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Abstract: In this paper, we propose a diffusive epidemic model with a standard incidence rate and dis-
tributed delays in disease transmission. We also consider the degenerate case when one of the diffusion
coefficients vanishes. By establishing existence theory of traveling wave solutions and providing sharp
lower bound for the wave speeds, we prove linear determinacy of the proposed model system. Sen-
sitivity analysis suggests that disease propagation is slowed down by transmission delay but fastened
by spatial diffusion. The existence proof is based on the construction of a suitable convex set which
is invariant under the integral map of traveling wave equations. An innovative argument is formulated
to study the boundary value problems of nonlinear elliptic equations satisfied by the traveling wave
solutions, which enables us to prove that there does not exist a positive traveling wave connecting two
nontrivial equilibria.
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1. Introduction

The study of deterministic epidemic model can be dated back in 1927 when Kermack and McK-
endrik [1, Eq. (29)] proposed a simple ordinary differential system with three compartments: suscepti-
ble individuals (S ), infected individuals (I) and removed/recovered individuals (R). The corresponding
three-dimensional system can be decoupled into two subsystems:

S ′(t) = −ϕ(S (t), I(t)), (1.1)
I′(t) = ϕ(S (t), I(t)) − γI(t), (1.2)

and R′(t) = γI(t). Here, the incidence rate is chosen as the mass-action function:

ϕ(S (t), I(t)) = βS (t)I(t),
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The two parameters β > 0 and γ > 0 in the model denote the disease transmission rate and the
removal/recovery rate, respectively. Given initial values {S 0, I0,R0} at t = 0, one can integrate the
R-equation to obtain

R(t) = R0 +

∫ t

0
γI(s)ds,

where I(t) can be solved from the subsystem for S and I:

I(t) = S 0 + I0 − S (t) +
γ

β
ln

S (t)
S 0

.

Substituting this into (1.1) gives a separable equation for S (t), whose solution can be expressed as the
inverse of an integral: ∫ S (t)

S 0

[
u(S 0 + I0 − u +

γ

β
ln

u
S 0

)
]−1

du = −βt.

As noted by Kermack and McKendrik, there is no explicit formula, in terms of elementary functions,
instead of the integral representation as given above, for the solution of their SIR model.

In real application, however, it is more desirable to have a closed formula for the functions of interest
so as to fit the epidemic wave data collected during a disease outbreak. The Richards empirical model
[2], which is also called the theta-logistic model [3, 4], has been used to estimate the key parameters
in recent outbreaks of SARS [5], dengue fever [6] and pandemic influenza H1N1 [7]. This model has
the advantage that it can be solved in terms of elementary functions. However, the Richards model
was originally introduced in ecological studies, and it did not have any epidemiological justification.
To make a connection between Richards empirical model with Kermack-Mckendrick compartmental
model, it was proposed in [8] that the following standard incidence rate shall be used:

ϕ(S (t), I(t)) =
βS (t)I(t)

S (t) + I(t)
.

Here, the removed individuals are assumed to be isolated from the community so that the denominator
of the incidence function is S (t) + I(t), instead of S (t) + I(t) + R(t). This assumption ensures that the R-
equation can be decoupled from the model system. The above system can be integrated with solutions
explicitly given by elementary functions. Actually, if we add (1.1) to (1.2) and then divide both sides
of the resulting equation by both sides of (1.1) respectively, we arrive at a separable equation

d(S + I)
dS

=
γ(S + I)
βS

.

Solving the above equation gives S (t) + I(t) = cS (t)γ/β, where c > 0 is a constant of integration which
depends on initial conditions. Now, we use this algebraic equation to eliminate I(t) in (1.1) and obtain
a Richards-type equation:

S ′(t) = −βS (t)[1 − S (t)1−γ/β/c],

whose solution has a closed form.
Moreover, an intrinsic relation between the parameters in Kermack-Mckendrick model and Richards

model was obtained in [8], which provided a satisfactory interpretation of Richards model in epidemi-
ology.
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It is worth to remark that “standard incidence is not realistic for small population sizes” [9]. This
is because “for small population, the contact rate increases with population size” and mass action is
more appropriate [10]. However, when population increases, the contact rate cannot increase linearly
but it should be saturated as population size goes to infinity [11]. So, our model is biologically relevant
when the population size is large.

If the transmission delay is taken into consideration [12], one should change the equation (1.2) to

I′(t) =

∫ ∞

0
η(τ)q(τ)ϕ(S (t − τ), I(t − τ))dτ − γI(t), (1.3)

where q(τ) is a probability density function which characterizes the possibility of a susceptible individ-
ual having a latency period of τ after being infected and η(τ) < 1 is the survival probability. Note that
the time delay does not appear in the S -equation because the susceptible individual should be removed
from this group once being infected. We refer to the equations (1.1) and (1.3) as a type-I delayed dis-
ease model. For convenience, we define θ =

∫ ∞
0
η(τ)q(τ)dτ < 1 and p(τ) = η(τ)q(τ)/θ. It is noted that

p(τ) is still a probability density function and θ can be regarded as average survival rate during latency
stage. We then adopt the convolution symbol ∗ as

(p ∗ g)(t) :=
∫ ∞

0
p(τ)g(t − τ)dτ,

and rewrite (1.3) as I′(t) = θ[p ∗ ϕ(S , I)](t) − γI(t). When p(τ) = δr(τ) is a Dirac delta function, then
(p ∗ g)(t) = g(t − r) and the equation (1.3) has only one discrete delay:

I′(t) = θϕ(S (t − r), I(t − r)) − γI(t).

Let i(t) = I(t + r). One may further obtain a closed system for S and i:

S ′(t) = −ϕ(S (t), i(t − r)),
i′(t) = θϕ(S (t), i(t − r)) − γi(t).

In some literature, the term i(t−r) in both of the above two equations is replaced by a general functional
with distributed delays (p∗ i)(t). We refer to such generalized delay system as a type-II delayed disease
model. Note that in the case of single discrete delay, type-I and type-II delayed disease models are
equivalent with the relation i(t) = I(t + r); see [13]. However, if more general distributed delays are
taken into consideration, these two types of delayed disease models are different.

