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Abstract: The paper explores the dynamics of extreme values in an SIR (susceptible → infectious
→ removed) epidemic model with two strains of a disease. The strains are assumed to be perfectly
distinguishable, instantly diagnosed and each strain of the disease confers immunity against the second
strain, thus showing total cross-immunity. The aim is to derive the joint probability distribution of
the maximum number of individuals simultaneously infected during an outbreak and the time to reach
such a maximum number for the first time. Specifically, this distribution is analyzed by distinguishing
between a global outbreak and the local outbreaks, which are linked to the extinction of the disease
and the extinction of particular strains of the disease, respectively. Based on the mass function of
the maximum number of individuals simultaneously infected during the outbreak, we also present an
iterative procedure for computing the final size of the epidemic. For illustrative purposes, the two-
strain SIR-model with cross-immunity is applied to the study of the spread of antibiotic-sensitive and
antibiotic-resistant bacterial strains within a hospital ward.
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1. Introduction

Recently, a number of theoretical studies have focused on the mathematical modeling of coexistence
of different pathogens or strains of a disease in a population of individuals; without any claim to an
exhaustive enumeration, multiple pathogens or strains of a disease are usually involved in the spread
of an important variety of human diseases, such as chlamydia trachomatis [1], hantavirus/arenavirus
pulmonary syndromes [2, 3], HIV-AIDS [4, 5], influenza [6], nosocomial pathogens [7], tuberculosis
[8, 9], and viral respiratory tract diseases –including respiratory syncytial virus, human parainfluenza
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virus and human metapneumovirus– [10], to name a few. A special case of coexistence is related to
the competition between two or more infectious agents interacting to increase or decrease each other’s
infectiousness, when each agent confers immunity and protection against infection by the others.

Epidemics in competition have been studied extensively from deterministic and stochastic perspec-
tives under a variety of assumptions, including two-strain SI-models with total cross immunity and
vertical transmission [3], SIR- and SIS-models with finite population size and two pathogen strains
[1, 11, 12], SIR- and SIS-models with multiple pathogens and a population of variable size [13, 14]
and related variants with various levels of competition and isolation [6], among others. Unlike these
references where a susceptible becomes infective of a certain type k only when it is contacted by type-k
infectives, Ball and Clancy [15] assume that, on becoming infected, each newly infective may choose
its type at random from a set of several different types of infective, this choice being made indepen-
dently of other events.

In this paper, the aim is to define new probabilistic descriptors of the stochastic SIR-model with
two strains analyzed by Kendall and Saunders [11]; see Appendix A for its deterministic counterpart.
The strains in [11] are assumed to be perfectly distinguishable and instantly diagnosed; each strain of
the disease confers immunity against the second strain, which implies that the epidemic will die out
almost surely in a finite time since the population is assumed to be finite and there are no births, deaths
or immigrations. It is the purpose of this paper to extend the algorithmic results in [16] to two strains
by characterizing extreme value distributions and the final size of the epidemic in terms of iterative
procedures for the corresponding mass functions, Laplace-Stieltjes transforms and related expected
values. To that end, we take advantage of the sparsity on the infinitesimal generators arising when
analyzing global outbreaks and outbreaks of each strain of the disease; therefore, the mathematical
formulation is closely related to well-known matrix-analytic techniques existing in the literature for
analyzing level-dependent quasi-birth-death (LD-QBD) processes (see e.g. [17, 18]) and first-passage
arguments applied to absorbing continuous-time Markov chains (CTMCs).

LD-QBD processes can be seen as CTMCs in two dimensions, the level and the phase, verifying
that the process only jumps across either adjacent levels or the same level in one transition. By conve-
niently labeling states, this results in a tridiagonal-by-blocks structure for the underlying infinitesimal
generator. For these processes, a number of general-purpose algorithmic procedures can be found in
the literature in order to compute several performance measures such as stationary distributions (see
[17, Section 2] and [18, Chapter 10]), first-passage times and hitting probabilities (see [17, Sections
3-4] and [19, Section 2.1]), maximum levels [19, Section 2.2], and perturbation properties [19], among
others. LD-QBD processes are specially relevant in epidemic modeling due to the fact that events such
as infections and recoveries occur one at a time in continuous time. The work presented in this paper
is part of our ongoing study on extreme value properties in a variety of epidemic models analyzed
in terms of LD-QBD processes, including a SEIR stochastic model with limited resources [20], SIS
models with heterogeneous contacts [21], the general stochastic model with infective and susceptible
immigrants [22], multi-type SIS models [19, 23] and maximum clonal sizes [24], among others.

The paper proceeds as follows. Section 2 provides the mathematical description of the SIR-model
with two strains and cross-immunity, and outlines a first LD-QBD process allowing us to describe the
dynamics of the strains during an outbreak. Sections 3.1 and 3.2 discuss extreme values and the final
size of the epidemic during a global outbreak and during the outbreaks of each strain, respectively.
Section 4 is devoted to an application of our analytical/algorithmic results to the spread of antibiotic-
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sensitive and antibiotic-resistant bacterial strains in a hospital ward. Section 5 collects our thoughts
and conclusions.

2. The two-strain SIR-model with total cross-immunity

The interest is in a multi-type SIR epidemic model for the spread of two strains of a disease, termed
type-1 and type-2, among an homogeneously mixed population of N individuals; see Figure 1. At time
t, the population consists of S (t) susceptibles, Ik(t) type-k infectives, for k ∈ {1, 2}, and R(t) recovered
individuals, in such a way that R(t) = N−S (t)−I1(t)−I2(t) due to the assumption that there are no births,
deaths or migrations. For k ∈ {1, 2}, a type-k infective makes infectious contacts at random points of a
Poisson process with rate βk > 0 during its infectious period, which follows an exponentially distributed
recovery time with expected value γ−1

k , and the individuals contacted at successive contacts are selected
independently and uniformly from the individuals remaining susceptibles at those contact epochs. It
is assumed that suffering from one type of infectious disease shall provide immunity against the other;
this means that, for k ∈ {1, 2}, any type-k infective cannot be infected by any type-k′ infective, with
k′ , k, during its infectious period, and it acquires immunity against both infectious diseases after its
infectious period expires. Further, infectious periods and contact processes are assumed to be mutually
independent.

��
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Figure 1. Two-strain SIR-model with total cross-immunity.

Under the assumption of initial numbers of I1(0) = I2(0) = 1 infectives and S (0) = N − 2 sus-
ceptibles, the two-strain SIR-model with cross-immunity may be formulated as a time-homogeneous
CTMC X = {X(t) = (I(t), J(t),R(t)) : t ≥ 0}, where I(t) = I1(t) + I2(t) is the total number of infectives
and J(t) = I2(t) is the number of type-2 infectives at time t, which is defined on the finite state space
S = ∪N

i=0l(i) with levels

l(i) =

min{i,N−1}⋃
j=δi,N

l(i, j),

where δa,b denotes the Kronecker’s delta, l(0, 0) = {(0, 0, r) : r ∈ {2, ...,N}}, l(i, j) = {(i, j, r) : r ∈
{1, ...,N − i}} if i ∈ {1, ...,N − 1} and j ∈ {0, i}, and l(i, j) = {(i, j, r) : r ∈ {0, ...,N − i}} if i ∈ {2, ...,N}
and j ∈ {1, ..., i − 1}. The process X is uniquely specified by the infectious contact rates βk > 0 and
recovery rates γk > 0, for k ∈ {1, 2}, in such a way that states in l(0, 0) are absorbing —amounting to
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the ultimate extinction of both strains of the disease— and the class ∪N
i=1l(i) consists of transient states.

More concretely, the non-null infinitesimal rates q(i, j,r),(i′, j′,r′) of X are given by

q(i, j,r),(i′, j′,r′) =


(i − j)(N − i − r)β1, if i′ = i + 1, j′ = j, r′ = r,
j(N − i − r)β2, if i′ = i + 1, j′ = j + 1, r′ = r,
(i − j)γ1, if i′ = i − 1, j′ = j, r′ = r + 1,
jγ2, if i′ = i − 1, j′ = j − 1, r′ = r + 1,

for states (i, j, r), (i′, j′, r′) ∈ S, with q(i, j,r),(i, j,r) = −q(i, j,r) and

q(i, j,r) = (i − j)((N − i − r)β1 + γ1) + j((N − i − r)β2 + γ2).

For later use, we now specify the structured form of the infinitesimal generator Q of X, which is
seen in Section 3.1 to be the keystone to derive algorithmic solutions for the final size of the epidemic
and the extreme value distribution during a global outbreak. To that end, states in S are labeled in
lexicographical ordering and, consequently, the infinitesimal generator Q has the block-tridiagonal
form

Q =

(
0L(0)×L(0) 0L(0)×L′

T0 T

)
, (2.1)

where 0a×b is the null matrix of dimension a × b, and the cardinalities of l(i) and ∪N
i=1l(i) are denoted

by L(i) and L′, respectively; i.e., L(i) = 2(N − i) + (i − 1)(N − i + 1) if i ∈ {0, 1, ...,N}, and L′ =

6−1N(N − 1)(N + 7). Sub-matrices T0 and T in Eq. (2.1) are given by

T0 =

(
Q1,0

0(L′−L(1))×L(0)

)
,

T =



Q1,1 Q1,2

Q2,1 Q2,2 Q2,3
. . .

