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Abstract: There are many models of the Calvin cycle of photosynthesis in the literature. When
investigating the dynamics of these models one strategy is to look at the simplest possible models in
order to get the most detailed insights. We investigate a minimal model of the Calvin cycle introduced
by Hahn while he was pursuing this strategy. In a variant of the model not including photorespiration
it is shown that there exists exactly one positive steady state and that this steady state is unstable. For
generic initial data either all concentrations tend to infinity at late times or all concentrations tend to
zero at late times. In a variant including photorespiration it is shown that for suitable values of the
parameters of the model there exist two positive steady states, one stable and one unstable. For generic
initial data either the solution tends to the stable steady state at late times or all concentrations tend to
zero at late times. Thus we obtain rigorous proofs of mathematical statements which together confirm
the intuitive idea proposed by Hahn that photorespiration can stabilize the operation of the Calvin
cycle. In the case that the concentrations tend to infinity we derive formulae for the leading order
asymptotics using the Poincaré compactification.
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1. Introduction

The Calvin cycle is a part of photosynthesis. There are many mathematical models for this
biochemical system in the literature. Reviews of these can be found in [1–3]. This is an interesting
example in which the relations between different mathematical models for the same biological
situation can be investigated. A mathematical comparison of a number of these models was carried
out in [4]. There it was pointed out that it would be desirable to look more closely at the minimal
model of the Calvin cycle introduced by Hahn [5]. In fact Hahn’s paper contains several related
systems of ordinary differential equations of dimensions two and three and the aim of the present
paper is to obtain an understanding of the dynamics of the two-dimensional models of Hahn which is
as complete as possible. There is also a brief discussion of the relation of the two-dimensional models
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to the three-dimensional one.
The function of the Calvin cycle is to use carbon dioxide to produce sugars. This process is fuelled

by ATP and NADPH produced in the light reactions of photosynthesis where the energy contained in
light is captured as chemical energy. A comprehensive introduction to the biochemistry of
photosynthesis can be found in [6]. The main step in the Calvin cycle, resulting in the production of
PGA (phosphoglycerate), is catalysed by the enzyme Rubisco. Interestingly this enzyme has a dual
functionality. It can not only catalyse the reaction of carboxylation, which is the primary way in
which carbon dioxide is fixed in the Calvin cycle, but also an oxidation reaction. This second reaction
competes with the first and reduces the efficiency with which the Calvin cycle produces sugar. The
reason for the existence of this apparently wasteful alternative reaction is not clear. One possible
explanation, for which the Hahn model is relevant, is that photorespiration stabilizes the system - it
creates the possibility of the existence of a stable positive steady state.

The paper is organized as follows. In section 2 the two-dimensional system of Hahn is introduced.
In dimensionless form the equations depend on two non-negative parameters α and β. The case β > 0
corresponds to including photorespiration in the model. The dynamics of the model is first analysed
in the case without photorespiration (β = 0). The main result is Theorem 1 which describes the global
asymptotic behaviour of general solutions in detail. There exists a unique positive steady state S 1

which is unstable. For an open set of initial data which is described in detail all concentrations tend to
zero as t → ∞. For another open set of initial data all concentrations tend to infinity as t → ∞. The
complement of the union of these two sets is the stable manifold of the steady state S 1. A formula is
derived for the leading order asymptotics of the solutions which tend to infinity. In section 3 the case
β > 0 is treated. The main result is Theorem 2. In one open set of parameter space, for which an
explicit formula is given, all solutions have the property that the concentrations tend to zero as t → ∞.
In the interior of the complement of that set more interesting behaviour is observed. There are two
positive steady states, one stable and one unstable. For an open set of initial data all concentrations
tend to zero as t → ∞. For another open set of initial data the solutions tend to the stable positive
steady state as t → ∞.

Many models of the Calvin cycle contain the fifth power of the concentration of the substance
GAP (glyceraldehyde phosphate). This is because in the usual coarse-grained descriptions of the
Calvin cycle, where many elementary reactions are combined, there is an effective reaction where five
molecules of GAP with three carbon atoms each go in and three molecules of a five-carbon sugar
come out. Applying mass-action kinetics to this leads to the fifth power. In deriving the model studied
in sections 2 and 3 Hahn replaces the fifth power by the second power. His motivation is to make the
model analytically more tractable. He assumes implicitly that this change makes no essential
difference to the qualitative behaviour of the solutions but gives no justification for this assumption. In
section 4 we show that the solutions of the model with the fifth power do indeed behave in a way
which is very similar to the behaviour of the model with the second power. The main difference in the
analysis is that for the fifth power no explicit formula is obtained for the boundary between the two
generic behaviours in parameter space. The results are summarized in Theorems 3 and 4. In [5] the
two-dimensional systems are obtained from a three-dimensional one by informal arguments. In
section 5 it is shown how the relation between the three-dimensional system and the two-dimensional
system with the fifth power can be formalized in a rigorous way using the theory of fast-slow systems.
(For an introduction to this theory we refer to [7].) This also gives some limited information about the
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dynamics of solutions of the three-dimensional system. A full analysis of the three-dimensional
system is a much harder problem which is left to future work.

