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Abstract: In the present paper, renormalization group methods are used to develop a macroscopic 

turbulence model for thermal diffusivity in turbulent fluid flow under conditions of endothermic and 

exothermic chemical reactions in flow. The temperature field is divided into slow (large-scale) and 

fast (small-scale) modes. With the help of the renormalization procedure, energy equations for the 

large-scale modes and relations for effective turbulent thermal diffusivity were obtained. It was 

shown how the type of the chemical reaction affects turbulent thermal diffusivity. In addition, the 

conditions were identified where effective thermal diffusivity undergoes a sharp growth. 
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1. Introduction  

The present paper focuses on the further development of the renormalization group (RNG) 

theory, which has been widely used to produce turbulence models for pure one-phase fluids as 

applied to porous media. The definition of a renormalization group includes a set of symmetry 

transformations, which operate on a space of parameters. The RNG theory has been initially 

developed for quantum field research and served as a standard method that helps eliminating 

singularities [1]. Afterwards the RNG theory was used by Wilson [2] to study critical phenomena. 
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Renormalized perturbation methods were employed by Kraichnan [3] for theoretical studies of 

turbulence phenomena. As a result, Kraichnan [3] proposed a theory of direct interaction 

approximation. The RNG theory was applied by Forster et al. [4] for investigations of turbulence 

problems. This work further developed the RNG theory for power-law forcing for situations where 

the small scales affect the large scales like eddy viscosity. The RNG model was also utilized by 

DeDominicis and Martin [5] for turbulence studies, which, however, involved the field formulation. 

Fournier and Frisch [6] demonstrated the possibility of using the RNG model to obtain amplitude 

coefficients, which are universal constants independent of the parameters of the system in the small 

scales area, for instance, molecular viscosity. 

Yakhot and Orszag [7] employed the RNG theory to develop a closed model of turbulence. 

Based on the findings of the work [4], they proposed a model for large scales; simultaneously, a 

modified transport coefficient described the effect of small scales. The equations for the large scales 

were obtained through averaging over an infinitesimally narrow range of small scales. Afterwards, 

the small scales were eliminated from the further consideration. The elimination was performed 

iteratively and resulted in a differential equation for effective transport coefficients. After the 

elimination of small scales, the equation for large scales remained unchanged. Using the RNG theory, 

Yakhot and Orszag [7] obtained relations for turbulent viscosity, equations for a passive scalar, the 

turbulent Prandtl number, the Batchelor constant, turbulence kinetic energy and the dissipation rate. 

Kraichnan [8] discussed and commented the theory developed by Yakhot and Orszag [7]. Smith and 

Reynolds [9] validated the theory of Yakhot and Orszag [7] and further improved and refined the 

derived relations for the skewness and the dissipation rate. Yakhot and Orszag [7] developed not 

only the main model, but also a RNG subgrid scale turbulence model for large-eddy simulation. 

Using the RNG theory, Yaknot et al. [10] obtained an additional term in the equation for the 

dissipation rate, which plays an important role for flows with anisotropic turbulence. The RNG 

theory was further used in in-depth studies of turbulence by in the works [11–15]. 

Avramenko and Kuznetsov [16] developed a macroscopic (large-scale) RNG turbulence model 

for incompressible flow in porous media. The model considers the large-distance and large-time 

performance of velocity correlations arising in the momentum equation for a randomly stirred and 

incompressible flow. The renormalization model resulted in obtaining transport equations for large-

scale modes and relations for effective transport coefficients. Avramenko and Kuznetsov [16] 

obtained also relations for renormalized turbulent viscosity taking into account the ultraviolet 

subrange of the turbulent kinetic energy spectrum. RNG technique was also used by Avramenko  

et al. [17] to study nonlinear instability of turbulent flow in porous media. 

Avramenko et al. [18] used renormalization group methods to develop a macroscopic turbulence 

model for incompressible two-phase turbulent flows. The authors obtained expressions for effective 

turbulent viscosity, which revealed that the presence of the second phase causes decreased turbulent 

viscosity. 