To study the spatial spread of infectious diseases, we assume random movement of each individual
and propose the following delayed diffusive epidemic model:

∂tS (x, t) = d1∂xxS (x, t) − ϕ(S (x, t), I(x, t)), (1.4)

∂tI(x, t) = d2∂xxI(x, t) + θ

∫ ∞

0
p(τ)ϕ(S (x, t − τ), I(x, t − τ))dτ − γI(x, t), (1.5)

where d1 ≥ 0 and d2 ≥ 0 are the diffusion rates of the susceptible and infective individuals, respec-
tively. If both d1 and d2 vanish, the above system reduces to the delay differential system with spatial
homogeneity. Throughout this paper, we assume that at least one diffusion rate is positive. However, it

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2391–2410



2394

is biologically relevant that one of the diffusion rates may vanish. For instance, in the study of spatial
spread of rabies among foxes [14], the uninfected foxes S (x, t) always stay in their territories, while the
rabid foxes I(x, t) may loss their sense of direction and wonder randomly. Thus, we shall consider the
degenerate case d1 = 0. Here, we also assume for simplicity that the individuals do not diffuse during
the incubation period. This is reasonable because, in the rabies model, the fox moves rapidly and ran-
domly only when it becomes infective. Note that for the special case when p(τ) = σe−στ, the system
(1.4)-(1.5) reduces to an SEIR diffusive model without delay but with degeneracy in the equation for
the exposed class.

Our objective is to provide existence theory for the traveling wave solutions of the proposed model
system with time delay and degeneracy. Especially, we will calculate the minimal traveling speed
and analyze the effect of disease transmission delay and spatial movement in the propagation of an
infectious disease. We shall show that the delayed system with degeneracy is linearly determinant in
the sense that the minimal traveling speed can be obtained by considering the linearized system at a
disease-free equilibrium. The traveling wave solutions of (1.4)-(1.5) with speed c ≥ 0 take the special
forms S (x, t) = S (ξ) and I(x, t) = I(ξ), where ξ = x + ct ∈ R. The solution with zero wave speed is
actually the steady state of the diffusive system. So, we always assume c > 0. A simple application of
chain rule gives the following nonlocal differential system

cS ′(ξ) = d1S ′′(ξ) − ϕ(S (ξ), I(ξ)), (1.6)

cI′(ξ) = d2I′′(ξ) + θ

∫ ∞

0
p(τ)ϕ(S (ξ − cτ), I(ξ − cτ))dτ − γI(ξ). (1.7)

For simplicity, we denote pc(τ) := p(τ/c)/c. Then the integral on the right-hand side of (1.7) has the
simple convolution expression: pc ∗ ϕ(S , I). We also note that pc is still a probability density function
whose total integral on the positive real line equals to one.

It follows from maximum principle that any non-constant and non-negative solutions of (1.6)-(1.7)
should be positive at any finite point. In general, the traveling wave connects two equilibria at infini-
ties. Note that the system (1.4)-(1.5) has infinitely many equilibrium points (S ∗, 0), where S ∗ is any
nonnegative number. However, as we will demonstrate later, it is impossible to find a traveling wave
solution connecting two different non-trivial equilibria. In other words, if a positive traveling wave
solution of (1.6)-(1.7) satisfies the boundary conditions:

S (−∞) = S 0 > 0, I(−∞) = 0, S ′(−∞) = I′(−∞) = 0 (1.8)

then we should also have S (∞) = I(∞) = 0.
Unlike the rich theory and general tools developed for monotone systems [15, 16, 17, 18, 19], the

study of non-monotone systems such as the diffusive disease models is far from complete and unified.
Especially, the results on traveling wave solutions in epidemic models are obtained on a case-by-case
basis. Most of the earlier studies only consider the non-delay case. When the incidence rate is a bilinear
function in S and I, Källén [20] investigated the degenerate case d1 = 0, while Hosono and Ilyas [21]
considered the degenerate case d2 = 0. Hosono and Ilyas [22] further studied the non-degenerate case
by using a geometric shooting method introduced by Dunbar [23, 24]. This technique was recently
developed by Huang [25] in a work on non-monotone diffusive systems with general reaction functions.
The applications of geometric shooting method are limited to the non-delay models. For the diffusive
disease models with time delay, a commonly used method is the Schauder fixed point theorem; see [26]
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and [27] for the study of two delayed epidemic models with standard incidence rate and mass-action,
respectively. In [28], a delayed diffusive SIR model with external supplies is considered. The disease
models all have type-II delays. A type-I delayed disease model with mass-action and recruitment was
proposed in [29], where a critical wave speed was calculated and numerical simulation was conducted
to suggest that this critical value should be the minimal wave speed. This observation was recently
proved in [30] with the aid of Schauder fixed point theorem. To the best of our knowledge, there is
no results concerning the traveling wave solutions of type-I delayed diffusive models with standard
incidence rate. In this paper, we will fill in this gap and establish existence theory for the traveling
wave equations (1.6)-(1.7). Moreover, we will extend our results to the degenerate cases when one of
the diffusion coefficients vanishes.

The rest of the paper is organized as follows. In Section 2, we obtain a critical wave speed by
linearizing the traveling wave equations at a non-trivial equilibrium. Sensitivity analysis is conducted
to study the dependence of this critical value on diffusion coefficient and time delay. In Section 3, we
introduce some preliminary results about shifted Laplacian operators and their inverses. In Section 4,
we provide an existence theorem for the positive traveling wave solutions. In Section 5, we investigate
some properties of the positive traveling wave solutions. In Section 6, we conclude this paper with
some discussions on the main results and an open problem.

2. Linear determinacy and critical wave speed

It is well known that the minimal wave speed for monotone systems can be determined from the cor-
responding linearized system at a certain equilibrium point [31, 32, 33]. However, for non-monotone
systems, especially predator-prey type systems in disease models, it is still an open problem to find the
conditions for linear determinacy [34, 35]. In this section, we will calculate a critical wave speed c∗ by
linearization. As we shall see later, this critical value is exactly the minimal wave speed, which proves
linear determinacy of our model system.