2. The system of Hahn

The system which will be examined in what follows consists of the equations (41)–(42) in [5]:

dx
dt

= −αx − 2βx2 + 3y2, (2.1)

dy
dt

= 2αx + 3βx2 − 5y2 − y. (2.2)

Due to the biological interpretation of the solutions we are interested in solutions which lie in the
positive quadrant, which is forward invariant. In addition to the system with α > 0 and β > 0, which
we will call the full system, we also treat the cases where α = 0 (no photosynthesis), β = 0 (no
photorespiration) or both. Note for future reference that the derivative of the right hand side of this
system at the point (x, y) is [

−α − 4βx 6y
2α + 6βx −10y − 1

]
(2.3)

with determinant α + 4βx − 2αy + 4βxy.
Consider first the case α = β = 0. There any solution satisfies the inequality dy

dt ≤ −y and thus y
decays exponentially at late times. In particular there are no positive steady states. The non-negative
steady states are precisely the points on the x-axis. Apart from the zero eigenvalue due to the
continuum of steady states the other eigenvalue of the linearization about any of these points is −1
and this manifold is normally hyperbolic [7]. It follows that given any x0 > 0 there exists a positive
solution with limt→∞ x(t) = x0.

Consider next the case α = 0, β > 0. Any positive steady state satisfies y =

√
2β
3 x by (2.1).

Substituting this into (2.2) gives y(−1
2y − 1) = 0. Thus there is no positive steady state. The only non-

negative steady state is at the origin. In fact d
dt (3x + 2y) = −y2 − 2y. Thus 3x + 2y is a strict Lyapunov

function on the positive quadrant and it follows that all solutions converge to the origin as t → ∞.
In the case α > 0, β = 0 we have the inequality d

dt (5x + 3y) ≤ 1
5α(5x + 3y), so that all solutions exist

globally in the future. Equation (2.1) shows that for a steady state x = 3
α
y2. Substituting this into (2.2)

gives y2 − y = 0. Thus the steady states are S 0 = (0, 0) and S 1 =
(

3
α
, 1

)
. Now we carry out a nullcline

analysis as described in the Appendix. The nullclines are given by x = 3
α
y2 and x = 1

2α (5y2 + y). These
are the graphs of functions of y and it is clear that the complement of the union of the nullclines has
four connected components (cf. Figure 1).

These are

G1 = (−,−) = {(x, y) : x >
3
α

y2, x <
1

2α
(5y2 + y)}, (2.4)

G2 = (+,−) = {(x, y) : x <
3
α

y2, x <
1

2α
(5y2 + y)}, (2.5)

G3 = (−,+) = {(x, y) : x >
3
α

y2, x >
1

2α
(5y2 + y)}, (2.6)
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G4 = (+,+) = {(x, y) : x <
3
α

y2, x >
1

2α
(5y2 + y)}. (2.7)
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Figure 1. Nullclines (solid lines) and direction field (arrows) in the absence of
photorespiration.

The complement of S 1 in one of the nullclines has two connected components which can be
distinguished by the sign of the time derivative which does not vanish. We write

N1 = S 0 ∪ (0,−) ∪ S 1 ∪ (0,+), (2.8)
N2 = S 0 ∪ (−, 0) ∪ S 1 ∪ (+, 0). (2.9)

Note that (for general α and β) if ẋ = 0 at some time then ẍ = 6yẏ and that if ẏ = 0 at some time then
ÿ = (2α + 6βx)ẋ.

Lemma 1. A solution of (2.1)–(2.2) belongs to one of the following three cases.
(i) It converges to S 0 as t → ∞.
(ii) It converges to S 1 as t → ∞.
(iii) There is a time t1 such that it belongs to G4 for t ≥ t1.

Proof. Consider a solution which starts at a point on the boundary of G1 other than S 0 or S 1. If it is on
N1 then ẏ < 0 and using the equation for ẍ shows that ẋ immediately becomes negative. If a solution
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starts on N2 then ẋ < 0 and ẏ immediately becomes negative. It follows that any solution which starts
in G1 remains in G1 and any solution which starts at a point on the boundary of G1 other than a steady
state immediately enters G1. Since y is decreasing for solutions in G1 any solution which is ever in G1

converges to the origin as t → ∞. Consider next a solution which starts in G2. Since y is decreasing
on G2 this solution is bounded. By Lemma 7 of the Appendix it either converges to S 0 or to S 1 as
t → ∞ or it reaches another point of the boundary of G2 after a finite time. In the latter case it reaches a
point of the boundary of G1 or G4 after a finite time. By an analogous argument we can reach a similar
conclusion about a solution which starts in G3. Either it converges to S 0 or S 1 or it reaches another
point of the boundary of G1 or G4 after a finite time. An analysis similar to that done for G1 can be
carried out for G4. A solution which starts in G4 must remain there and a solution which starts on the
boundary of G4 must immediately enter G4. Thus any solution which does not belong to case (i) or
case (ii) must enter G4 after finite time and then it stays there. �

Lemma 2. The stable manifold of S 1 intersects both axes. If a solution starts below the stable manifold
of S 1 it converges to S 0 as t → ∞. If it starts above the stable manifold it eventually lies in G4.

Proof. Consider the derivative of the right hand side of the system at S 1. This matrix has trace −α−11 <
0 and determinant −α < 0. Thus it has one positive and one negative eigenvalue. Its stable manifold Vs

is one-dimensional and lies in G2∪G3. Along this manifold ẏ
ẋ is negative. It follows that Vs is the graph

of a function of x. As x decreases along the part of Vs to the left of S 1 the derivative of this function
remains bounded. For dy

dx =
−αx−βx2+3y2

2αx+3βx2−5y2−y . In the given situation x is bounded. Hence at a point where
y is sufficiently large 2αx + 3βx2 ≤ y2 and the modulus of the denominator is bounded below by 4y2.
This implies that dy

dx is bounded. It follows that Vs intersects the y-axis. As x increases along the part
of Vs to the right of S 1 the derivative of the function of which it is the graph remains bounded away
from zero. The proof is analogous to that just given for the other part of Vs. It follows that Vs intersects
the x-axis. It can be concluded that the complement of Vs in the positive quadrant has two connected
components H1 and H2, where H1 has compact closure. A point is said to lie below the stable manifold
if it belongs to H1 and above the stable manifold if it belongs to H2. A solution which starts in one
of these two components remains in it. A solution which starts in H1 cannot reach G4 and one which
starts in H2 cannot reach G1. Thus Lemma 2 follows from Lemma 1. �

Lemma 3. A solution of (2.1)–(2.2) which is eventually contained in G4 has, after a suitable translation
of t, the asymptotics x = α

5 e
αt
5 + · · · , y =

√
2α
5 e

αt
10 + · · · for t → ∞.