Direct numerical simulations of reacting isotropic turbulence decay under conditions typical of 

a hypersonic turbulent boundary layer flow were performed in the work [19]. The feedback in the 

Reynolds stress occurs through the pressure-strain term, which depends on how much heat is 

released. Authors of the work [20] demonstrated that chemical reactions affect the onset of 

oscillatory instability, which is more likely to occur for the case of liquids, while for gases only 
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stationary instability is possible for a practical range of parameter values. Maleque [21] paid 

attention only to laminar heat and mass transfer in the boundary layer flow in the presence of 

chemical reactions. In the work [22], effects of chemical reactions were studied on the development 

of turbulent plume. 

Another important group of solutions for turbulent boundary layer flows with heat, momentum 

and mass transfer is represented by the approach developed first by Avramenko et al. [23]. Boundary 

layer equations were reduced to a self-similar form using the Lie group approach based on the 

symmetry properties of the transport equations. The resulting self-similar equations were further 

solved numerically. To enable obtaining the similarity solution, turbulent viscosity was assumed to 

follow the mixing-length model in combination with the Lie group technique. This methodology was 

further applied by Avramenko et al. [24] to model a turbulent boundary layer of a nanofluid over a 

flat plate. The model of Avramenko et al. [24] accounts also for the dependences of physical 

properties (viscosity, thermal conductivity, and diffusion coefficients) on the nanofluid concentration 

and temperature. This model was further developed by Avramenko et al. [25] to simulate stable film 

boiling of nanofluids over a vertical surface.  In spite of the mathematical elegance and novelty, the 

approaches and models [23–25], because of their relative simplicity, do not enable to reveal and 

model complex turbulence phenomena such as effects of the second phase (particles or droplets) or 

chemical reactions on the parameters of turbulence, such as velocity and temperature pulsations. 

To conclude, there are indications in the literature that chemical reactions affect the onset of 

instability and Reynolds stresses. However, the effects of chemical reactions on thermal diffusivity in 

one-phase or two-phase flows have not been studied either experimentally, or theoretically 

(analytically and numerically). 

2. Problem formulation 

Turbulent flows with chemical reactions are important parts of transport processes in many 

industrial and environmental settings. For example, flows which are developed at pool fire, if the 

vaporization rate of fuel is large enough. Similar processes occur in industrial burners, burners of 

power stations, combustion chambers etc. Correct modeling of turbulence is required for adequate 

simulation of such processes. 

The main objective of the present investigation consisted in developing a theoretical 

macroscopic turbulence model for thermal diffusivity in turbulent fluid flow under conditions of 

endothermic and exothermic chemical reactions. The RNG technique will be employed to obtain an 

analytical solution for turbulent thermal diffusivity. The temperature field will be divided into slow 

(long-wavelength) and fast (short-wavelength) modes. The renormalization procedure will enable 

obtaining energy equations for the long-wavelength modes and relations for effective turbulent 

thermal diffusivity. It will be demonstrated that the type of the chemical reaction affects turbulent 

thermal diffusivity. 

The present simulation will be performed under the following assumptions: the physical 

properties of the medium (density, viscosity, thermal conductivity, heat capacity) are assumed to be 

constant; the radiative heat transfer is not taken into account; the external random force assumed to 
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be Gaussian, solenoidal, isotropic in space, and homogeneous white noise in time; turbulence energy 

is described by the Kolmogorov law «
-5/3

». 

As it is known [7], the equation for the dissipation rate in the RNG model includes an additional 

term that considers the influence of small values of the Reynolds numbers, so that this model is not 

limited to the certain range of the Reynolds numbers. Also, no restrictions are imposed on the 

numerical values of Prandtl and Schmidt numbers.  