By linearizing the I-equation (1.7) at the nontrivial equilibrium (S 0, 0), we find the characteristic
function:

f (λ, c) := −d2λ
2 + cλ − θβ

∫ ∞

0
p(τ)e−cτλdτ + γ, (2.1)

where λ ≥ 0 and c ≥ 0. Recall that p is a probability density function such that p(τ) ≥ 0 for all
τ ≥ 0 and the total integral on the real line is one. Throughout this paper, we also assume that p(τ)
decays exponentially at infinity; namely, there exists σ > 0 such that p(τ)eστ is uniformly bounded for
τ ∈ [0,∞). We will need to use this assumption to prove continuity of the integral map associated with
traveling wave equations. As a simple consequence of the assumption, all moments of p exist. In this
section, we are only interested in the case when θβ > γ; as we shall prove later, no positive traveling
wave solution exists for the case θβ ≤ γ. First, we note that if c = 0, then f (λ, 0) = −d2λ

2 − θβ + γ is
always negative. Fix any c > 0, we have

∂λλ f (λ, c) = −2d2 − θβc2
∫ ∞

0
p(τ)τ2e−cτλdτ < 0,

which implies that

∂λ f (λ, c) = −2d2λ + c + θβc
∫ ∞

0
p(τ)τe−cτλdτ
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is decreasing in λ.
We have the following lemma about the critical wave speed.

Lemma 1. If θβ > γ, then there exists c∗ ≥ 0 such that for any c > c∗, the equation f (λ, c) = 0 has a
unique positive solution, denoted by λ1 = λ1(c), such that ∂λ f (λ1, c) > 0, and for any 0 < c < c∗, the
equation f (λ, c) = 0 has no positive solution. In the later case, f (λ, c) → −∞ as λ → ∞. Especially,
c∗ = 0 for the degenerate case d2 = 0.

Proof. We consider the non-degenerate case d2 > 0 and degenerate case d2 = 0, respectively. If d2 > 0,
then ∂λ f (0, c) > 0 and ∂λ f (λ, c) < 0 for sufficiently large λ > 0. There exists a unique λ̄(c) > 0 such
that ∂λ f (λ̄(c), c) = 0. Actually λ̄(c) is the global maximum point of f (λ, c) for λ ∈ [0,∞). Moreover,

2d2λ̄ = c + θβc
∫ ∞

0
p(τ)τe−cτλ̄dτ ∈ (c, c + θβcm1),

where m1 =
∫ ∞

0
p(τ)τdτ is the first moment of the probability density function p. Biologically, the first

moment m1 is interpreted as the average delay of disease transmission. Since f (0, c) = −θβ + γ < 0,
the equation f (λ, c) = 0 has at least one positive solution if and only if g(c) := f (λ̄(c), c) ≥ 0. By chain
rule, we have

g′(c) = ∂λ f (λ̄(c), c)λ̄′(c) + ∂c f (λ̄(c), c) = λ̄ + θβλ̄

∫ ∞

0
p(τ)τe−cτλ̄dτ > 0,

which implies that g(c) is increasing in c. As c → 0+, we obtain λ̄c → 0+ and g(c) → f (0, 0) =

−θβ + γ < 0. As c → ∞, we have f (1, c) → ∞. Thus, g(c) > 0 for sufficiently large c. The equation
g(c) = 0 has a unique positive solution, denoted by c∗. For any c > c∗, we have g(c) = f (λ̄(c), c) > 0,
f (0, c) < 0, and ∂λ f (λ, c) > 0 for λ ∈ (0, λ̄(c)). There exists a unique λ1 = λ1(c) ∈ (0, λ̄(c)) such that of
f (λ1(c), c) = 0 and ∂λ f (λ1(c), c) > 0. For any c < c∗, we have g(c) = f (λ̄(c), c) < 0 and the equation
f (λ, c) = 0 has no positive real solution. It is obvious that f (λ, c)→ −∞ as λ→ ∞.

If d2 = 0 and c > 0, then ∂λ f (λ, c) > 0 for all λ ≥ 0. Moreover, f (0, c) < 0 and f (λ, c) >

cλ − θβ + γ > 0 for sufficiently large λ > 0. The existence of λ1 follows immediately. �

Remark 2. From the proof of Lemma 1, we observe that in the non-degenerate case d2 > 0, the
equation f (λ, c) = 0 with c > c∗ has another positive solution λ2(c) > λ̄(c). But, this solution is
irrelevant because ∂λ f (λ2(c), c) < 0. We only need to use λ1(c) to construct the upper and lower
solutions. Especially, we observe from ∂λ f (λ1(c), c) > 0 that f (λ1(c) + ε, c) > 0 for any sufficiently
small ε > 0.

To investigate the dependence of critical wave speed on the time delay, we assume that p(τ) = δr(τ)
is a Dirac delta function such that (p∗g)(t) = g(t−r). In this special case, we emphasize the dependence
of f on r and write f (λ, c, r) = −d2λ

2 +cλ−θβe−λcr +γ. From the proof of Lemma 1, we note that c = c∗

and λ∗ := λ̄(c∗) are a pair of positive solutions to the equations f (λ∗, c∗, r) = 0 and ∂λ f (λ∗, c∗, r) = 0.
We treat r as an independent variable, while λ∗ and c∗ are dependent variables. By chain rule, we have

∂λ f (λ∗, c∗, r)
dλ∗

dr
+ ∂c f (λ∗, c∗, r)

dc∗

dr
+ ∂r f (λ∗, c∗, r) = 0.
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On the other hand, since ∂λ f (λ∗, c∗, r) = 0, we then have

dc∗

dr
=
−∂r f (λ∗, c∗, r)
∂c f (λ∗, c∗, r)

< 0

because f is an increasing function in both c and r. This implies that the critical value c∗ is a decreasing
function of time delay r; namely, time delay in the transmission mechanism will reduce the spatial
propagation of infectious diseases. Since f is decreasing in d2, a similar argument shows that the
critical wave speed c∗ is increasing in d2; that is, a larger spatial diffusion rate will lead to a faster
traveling speed.

3. Differential operators and their inverses

Let α1 > 0 and α2 > 0 be two large constants to be determined later. We introduce the shifted
Laplacian differential operators:

∆ih := −dih′′ + ch′ + αih

for any function h which is second-order differentiable on the whole real line except at finite many
points. If di > 0, then the inverse of ∆i have the following integral representation:

(∆−1
i h)(ξ) :=

1
di(µ+

i − µ
−
i )

[ ∫ ξ

−∞

eµ
−
i (ξ−y)h(y)dy +

∫ ∞

ξ

eµ
+
i (ξ−y)h(y)dy

]
,

where µ±i := (c ±
√

c2 + 4diαi)/(2di) are the two characteristic roots for the differential operator ∆i.
The integrals on the right-hand side of the above formula are well-defined if the function h(ξ) belongs
to the Banach space Bµ(R) which consists of all continuous functions h(ξ) whose weighted norm

|h|µ := sup
ξ∈R

e−µ|ξ||h(ξ)|

is finite. Here, µ is a positive number such that µ−i < −µ < µ < µ+
i . Now, we consider the degenerate

case by taking limits. It is readily seen that µ−i → −αi/c, µ+
i → ∞, and di(µ+

i − µ
−
i ) → c as di → 0+.