Proof. If a solution is eventually contained in G4 then r =
√

x2 + y2 must tend to infinity as t → ∞.
For r is an increasing function of t and if it were bounded the solution would have to converge to a
steady state. However there are no steady states in G4. It then follows from the defining equations for
G4 that both x and y tend to infinity as t → ∞. We now consider the Poincaré compactification of the
system [8]. Usually this compactification is constructed using two charts, covering neighbourhoods
of the x- and y-axes respectively. For a solution which is in G4 for t ≥ t1 we have seen that y tends
to infinity for t → ∞ and hence x

y tends to infinity. This means that the solution eventually leaves a
neighbourhood of the origin in the chart covering a neighbourhood of the y-axis and lies in the chart
covering a neighbourhood of the x-axis. Moreover it tends to the origin in the latter chart as t → ∞.
The chart we are talking about is defined by the coordinates X = 1/x and Z = y/x. Define a new time
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coordinate τ which satisfies dτ
dt = x. The transformed system is

dX
dτ

= αX2 − 3XZ2, (2.10)

dZ
dτ

= 2αX + (α − 1)XZ − 5Z2 − 3Z3. (2.11)

Both eigenvalues of the linearization at the origin are zero and so we must blow up the origin to get
more information. This will be done by means of a quasihomogeneous blow-up following [9]. In
the notation used there the exponents calculated using the Newton polygon are (2, 1). There are two
transformations to be done, corresponding to the two coordinates. The first of these is given by the
correspondence (X,Z) = (u2, uv). We have

dX
dτ

= 2u
du
dτ

= αu4 − 3u4v2 (2.12)

and hence
du
dτ

=
1
2

(αu3 − 3u3v2). (2.13)

Furthermore
dZ
dτ

= u
dv
dτ

+ v
du
dτ

= 2αu2 − 5u2v2 + (α − 1)u3v − 3u3v3 (2.14)

and hence
dv
dτ

= 2αu − 5uv2 − (α − 1)u2v + 3u2v3 −
1
2

(αu3v − 3u3v3). (2.15)

If we now introduce a new time coordinate s satisfying ds
dτ = u then the system becomes

du
ds

=
1
2

(αu2 − 3u2v2), (2.16)

dv
ds

= 2α − 5v2 + (α − 1)uv − 3uv3 −
1
2

(αu2v − 3u2v3). (2.17)

When v = 0 the derivative of v is positive. Thus no solution can have an ω-limit point on the u-axis.
Hence the solution must eventually be contained in the chart defined by the second transformation,
which is given by (X,Z) = (uv2, v). In this case

dZ
dτ

=
dv
dτ

= 2αuv2 − 5v2 + (α − 1)uv3 − 3v3. (2.18)

Furthermore
dX
dτ

= v2 du
dτ

+ 2uv
dv
dτ

= αu2v4 − 3uv4 (2.19)

and hence
du
dτ

= αu2v2 − 3uv2 − 4αu2v + 10uv − 2(α − 1)u2v2 + 6uv2. (2.20)

If we now introduce a new time coordinate s satisfying ds
dτ = v then the system becomes

du
ds

= 10u + 3uv − 4αu2 − (α − 2)u2v, (2.21)
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dv
ds

= −5v + 2αuv + (α − 1)uv2 − 3v2. (2.22)

The u- and v-axes are invariant, the origin is a steady state, which is a hyperbolic saddle, and there is
an additional steady state (5/2α, 0). The latter steady state has one negative and one zero eigenvalue. If
we transform any positive solution then in the blown-up Poincaré compactification it must tend to that
point. To get more details we translate the steady state to the origin using a coordinate transformation.
Let w = u − 5

2α be a new coordinate. Then the equations become

dw
ds

= −10w − 4αw2 + 3wv +
15
2α

v − (α − 2)
(
w +

5
2α

)2

v, (2.23)

dv
ds

= 2αwv + (α − 1)
(
w +

5
2α

)
v2 − 3v2. (2.24)

The first can be rewritten as

dw
ds

= −10w +
5(α + 10)

4α2 v − 4αw2 −
2(α − 5)

α
wv − (α − 2)w2v. (2.25)

We now apply centre manifold theory (cf. [8], Section 2.7). The centre manifold can be written in the
form w = α+10

8α2 v + r(v) with a remainder term r which is at least quadratic. Consider the contributions
to the right hand side of the evolution equation for v which are quadratic in v. We get

dv
ds

=

[
α + 10

4α
+

5α − 5
2α

− 3
]

v2 + · · ·

= −
1
4

v2 + · · · (2.26)