3. Basic equations 

We will focus on three-dimensional unsteady incompressible turbulent flow with the streamwise 

pressure gradient in the presence of chemical reactions. The mathematical model including the term 

for the random force and chemical reactions can be written as 
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where fn is an external random force assumed to be Gaussian, solenoidal [7], isotropic in space, and 

homogeneous white noise in time; p is pressure; t is time; un are projections of the velocity vector of 

fluid on the orthogonal coordinate axes xn; xn are the orthogonal coordinates; 0 is kinematic 

viscosity of the fluid; 0  is the thermal diffusivity of the fluid (the subscript “0” means that the 

renormalization process will begin from this value);  is density of the fluid; Q is the thermal effect 

of reaction. Value Q is negative or positive depending upon whether reaction is endothermic or 

exothermic, respectively. 

4. Fourier decomposition of the basic equations 

The subsequent analysis will be performed in the Fourier space. The Fourier transformation of 

the velocity, pressure, random force and temperature fields can be performed as follows: 
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where nU , P, T , nmW , , Fn, are the Fourier transforms of nu , p, T , mnuu , Tun and fn, respectively; 

 is a wavenumber (a component of the vector );  is the d-dimensional wavevector;   is 

frequency; x is the d-dimensional position coordinate vector; i is the imaginary unit, and с is the 

ultraviolet cutoff wavenumber (it is assumed that velocity modes vanish when >с [7]. 

In the Fourier space, momentum equation has the following form [7] 
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  is the wavenumber (components of the vector σ ); σ  are the d-dimensional wavevectors; and 

 is the frequency, 0 = 1 is introduced here to enable the perturbation analysis that will follow later 

on and 
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is the zero-order propagator. 

After application of the Fourier transformation to energy equation (3), one can obtain 

   niQi 2

0 .                                                     (12) 

In order to eliminate  from Eq 12, the convolution theorem [26] is used. With its help, the 

function  can be written as: 
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In view of this, Eq 12 can be recast as 
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where again 0 = 1 is introduced. Here 
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is the temperature propagator. 

5. Renormalization procedure and renormalization of the energy equation 

To apply the renormalization procedure [4], velocity and temperature fields are separated into 

long-wavelength and short-wavelength modes, such as 
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where is a positive parameter; U  and T  denote the long-wavelength modes (or, in other words, 

slow modes); and U , and T  denote the short-wavelength modes (or, in other words, fast modes).  

Substitution of Eqs. 16 and 17 into the transformed energy equation (14) yields 
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Equation 18 includes fast and slow modes. Further, we exclude from Eq 18 fast modes of 

temperature and velocity by introducing a formal series expansion of the velocity and temperature 

functions 
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where   ,~ κ . 

Substituting Eqs. 19 and 20 into both parts of Eq 18 and equating the terms with the same 

powers of 0, one can obtain expressions for the terms of the series expansions (20). As a result, we 

have for 0s  
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whereas for 1s  a term of the series expansion has the following form 
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Let us substitute the series expansions (19) and (20), with allowance for Eqs. 21 and 22, into Eq 

18. Next, we collect the terms for the same powers of 0, taking into account the splitting of the 

modes of wave numbers into the fast and slow wave modes. As a result, we obtain an equation for 

slow modes of the temperature function 
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Let us estimate the magnitude of the terms included in Eq 23 using the averaging rules 

  TT , 0T  .                                                             (24) 

In doing so, one can obtain that the second term at 0λ  and the first two terms at 
2

0λ  are equal to 

zero. Let us consider the last term with account for Eq 22 
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Here again the first term in Eq 25 is equal to zero, and we need to estimate the second one. In 

view of this, it is necessary to remind that [7] 
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and also to recall that the random force f is assumed to be Gaussian and white noise in time. The 

random force specified by the following Fourier transformation of its two-point correlation function 

[4]: 
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where *ε = 4, whereas the parameter D0 is related to the dissipation rate  by the following equation 
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is the surface area of a d – dimensional unit sphere, and  is the gamma-function. 