. . .
. . .

QN−1,N−2 QN−1,N−1 QN−1,N

QN,N−1 QN,N


,

and entries q(i, j,r),(i′, j′,r′) of Qi,i′ are related to transitions from the state (i, j, r) ∈ l(i) to the state (i′, j′, r′) ∈
l(i′), with i′ ∈ {i − 1, i, i + 1}; see Appendix B for a concrete specification of the sub-matrices Qi,i′ , for
integers i′ ∈ {i − 1, i, i + 1}.

Remark 1. Expressions for Qi,i′ , with i′ ∈ {i − 1, i, i + 1}, are inherently linked to the initial state of X.
In deriving expressions for Qi,i′ for any initial state X(0) = (i1 + i2, i2, 0) with i1, i2 ∈ {1, ...,N − 2} and
i1 + i2 ∈ {2, ...,N − 1}, we may first write the state space S from the levels

l(i) =

min{i,N−i1}⋃
j=max{0,i−(N−i2)}

l(i, j),

where the subsets l(i, j) are specified as follows:
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(i) For i ∈ {0, ..., i1 + i2 − 2} and j ∈ {max{0, i − (i1 − 1)}, ...,min{i2 − 1, i}}, the subset l(i, j) has the
form {(i, j, r) : r ∈ {i1 + i2 − i, ...,N − i}}.

(ii) For i ∈ {i1, ...,N − 1} and j ∈ {max{0, i − (N − i2)}, ...,min{i2 − 1, i − i1}}, the subset l(i, j) has the
form {(i, j, r) : r ∈ {i2 − j, ...,N − i}}.

(iii) For i ∈ {i2, ...,N − 1} and j ∈ {max{i2, i− (i1 − 1)}, ...,min{N − i1, i}}, the subset l(i, j) has the form
{(i, j, r) : r ∈ {i1 − (i − j), ...,N − i}}.

(iv) For i ∈ {i1 + i2, ...,N} and j ∈ {max{i2, i − (N − i2)}, ...,min{N − i1, i − i1}}, the subset l(i, j) has the
form {(i, j, r) : r ∈ {0, ...,N − i}}.

Although these specifications for l(i, j) result in a cumbersome procedure, general-purpose expressions
for Qi,i′ can be then derived in a similar manner to the case X(0) = (2, 1, 0) (Appendix B), and our
results in Section 3 can be conveniently adapted for any initial state X(0) = (i1 + i2, i2, 0) of X with
i1, i2 ∈ {1, ...,N − 2} and i1 + i2 ∈ {2, ...,N − 1}.

3. Extreme values during an outbreak

In this section, we focus on extreme values of the two-strain SIR-model with cross-immunity during
a global outbreak (Section 3.1), which is related to the LD-QBD process X and its absorption in states
of l(0), and during the outbreak corresponding to the type-k strain (Section 3.2), with k ∈ {1, 2}.

3.1. Global outbreaks

A global outbreak begins when the population is seen to contain one type-1 infective, one type-2
infective and N − 2 susceptible individuals. The disease spreads from the infectives to the susceptible
individuals at rates βk, with k ∈ {1, 2}, in such a way that new type-k infectives try to infect other
susceptibles and then recover in accordance to the model description in Section 2. The global outbreak
is said to end when no infectives remain.

Remark 2. In terms of X, the process X will reach states of level l(0), starting from the initial state
X(0) = (2, 1, 0), and the epidemic will always die out. Specifically, the random length T = inf{t ≥
0 : I(t) = 0} of a global outbreak can be seen as the time till absorption of X into the set l(0) of
absorbing states. Therefore, starting from numbers I1(0) = I2(0) = 1 of infectives and S (0) = N − 2 of
susceptibles, the length T of the outbreak can be thought of as a continuous phase-type (PH) random
variable of order L′ and representation (α,T), where the row vector α records the initial probabilities
of X on the class ∪N

i=1l(i) of transient states; see [18, Definition 2.3.1]. By using a lexicographical
ordering of states (Appendix B), it is seen that the 3(N − 1)th entry of α corresponds to the initial state
X(0) = (2, 1, 0) and consequently α = eL′(3(N − 1)), where ea(b) is a row vector of order a such that all
entries are equal to 0, except for the bth entry which is equal to 1.

Since the absorption into the set l(0) occurs with probability one, the matrix T is nonsingular and
the inverse −T−1 is a nonnegative matrix of expected sojourn times spent in transient states before
absorption; see [18, Theorem 2.4.3]. The following result allows us to evaluate the distribution of the
final epidemic size by using the matrix −T−1.
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Theorem 3.1. Under the assumption of initial numbers I1(0) = I2(0) = 1 of infectives and S (0) = N−2
of susceptibles, the mass function {P(r) = P(R(∞) = r|X(0) = (2, 1, 0)) : r ∈ {2, ...,N}} of the final
epidemic size is specified by

P(r) = α
(
−T−1

)
T0eT

N−1(r − 1), r ∈ {2, ...,N}. (3.1)

Proof. Since the process X is Markovian, it is enough to point out that the matrix T is stable (see [18,
Remark 2.4.5]) and the transition function

P(t) = (P(X(s + t) = (i′, j′, r′)|X(s) = (i, j, r)) : (i, j, r), (i′, j′, r′) ∈ S)

of the LD-QBD process X has the form

P(t) =

 IL(0) 0L(0)×L′(
IL′ − eTt

)
(−T−1)T0 eTt

 ,
where Ia denotes the identity matrix of order a. This implies that limt→∞ eTt = 0L′×L′ and that the
time-dependent probabilities P(r; t) = P(X(t) = (0, 0, r)|X(0) = (2, 1, 0)) are given by

P(r; t) = α
(
IL′ − eTt

)
(−T−1)T0eT

N−1(r − 1),

for integers r ∈ {2, ...,N}. Then, Eq. (3.1) is easily derived from the limit result P(r) = limt→∞ P(r; t).
�

In analyzing extreme values during a global outbreak, we define the random variable Xmax as the
maximum number of individuals simultaneously infected by the disease –regardless of the strain–
during the interval [0,T ), and we let Tmax denote the time to reach the random integer Xmax for the first
time; i.e., in terms of X it is clear that Xmax = max{I(t) : t ∈ [0,T )} corresponds to the maximum level
visited by the process X before its absorption into states of l(0), and Tmax = inf{t ≥ 0 : I(t) = Xmax} is
a suitably defined first-passage time.

In order to characterize the joint distribution of (Xmax,Tmax), we proceed in two steps. We first derive
the marginal distribution of Xmax in terms of the probability mass function {P(2,1,0)(x) = P(Xmax =

x|X(0) = (2, 1, 0)) : x ∈ {2, ...,N}}∗; and we then determine expressions for the restricted Laplace-
Stieltjes transforms

ϕ(2,1,0)(θ; x) = E
[
e−θTmax1{Xmax = x} |X(0) = (2, 1, 0)

]
,

for integers x ∈ {2, ...,N} and Re(θ) ≥ 0. To that end, we introduce the notation P(i, j,r)(x) and ϕ(i, j,r)(θ; x),
for states (i, j, r) ∈ S \ l(0) and integers x ∈ {i, i + 1, ...,N}, by adapting the definition of P(2,1,0)(x) and
ϕ(2,1,0)(θ; x) to an arbitrary time t. More concretely, P(i, j,r)(x) and ϕ(i, j,r)(θ; x) are linked, respectively, to
the maximum number of individuals simultaneously infected by the disease during the residual global
outbreak, and the time to reach this number for the first time, provided that (i, j, r) is the current state
of X at time t; note that P(i, j,r)(x) and ϕ(i, j,r)(θ; x) depend on the event {X(t) = (i, j, r)} only in terms of
(i, j, r), since the LD-QBD process X is time-homogeneous.

∗It is clear that P(2,1,0)(x) = 0 if x ∈ {0, 1}, provided that X(0) = (2, 1, 0).
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For the initial state X(0) = (2, 1, 0), we express

P(2,1,0)(x) = Fmax(x; (2, 1, 0)) − (1 − δ2,x)Fmax(x − 1; (2, 1, 0)),

for x ∈ {2, ...,N}, where Fmax(x; (2, 1, 0)) = P(Xmax ≤ x|X(0) = (2, 1, 0)), and we observe that, for a
fixed integer x ∈ {2, ...,N}, the function Fmax(x; (2, 1, 0)) is equivalent to the probability that, starting
from state (2, 1, 0), the LD-QBD process X reaches the level l(0) of absorbing states, but avoiding
visits to states of the sub-class ∪N

i=x+1l(i) of transient states. This probability is related to an absorbing
LD-QBD process X(x) defined on the state space S(x) = {0} ∪

⋃x
i=1 l(i) ∪ {x + 1}, where 0 and x + 1

are absorbing states and states in ∪x
i=1l(i) are assumed to be transient. To be concrete, the infinitesimal

generator of the auxiliary process X(x) has the structured form

Q(x) =


0 0T

L(x)
0

t0(x) T(x) tx+1(x)
0 0T

L(x)
0

 ,
where L(x) is the cardinality of the sub-class ∪x

i=1l(i) (i.e., L(x) = 6−1x(3N(x + 3)− (2x2 + 3x + 7))), the
column vectors t0(x) and tx+1(x) are given by

t0(x) =


γ11N−1

γ21N−1

0L(x)−L(1)

 ,
tx+1(x) =

(
0L(x−1)

Qx,x+11L(x+1)

)
,

and the column vectors 1a and 0a are the unit vector and the null vector of order a, respectively. The
sub-matrix T(x) is block-tridiagonal and has the following form:

T(x) =



Q1,1 Q1,2

Q2,1 Q2,2 Q2,3
. . .