The integral operator ∆−1
i becomes:

(∆−1
i h)(ξ) =

1
c

∫ ξ

−∞

e−
αi
c (ξ−y)h(y)dy.

For all h ∈ Bµ(R), it follows from fundamental theorem of calculus that ∆i(∆−1
i h) = h. However,

if h ∈ Bµ(R) such that h′ and h′′ may have finite number of points with jump discontinuity, it is
now always true that ∆−1

i (∆ih) = h. For convenience, we use B̌µ(R) to denote the collection of all
piecewise continuous functions with possible jump discontinuity at finite many points and finite norm
|·|µ. Obviously, the integral operator ∆−1

i is well defined on B̌µ(R). It is noted that Bµ(R) = B̌µ(R)∩C(R),
but the normed space B̌µ(R) is not complete. We introduce the jump function associated with h ∈ B̌µ(R)
as

[h](ξ) := h(ξ+) − h(ξ−) = lim
ε→0+

h(ξ + ε) − lim
ε→0−

h(ξ + ε).

Note that [h] vanishes at all continuous points of h, and [h] = 0 if h ∈ Bµ(R). We have the following
results.
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Lemma 3. If di > 0, then ∆−1
i (∆ih) ≤ h for h ∈ Bµ(R) such that h′, h′′ ∈ B̌µ(R) and [h′] ≤ 0. If di = 0,

then ∆−1
i (∆ih) ≤ h for h ∈ B̌µ(R) such that h′ ∈ B̌µ(R) and [h] ≥ 0.

Proof. We first consider the non-degenerate case di > 0. For simplicity, we assume that h′ and h′′ have
only one jump point at ξ0. The argument can be easily extended to the case of multiple jump points.
By shifting, we may further set ξ0 = 0. For ξ ≤ 0, it follows from the definition that

di(µ+
i − µ

−
i )[∆−1

i (h′′)](ξ) =

∫ ξ

−∞

eµ
−
i (ξ−y)h′′(y)dy +

∫ 0

ξ

eµ
+
i (ξ−y)h′′(y)dy

+

∫ ∞

0
eµ

+
i (ξ−y)h′′(y)dy.

Using integration by parts, we have

di(µ+
i − µ

−
i )[∆−1

i (h′′)](ξ) =(µ−i − µ
+
i )h(ξ) − [h′](0)eµ

+
i ξ

+

∫ ξ

−∞

(µ−i )2eµ
−
i (ξ−y)h(y)dy +

∫ ∞

ξ

(µ+
i )2eµ

+
i (ξ−y)h(y)dy.

Similarly, we obtain

di(µ+
i − µ

−
i )[∆−1

i (h′)](ξ) =

∫ ξ

−∞

µ−i eµ
−
i (ξ−y)h(y)dy +

∫ ∞

ξ

µ+
i eµ

+
i (ξ−y)h(y)dy.

Since µ±i are characteristic roots for the differential operator ∆i, we have

[∆−1
i (∆ih)](ξ) = h(ξ) +

[h′](0)eµ
+
i ξ

µ+
i − µ

−
i
≤ h(ξ).

In a similar manner, we can show that for ξ ≥ 0,

[∆−1
i (∆ih)](ξ) = h(ξ) +

[h′](0)eµ
−
i ξ

µ+
i − µ

−
i
≤ h(ξ).

Next, we consider the degenerate case di = 0. For ξ ≤ 0, by definition and integration by parts, we
have

c[∆−1
i (h′)](ξ) =

∫ ξ

−∞

e−
αi
c (ξ−y)h′(y)dy = h(ξ) −

αi

c

∫ ξ

−∞

e−
αi
c (ξ−y)h(y)dy,

which, together with ∆ih = ch′ + αih, implies that

[∆−1
i (∆ih)](ξ) = h(ξ).

For ξ ≥ 0, we have

c[∆−1
i (h′)](ξ) =

∫ 0

−∞

e−
αi
c (ξ−y)h′(y)dy +

∫ ξ

0
e−

αi
c (ξ−y)h′(y)dy

= h(ξ) − e−αiξ/c[h](0) −
αi

c

∫ ξ

−∞

e−
αi
c (ξ−y)h(y)dy,

which implies that
[∆−1

i (∆ih)](ξ) = h(ξ) − e−αiξ/c[h](0) ≤ h(ξ).

This completes the proof. �
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Remark 4. By replacing h with −h, we also obtain ∆−1
i (∆ih) ≥ h if [h′] ≥ 0 in the non-degenerate case

or [h] ≤ 0 in the degenerate case. Especially, if h′ is continuous in the non-degenerate case or h is
continuous in the degenerate case, we have ∆−1

i (∆ih) = h.

4. Existence results

Throughout this section, we assume that θβ > γ and c > c∗. Making use of the integral repre-
sentation for the inverse of shifted Laplacian operator ∆i, we define the integral map: F = (F1, F2)T ,
where

F1(u, v) := ∆−1
1 (α1u − ϕ(u, v)), (4.1)

F2(u, v) := ∆−1
2 (α2v + θpc ∗ ϕ(u, v) − γv), (4.2)

for any u, v ∈ Bµ(R). Recall that pc(τ) = p(τ/c)/c and

(pc ∗ g)(ξ) =

∫ ∞

0
p(τ)g(ξ − cτ)dτ.

It is readily seen that a traveling wave solution of (1.6)-(1.7) is the same as a fixed point of the integral
map F. We then use the following upper and lower solutions to construct an invariant convex set. Let
f (λ) = f (λ, c) be given as in (2.1). By Lemma 1, there exists a positive λ1 = λ1(c) such that f (λ1) = 0
and f (λ1 + ε) > 0 for any sufficiently small ε > 0. We define

S +(ξ) := S 0,

S −(ξ) := max{S 0[1 − eε(ξ−ξ1)], 0},
I+(ξ) := min{eλ1ξ, S 0(θβ/γ − 1)},
I−(ξ) := max{eλ1ξ[1 − eε(ξ−ξ2)], 0},

where ε > 0, ξ1 < 0, ξ2 < 0 are constants to be determined later. It is readily seen that S − ∈ Bµ(R) and
S ′−, S

′′
− ∈ B̌µ(R) with [S ′−] ≥ 0. By Lemma 3, ∆−1

1 (∆1S −) ≥ S −. Similarly, we note that ∆−1
1 (∆1S +) =

S +, ∆−1
2 (∆2I−) ≥ I− and ∆−1

2 (∆2I+) ≤ I+.
The convex set Γ is chosen as the collection of all function pairs (u, v) ∈ Bµ(R) × Bµ(R) such that

S − ≤ u ≤ S + and I− ≤ v ≤ I+. To show that Γ is invariant under the map F, we first choose α1 ≥ β,
α2 ≥ γ, and 0 < ε < min{λ1, c/d1} such that f (λ1 + ε) > 0. Then, we let ξ1 < 0 be negatively large such
that

βeλ1ξ1 ≤ ε(c − d1ε)S 0.