After translating s if necessary we get v = 4
s + · · · . Since all solutions on the centre manifold starting

near the steady state converge to it and the non-zero eigenvalue is negative all solutions starting near the
steady state converge to it. Moreover, by Theorem 2 on p. 4 of [10], any such solution is exponentially
close to a solution on the centre manifold. Thus it has the same leading order asymptotics for v as a
solution on the centre manifold and the leading order asymptotics for u is obtained by substituting this
into the equation of the centre manifold. Substituting the asymptotic expression for v into the defining

equation for s gives τ = 1
8 s2 and v =

√
2
τ

+ · · · . It follows that X = 5
ατ

+ · · · and Z =

√
2
τ

+ · · · . Next

we compute the transformation from τ to t. We have dt
dτ = 5

ατ
+ · · · and hence up to a translation of

the time coordinate t = 5
α

log τ + · · · and τ = e
αt
5 + · · · . When written in the original variables these

relations give x = α
5 e

αt
5 + · · · , y =

√
2α
5 e

αt
10 + · · · . �

Theorem 1. A positive solution of (2.1)–(2.2) with α > 0 and β = 0 belongs to one of the following
three classes.
(i) It starts below the stable manifold of S 1 and x and y converge to zero as t → ∞.
(ii) It starts on the stable manifold of S 1 and converges to S 1 as t → ∞.
(iii) It starts above the stable manifold of S 1 and x and y tend to infinity as t → ∞, with the asymptotics
given in Lemma 3.
In particular, every bounded solution converges to a steady state as t → ∞.
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Proof. This is obtained by combining Lemma 1 – Lemma 3. �

Note that because after transformation to the Poincaré compactification each solution converges to
a steady state there exist no periodic solutions. In other words the system does not exhibit sustained
oscillations. The eigenvalues of the linearization of the system about S 0 are real because the axes are
invariant manifolds. The steady state S 1 has been shown to be hyperbolic with the eigenvalues of the
linearization about that point being real. Thus damped oscillations decaying to one of the steady states
are also ruled out.

3. The case with photorespiration

In this section we consider the full system where α and β are both positive.

Lemma 4. Corresponding to positive initial data for (2.1)–(2.2) with α > 0 and β > 0 given at t = t0

there exists a solution on the interval (t0,∞) and it is bounded.

Proof. Taking a suitable linear combination of the equations gives d
dt (5x + 3y) = −βx2 + αx − 3y. If

x ≥ α/β then the right hand side is negative. If x ≤ α/β then αx ≤ α2/β. Thus if also y ≥ α2/3β the
right hand side is negative. If a solution satisfies 5x + 3y > β−1(5α+α2) at some time then it must be in
one of the regions where the time derivative of 5x+3y is negative. Thus the value of 5x+3y is bounded
by the maximum of its initial value and β−1(5α + α2). It follows that all solutions of this system can be
extended to exist globally in the future and are bounded. �

Consider now steady states of (2.1)–(2.2).

Lemma 5. (i) For α2/β < 32 the only non-negative steady state is the origin, which we once again
denote by S 0.
(ii) For α2/β = 32 there is precisely one positive steady state, which we call S 1.
(iii) For α2/β > 32 there are precisely two positive steady states. For one of these, which we call S 1,
both coordinates are smaller than the corresponding coordinates of the other steady state, which we
call S 2.

Proof. Any steady state satisfies αx = y2 + 2y, so that its y-coordinate determines its x-coordinate.
In fact the y-coordinate is a monotone function of the x-coordinate. At the same time βx2 = y2 − y.
Squaring the first of these equations and substituting it into the second gives

β(y2 + 2y)2 = α2(y2 − y) (3.1)

and hence
y[βy3 + 4βy2 + (4β − α2)y + α2] = yp(y) = 0. (3.2)

The positive steady states are in one to one correspondence with the positive roots of the cubic p(y).
Since p(0) > 0 there is at least one negative root and there are at most two positive roots. If 4β−α2 ≥ 0
then there are no positive roots. Further information about the number of positive roots can be obtained
by looking at the discriminant of the polynomial p. It is given by

∆ = α2β[96β2 − 131α2β + 4α4]. (3.3)
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There are two positive values of α2/β for which ∆ vanishes, namely ζ± = 131±125
8 . We have ζ− = 3

4 and
ζ+ = 32. When ∆ < 0 the polynomial p has only one real root and it must be negative. When ∆ ≥ 0
all roots are real. Only in this case can there be more than one positive root. For α2/β = 32 there
is a root which is at least double. If this root were negative then it would follow that 4β − α2 > 0, a
contradiction. Thus the double root is positive. For α2/β > 32 there are two positive roots. �

Both of the nullclines of this system are of the form f (x) = g(y) for monotone increasing functions
f and g. Thus we can write them as graphs of functions of x or of functions of y. Due to Lemma
5 we know that the two nullclines intersect at the origin and at no, one or two points in the positive
region, depending on the parameters. It can then be concluded that when there are no, one and two
positive steady states the complement of the union of the nullclines has three, four and five connected
components, respectively. As in the previous section these components can be labelled with the signs
of ẋ and ẏ. In case (i) of Lemma 5 there is one component with each of the labels (−,−), (−,+) and
(+,−). In case (ii) there are two components with the label (−,−) and one component with each of the
labels (−,+) and (+,−). In case (iii) (cf. Figure 2), there are two components with the label (−,−) and
one component with each of the labels (−,+), (+,−) (+,+). The components of the complements of
the set of steady states in the nullclines can be labelled as (−, 0), (0,−), (+, 0) and (0,+).

x
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G
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Figure 2. Nullclines (solid lines) and direction field (arrows) in the presence of
photorespiration.
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At a point where the nullclines cross they are tangent if and only if the linearization at the point has a
zero eigenvalue. This happens precisely when the determinant of the linearization at that point is zero.
This is the only way that a steady state can fail to be hyperbolic since the fact that the trace is negative
rules out the possibility of a pair of complex conjugate imaginary eigenvalues. With the information
we already have about steady states it can be concluded that the determinant is zero precisely when

q(y) = 4βy3 + 12βy2 + (8β − 2α2)y + α2 = 0. (3.4)

Now we take linear combinations of the equations p(y) = 0 and q(y) = 0 in order to obtain simpler
equations. The equation q(y)− 4p(y) = 0 is a quadratic equation for y. On the other hand q(y)− p(y) =

yr(y) for a quadratic polynomial r so that non-zero solutions y satisfy the quadratic equation r(y) = 0.
The two quadratic equations can be combined to give a linear equation for y and substituting this back
into the equation r(y) = 0 leads to the equation

9γ(−4γ2 + 131γ − 96) = 0 (3.5)

where γ = α2

β
. It follows that all steady states are hyperbolic when γ > 32. It can be concluded that

except in case (ii) the steady states are hyperbolic. In case (ii) the linearization at S 1 has one zero and
one negative eigenvalue. In case (iii) it has one positive and one negative eigenvalue.