. . .
. . .

Qx−1,x−2 Qx−1,x−1 Qx−1,x

Qx,x−1 Qx,x


. (3.2)

Next we state two results allowing us to derive the marginal distribution of Xmax in a recursive
manner; their proofs mostly repeat arguments of [25, Section 2.1], and they are thus omitted.

Theorem 3.2. Under the assumption of initial numbers I1(0) = I2(0) = 1 of infectives and S (0) = N−2
of susceptibles, the probability distribution function of Xmax is given by Fmax(x; (2, 1, 0)) = eL(x)(3(N −
1))(−T−1(x))t0(x) if x ∈ {2, ...,N}, and 0 if x ∈ {0, 1}.

Algorithm 3.3. Computation of the mass function {P(2,1,0)(x) : x ∈ {2, ...,N}}.

Step 0: x := 2;
p(x) := −T−1(x)t0(x);
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Fmax(x; (2, 1, 0)) := eT
L(x)

(3(N − 1))p(x);
P(2,1,0)(x) := Fmax(x; (2, 1, 0)).

Step 1: While x < N,
x := x + 1;

A1,2(x) :=
(

0L(x−2)×L(x)
Qx−1,x

)
;

A2,1(x) :=
(
0L(x)×L(x−2),Qx,x−1

)
;

B2,2(x) :=
(
−Qx,x − A2,1(x)(−T−1(x − 1))A1,2(x)

)−1
;

B2,1(x) := B2,2(x)A2,1(x)(−T−1(x − 1));
B1,2(x) := −T−1(x − 1)A1,2(x)B2,2(x);
B1,1(x) := −T−1(x − 1)(IL(x−1) + A1,2(x)B2,1(x));

−T−1(x) :=
(

B1,1(x) B1,2(x)
B2,1(x) B2,2(x)

)
;

p(x) := −T−1(x)t0(x);
Fmax(x; (2, 1, 0)) := eT

L(x)
(3(N − 1))p(x);

P(2,1,0)(x) := Fmax(x; (2, 1, 0)) − Fmax(x − 1; (2, 1, 0)).

The perceptive reader may notice that there is more information in Algorithm 3.3. For instance, we
have that, for a fixed integer x ∈ {2, ...,N}, the matrix −T−1(x) records expected total times spent in
states of ∪x

i=1l(i) until absorption, and the entries of the column vector −T−1(x)t0(x) contain probabili-
ties that the absorption into state 0 occurs in a finite time; note that these properties are established by
observing that the matrix T(x) is stable and

∫ ∞
0

eT(x)tt0(x)dt = −T−1(x)t0(x). This means that, in the
setting of a residual global outbreak, the column vector

−T−1(x)t0(x) − (1 − δx,i)(−T−1(x − 1))t0(x − 1)

consists of the probabilities P(i, j,r)(x), for current states (i, j, r) ∈ S \ l(0) and integers x ∈ {i, ...,N}.
Moreover, taking into account that the last iteration in Step 1 yields −T−1(N) (i.e., −T−1), the expected
length of a global outbreak and the final size of the epidemic can be computed by adding an additional
step, as follows:

Step 2: E[T |X(0) = (2, 1, 0)] := eT
L(x)

(3(N − 1))(−T−1(x))1L(x);
r := 1;
while r < N,

r := r + 1;
P(r) := eT

L(x)
(3(N − 1))(−T−1(x))T0eT

N−1(r − 1).

Another algorithm similar to Algorithm 3.3 for the probability distribution function
{Fmax(x; (2, 1, 0)) : x ∈ {2, ...,N}} can be derived by using an alternative labeling of states; for
details, see Appendix C.

In order to characterize the joint distribution of (Xmax,Tmax), we notice that

P(Xmax = x,Tmax = 0|X(0) = (2, 1, 0)) =

{
P(2,1,0)(2), if x = 2,
0, if x ∈ {3, ...,N},
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P(Xmax = x,Tmax > 0|X(0) = (2, 1, 0)) =

{
0, if x = 2,
P(2,1,0)(x), if x ∈ {3, ...,N}.

It is therefore seen that the marginal distribution of Tmax has a discrete contribution on {Tmax = 0} and
a continuous contribution on {Tmax > 0}, which are linked to the sets {Xmax = 2} and {Xmax = x}, for
x ∈ {3, ...,N}, of sample paths, respectively; in particular, the former is derived from Algorithm 3.3,
and the latter shall be characterized (Algorithm 3.4) in terms of restricted Laplace-Stieltjes transforms
ϕ(2,1,0)(θ; x).

For integers x ∈ {3, ...,N}, the probability law of Tmax on {Xmax = x} is defined on {Tmax > 0} and is
related to those sample paths of the LD-QBD process X satisfying that the first visit to states of level
l(x) occurs before the first access to l(0) in such a way that, after the first visit to l(x), the process X
does not leave the set ∪x

i=1l(i) until its absorption into states of l(0). Therefore, by conditioning on each
possible state (x, j, r) ∈ l(x) visited by X at time t = U(x) of the first passage, we express

ϕ(2,1,0)(θ; x) =
∑

(x, j,r)∈l(x)

φ(2,1,0)(θ; (x, j, r))P(x, j,r)(x), (3.3)

for Re(θ) ≥ 0 and integers x ∈ {3, ...,N}, where φ(2,1,0)(θ; (x, j, r)) is the restricted Laplace-Stieltjes
transform of the first-passage time U(x) to level l(x) on the set {X(U(x)) = (x, j, r)} of sample paths,
provided that X(0) = (2, 1, 0).

In evaluating ϕ(2,1,0)(θ; x) in Eq. (3.3), we define –similarly to φ(2,1,0)(θ; (x, j, r))– the restricted
Laplace-Stieltjes transforms φ(i′, j′,r′)(θ; (x, j, r)) by replacing the initial state (2, 1, 0) by the current state
(i′, j′, r′) visited by the process X at an arbitrary time t, and we condition on the first transition of X
occurring from the current state (i′, j′, r′). Starting at (i′, j′, r′), the first state visited by X may be any
accessible state of l(i′ − 1) ∪ l(i′ + 1), whence we write down

(i) For current states (i′, j′, r′) ∈ ∪x−2
i=1 l(i),

φ(i′, j′,r′)(θ; (x, j, r)) =
(i′ − j′)(N − i′ − r′)β1

θ + q(i′, j′,r′)
φ(i′+1, j′,r′)(θ; (x, j, r))

+
j′(N − i′ − r′)β2

θ + q(i′, j′,r′)
φ(i′+1, j′+1,r′)(θ; (x, j, r))

+(1 − δ1,i′)
(i′ − j′)γ1

θ + q(i′, j′,r′)
φ(i′−1, j′,r′+1)(θ; (x, j, r))

+(1 − δ1,i′)
j′γ2

θ + q(i′, j′,r′)
φ(i′−1, j′−1,r′+1)(θ; (x, j, r)). (3.4)

(iii) For current states (x − 1, j′, r′) ∈ l(x − 1),

φ(x−1, j′,r′)(θ; (x, j, r)) =
(x − 1 − j′)(N − x + 1 − r′)β1

θ + q(x−1, j′,r′)
δ( j′,r′),( j,r)

+
j′(N − x + 1 − r′)β2

θ + q(x−1, j′,r′)
δ( j′+1,r′),( j,r)

+
(x − 1 − j′)γ1

θ + q(x−1, j′,r′)
φ(x−2, j′,r′+1)(θ; (x, j, r))

Mathematical Biosciences and Engineering Volume 16, Issue 4, 1992–2022



2001

+
j′γ2

θ + q(x−1, j′,r′)
φ(x−2, j′−1,r′+1)(θ; (x, j, r)). (3.5)

By multiplying (3.4) and (3.5) by (θ + q(i′, j′,r′))P(x, j,r)(x), for states (i′, j′, r′) ∈ ∪x−2
i=1 l(i)) and (θ +

q(x−1, j′,r′))P(x, j,r)(x), for states (x−1, j′, r′) ∈ l(x−1), respectively, and summing on states (x, j, r) ∈ l(x),
we derive the matrix equality(

θIL(i′) −Qi′,i′
)
ϕi′(θ; x) = (1 − δ1,i′)Qi′,i′−1ϕi′−1(θ; x)

+(1 − δi′,x−1)Qi′,i′+1ϕi′+1(θ; x) + δi′,x−1b(x), (3.6)

for integers x ∈ {3, ...,N} and column vectors ϕi′(θ; x) of restricted Laplace-Stieltjes transforms
ϕ(i′, j′,r′)(θ; x) with states (i′, j′, r′) ∈ l(i′) and i′ ∈ {1, ..., x − 1}. The column vector b(x) consists of
sub-vectors b j′(x), for j′ ∈ {0, ..., x − 1}, where

b0(x) =



(x − 1)(N − x)β1P(x,0,1)(x)
(x − 1)(N − x − 1)β1P(x,0,2)(x)

...