Using Eqs. 26 and 27 one can obtain from Eq 25 
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Next, using the properties of the delta function  υ~σ~δ  , one can transform the last integral to 

the following form 
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Now we can rewrite Eq 23 so that 
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According to the renormalization procedure, Eq 32 can be transformed into the initial equation 

(14), if on the left-hand side of (32) the zero-order propagator GT0 given by Eq 15 is replaced by the 

renormalized propagator 
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is the renormalizing thermal diffusivity. 

Let us compute the integral (34) in the limiting case of   0,   0. To do it, one can 

represent this integral in the following form 
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where 

*ε4  dy .                                                                       (36) 

At first, we take the integral over the frequencies using the Cauchy theorem. This integral is 

equal to the sum of the residues at the poles of the upper half-plane 

  Qii  0

2

20

2

1 , ,                                                (37) 

multiplied by the factor of 2i. As a result, taking into account the expansion of the integrand 

into a binomial series with respect to the wave number, one can obtain 
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Neglecting the second term in the integrand, we find 
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Now it is necessary to take integrals over the wavenumbers. For this purpose, one can use the 

following relations [27] 
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As result, we have 
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where 
12 F  is the hypergeometric function. 

Consequently, the effective renormalized thermal diffusivity can be written as 
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 (43) 

Let us differentiate this expression with respect to  in the limit of   0. As a result, we obtain 

a differential equation 
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The subscript “0” by 0  and 0  has been discarded, because Eq 44 is valid for every step of the 

renormalization procedure, and the condition of   0 leads to ( c )  ( c ) and ( c )  ( c ), 

where c  is the current value of wavenumber. 

Unfortunately, differential equation 44 cannot be integrated exactly. That is why let us do make 

a simplified analysis of this equation. To do it, one can transform equation 44 to following form 
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where tPr  is the turbulent Prandtl number and 0Q  is thermal diffusivity under condition of absent 

of chemical reactions. Taking into account the equation for viscosity [7] 
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one can transform Eq 45 to an approximation form (*=4) 
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where 
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As one can see from Eq 47, the release of heat during a chemical reaction leads to 

intensification of turbulent heat transfer, i.e. addition of heat increases turbulent pulsation. One can 

interpret this phenomenon in such a way that in the present process the thermal energy transforms to 

chaotic kinetic energy of stochastic temperature pulsations. Contrary, the absorption of heat leads to 

suppression of turbulent heat transfer. It follows from Eq 47 that under condition 

 


 

4

3
Pr1 01 DA

Q d
t                                                             (49) 

a significant increase in effective thermal diffusivity occurs. It should be pointed out that Eq 42, 

together with Eq 47, is correct under the condition 
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  Q 0

2
,                                                                 (50) 

i.e. for a restricted range of the function Q. 

When 

  Q 0

2
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we have just one pole in the upper half-plane 
1  (37). In this case, one can obtain from Eq 35 
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After integration we have 
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Again, after differentiation of Eq 53 with respect to  in the limit   0 we have 
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The resulting relation for thermal diffusivity looks as 
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One can ascertain that this equation is not physically realistic, because for the case without 

chemical reactions it does not reduce to the basic relation for 0Q . 

6. Conclusion 

The paper focused on a study of turbulent thermal diffusivity in the presence of endothermic and 

exothermic chemical reactions with the help of the renormalization group approach. As a result, a 

relation for turbulent thermal diffusivity was obtained, which takes into account the presence of the 
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chemical reactions in the flow. This relation shows that turbulent thermal diffusivity is a function of 

turbulent viscosity, a parameter proportional to dissipation rate of turbulent energy, as well as the 

thermal effect of chemical reactions. It was demonstrated that heat release due to chemical reactions 

leads to enhancement of turbulent heat transfer, i.e. addition of heat amplifies turbulent pulsations. In 

this case, thermal energy transforms to chaotic kinetic energy of stochastic temperature pulsations. 

Contrary, the absorption of heat in chemical reactions leads to suppression of turbulent heat transfer. 

Also, conditions were revealed where effective thermal diffusivity demonstrates a sharp increase.  
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