Theorem 2. Any positive solution of (2.1)-(2.2) with α > 0 and β > 0 converges a steady state as
t → ∞. If α2

β
< 32 there are no points S 1 and S 2 and all solutions converge to S 0. If α2

β
= 32 there is

no point S 2 and points above or on and below the unique centre manifold of S 1 converge to S 1 and S 0

respectively. If α2

β
> 32 then points above, on or below the stable manifold of S 1 converge to S 2, S 1

and S 0 respectively.

Proof. Note that the stable manifold of S 1 is always one-dimensional. By the same arguments as in
the case β = 0 it can be shown that this manifold is the graph of a function of x, that it intersects
both axes and that its complement is the union of two components H1 and H2. Components with
the sign combination (−,−) have boundaries with the sign combinations (−, 0) and (0,−). Using the
information on the signs of ẍ and ÿ shows that these components are invariant. For instance, a solution
which satisfies ẋ = 0 and ẏ < 0 at some point satisfies ẍ < 0. Similarly components with the sign
combination (+,+) are invariant. It can be shown as in the case β = 0 that any solution which starts in
a component with one of sign combinations (+,−) or (−,+) and does not converge to a steady state as
t → ∞ must enter one of the components with the sign combination (−,−) or (+,+) after a finite time.
Once it enters a component of this type it must stay there and converge to a steady state as t → ∞.
Thus every solution converges to a steady state as t → ∞. It is then straightforward to determine which
steady state it converges to in different cases. �

Note that since every solution converges to a steady state the system exhibits no sustained
oscillations. We can argue as in the previous section that there are no damped oscillations close to the
point S 0. Using Lemma 8 of the Appendix we get the corresponding conclusion for S 1 and S 2.

Consider what happens if β tends to zero while α has a fixed positive value. The polynomial p
defined in (3.2) converges. In the limit there is a unique root, which is S 1. It is a hyperbolic saddle.
Thus it is the limit of a steady state of the system in the general case as β → 0. The approximating
solution must coincide with the point S 1 in the general system. Let γ = α2

β
and define z = γ−1/2y and
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q(z) = p(y). Then if β tends to zero while α has a fixed positive value the polynomial q converges.
Again there is a unique positive root in the limit with z = 1. It is approximated by a root for positive
β > 0 and that corresponds to the steady state S 2. We conclude that as β tends to zero the coordinates
of S 2 have the asymptotic behaviour x = αβ−1 + · · · and y = αβ−

1
2 + · · · .

4. The system with the fifth power

In this section we study the system where y2 is replaced in (2.1)–(2.2) by y5. This is

dx
dt

= −αx − 2βx2 + 3y5, (4.1)

dy
dt

= 2αx + 3βx2 − 5y5 − y. (4.2)

The aim is to see to what extent the results obtained for (2.1)–(2.2) generalize to (4.1)–(4.2).
In the case α = 0 the analysis of (2.1)–(2.2) extends without essential changes to (4.1)–(4.2) to give

the same qualitative results. When α > 0 and β = 0 the analysis up to and including Lemma 2 extends
easily. Of course the explicit formulae in the definitions of the invariant regions Gi are modified by
replacing y2 by y5.

Lemma 6. A solution of (4.1)–(4.2) which is eventually contained in G4 has, after a suitable translation

of t, the asymptotics x = ( 4α
5 )

1
4 e

αt
5 + · · · , y = 2

1
20

(
2α
5

) 1
4 e

αt
25 + · · · for t → ∞.

Proof. That the arguments from the case of (2.1)–(2.2) extend easily is also true of the first part of the
proof of Lemma 3 which shows that the late time behaviour can be analysed in one of the charts of the
Poincaré compactification. In this case the time coordinate must be rescaled in a different way from
what was done previously. Let dτ

dt = x4. In the case of (4.1)–(4.2) the transformation to this chart gives

dX
dτ

= αX5 − 3XZ5, (4.3)

dZ
dτ

= 2αX4 + (α − 1)X4Z − 5Z5 − 3Z6. (4.4)

The linearization of the system at the origin is identically zero. To get more information we do a
quasi-homogeneous blow-up. The exponents calculated using the Newton polygon are (5, 4). Once
again, there are two transformations to be done. The first of these is given by the correspondence
(X,Z) = (u5, u4v). We have

dX
dτ

= 5u4 du
dτ

= αu25 − 3u25v5 (4.5)

and hence
du
dτ

=
1
5

(αu21 − 3u21v5). (4.6)

Furthermore
dZ
dτ

= u4 dv
dτ

+ 4u3v
du
dτ

= 2αu20 − 5u20v5 + (α − 1)u24v − 3u24v6 (4.7)

and hence
dv
dτ

= 2αu16 − 5u16v5 − (α − 1)u20v + 3u20v6 −
4
5

(αu20v − 3u20v6). (4.8)
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If we now introduce a new time coordinate s satisfying ds
dτ = u16 then the system becomes

du
ds

=
1
5

(αu5 − 3u5v5), (4.9)

dv
ds

= 2α − 5v2 + (α − 1)u4v − 3u4v6 −
4
5

(αu4v − 3u4v6). (4.10)