(x − 1)β1P(x,0,N−x)(x)
0


,

b j′(x) =



(x − 1 − j′)(N − x + 1)β1P(x, j′,0)(x) + j′(N − x + 1)β2P(x, j′+1,0)(x)
(x − 1 − j′)(N − x)β1P(x, j′,1)(x) + j′(N − x)β2P(x, j′+1,1)(x)

...

(x − 1 − j′)β1P(x, j′,N−x)(x) + j′β2P(x, j′+1,N−x)(x)
0


, j′ ∈ {1, ..., x − 2},

bx−1(x) =



(x − 1)(N − x)β2P(x,x,1)(x)
(x − 1)(N − x − 1)β2P(x,x,2)(x)

...

(x − 1)β2P(x,x,N−x)(x)
0


.

Note that, in the case x = N, these expressions become b j′(N) = 0, for j′ ∈ {0,N − 1}, and

b j′(N) =

(
(N − 1 − j′)β1P(N, j′,0)(N) + j′β2P(N, j′+1,0)(x)

0

)
,

for j′ ∈ {1, ...,N − 2}. Then, by taking derivatives in Eq. (3.6) with respect to θ at point θ = 0, and
noting that the column vector

m(n)
i (x) = (−1)n dnϕi(θ; x)

dθn

∣∣∣∣∣
θ=0

contains the nth moment of Tmax on the set {Xmax = x} of sample paths (i.e., E[T n
max1{Xmax = x}|X(0) =

(i, j, r)] for states (i, j, r) ∈ l(i) with i ∈ {1, ..., x − 1}, and integers x ∈ {3, ...,N}), we may characterize
the moments of the random time Tmax on {Xmax = x} as the unique solution to the system of linear
equations

− nm(n−1)
i (x) −Qi,im(n)

i (x) = (1 − δ1,i)Qi,i−1m(n)
i−1(x) + (1 − δi,x−1)Qi,i+1m(n)

i+1(x), (3.7)
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for i ∈ {1, ..., x − 1} and n ≥ 1.
This results in Algorithms 3.4 and 3.5, from which the column vectors ϕi(θ; x) and m(n)

i (x) can be
computed in an efficient and unified manner by applying block-Gaussian elimination to Eqs. (3.6)-
(3.7), respectively.

Algorithm 3.4. Computation of the column vectors ϕi(θ; x) with i ∈ {1, ..., x − 1}, for a fixed integer
x ∈ {3, ...,N} and Re(θ) ≥ 0.

Step 0: H1(θ) := (θIL(1) −Q1,1)−1Q1,2;
from i = 2 to x − 2,

Hi(θ) := (θIL(i) −Qi,i −Qi,i−1Hi−1(θ))−1Qi,i+1;
Hx−1(θ) := (θIL(x−1) −Qx−1,x−1 −Qx−1,x−2Hx−2(θ))−1b(x).

Step 1: ϕx−1(θ; x) := Hx−1(θ);
from i = x − 2 to 1,

ϕi(θ; x) := Hi(θ)ϕi+1(θ; x).

Algorithm 3.5. Computation of the column vectors m(n)
i (x), with i ∈ {1, ..., x − 1}, for fixed integers

x ∈ {3, ...,N} and n ≥ 1.

Step 0: H1 := (−Q1,1)−1Q1,2;
h

(n)
1 := (−Q1,1)−1nm(n−1)

1 (x);
from i = 2 to x − 2,

Hi := (−Qi,i −Qi,i−1Hi−1)−1Qi,i+1;
h

(n)
i := (−Qi,i −Qi,i−1Hi−1)−1(Qi,i−1h

(n)
i−1 + nm(n−1)

i (x));

h
(n)
x−1 := (−Qx−1,x−1 −Qx−1,x−2Hx−2)−1(Qx−1,x−2h

(n)
x−2 + nm(n−1)

x−1 (x)).

Step 1: m(n)
x−1(x) := h

(n)
x−1;

from i = x − 2 to 1,
m(n)

i (x) := Him(n)
i+1(x) + h

(n)
i .

It should be noted that, in Algorithm 3.5, sub-vectors m(0)
i (x) = ϕi(θ; x)|θ=0 containing probabilities

P(i, j,r)(x), for states (i, j, r) ∈ l(i), are evaluated as a prerequisite for computing m(n)
i (x) in terms of

the (n − 1)th restricted moments of Tmax on the set {Xmax = x} of sample paths. Therefore, a joint
implementation of Algorithms 3.4 and 3.5 leads us to the following expression for the expectation of
the random time Tmax to reach the maximum number Xmax for the first time:

E
[
T n

max |X(0) = (2, 1, 0)
]

=

N∑
x=3

(
m(n)

2 (x)
)

N−1
, n ≥ 1.

3.2. Type-k outbreaks

Provided that initially the population contains one type-1 infective, one type-2 infective and N − 2
susceptibles, a type-k outbreak is said to end when no type-k infectives remain, for k ∈ {1, 2}. Extreme
values in a type-k outbreak are then related to the length T (k) = inf{t ≥ 0 : Ik(t) = 0} of the type-k
outbreak, the maximum number Xmax(k) = max{Ik(t) : t ∈ [0,T (k))} of individuals simultaneously
type-k infected during the type-k outbreak, and the random time Tmax(k) = inf{t ≥ 0 : Ik(t) = Xmax(k)}
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to reach the maximum number Xmax(k) for the first time. It is worth noting that, depending on how
both strains of the disease interact during the outbreak, the end of a global outbreak might correspond
to either the end of a type-k outbreak or the end of a type-k′ outbreak, for k′ , k. Thus, the survival
of the strain of type k′ amounts to the event {T (k) < T (k′)} –equivalently, {T = T (k′)}– in such a way
that, during the residual interval [T (k),T ), the surviving population behaves as the standard SIR-model
[16, 26] with initial numbers Ik′(T (k)) of infectives and S (T (k)) of susceptible individuals.

Without any loss of generality, we from now on consider the case k = 2 and observe that, in terms
of X, the length T (2) of a type-2 outbreak is equivalent to the random time to reach states of the
subset ∪N−1

i=0 l(i, 0). The analytical treatment of T (2) and (Xmax(2),Tmax(2)) can be therefore reduced to
Theorems 3.1-3.2 and Algorithms 3.3-3.5 by using a suitably chosen labeling of states. More con-
cretely, we may use the LD-QBD process Y = {Y(t) : t ≥ 0} with Y(t) = (J(t), I(t),R(t)) instead
of X(t) = (I(t), J(t),R(t)), which is defined on the state space S∗ = ∪N−1

j=0 l∗( j), where levels are now
specified by

l∗( j) =

N−δ0, j⋃
i= j

l∗( j, i),

with l∗( j, 0) = {( j, j, r) : r ∈ {1 + δ0, j, ...,N − j}} and l∗( j, i) = {( j, i, r) : r ∈ {δ0, j, ...,N − i}}, for
i ∈ { j + 1, ...,N − δ0, j}; note that absorbing states of X are now states within the sub-level l∗(0, 0). The
associated infinitesimal generator Q∗ of Y has the structured form

Q∗ =

(
Q∗0,0 0K(0)×K′

T∗0 T∗

)
,

where K( j) and K′ denote the respective cardinalities of l∗( j) and S\l∗(0) (i.e., K( j) = 2−1(N−1)(N+2)
if j = 0, and 2−1(N − j)(N − j + 3) if j ∈ {1, ...,N − 1}, and K′ = 6−1N(N − 1)(N + 4)) and

T∗0 =

(
Q∗1,0

0(K′−K(1))×K(0)

)
,

T∗ =



Q∗1,1 Q∗1,2
Q∗2,1 Q∗2,2 Q∗2,3

. . .
. . .

. . .

Q∗N−2,N−3 Q∗N−2,N−2 Q∗N−2,N−1
Q∗N−1,N−2 Q∗N−1,N−1


.

Sub-matrices Q∗j, j′ record transition rates related to jumps of the process Y from states of level l∗( j) to
states in l∗( j′), with j′ ∈ { j − 1, j, j + 1}, and diagonal entries of Q∗j, j are given by −q(i, j,r), for states
( j, i, r) ∈ l∗( j) with j ∈ {0, ...,N − 1}; expressions for these sub-matrices are readily specified from
Section 2, and they are thus omitted.