Finally, we choose ξ2 < ξ1 such that

f (λ1 + ε)S 0[1 − eε(ξ2−ξ1)] ≥ θβeλ1ξ2 .

Lemma 5. Assume θβ > γ and c > c∗. Let α1, α2, ε, ξ1, ξ2 be chosen as above. For any (u, v) ∈ Γ, we
have F(u, v) ∈ Γ.

Proof. We need to prove four inequalities S − ≤ F1(u, v) ≤ S + and I− ≤ F2(u, v) ≤ I+, respectively.
First, we note that

α1u − ϕ(u, v) ≤ α1u ≤ α1S + = ∆1S +,
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which, together with (4.1), implies that

F1(u, v) ≤ ∆−1
1 (∆1S +) = S +.

Next, we choose α1 ≥ β such that α1u − ϕ(u, v) is increasing in u and decreasing in v. Thus,

α1u − ϕ(u, v) ≥ α1S − − ϕ(S −, I+).

On the other hand, we have

(∆1S −)(ξ) = α1S −(ξ) − ε(c − d1ε)S 0eε(ξ−ξ1)

for ξ ≤ ξ1, and (∆1S −)(ξ) = 0 for ξ ≥ ξ1. We need to show α1u − ϕ(u, v) ≥ ∆1S −. Note that
ϕ(S −, I+) ≤ βS − ≤ α1S − and ϕ(S −, I+) ≤ βI+ ≤ βeλ1ξ. It suffices to prove

βeλ1ξ ≤ ε(c − d1ε)S 0eε(ξ−ξ1)

for all ξ ≤ ξ1. We choose 0 < ε < min{λ1, c/d1}. The above inequality is a consequence of the
inequality

βeλ1ξ1 ≤ ε(c − d1ε)S 0,

which can be achieved by letting ξ1 = ξ1(ε) < 0 be negatively large. Therefore, in view of (4.1), we
obtain

F1(u, v) ≥ ∆−1
1 (∆1S −) ≥ S −.

Now, we observe from monotonicity of ϕ(u, v) in both u and v that

ϕ(u(ξ), v(ξ)) ≤ ϕ(S +(ξ), I+(ξ)) ≤ min{βeλ1ξ, S 0(β − γ/θ)}.

Consequently, if α2 ≥ γ, then

α2v(ξ) + θ[pc ∗ ϕ(u, v)](ξ) − γv(ξ)

≤(α2 − γ)I+(ξ) + min{θβeλ1ξ

∫ ∞

0
p(τ)e−λ1cτdτ, S 0(θβ − γ)}.

Recall that λ1 is the root of the characteristic equation f (λ1) = 0. We have

(∆2I+)(ξ) = (α2 − γ)I+(ξ) + θβeλ1ξ

∫ ∞

0
p(τ)e−λ1cτdτ

for ξ ≤ ln[S 0(θβ/γ − 1)]/λ1, and

(∆2I+)(ξ) = (α2 − γ)I+(ξ) + S 0(θβ − γ)

for ξ ≥ ln[S 0(θβ/γ − 1)]/λ1. In either case, we have

(∆2I+)(ξ) ≥ α2v(ξ) + θ[pc ∗ ϕ(u, v)](ξ) − γv(ξ),

which, together with (4.2), yields

F2(u, v) ≤ ∆−1
2 (∆2(I+)) ≤ I+.
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Finally, we show that
α2v(ξ) + θ[pc ∗ ϕ(u, v)](ξ) − γv(ξ) ≥ (∆2I−)(ξ).

Since α2 ≥ γ and I−(ξ) = 0 for ξ ≥ ξ2, we only need to verify the above inequality for ξ ≤ ξ2. Note that

α2v(ξ) + θ[pc ∗ ϕ(u, v)](ξ) − γv(ξ) ≥ (α2 − γ)I−(ξ) + θ[pc ∗ ϕ(S −, I−)](ξ),

and
(∆2I−)(ξ) = (α2 − γ)I−(ξ) + θβ[pc ∗ I−](ξ) − f (λ1 + ε)eλ1ξ+ε(ξ−ξ2).

It suffices to prove
f (λ1 + ε)eλ1ξ+ε(ξ−ξ2) ≥ θ[pc ∗ (βI− − ϕ(S −, I−))](ξ)

for all ξ ≤ ξ2. Since an increasing exponential function is always greater than its convolution with pc,
the above inequality is satisfied if we can show that

f (λ1 + ε)eλ1ξ+ε(ξ−ξ2) ≥ θ[βI− − ϕ(S −, I−)](ξ) =
θβ[I−(ξ)]2

S −(ξ) + I−(ξ)

for all ξ ≤ ξ2. Assuming ξ2 < ξ1, we only need to prove

f (λ1 + ε)eλ1ξ+ε(ξ−ξ2)S 0[1 − eε(ξ−ξ1)] ≥ θβe2λ1ξ

for all ξ ≤ ξ2. This can be done by choosing ξ2 = ξ2(ξ1, ε) < 0 negatively large such that

f (λ1 + ε)S 0(1 − eε(ξ2−ξ1)] ≥ θβeλ1ξ2 .

Hence, on account of (4.2), we obtain

F2(u, v) ≥ ∆−1
2 (∆2(I−)) ≥ I−.

This completes the proof. �

We shall use Schauder fixed point theorem to establish existence of traveling wave solution. Recall
that Γ is invariant under the integral map. We have to prove that F is continuous and compact on Γ

with respect to the induced norm in Bµ(R) × Bµ(R) for some sufficiently small µ > 0. Recall that the
probability density function p(τ) decays exponentially as τ → ∞. Especially, there exists a σ > 0
such that p(τ)eστ is bounded as τ→ ∞. We choose µ ∈ (0, σ/c) such that p(τ)eµcτ is integrable on the
positive real line. Recall that we also require µ−i < −µ < µ < µ

+
i with i = 1, 2.