Just as in the case with the quadratic nonlinearity we see that the solution must eventually be contained
in the chart defined by the second transformation which is given by (X,Z) = (uv5, v4). In that case

dZ
dτ

= 4v3 dv
dτ

= 2αu4v20 − 5v20 + (α − 1)u4v24 − 3v24. (4.11)

Hence
dv
dτ

=
1
4

{
2αu4v17 − 5v17 + (α − 1)u4v21 − 3v21

}
. (4.12)

Furthermore
dX
dτ

= v5 du
dτ

+ 5uv4 dv
dτ

= αu5v25 − 3uv25 (4.13)

and hence
du
dτ

= αu5v20 − 3uv20 −
5
4
{2αu5v16 − 5uv16 + (α − 1)u5v20 − 3uv20}. (4.14)

In terms of the time coordinate s with ds
dτ = v16 we get

du
ds

= αu5v4 − 3uv4 −
5
4
{2αu5 − 5u + (α − 1)u5v4 − 3uv4}, (4.15)

dv
ds

=
1
4

{
2αu4v − 5v + (α − 1)u4v5 − 3v5

}
. (4.16)

The axes are invariant and the origin is a hyperbolic saddle. There is a steady state at the point (u0, 0)

with u0 =
(

5
2α

) 1
4 . If we transform any solution then in the blown-up Poincaré compactification it must

converge to this point. To get more details we translate the steady state to the origin using a coordinate
transformation. Let w = u − u0. Then the equations become

dw
ds

= −
1
2

u0v4 −
5
4
{[2α(u0 + w)4 − 5](u0 + w) −

α + 5
2α

u0v4}

+O(v4w), (4.17)
dv
ds

=
1
4

{
[2α(u0 + w)4 − 5] −

α + 5
2α

v4
}

v + O(v5w). (4.18)

Here we have explicitly retained only those terms which are required for the calculation which will
now be done. It follows from the definition of the centre manifold that w = h(v) for a function h with
h(v) = O(v2). The derivative of this relation with respect to time also holds. Hence ẇ = h′(v)v̇. It
follows from (4.18) that v̇ = O(v3) and so ẇ = O(v4). It follows from (4.17) that w = O(v4). Hence
v̇ = O(v5) and ẇ = O(v6). It can be concluded from the evolution equation for w that

[2α(u0 + w)4 − 5] −
α + 5

2α
v4 = −

2
5

v4 + · · · . (4.19)

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2353–2370.



2365

It follows that dv
ds = − 1

10v5 + · · · . We see that the flow on the centre manifold is towards the steady

state. After translating s if necessary we get v =
(

5
2s

) 1
4
+ · · · . Substituting this into the defining equation

for s gives s = 5
1
5

(
5
2

) 4
5
τ

1
5 + · · · and v =

(
1
2τ

) 1
20

+ · · · . Substituting for the original variables gives

X = u0

(
1
2τ

) 1
4

+ · · · and Z =
(

1
2τ

) 1
5

+ · · · . Next we compute the transformation from τ to t. We have
dt
dτ =

(
u4

0
2τ

)
+ · · · . Hence t =

(
u4

0
2

)
log τ + · · · and τ = e4αt/5 + · · · . Finally we get x = (4α

5 )
1
4 e

αt
5 and

y = 2
1

20

(
2α
5

) 1
4 e

αt
25 . �

Theorem 3. Any positive solution of (4.1)-(4.2) with α > 0 and β = 0 belongs to one of the following
three classes.
(i) It starts below the stable manifold of S 1 and x and y converge to zero as t → ∞.
(ii) It starts on the stable manifold of S 1 and converges to S 1 as t → ∞.
(iii) It starts above the stable manifold of S 1 and x and y tend to infinity as t → ∞, with the asymptotics
given in Lemma 6.
In particular, every bounded solution converges to a steady state as t → ∞.

Proof. The proof is identical to that of Theorem 1 except that Lemma 3 is replaced by Lemma 6. �

It is interesting to compare the asymptotics in Lemma 6 with those obtained in [11] for a more
elaborate model of the Calvin cycle. In Lemma 6 we see that both unknowns have growing
exponential asymptotics but that the exponent for GAP is one fifth of that for the other variable. The
main system considered in [11] has five unknowns and has solutions for which all unknowns have
growing exponential asymptotics. In that case the exponent for GAP is one fifth of that for the other
four unknowns. These four unknowns satisfy a system of the form dx̄

dt = Ax̄ + R where R is considered
as a remainder term and the larger exponent is an eigenvalue of A. There is a natural analogue of this
equation for the system (4.1)-(4.2) with β = 0. It is the equation
d
dt (5x + 3y) = α

5 (5x + 3y) − 3
(
α
5 + 1

)
y. Here the last term is to be considered as the remainder. Note

that in the asymptotics of Lemma 6 y is much smaller than x at late times so that this treatment as
remainder term is reasonable. Since there is only one unknown growing at the maximal rate in this
case the matrix A is replaced by a number and that number is α/5. Thus we see that on a heuristic
level the exponents in the two cases agree. The statement of Theorem 3 is stronger than the analogous
statement in [11] in the following sense. The description of the asymptotic behaviour in [11] is only
obtained for some non-empty subset of initial data which is not further characterized while the set of
initial data giving rise to this asymptotic behaviour in Theorem 3 is much more explicit.