It is important to note that, provided that I1(0) = I2(0) = 1 and S (0) = N − 2 are the initial
conditions, the length T (2) of a type-2 outbreak is a PH random variable of order K′ and representation
(α∗,T∗) with the vector α∗ = eK′(2) of initial probabilities. Moreover, by adapting our arguments in
Section 3.1 to the LD-QBD process Y, it is seen that the joint distribution of (Xmax(2),Tmax(2)) can be
characterized by means of the conditional probabilities (Algorithm D.1)

P∗(1,2,0)(x) = P(Xmax(2) = x|Y(0) = (1, 2, 0)),
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Table 1. Expected values E[T ], E[T (AR)] and E[T (AS )] versus c, for scenarios 1-3.

c Expected length Scenario 1 Scenario 2 Scenario 3
of the outbreaks

0.25 E[T ] 26.27371 34.76114 41.88924
E[T (AR)] 24.01639 32.79190 40.13705
E[T (AS )] 8.50971 9.58226 10.19692

0.5 E[T ] 24.61975 32.56713 39.02344
E[T (AR)] 21.51826 29.75937 36.47506
E[T (AS )] 9.26060 10.51253 11.22971

0.75 E[T ] 20.34260 27.87451 33.90622
E[T (AR)] 16.06746 23.78456 30.07184
E[T (AS )] 9.90273 11.32948 12.15068

(equivalently, F∗max(x; (1, 2, 0)) = P(Xmax(2) ≤ x|Y(0) = (1, 2, 0))) and the restricted Laplace-Stieltjes
transforms (Algorithms D.2-D.3)

ϕ∗(1,2,0)(θ; x) = E
[
e−θTmax(2)1{Xmax(2) = x} |Y(0) = (1, 2, 0)

]
,

for integers x ∈ {1, ...,N − 1} and Re(θ) ≥ 0. For the sake of brevity, we present Algorithms D.1-D.3 in
Appendix D, but with no detailed proof.

4. Numerical experiments and discussion

Recently, Cen et al. [27], and Lipsitch et al. [7] have discussed a deterministic model for the
spread of two strains of a single bacterial species in a hospital ward; see Appendix A. These strains
are either antibiotic-sensitive (AS) or antibiotic-resistant (AR). We propose here a stochastic version of
this model with total cross-immunity by assuming that the infection of a patient by one bacterial strain
provides immunity against the other. Initially the hospital ward accommodates one infective colonized
by the AS bacteria, one infective colonized by the AR bacteria and N − 2 susceptible patients. It is
assumed that patients cannot be discharged from the hospital ward and, consequently, the entire group
of N patients remains under study during the outbreak. Two antimicrobial agents –referred as drug
A and drug B– are routinely provided to patients in the ward, irrespectively of these patients being or
not infected by bacteria. Drug A is assumed to be effective against the AS bacteria with per-capita
treatment rate τA > 0, and drug B is effective against both bacterial strains with per-capita treatment
rate τB > 0.

We let S (t), I1(t), I2(t) and R(t) be the respective numbers of susceptible patients, infectives colo-
nized by the AS bacterial strain, infectives colonized by the AR bacterial strain and recovered patients
in the hospital ward at time t. Infections of type 1 and of type 2 (Section 2) are therefore associated
with the AS and AR bacterial strains, respectively, and the resulting two-strain SIR-model is specified
by the infection rates β1 = N−1β and β2 = (1 − c)N−1β, and the recovery rates γ1 = τA + τB + γ0 and
γ2 = τB +γ0, where β > 0 is the per-capita primary transmission rate, γ0 > 0 is the per-capita clearance
rate of the bacteria and c ∈ [0, 1) is the fitness cost of a bacterial strain resistant to drug A. It should be
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Table 2. Expected values E[R(∞)], E[R(T (AR))] and E[R(T (AS ))] versus c, for scenarios
1-3.

c Expected number Scenario 1 Scenario 2 Scenario 3
of recovered patients

0.25 E[R(∞)] 18.22813 18.91643 19.19926
E[R(T (AR))] 15.91515 17.03942 17.59343
E[R(T (AS ))] 10.46318 10.76494 10.81756

0.5 E[R(∞)] 17.11785 18.22629 18.69461
E[R(T (AR))] 13.97200 15.60096 16.41606
E[R(T (AS ))] 11.00747 11.54376 11.74507

0.75 E[R(∞)] 14.62776 16.29528 17.17700
E[R(T (AR))] 10.27924 12.49899 13.79785
E[R(T (AS ))] 11.49554 12.24802 12.59538

noted that clinical and epidemiological research has demonstrated that antibiotic resistance often car-
ries a fitness cost, expressed in terms of reduced competitive ability or virulence, and translated here
into the reduced growth rate (1− c)β1 for resistant bacteria. This cost of resistance is highly variable as
it is thought to be influenced by a wide variety of factors such as basic cellular functions, biochemical
effects of specific resistance mutations and the underlying genetic mechanism of resistance; for related
work, see [28] and references therein. Because we do not deal with observations from strains of a
particular bacteria, we assume values c ∈ {0.25, 0.5, 0.75} in our numerical results to predict generic
properties of the model.

Our numerical experiments (Tables 1-3, Figures 2-10) are linked to a hospital ward with N =

20 patients, and values β−1 = 1 day, τ−1
A = 5 days, γ−1

0 = 45 days, and three scenarios which are
defined from the choices τ−1

B = 10 days (scenario 1), 15 days (scenario 2) and 20 days (scenario 3).
Note that these values correspond to realistic selections in Lipsitch et al. [7, Table 1, Figure 2]. For
easy of presentation, we use here the notation T (AS ) and T (AR) instead of T (1) and T (2), and we
replace (Xmax(1),Tmax(1)) and (Xmax(2),Tmax(2)) by (Xmax(AS ),Tmax(AS )) and (Xmax(AR),Tmax(AR)),
respectively.

In Tables 1-2, we list values of the expected length E[T ] of a global outbreak and the expectation
E[R(∞)] of the final size distribution, as well as their counterparts E[T (AR)] and E[T (AS )] for the AR
and AS bacterial strains, and the mean numbers E[R(T (AR))] and E[R(T (AS ))] of recovered patients
at the end of AR and AS bacteria outbreaks. Figures 2-4 plot the mass functions of the final size R(∞)
of the epidemic, and of the numbers R(T (AR)) and R(T (AS )). Based on Table 1, we may classify sce-
narios 1-3 and values c ∈ {0.25, 0.5, 0.75} of the fitness cost according to the degree of co-circulation
of the AS and AR bacterial strains during the outbreak. To be concrete, we may estimate the degree
of co-circulation, relative to the resistant strain in terms of the ratio (E[T (AR)])−1E[T (AS )], in such a
way that scenarios 2 and 3 with c = 0.25 are related to a low degree (i.e., ratio ≤ 0.30), scenario 1 with
c = 0.75 is associated with a high degree (i.e., ratio > 0.50), and other selections in our examples yield
medium degrees of co-circulation of strains (i.e., 0.30 < ratio ≤ 0.50); more particularly, scenario 1
with c = 0.75 (ratio = 0.61632) implies a coexistence of both strains more lasting in time, whereas
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Figure 2. The mass function P(r) of the final epidemic size (vertical axis) as a function of r
with r ∈ {2, ...,N} (horizontal axis), for scenarios 1-3 and values c ∈ {0.25, 0.5, 0.75} of the
fitness cost.
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Figure 3. The mass function P(R(T (AR)) = r|X(0) = (2, 1, 0)) of the number of recovered
patients at the end of an AR bacteria outbreak (vertical axis) as a function of r with r ∈
{1, ...,N} (horizontal axis), for scenarios 1-3 and values c ∈ {0.25, 0.5, 0.75} of the fitness
cost.
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Figure 4. The mass function P(R(T (AS )) = r|X(0) = (2, 1, 0)) of the number of recovered
patients at the end of an AS bacteria outbreak (vertical axis) as a function of r with r ∈
{1, ...,N} (horizontal axis), for scenarios 1-3 and values c ∈ {0.25, 0.5, 0.75} of the fitness
cost.

scenario 3 with c = 0.25 (ratio = 0.25405) leads to an early extinction of sensitive bacteria and, conse-
quently, a large residual outbreak of the AR bacterial strain. It is also observed that, as intuition tells us,
the mean length E[T ] of a global outbreak (respectively, the expectation E[R(∞)] of the final epidemic
size) and the mean lengths E[T (AR)] and E[T (AS )] of AR and AS bacteria outbreaks (respectively, the
mean numbers E[R(T (AR))] and E[R(T (AS ))] of recovered patients at the end of the AR and AS bacte-
ria outbreaks) increase when the effectiveness of drug B decreases (i.e., with increasing values of τ−1

B )
since drug B affects both recovery rates γ1 and γ2. On the other hand, increasing values of the fitness
cost c lead to decreasing mean lengths E[T ] and E[T (AR)], and decreasing mean numbers E[R(∞)]
and E[R(T (AR))], whereas E[T (AS )] and E[R(T (AS ))] increase with increasing values of c. Indeed,
increasing values of c can lead to smaller expected numbers E[R(T (AR))] of recoveries, in comparison
with its sensitive counterpart over larger outbreaks; more concretely, it is observed in scenario 1 (Tables
1-2) that E[R(T (AR))] < E[R(T (AS ))] whereas E[T (AR)] > E[T (AS )] in the case c = 0.75, and values
c ∈ {0.25, 0.5} yield the inequalities E[R(T (AR))] > E[R(T (AS ))] and E[T (AR)] > E[T (AS )]. This
apparently contradictory behavior relates to the non-linear form of the infection rates (i.e., I1(t)S (t)β1

and I2(t)S (t)β2) and can be explained by noting that higher values of the fitness cost c result in smaller
values of the rate β2 governing infections by the AR bacterial strain. This implies that the number I2(t)
of patients colonized by the AR bacterial strain decreases and, consequently, it is seen that the number
I1(t)(N − I1(t)− I2(t)−R(t)) of contact processes generating new patients colonized by the AS bacterial
strain increases. Thus, a longer AS bacterial outbreak is expected (Table 1) when the fitness cost c is
large enough, which is closely related to the fact that scenario 1 with c = 0.75 yields the highest degree
of coexistence of strains in our examples; as a result, the number E[R(T (AS ))] of recovered patients at
the end of an AS bacteria outbreak increases (Table 2).