Lemma 6. For any µ > 0 such that µ < σ/c and µ−i < −µ < µ < µ+
i with i = 1, 2, the integral map F

is continuous and compact on Γ with respect to the induced norm in Bµ(R) × Bµ(R).

Proof. For any (u1, v1) and (u2, v2) in Γ, we then have

|[ϕ(u1, v1) − ϕ(u2, v2)](y − cτ)| ≤ βeµ|y|+µcτ(|u1 − u2|µ + |v1 − v2|µ)

for any y ∈ R and τ ≥ 0. Consequently,

|[pc ∗ ϕ(u1, v1) − pc ∗ ϕ(u2, v2)](y)| ≤ βC0eµ|y|(|u1 − u2|µ + |v1 − v2|µ)
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for all y ∈ R, where

C0 :=
∫ ∞

0
p(τ)eµcτdτ < ∞.

Let g(y) := eµ|y|. It is readily seen that

|(∆−1
2 g)(ξ)| ≤ C2eµ|ξ|,

where

C2 :=
1

d2(µ+
2 − µ

−
2 )

(
1

µ+
2 − µ

−
1

µ−2 + µ
).

For the degenerate case d2 = 0, the above formula is still valid by taking limit d2 → 0+. Note that
d2(µ+

2 − µ
−
2 )→ c, µ−2 → −α2/c and µ+

2 → ∞ as d2 → 0+. It follows that C2 = 1/(α2 − µc) if d2 = 0. We
then have

|[F2(u1, v1) − F2(u2, v2)](ξ)| ≤ (θβC0 + α2 − γ)C2eµ|ξ|(|u1 − u2|µ + |v1 − v2|µ)

for all ξ ∈ R. Similarly, we can prove that

|[F1(u1, v1) − F1(u2, v2)](ξ)| ≤ (α1 + β)C1eµ|ξ|(|u1 − u2|µ + |v1 − v2|µ)

for all ξ ∈ R, where

C1 :=
1

d1(µ+
1 − µ

−
1 )

(
1

µ+
1 − µ

−
1

µ−1 + µ
)

is the upper bound for the operator norm of ∆−1
1 in Bµ(R) with respect to the norm | · |µ. For the

degenerate case d1 = 0, we write C1 = 1/(α1 − µc). Thus, we have prove continuity of the map
F = (F1, F2) on Γ. To prove compactness, we shall make use of Arzela-Ascolli theorem. Note that
Γ is bounded, it suffices to show that the image F(Γ) is pre-compact. First, we note that F(Γ) ⊂ Γ is
bounded by the upper and lower solutions, which are uniformly bounded functions on the whole real
line. For any ε > 0, there exists a M > 0 such that

|[F1(u1, v1) − F1(u2, v2)](ξ)|e−µ|ξ| + |[F2(u1, v1) − F2(u2, v2)](ξ)|e−µ|ξ| < ε, (4.3)

for any (u1, v1) ∈ Γ, (u2, v2) ∈ Γ and |ξ| ≥ M. On the other hand, the functions in F(Γ) continuous and
uniformly bounded on the compact interval [−M,M]. Moreover, they are equi-continuous because

|[F1(u, v)]′(ξ)| ≤
2(α1 + β)S 0

d1(µ+
1 − µ

−
1 )
,

|[F2(u, v)]′(ξ)| ≤
2(α2 + θβ − γ)S 0(θβ/γ − 1)

d2(µ+
2 − µ

−
2 )

,

for all (u, v) ∈ Γ and ξ ∈ R. By Arzela-Ascolli theorem, there exists a finite ε-net of F(Γ) with respect
to the supremum norm in C[−M,M]×C[−M,M]. In view of (4.3), this net is also a finite ε-net of F(Γ)
with respect to the weighted norm in Bµ(R) × Bµ(R). Thus, F(Γ) is precompact, which implies that F
is a compact map on Γ. �
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By Schauder fixed point theorem, F possesses a fixed point, denoted by (S , I), in Γ. Since S ±(−∞) =

S 0 and I±(−∞) = 0, by squeeze theorem, we have S (−∞) = S 0 and I(−∞) = 0. Actually, I(ξ)e−λ1ξ → 1
as ξ → −∞, which implies that I can not be a constant function. From the integral representation of
the operator F and L’Hôpital’s rule, we note that S and I are differentiable, and S ′(−∞) = I′(−∞) = 0.
Thus, (S , I) satisfies the boundary conditions (1.8). To sum up, we have the following existence result.

Theorem 7. Assume θβ > γ and c > c∗. For any S 0 > 0, there exists a positive and uniformly bounded
traveling wave solution of (1.6)-(1.7) with the boundary conditions (1.8).

5. Properties of traveling wave solutions

In this section, we shall derive some general properties for a positive and uniformly bounded trav-
eling wave solution of (1.6)-(1.7) with the boundary conditions (1.8). Especially, we will show that
θβ > γ and c ≥ c∗ are necessary conditions for the existence of traveling wave solutions.

We denote the traveling wave solution by (S , I). An integration of (1.6) gives

d1S ′(ξ) = c[S (ξ) − S 0] +

∫ ξ

−∞

ϕ(S (y), I(y))dy,

which, together with boundedness of S , implies that ϕ(S , I) is integrable, S is differentiable, and S ′ is
uniformly bounded on the real line. If d1 > 0, we integrate (1.6) to obtain

S ′(ξ) = −

∫ ∞

ξ

ec(ξ−y)/d1

d1
ϕ(S (y), I(y))dy < 0.

If d1 = 0, then (1.6) gives S ′(ξ) = −ϕ(S (ξ), I(ξ))/c < 0. In either case, S is strictly decreasing on R.
Moreover, it follows from above formulas that S ′(∞) = 0 and

c[S 0 − S (∞)] =

∫ ∞

−∞

ϕ(S (y), I(y))dy.

Now, we solve (1.7) by variation of parameters. For non-degenerate case d2 > 0, we let µ± =

(c ±
√

c2 + 4d2γ)/(2d2) be the two roots of the characteristic equation −d2µ
2 + cµ + γ = 0. On account

of uniform boundedness of I and ϕ(S , I), we have the following integral equation

I(ξ) =
θ

d2(µ+ − µ−)

[∫ ξ

−∞

eµ
−(ξ−y)[pc ∗ ϕ(S , I)](y)dy +

∫ ∞

ξ

eµ
+(ξ−y)[pc ∗ ϕ(S , I)](y)dy

]
.