Consider next the case where the coefficients α and β in (4.1)-(4.2) are both positive. The solutions
are bounded using the same argument as in the proof of Lemma 4. As in the case of (2.1)-(2.2) the
nullclines are of the form f (x) = g(y) for monotone increasing functions f and g. A steady state
satisfies the equations

y =
1
3

(αx − βx2), (4.20)

x =
1
α

(y5 + 2y). (4.21)
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Substituting the second of these equations into the first gives

p(y) = βy10 + 4βy6 − α2y5 + 4βy2 + α2y = 0. (4.22)

By Descartes’ rule of signs [12] this equation can have at most two positive solutions. Since the
derivative of the polynomial p at zero is positive, p(y) > 0 for y slightly larger than zero. Thus if
p(y) < 0 for some y > 0 the polynomial has two positive roots. Now p(2) = 1296β − 28α2. Thus for
fixed β if α is large enough we have p(2) < 0 and p has two positive roots. If we define values of x
corresponding to these two values of y we obtain two positive steady states of the system (4.1)-(4.2).
On the other hand, if β > α2 there are no positive steady states.

We have not succeeded in obtaining information about the hyperbolicity of steady states of this
system which is as complete as that which we obtained in the case of a quadratic nonlinearity. It
is, however, possible to show that for generic values of the parameter γ = α2

β
all steady states are

hyperbolic. We can calculate polynomials p and q as in the case with a quadratic nonlinearity but it is
not possible to solve explicitly for their common roots y. Instead we can proceed as follows. For any
non-hyperbolic steady state we obtain equations of the form

p(y) = p1(y) − γ(y − 1) = 0,
q(y) = q1(y) − γ(5γ4 − 1) = 0 (4.23)

for certain polynomials p1 and q1 which do not depend on γ. Hence

s(y) = (5γ4 − 1)p1(y) − (y − 1)q1(y) = 0. (4.24)

Since the polynomial s is non-constant this equation has only finitely many solutions y. For any given
solution y there is at most one corresponding value of γ. Hence for all but finitely many values of γ all
steady states are hyperbolic.

With the information on steady states just obtained we can prove an analogue of Theorem 2 for the
system with the fifth power using the same techniques. The result is

Theorem 4. Any positive solution of (4.1)-(4.2) with α > 0 and β > 0 converges to a steady state as
t → ∞. If α2

β
< 1 there are no points S 1 and S 2 and all solutions converge to S 0. If α2

β
is large enough

then points above, on or below the stable manifold of S 1 converge to S 2, S 1 and S 0 respectively.

By scaling the unknowns x and y by the same factor and t by another factor it is possible to transform
the more general system

dx
dt

= −αx − 2βx2 + 3Ay5, (4.25)

dy
dt

= 2αx + 3βx2 − 5Ay5 − By. (4.26)

for general positive constants A and B into the system (4.1)–(4.2). Thus the results obtained for (4.1)–
(4.2) imply analogous results for (4.25)–(4.26). This observation will be used in the next section.
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5. Derivation from the three-dimensional system

The system (2.1)–(2.2) was derived by Hahn from a three-dimensional system but he did not give a
mathematical formulation of the relation between the two systems. The three-dimensional system is,
in a modified notation,

dx
dt

= −k1x − 2k2x2 + 3k4z5, (5.1)

dy
dt

= 2k1x + 3k2x2 − k3y, (5.2)

dz
dt

= k3y − 5k4z5 − (k5 + k6)z. (5.3)

We now consider a limit where k3 becomes large. This means that the reaction producing triose
phosphate from PGA is very fast. Let k3 = ε−1k̃3 and introduce a new variable by w = y + z. Then the
equations above are equivalent to the system

dx
dt

= −k1x − 2k2x2 + 3k4z5, (5.4)

dw
dt

= 2k1x + 3k2x2 − 5k4z5 − (k5 + k6)z, (5.5)

ε
dz
dt

= k̃3(w − z) − 5εk4z5 − ε(k5 + k6)z. (5.6)

This is a fast-slow system in standard form with fast variable z and slow variables x and w. The critical
manifold is given by z = w and the slow system is

dx
dt

= −k1x − 2k2x2 + 3k4w5, (5.7)

dw
dt

= 2k1x + 3k2x2 − 5k4w5 − (k5 + k6)w. (5.8)

Replacing w by y and setting k1 = α, k2 = β, k4 = A and k5 + k6 = B gives the system (4.25)–(4.26).
The critical manifold is normally hyperbolic and the one normal eigenvalue is negative.

We know that for certain values of the parameters the system (4.1)–(4.2) has three steady states S 0,
S 1 and S 2. Moreover, for generic values of γ the steady states S 0 and S 2 are hyperbolic sinks while S 1

is a hyperbolic saddle with a one-dimensional stable manifold. There are heteroclinic orbits connecting
S 0 to S 1 and S 1 to S 2. Putting this together with the fact that the normal eigenvalue is negative shows
that for suitable parameters with ε small the three-dimensional system has three steady states S 0, S 1

and S 2 which converge to those with the corresponding names as ε = 0. Moreover S 0 and S 2 are
hyperbolic sinks and S 1 is a hyperbolic saddle with a two-dimensional unstable manifold. There are
heteroclinic orbits connecting S 0 to S 1 and S 1 to S 2.

6. Conclusions and outlook

In this paper we have obtained detailed information on minimal models of the Calvin cycle
introduced by Hahn in [5]. A rather complete analysis of the two-dimensional models of Hahn was
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given. The relation of the two-dimensional to the three-dimensional model of Hahn was discussed but
a comprehensive analysis of the three-dimensional model, which is likely to be complicated, was
postponed to future work. The models in [5] originated by formal simplification of earlier models due
to the same author. The first is a model with 19 chemical species defined in [13]. It did not implement
a detailed description of photorespiration and a description of this kind was added in the model
of [14], with 33 species. In the future it would be desirable to put the understanding of the relations
between these different models on a better mathematical footing. This should also allow conclusions
about the dynamics of the higher-dimensional systems to be obtained. Note that there are some
general references in the literature about the inheritance of dynamical features from reduced systems
(see e.g. [15, 16]).