Figure 2 allows us to study the severity of the epidemic in terms of the mass function of the final
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Table 3. Expected values E[Tmax], E[Tmax(AR)] and E[Tmax(AS )] versus c, for scenarios 1-3.

c Expected time to reach Scenario 1 Scenario 2 Scenario 3
maximum numbers of infectives

0.25 E[Tmax] 5.13457 5.48122 5.65083
E[Tmax(AR)] 4.86172 5.39012 5.69173
E[Tmax(AS )] 2.36220 2.52703 2.60989

0.5 E[Tmax] 5.71485 6.33872 6.62726
E[Tmax(AR)] 5.10333 5.91361 6.35878
E[Tmax(AS )] 2.70987 2.93823 3.05512

0.75 E[Tmax] 5.45941 6.88858 7.72598
E[Tmax(AR)] 4.20225 5.69292 6.62775
E[Tmax(AS )] 2.99747 3.28760 3.43865

epidemic size R(∞). It is observed that the most likely event to occur during the global outbreak is
the colonization by the bacteria of all patients, regardless of the bacterial strain. More particularly, this
occurs with a significant probability which increases as the fitness cost c and/or the effectiveness of
drug B decrease; in our examples, the maximum probability of this event corresponds to scenario 3
and the selection c = 0.25, and is greater than 0.8. It is also seen (Figure 3) that similar remarks can
be made for the mass function of the random number R(T (AR)) of recovered patients at the extinction
time T (AR) of the AR bacterial strain. Regarding to the number R(T (AS )) of recovered patients at the
end of an AS bacterial outbreak, the most likely events (Figure 4) amount to either the extinction of the
AS bacterial strain before a patient is newly colonized by the AS bacterial strain, or the colonization
of almost all patients present in the hospital ward.

In Table 3, the focus is on the mean times E[Tmax], E[Tmax(AR)] and E[Tmax(AS )] to reach the max-
imum numbers Xmax, Xmax(AR) and Xmax(AS ) of patients simultaneously colonized by the bacteria, and
by the AR and AS bacterial strains, respectively; in Figures 5-7, we plot the mass functions of the
maximum numbers Xmax, Xmax(AR) and Xmax(AS ). Similarly to Tables 1-2, Table 3 shows that E[Tmax],
E[Tmax(AR)] and E[Tmax(AS )] increase when the effectiveness of drug B decreases. It is however seen
that E[Tmax], E[Tmax(AR)] and E[Tmax(AS )] do not have a monotone behavior as a function of the
fitness cost c, which is closely related to the non-linear effect of the contact rates and the bimodal dis-
tribution of Xmax, Xmax(AR) and Xmax(AS ). It is observed that the marginal distribution of Xmax (Figure
5) is a bimodal distribution with two peaks (modes) of different heights. The first peak amounts to the
smallest value of Xmax (i.e., the event {Xmax = 2}), regardless of the scenario and magnitude of c, and its
height (i.e., the probability P(2,1,0)(2)) becomes higher with increasing values of the fitness cost c, and
decreases when the effectiveness of drug B decreases. The second peak corresponds to an intermediate
integer x′ ∈ {2, ...,N}, which increases with increasing values of τ−1

B and, on the contrary, decreases
with increasing values of c, whereas smaller heights (i.e., P(2,1,0)(x′)) are related to smaller values of
τ−1

B and bigger values of c (i.e., the choice (c, τ−1
B ) = (0.75, 10) in Figure 5). The maximum numbers

Xmax(AR) and Xmax(AS ) have mostly bimodal distributions (Figures 6-7), with a single exception in the
case of Xmax(AR) for the pair (c, τ−1

B ) = (0.75, 10). Unlike the first peak of Xmax which has a very mod-
erate height, the first peak in the mass functions of Xmax(AR) and Xmax(AS ) is notably more significant
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Figure 5. The mass function P(2,1,0)(x) of the maximum number of patients simultaneously
colonized by the bacteria during a global outbreak (vertical axis) as a function of x with
x ∈ {2, ...,N} (horizontal axis), for scenarios 1-3 and values c ∈ {0.25, 0.5, 0.75} of the fitness
cost.
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Figure 6. The mass function P(Xmax(AR) = x|X(0) = (2, 1, 0)) of the maximum number of
patients simultaneously colonized by the AR bacterial strain during an AR bacteria outbreak
(vertical axis) as a function of x with x ∈ {1, ...,N −1} (horizontal axis), for scenarios 1-3 and
values c ∈ {0.25, 0.5, 0.75} of the fitness cost.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 1992–2022



2010

x

x

x

x

x x x

x

x

Figure 7. The mass function P(Xmax(AS ) = x|X(0) = (2, 1, 0)) of the maximum number of
patients simultaneously colonized by the AR bacterial strain during an AS bacteria outbreak
(vertical axis) as a function of x with x ∈ {1, ...,N −1} (horizontal axis), for scenarios 1-3 and
values c ∈ {0.25, 0.5, 0.75} of the fitness cost.

than the second one.
Figure 8 (respectively, Figures 9-10) illustrates the joint distribution of the random vector

(Xmax,Tmax) (respectively, (Xmax(AR),Tmax(AR)) and (Xmax(AS ),Tmax(AS ))) in terms of the restricted
expectations E[Tmax1{Xmax = x}|X(0) = (2, 1, 0)], for integers x ∈ {2, ...,N} (respectively,
E[Tmax(AR)1{Xmax(AR) = x}|X(0) = (2, 1, 0)] and E[Tmax(AS )1{Xmax(AS ) = x}|X(0) = (2, 1, 0)], for in-
tegers x ∈ {1, ...,N −1}). Looking at E[Tmax1{Xmax = x}|X(0) = (2, 1, 0)] and E[Tmax(AS )1{Xmax(AS ) =

x}|X(0) = (2, 1, 0)] as a function of x, it is seen that they have a single peak at intermediate integers
x0 ∈ {2, ...,N} and xAS

0 ∈ {1, ...,N − 1}, which increase with increasing values of τ−1
B and decrease

with increasing values of c. Then, it is observed that increasing values of τ−1
B increase the maximum

expectations E[Tmax1{Xmax = x0}|X(0) = (2, 1, 0)] and E[Tmax(AS )1{Xmax(AS ) = xAS
0 }|X(0) = (2, 1, 0)].

For the AS bacterial strain, the maximum expectation E[Tmax(AS )1{Xmax(AS ) = xAS
0 }|X(0) = (2, 1, 0)]

is always seen to be an increasing function of c; with the exception of the pair (c, τ−1
B ) = (0.75, 10), this

is also observed for E[Tmax1{Xmax = x0}|X(0) = (2, 1, 0)] in our examples. For the AR bacterial strain,
the behavior of E[Tmax(AR)1{Xmax(AR) = x}|X(0) = (2, 1, 0)] is strongly influenced by the existence of
either a single peak (for smaller values of c) or two peaks (for moderate and higher values of c).

For the sake of completeness, Table 4 lists the maximum numbers x∗max, x∗max(AR) and x∗max(AS ) of
patients colonized by bacteria during the outbreak, and the times t∗max, t∗max(AR) and t∗max(AS ) to reach
these numbers in the deterministic model (Appendix A). In agreement with the stochastic results, the
maximum numbers x∗max, x∗max(AR) and x∗max(AS ) of colonized patients, as well as their respective times
t∗max, t∗max(AR) and t∗max(AS ), increase when the effectiveness of drug B decreases, for a fixed value of
c. Identical monotone behavior as a function of c is observed for x∗max(AS ) and t∗max(AS ), and their
stochastic counterparts E[Xmax(AS )] and E[Tmax(AS )], regardless of the effectiveness of drug B. On
the contrary, the dynamics of x∗max, t∗max, x∗max(AR) and t∗max(AR) with increasing values of c do not agree
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Figure 8. Value E[Tmax1{Xmax = x}|X(0) = (2, 1, 0)] (vertical axis) as a function of x with
x ∈ {2, ...,N} (horizontal axis), for scenarios 1-3 and values c ∈ {0.25, 0.5, 0.75} of the fitness
cost.
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Figure 9. Value E[Tmax(AR)1{Xmax(AR) = x}|X(0) = (2, 1, 0)] (vertical axis) as a function of
x with x ∈ {1, ...,N − 1} (horizontal axis), for scenarios 1-3 and values c ∈ {0.25, 0.5, 0.75} of
the fitness cost.
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Figure 10. Value E[Tmax(AS )1{Xmax(AS ) = x}|X(0) = (2, 1, 0)] (vertical axis) as a function
of x with x ∈ {1, ...,N − 1} (horizontal axis), for scenarios 1-3 and values c ∈ {0.25, 0.5, 0.75}
of the fitness cost.

with those of their stochastic counterparts. For example, the time t∗max(AR) to reach the maximum
number of patients simultaneously colonized by resistant bacteria decreases as a function of the fitness
cost c in scenarios 1-2, and it is observed to be a nonmonotone function of c in scenario 3; on the
contrary, E[Tmax(AR)] behaves in the opposite direction showing to be a nonmonotone function of c in
scenarios 1-2 and an increasing function of c in scenario 3.