By taking the limit d2 → 0+, we obtain an integral equation for I in the degenerate case:

I(ξ) =
θ

c

∫ ξ

−∞

e−γ(ξ−y)/c[pc ∗ ϕ(S , I)](y)dy.

Since ϕ(S , I) is integrable on the real line, by Tonelli-Fubini theorem, I is also integrable on the real
line, and ∫ ∞

−∞

I(ξ)dξ =
θ

γ

∫ ∞

−∞

ϕ(S (ξ), I(ξ))dξ.
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Note that ϕ(S (ξ), I(ξ)) < βI(ξ) for all ξ ∈ R. It follows from the above equation that θβ > γ. Since
ϕ(S , I) is uniformly bounded, we obtain from the integral representation of I that I′ is also uniformly
bounded, this together with integrability of I implies that I(∞) = 0.

Recall that S ′(ξ) < 0 and S (ξ) > 0 for all ξ ∈ R. So, the limit S (∞) exists. We claim that S (∞) = 0.
If not, by monotonicity of ϕ in the first component, it follows from (1.7) that

− d2I′′(ξ) + cI′(ξ) ≥ θ
∫ ∞

0
pc(τ)ϕ(S (∞), I(ξ − τ))dτ − γI(ξ), (5.1)

where pc(τ) = p(τ/c)/c is the scaled probability density function. The above inequality contradicts to
the fact I(∞) = 0 by the following result.

Lemma 8. If θβ > γ and S (∞) > 0, then there does not exist a positive and uniformly bounded function
I(ξ) satisfying the inequality (5.1) and boundary condition I(∞) = 0.

Proof. We prove by contradiction. Assume such function I(ξ) exists. We choose a sufficiently large
T > 0 and a sufficiently small δ > 0 such that

θϕ(S (∞), δ)
δ

∫ T

0
pc(τ)dτ > γ(1 + δ). (5.2)

This could be done because, as T → ∞ and δ → 0+, the left-hand side tends to θβ and the right-hand
side tends to γ. Since I(∞) = 0, there exists ξ0 such that I(ξ) < δ for all ξ ≥ ξ0. Define a function

IT (ξ) := min
0≤τ≤T

I(ξ − τ).

We claim IT (ξ) = I(ξ) for sufficiently large ξ. If not, there exist an infinite sequence ξk with k =

1, 2, · · · , such that ξk > ξk−1 + T , I(ξk) < I(ξk−1) and IT (ξk) < I(ξk) for all k ≥ 1. For each k ≥ 1, let
ηk be the minimum point of I(ξ) in the interval [ξk, ξk+1]. Since IT (ξk+1) < I(ξk+1) < I(ξk), ηk lies in the
open interval (ξk, ξk+1). Moreover, I′(ηk) = 0 and I′′(ηk) ≥ 0. It follows from (5.1) and (5.2) that

0 ≥ θ
∫ T

0
pc(τ)ϕ(S (∞), IT (ηk))dτ − γI(ηk) > γ(1 + δ)IT (ηk) − γI(ηk) > γ[IT (ηk) − I(ηk)].

Thus, I(ηk) > IT (ηk) for all k ≥ 1. For each k ≥ 2, since I(ηk) ≤ I(ξ) for all ξ ∈ (ξk, ξk+1), IT (ηk) =

min0≤τ≤T I(ηk − τ) should be achieved at some point in (ξk−1, ξk). Especially, I(ηk) > IT (ηk) ≥ I(ηk−1)
for all k ≥ 2. Thus, we have found a sequence ηk → ∞, such that I(ηk) is increasing, which contradicts
to the fact I(∞) = 0. This prove our claim that IT (ξ) = I(ξ) for sufficiently large ξ. For simplicity, we
shift ξ0 such that IT (ξ) = I(ξ) for all ξ ≥ ξ0, which is the same as I′(ξ) ≤ 0 for ξ ≥ ξ0. By (5.1) and
(5.2), we have

−d2I′′(ξ) + cI′(ξ) ≥ θ
∫ T

0
pc(τ)ϕ(S (∞), I(ξ))dτ − γI(ξ) > γδI(ξ),

for all ξ ≥ ξ0. Since I(ξ) > 0, we may define w(ξ) := I′(ξ)/I(ξ). It is readily seen that w(ξ) ≤ 0 and
w′(ξ) = I′′(ξ)/I(ξ)−w2(ξ). For the degenerate case d2 = 0, the above inequality reads w(ξ) > γδ/c > 0,
which contradicts to the non-positiveness of w(ξ). For the non-degenerate case, the above inequality
can be written as

−d2w′(ξ) > γδ − cw(ξ) + d2w2(ξ) > d2w2(ξ), ξ ≥ ξ0.
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The solution of above differential inequality with nonpositive initial value at ξ = ξ0 will blow up at
finite value of ξ > ξ0. Actually, an integration of the above inequality gives

1
w(ξ)

>
1

w(ξ0)
+ ξ − ξ0,

where we have assumed without loss of generality that w(ξ0) < 0. The right-hand side of the above
inequality becomes positive for large ξ, but the left-hand side is always negative, a contradiction. This
completes the proof. �

Remark 9. A similar result was obtained in [26] for a type-II delayed disease model. Their proof is
based on comparison principle and asymptotic stability results of quisi-monotone diffusive equations
on the real line. It is noted that our proof has the potential to be generalized for more complicated
nonlinear elliptic differential equations when the corresponding reaction-diffusion system is difficult to
handle.

Recall that θβ > γ is a necessary condition for the existence of positive traveling wave solutions. In
what follows, we will show that c can not be smaller than c∗. Note that c∗ = 0 for the degenerate case
d2 = 0. We only need to consider the non-degenerate case d2 > 0. In view of the boundary conditions
S (−∞) = S 0 > 0 and I(−∞) = 0, we can find a ξ1 ∈ R such that

ϕ(S (ξ), I(ξ)) > (θβ + γ)I(ξ)/2

for all ξ ≤ ξ1. It then follows from (1.7) that

−d2I′′(ξ) + cI′(ξ) >
θβ + γ

2
[(pc ∗ I)(ξ) − I(ξ)] +

θβ − γ

2
I(ξ).

Let K(ξ) =
∫ ξ
−∞

I(y)dy. Integrating the above inequality twice gives

−d2I(ξ) + cK(ξ) >
θβ + γ

2

∫ ξ

−∞

[(pc ∗ K)(y) − K(y)]dy +
θβ − γ

2

∫ ξ

−∞

K(y)dy.

