indeed lie inside the
Turing domain for the corresponding non-delayed spatial system. The parameter values are r = 1.0,
K = 10.0, m = 1.0, b = 0.5, c = 1.0, q = 0.35, δ = 0.0425, a = 3.5, s = 2.0, d1 = 0.15 and
d2 = 10.0. For these parameter values, the unique spatially homogeneous coexistence steady state is
E∗ = (3.041, 2.705) and we have A11 +A22 +B22 = −0.099 < 0, A11(A22 +B22)−A12B21 = 0.176 > 0 and
sT = 75.742. Therefore, our choice of s (i.e., s = 2.0) indicates that the considered parameter values
indeed lie in the Turing domain of the non-delayed spatial model and is able to produce stationary
Turing pattern.
Note: Using the expressions for A22 and B22, we obtain A22 + B22 = −sδP∗. This implies that in
absence of the density dependent death rate for predators (i.e., δ = 0) we have A22 + B22 = 0. Then
the conditions for temporal local stability of the steady state E∗ become A11 < 0 and A12B21 < 0. Now
computing the expression for C0 + D0, we obtain C0 + D0 = d1d2k4−d2A11k2−A12B21 > 0 for all k > 0.
On the other hand, Turing instability occurs when C0 + D0 < 0 for some k > 0. Therefore, absence of
the density dependent death rate for predators (i.e., δ = 0) cannot induce Turing instability.

Appendix II

Here, we present the detailed numerical computations of the values of the quantities presented in
Remark 5.1. The corresponding parameter set is given by r = 1.0, K = 10.0, m = 1.0, b = 0.5,
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c = 1.0, q = 0.35, δ = 0.0425, a = 4.0 and s = 2.0. For these parameter values, ω∗ = 0.2812
and the Hopf bifurcation threshold is τ∗0 = 1.275. Then we have p(0) = (1,−0.0687 + 0.5880i)T

and p∗(0) = D(1,−0.3153 − 0.6131i). Thus, we obtain D = 7.3105 + 0.8828i. Using these values
appropriately and doing some calculations, we arrive at

g20 = −2.7114 − 0.6809i,

g11 = −0.7320 − 0.9871i,

g02 = 0.1057 + 1.7888i.

In order to calculate the quantity g21, we need to calculate the components of W11(θ) and W20(θ) at
θ = 0,−1. These components are computed as follows:

W (1)
11 (0) = −5.2017 + 5.2137 × 10−12i,

W (2)
11 (0) = −2.2592 + 3.5829 × 10−13i,

W (1)
11 (−1) = −3.4186 + 5.2137 × 10−12i,

W (2)
11 (−1) = −3.3651 + 3.5829 × 10−13i,

W (1)
20 (0) = 3.3965 − 6.7792i,

W (2)
20 (0) = 4.7940 + 0.7255i,

W (1)
20 (−1) = 0.9719 − 6.4472i,

W (2)
20 (−1) = 5.3596 − 1.2201i.

Making use of these values, we derive the value of g21 as

g21 = 7.1665 + 6.9559i.

Therefore, the values of the desired quantities are given by

C1(0) = −0.8435 − 0.3956i,

ζ2 = 26.3009,
β2 = −1.6870,
T2 = 6.0453.
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