5. Conclusion

This paper focuses on two issues concerning the SIR-model with two strains analyzed by Kendall
and Saunders [11]. The first issue relates to the derivation of the joint distribution of the random vec-
tor (Xmax,Tmax), which describes the maximum number of individuals simultaneously infected by the
disease during an outbreak, and the time to reach this maximum number for the first time. Two spe-
cialized versions of (Xmax,Tmax) are studied when the interest is in type-k infectives, for k ∈ {1, 2}, and
(Xmax(k),Tmax(k)) is related to an outbreak of type k, which is said to end when no type-k infectives
remain. The second issue concerns the use of absorbing LD-QBD processes allowing us to formulate
the maximum numbers Xmax and Xmax(k) as maximum levels visited by these processes before absorp-
tion, and the random times Tmax and Tmax(k) as suitably defined first-passage times. Since analytical
formulas for the maximum level visited by an absorbing LD-QBD process before its absorption and
the time to reach this maximum level are not available, we present algorithmic solutions for the mass
functions of Xmax and Xmax(k), and the joint distributions of (Xmax,Tmax) and (Xmax(k),Tmax(k)) in terms
of restricted Laplace-Stieltjes transforms and related moments.

Our approach uses matrix algebra and exploits the specific matrix structure of the underlying in-
finitesimal generators, from which we characterize the random length of an outbreak of the disease and
the random length of an outbreak of type k as continuous PH random variables, and we derive appro-
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Table 4. Maximum numbers x∗max, x∗max(AR) and x∗max(AS ) of infectives, and times t∗max,
t∗max(AR) and t∗max(AS ) to reach these numbers versus c, for scenarios 1-3, in the deterministic
model.

c Maximum number of infectives and Scenario 1 Scenario 2 Scenario 3
time to reach this maximum number

0.25 x∗max 8.58859 9.65430 10.24297
t∗max 5.15063 5.32024 5.42402
x∗max(AR) 5.06124 5.83056 6.27727
t∗max(AR) 6.25191 6.63944 6.89635
x∗max(AS ) 3.79948 4.20214 4.41877
t∗max(AS ) 4.35581 4.43132 4.47884

0.5 x∗max 7.32449 8.28085 8.80808
t∗max 5.23884 5.39445 5.50015
x∗max(AR) 2.68064 3.15324 3.43645
t∗max(AR) 6.01196 6.59285 6.97293
x∗max(AS ) 4.68018 5.21963 5.51024
t∗max(AS ) 5.07517 5.11818 5.15021

0.75 x∗max 6.66900 7.53797 8.01389
t∗max 5.36578 5.45376 5.52319
x∗max(AR) 1.25794 1.44207 1.55830
t∗max(AR) 3.96363 4.84839 5.34893
x∗max(AS ) 5.44931 6.10338 6.45613
t∗max(AS ) 5.46019 5.48696 5.52319

priate expressions for the mass function of the final epidemic size R(∞), and the number R(T (k)) of
recovered individuals at the end of a type-k outbreak. We illustrate the approach by means of applying
extreme values in the two-strain SIR-model (Kendall and Saunders [11]) to the spread of antibiotic-
sensitive and antibiotic-resistant bacterial strains in a hospital ward.

Unlike the studies presented by Cen et al. [27] and Lipsitch et al. [7] where the focus is on de-
terministic models, we demonstrate that Markov chain models can be helpful for understanding the
transmission of antibiotic-resistant bacteria in a hospital; since the concepts of final epidemic size and
peak epidemic values are widely used to describe the severity of a disease, we show how the initially
susceptible patients are severely affected by the spread of the bacterial strains. More particularly, it
is seen that stochastic effects, due to the random nature of infectious events in hospitals, can cause
important deviations from the deterministic solution. In general, deterministic models are much eas-
ier to analyze compared to stochastic models, and parameter estimation methods are better developed
in the deterministic case than in the stochastic setting; in contrast, stochastic models are commonly
preferable when studying a closed community with small population size, which is the case in Section
4. We refer the reader to the survey by Britton [29] for a more detailed discussion on situations where a
deterministic model is insufficient. For the bacterial transmission model, a remarkable advantage of the
stochastic model is related to the bimodal distribution of the final epidemic size R(∞) (Figure 2) and
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the bimodal distribution of the maximum number Xmax of infectives during a global outbreak (Figure
5) –and its variants for resistant and sensitive strains (Figures 3-4 and 6-7)–, which discourage the use
of the deterministic values r∗(∞) and x∗max, and even the summary statistics E[R(∞)] and E[Xmax] of
these random variables. Other stochastic measures, such as E[Tmax1{Xmax = x}|X(0) = (2, 1, 0)] (Figure
8) – and its versions for resistant and sensitive strains (Figures 9-10)–, do not have any deterministic
counterpart to be compared with.
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Figure 11. Two-strain SIR-model with partial cross-immunity.

As a last remark, we note that the techniques developed here can be applied to other epidemic
models with similar jumps in their dynamics. For instance, in the case of partial cross-immunity, the
two-strain SIR-model is modeled through the compartmental diagram of Figure 11, where individuals
are divided in susceptible (S ), infected by the strain of type 1 with no previous infection history (I1),
infected by the strain of type 2 with no previous infection history (I2), recovered by the type-1 strain
(R1), recovered by the type-2 strain (R2), infected by the strain of type 2 previously infected by the
strain of type 1 (I1,2), infected by the strain of type 1 previously infected by the strain of type 2 (I2,1),
and permanently recovered and immune to both strains (R). Specifically, a susceptible individual
becomes infected of type k with rate Ik(t)S (t)βk, for k ∈ {1, 2}; an infective of type k with no previous
infection history becomes recovered by the type-k strain with rate Ik(t)γk, for k ∈ {1, 2}; an individual
recovered by the type-k strain becomes infected by the strain of type k′ with rate Ik′(t)Rk(t)β′k,k′ , for
k, k′ ∈ {1, 2} with k′ , k; and an infective of type k previously infected by the strain of type k′ becomes
permanently recovered at rate Ik′,k(t)γ′k, for k, k′ ∈ {1, 2} with k′ , k. It should be straightforward to
adapt the approach in Sections 3.1-3.2 to analyze extreme values by observing that the random length
of a global outbreak amounts to the absorption time of the LD-QBD process X′ = {X′(t) : t ≥ 0} with
X′(t) = (I(t), J(t), I1(t), I2(t),R1(t),R2(t),R(t)), where I(t) = I1(t) + I2,1(t) + I2(t) + I1,2(t) is the total
number of infectives and J(t) = I2(t) + I1,2(t) is the total number of type-2 infectives, since the ultimate
extinction of the disease is equivalent to the absorption ofX′ into any state (i, j, i1, i2, r1, r2, r) with i = 0
(i.e., i = j = i1 = i2 = 0). Extreme values during an outbreak of the type-k strain are then related to
the absorption into any state ( j, i, i1, i2, r1, r2, r) with j = 0 (i.e., j = i2 = 0) for the modified version
Y′ = {Y ′(t) : t ≥ 0} with Y ′(t) = (J(t), I(t), I1(t), I2(t),R1(t),R2(t),R(t)), in the special case k = 2.
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in the manuscript. They also thank Dr. Martı́n López-Garcı́a (University of Leeds) for his help in the
numerical treatment of systems of differential equations. This work is supported by the Ministry of
Economy, Industry and Competitiveness (Government of Spain), Project MTM2014-58091-P.

Conflict of interest

The authors declare no competing interests.

References

1. R. Rowthorn and S. Walther, The optimal treatment of an infectious disease with two strains, J.
Math. Biol., 74 (2017), 1753–1791.

2. L.J.S. Allen, M. Langlais and C.J. Phillips, The dynamics of two viral infections in a single host
population with applications to hantavirus, Math. Biosci., 186 (2003), 191–217.

3. L.J.S. Allen and N. Kirupaharan, Asymptotic dynamics of deterministic and stochastic epidemic
models with multiple pathogens, Int. J. Numer. Anal. Mod., 2 (2005), 329–344.

4. C.P. Bhunu, W. Garira and G. Magombedze, Mathematical analysis of a two strain HIV/AIDS
model with antiretroviral treatment, Acta Biotheor., 57 (2009), 361–381.

5. R. Naresh and A. Tripathi, Modelling and analysis of HIV-TB co-infection in a variable size
population, Math. Model. Anal., 10 (2005), 275–286.

6. M. Nuño, Z. Feng, M. Martcheva, et al., Dynamics of two-strain influenza with isolation and
partial cross-immunity, SIAM J. Appl. Math., 65 (2005), 964–982.

7. M. Lipsitch, C.T. Bergstrom and B.R. Levin, The epidemiology of antibiotic resistance in hospi-
tals: Paradoxes and prescriptions, P. Natl. Acad. Sci., 97 (2000), 1938–1943.
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9. C. Castillo-Chávez and B. Song, Dynamical models of tuberculosis and their applications, Math.
Biosci. Eng., 1 (2004), 361–404.