Note that ∫ ξ

−∞

[(pc ∗ K)(y) − K(y)]dy = −

∫ ξ

−∞

∫ ∞

0

∫ τ

0
pc(τ)I(y − s)dsdτdy

= −

∫ ∞

0

∫ τ

0
pc(τ)K(ξ − s)dsdτ > −cm1K(ξ),

where m1 =
∫ ∞

0
τp(τ)dτ is the first moment (also called the average delay). We then have

c + cm1(θβ + γ)/2
(θβ − γ)/2

K(ξ) >
d2

(θβ − γ)/2
I(ξ) +

∫ ξ

−∞

K(y)dy > sK(ξ − s)

for any s ≥ 0 and ξ ≤ ξ1. Especially, by choosing s = 4[c + cm1(θβ + γ)/2]/(θβ − γ), we have
K(ξ− s) < K(ξ)/2. By iterating this inequality, we obtain from monotonicity and uniform boundedness
of K that the function K(ξ)e−µ0ξ with µ0 = ln 2/s is uniformly bounded on the real line. Note from above
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inequality that for all ξ ≤ ξ1, I(ξ) is bounded by a constant multiplication of K(ξ). Thus, I(ξ)e−µ0ξ is
also uniformly bounded on the real line. Similarly, we have uniform boundedness of I′(ξ)e−µ0ξ and
I′′(ξ)e−µ0ξ on the real line. Furthermore, ϕ(S (ξ), I(ξ))e−µ0ξ is uniformly bounded on the real line. For
each µ ∈ (0, µ0), we introduce two-sided Laplace transform on (1.7) to obtain

− f (µ, c)
∫ ∞

−∞

e−µξI(ξ)dξ =

∫ ∞

−∞

e−µξ
β̃I2(ξ)

S (ξ) + I(ξ)
dξ,

where f is the characteristic function defined in (2.1) and β̃ = θβ
∫ ∞

0
e−µcτp(τ)dτ. If c < c∗, then f (µ, c)

has no zero on the positive real line. By analytic continuation [36, Theorem 5b, p.58], the two integrals
on both sides of the above equation are well defined for all µ > 0. However, by rewriting the above
equation as

0 =

∫ ∞

−∞

e−µξI(ξ)
[

f (µ, c) +
β̃I(ξ)

S (ξ) + I(ξ)

]
dξ,

we note from f (µ, c)→ −∞ as µ→ ∞ that the integrand is always negative for large µ, a contradiction.
Thus, we require f (µ, c) to have at least one positive zero such that the analytic continuation fails to
extend beyond this zero. This means that c ≥ c∗ is a necessary conditions for the existence of positive
traveling wave solutions. We then state the properties of traveling wave solutions in the following
theorem.

Theorem 10. If (S , I) is a positive and uniformly bounded solution pair of (1.6)-(1.7) with boundary
conditions (1.8), then we have θβ > γ, c ≥ c∗, and S (∞) = I(∞) = 0. The following identities are
satisfied:

γ

θ

∫ ∞

−∞

I(ξ)dξ =

∫ ∞

−∞

ϕ(S (ξ), I(ξ))dξ = cS 0.

Moreover, S ′(ξ) < 0 for all ξ ∈ R.

6. Conclusion

We classify the delayed epidemic models into two types. The first type impose delays only on
the I-equation, while the second type assumes delayed infective terms in both equations for S and
I. Though these two types are mathematically equivalent in the case of one discrete delay, they are
different when general distributed delay is taken into consideration. We note that the Susceptible-
Infected-Recovered model with type-I distributed delay can be reduced to the classical Susceptible-
Exposed-Infected-Recovered model with no delay by assuming that the probability density function
takes a special form p(τ) = σe−στ. It is thus reasonable to study the model systems with type-I
delay. However, not much has been done even for the non-diffusive model. On the contrast, there
is a rich literature of works on the type-II delayed non-diffusive epidemic models; see for example,
[37, 13, 38]. To establish global stability results for the model systems with type-II delays, one should
take advantage of the fact that the differential equation for S + I is simple and has no delayed terms.
However, this phenomenon disappears in the model system with type-I delay and thus poses a challenge
in the global analysis of model dynamics [39].

In this paper, we consider a diffusive epidemic model with type-I distributed delay. It is noted that
when the probability density function for the distributed delay takes the special form of exponential
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function, then a standard application of linear chain trick reduces our model system to a diffusive delay-
free model with an exposed compartment which does not diffuse. We also consider the degenerate
cases when the diffusion coefficient of either susceptible individuals or infected individuals vanishes.
We prove linear determinacy of our model system by establishing existence theory of positive traveling
wave solutions. To be more specific, we calculate a critical value from the linearized I-equation and
verify that this value is the sharp lower bound for the speeds of traveling wave solutions. Sensitivity
analysis indicates that the critical wave speed is increasing in the diffusion coefficient but decreasing
in time delay. Biological interpretation of this result is that random movement of infected individuals
will enforce disease propagation, while time delay during transmission mechanism will inhibit spatial
spread of infectious diseases.

In Lemma 8, we also provide a novel and elementary proof of a conjecture proposed in [40] that a
positive traveling wave can only connect a nontrivial equilibrium with a trivial equilibrium. We should
mention that this conjecture was first proved in [26] by using comparison principle and global stabil-
ity result for quasi-monotone reaction-diffusion equations on an unbounded domain. In comparison,
our proof is simpler and more natural, and it provides a new idea of understanding nonlocal elliptic
differential equations/inequalities.

An open problem for our model system, and for many other diffusive epidemic models, is the
existence of a positive traveling wave solution for the critical wave speed c = c∗. Due to the lack
of monotonicity, the traditional limiting argument for the monotone systems fails. It is exciting to see
some recent achievements in [41, 42] for existence proofs of weak traveling wave solutions with critical
speed in non-cooperative diffusive systems, and in [43] for an existence result of traveling waves in a
nonlocal dispersal epidemic model with critical speed. We conjecture that, for our proposed epidemic
model with type-I distributed delays, a positive traveling wave solution with critical speed should exist.
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