Another interesting task is to relate the models of Hahn to other models of the Calvin cycle in the
literature. Possible relations to a model of Grimbs et al. [17] studied in [11] were already mentioned
is section 4 and perhaps these could be extended so as to give a wider view of runaway solutions of
models for the Calvin cycle, i.e. those solutions where all concentrations tend to infinity. One task
is to obtain some kind of characterization of models admitting solutions of this type. Another is to
obtain formulae for the asymptotics of these solutions in the case that they do occur. This kind of
behaviour can be ruled out if the model admits a suitable conservation law. This is, for instance, the
case in a model of [18] whose mathematical properties were studied in [19]. In the model of Hahn with
photorespiration boundedness of solutions is obtained without there being a conservation law. Another
example of this is given by a model studied in Section 6 of [11] where the original model of Grimbs et
al. is modified by including the concentration of ATP explicitly.

It also remains to obtain a comprehensive understanding of solutions where some concentrations
tend to zero at late times. As discussed in [19] this can be related to the biological phenomenon of
overload collapse. This means intuitively that the production of sugar by the cycle cannot meet the
demand for export from the chloroplast. In [19] it was shown that there are solutions of the model
of [18] which admit this phenomenon while in a modification of the model due to Poolman [20] these
solutions are eliminated. The model of [20] does not include photorespiration but does include the
mobilization of glucose from starch.

In this paper various aspects of the dynamics of the minimal model of Hahn for the Calvin cycle
have been analysed. The reduction to a model with only two variables makes it possible to get a good
overview of the dynamics. We believe that this establishes a good starting point for understanding
the dynamics of more detailed models of the Calvin cycle in the future and we have indicated some
directions in which this could progress.
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Appendix: nullcline analysis

In this section we discuss how nullclines can be used to obtain information about the global
behaviour of solutions of a two-dimensional dynamical system. Consider the following system of
ordinary differential equations.

ẋ = f (x, y), (6.1)
ẏ = g(x, y) (6.2)
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where the functions f and g are C1 and defined on an open subset U ⊂ R2. The nullclines N1 and N2

are the zero sets of f and g respectively. Let G = U \ (N1 ∪N2). The open set G is a countable union of
connected components Gi. In what follows we will restrict to the case that the following assumption is
satisfied.
Assumption 1 The complement of the nullclines has only finitely many connected components.
When the system satisfies Assumption 1 it defines a directed graph as follows. There is one node for
each component Gi and there is a directed edge from the node corresponding to Gi to that corresponding
to G j when there is a solution which starts from a point of Gi and later enters G j without entering any
component of G other than Gi and G j at an intermediate time. Let us call this the succession graph. A
cycle in a directed graph is a finite sequence of directed edges such that the initial node of each edge is
the final node of the previous one and the final node of the last edge is the initial node of the first one.
We now restrict to the case that the following assumption is satisfied.
Assumption 2 There exist only finitely many steady states. Whenever a steady state S i is in the closure
of a component G j there is a continuous curve joining a point of G j to S i which does not intersect any
other Gk.

Lemma 7. Consider a solution (x(t), y(t)) on a time interval [t0, t1) which lies in Gi for some i when
t = t0 and which lies entirely in Ḡi. Then x(t) and y(t) are monotone. They are strictly monotone as
long as the solution lies in Gi. Suppose that t1 is maximal. If the solution is bounded then it converges
to a point (x∗, y∗) for t → t1 which is either a point of N1 ∪ N2 or a point of Ḡ \G. If (x∗, y∗) ∈ G then
(x∗, y∗) ∈ N1 ∩ N2 if and only if t1 = ∞.

Proof. On a component Gi the signs of ẋ and ẏ are constant and this implies the monotonicity
statements. It follows that the limits of x(t) and y(t) as t → ∞ exist, either as real numbers or as ±∞.
If the solution is bounded then these limits are real numbers x∗ and y∗. The point (x∗, y∗) belongs to
the closure of G. Suppose now that t1 is maximal and that (x∗, y∗) ∈ G. We claim that if t1 = ∞ then
(x∗, y∗) is a point of N1 ∩ N2, and hence a steady state. Otherwise at least one of ẋ or ẏ would tend to a
non-zero value, say c, as t → t1. Suppose w.l.o.g. that ẋ has this property and that c > 0. It follows
that if t2 is sufficiently large then ẋ(t) ≥ 1

2ct for all t ≥ t2. Thus x is unbounded, a contradiction. We
conclude that if the interval [t0, t1) is infinite (x∗, y∗) ∈ N1 ∩ N2. Suppose now conversely that
(x∗, y∗) ∈ N1 ∩ N2. If t1 were finite it would be possible to extend the solution beyond t = t1. But then
this solution would have to coincide with the time-independent solution x(t) = x∗, y(t) = y∗ a
contradiction. Thus if (x∗, y∗) ∈ N1 ∩ N2 the interval [t0, t1) is infinite. �

Lemma 8. Let S i be a steady state. Suppose that Assumption 2 is satisfied, that there is more than one
component G j having S i as a limit point and that there is no cycle in the succession graph. Then there
is no damped oscillation converging to S i.

Proof. Suppose there is a solution exhibiting a damped oscillation. Due to Assumption 2 it must
intersect each G j having S i as a limit point more than once. Hence the succession graph contains a
cycle, a contradiction. �
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