10. S. Bhattacharyya, P.H. Gesteland, K. Korgenski, et al., Cross-immunity between strains explains
the dynamical pattern of paramyxoviruses, P. Natl. Acad. Sci., 112 (2015), 13396–13400.

11. W.S. Kendall and I.W. Saunders, Epidemics in competition II: The general epidemic, J. R. Statist.
Soc. B, 45 (1983), 238–244.

12. I.W. Saunders, Epidemics in competition, J. Math. Biol., 11 (1981), 311–318.

13. A.S. Ackleh and L.J.S. Allen, Competitive exclusion and coexistence for pathogens in an epidemic
model with variable population size, J. Math. Biol., 47 (2003), 153–168.

14. A.S. Ackleh and L.J.S. Allen, Competitive exclusion in SIS and SIR epidemic models with total
cross immunity and density-dependent host mortality, Discrete Cont. Dyn.-B, 5 (2005), 175–188.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 1992–2022



2016

15. F. Ball and D. Clancy, The final outcome of an epidemic model with several different types of
infective in a large population, J. Appl. Prob., 32 (1995), 579–590.

16. M.F. Neuts and J.M. Li, An algorithmic study of S-I-R stochastic epidemic models, in Athens
Conference on Applied Probability and Time Series Analysis (eds. C.C. Heyde, Y.V. Prohorov, R.
Pyke and S.T. Rachev), Lecture Notes in Statistics, Vol. 114, Springer, (1996), 295–306.

17. D.P. Gaver, P.A. Jacobs and G. Latouche, Finite birth-and-death models in randomly changing
environments, Adv. Appl. Probab., 16 (1984), 715–731.

18. G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,
ASA-SIAM, Philadelphia, 1999.
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25. A. Gómez-Corral and M. López-Garcı́a, Extinction times and size of the surviving species in a
two-species competition process, J. Math. Biol., 64 (2012), 255–289.

26. W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemic,
Proc. R. Soc. Lon. A, 15 (1927), 700–721.

27. X. Cen, Z. Feng, Y. Zheng, et al., Bifurcation analysis and global dynamics of a mathematical
model of antibiotic resistance in hosptials, J. Math. Biol., 75 (2017), 1463–1485.

28. T. Vogwill and R.C. MacLean, The genetic basis of the fitness costs of antimicrobial resistance: a
meta-analysis approach, Evol. Appl., 8 (2015), 284–295.

29. T. Britton, Stochastic epidemic models: A survey, Math. Biosci., 225 (2010), 24–35.

Appendix A

Kendall and Saunders [11, Section 3] generalize the deterministic general epidemic model [26] to a
two-strain model with total cross-immunity by considering the set of equations

ds∗(t)
dt

= −
(
i∗1(t)β1 + i∗2(t)β2

)
s∗(t),
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di∗k(t)
dt

= (s∗(t)βk − γk) i∗k(t), k ∈ {1, 2},

where s∗(t) denotes the number of susceptibles and i∗k(t) is the number of infectives of type k at time
t; since the total population remains constant, the number r∗(t) of removals is given by r∗(t) = N −
s∗(t) − i∗1(t) − i∗2(t). The deterministic versions of the random variables Xmax and Tmax, as well as the
final epidemic size R(∞) in Section 3.1, can be readily evaluated from these equations as the absolute
maximum value x∗max of the trajectory of infectives i∗1(t) + i∗2(t) and its instant t∗max of occurrence, and
the number r∗(∞) of removals at the end of the outbreak. In a similar manner, for an outbreak of the
type-k strain with k ∈ {1, 2}, the deterministic counterparts of Xmax(k), Tmax(k) and R(T (k)) are given
by the absolute maximum value x∗max(k) of the number i∗k(t) of type-k infectives and its instant t∗max(k)
of occurrence, and the number r∗(t∗(k)) of removals when an outbreak of the type-k strain (with length
t∗(k)) ends.

The above differential equations do not appear to be explicitly soluble. Therefore, under the ini-
tial conditions i∗1(0) = i∗2(0) = 1 and s∗(0) = N − 2, they are numerically solved in Section 4 by
using MATLAB algorithms for suitably defined infection rates βk and removal rates γk, for k ∈ {1, 2};
for convenience, the values x∗max(1), t∗max(1), x∗max(2) and t∗max(2) are denoted in Table 4 by x∗max(AS ),
t∗max(AS ), x∗max(AR) and t∗max(AR), respectively.

Appendix B

Under the lexicographical ordering of states, sub-matrices Qi,i−1, Qi,i and Qi,i+1 in Eq. (2.1) are
specified as follows:

(i) For i ∈ {1, ...,N − 1}, the sub-matrix Qi,i−1 has dimension L(i) × L(i − 1) and has the form

Q(i−1,0)
(i,0)

Q(i−1,0)
(i,1) Q(i−1,1)

(i,1)
. . .

. . .

Q(i−1,i−2)
(i,i−1) Q(i−1,i−1)

(i,i−1)

Q(i−1,i−1)
(i,i)


,

and QN,N−1 is given by
Q(N−1,0)

(N,1) Q(N−1,1)
(N,1)

Q(N−1,1)
(N,2) Q(N−1,2)

(N,2)
. . .

. . .

Q(N−1,N−2)
(N,N−1) Q(N−1,N−1)

(N,N−1)

 ,
with

Q(i−1, j)
(i, j) =


γ1IN−1, if i = 1, j = 0,
iγ1UN−i, if i ∈ {2, ...,N − 1}, j = 0,
(i − j)γ1UN−i+1, if i ∈ {2, ...,N}, j ∈ {1, ..., i − 2},
γ1IN−i+1, if i ∈ {2, ...,N}, j = i − 1,
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Q(i−1, j−1)
(i, j) =


γ2IN−1, if i = 1, j = 1,
γ2IN−i+1, if i ∈ {2, ...,N}, j = 1,
jγ2UN−i+1, if i ∈ {2, ...,N}, j ∈ {2, ..., i − 1},
iγ2UN−i, if i ∈ {2, ...,N − 1}, j = i,

where Uk = (0k, Ik).

(ii) For i ∈ {1, ...,N − 1}, the sub-matrix Qi,i is a diagonal matrix of order L(i) and is specified by
Qi,i = diag(Q(i,0)

(i,0),Q
(i,1)
(i,1), ...,Q

(i,i)
(i,i)) with

Q(i, j)
(i, j) =

{
diag(−q(i, j,1), ...,−q(i, j,N−i)), if j ∈ {0, i},
diag(−q(i, j,0), ...,−q(i, j,N−i)), if j ∈ {1, ..., i − 1}.

In the case i = N, it is seen that QN,N = diag(−q(N,1,0), ...,−q(N,N−1,0)).

(iii) For i ∈ {1, ...,N − 2}, the sub-matrix Qi,i+1 has dimension L(i) × L(i + 1) and has the form

Q(i+1,0)
(i,0) 0(N−i)×(N−i)

Q(i+1,1)
(i,1) Q(i+1,2)

(i,1)
. . .

. . .

Q(i+1,i−1)
(i,i−1) Q(i+1,i)

(i,i−1)

0(N−i)×(N−i) Q(i+1,i+1)
(i,i)


,

with

Q(i+1, j)
(i, j) =

{
iβ1VN−i−1, if i ∈ {1, ...,N − 2}, j = 0,
(i − j)β1VN−i, if i ∈ {2, ...,N − 1}, j ∈ {1, ..., i − 1},

Q(i+1, j+1)
(i, j) =

{
jβ2VN−i, if i ∈ {2, ...,N − 1}, j ∈ {1, ..., i − 1},
iβ2VN−i−1, if i ∈ {1, ...,N − 2}, j = i,

where the matrix Vk is given by

Vk =



k 0 · · · 0
0 k − 1 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · 0


.

In the case i = N − 1, the sub-matrix QN−1,N has the form

0
Q(N,1)

(N−1,1) Q(N,2)
(N−1,1)
. . .

. . .

Q(N,N−2)
(N−1,N−2) Q(N,N−1)

(N−1,N−2)
0


.
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Appendix C

For convenience, we let Gmax(x; (s, i, j)) be the conditional probability P(Xmax ≤

x|(S (0), I(0), J(0)) = (s, i, j)), which means that the probability distribution function Fmax(x; (i, j, r)) in
Section 3.1 corresponds to Gmax(x; ((N − i − r, i, j)), for states (i, j, r) ∈ S and integers x ∈ {2, 3, ...,N}.

In the algorithm below, we use Gmax(N; (s, i, j)) = 1 and derive, starting with x = 2, the conditional
probabilities Gmax(x; (s, i, j)), for states (i, j,N − i − s) ∈ S \ l(0), by iteration in the number of suscep-
tibles. Specifically, the conditional probabilities Gmax(x; (s, i, j)), for states (i, j,N − i − s) ∈ S \ l(0),
are characterized as the unique solution to the following system of linear equations:

(i) For x ∈ {2, ...,N − 1} and (s, i, j) ∈ {(s′, 1, j′) : s′ ∈ {1, ...,N − 2}, j′ ∈ {0, 1}},

Gmax(x; (s, i, j)) =
s(i − j)β1

q(s,i, j)
Gmax(x; (s − 1, i + 1, j))

+
s jβ2

q(s,i, j)
Gmax(x; (s − 1, i + 1, j + 1)) +

(i − j)γ1 + jγ2

q(s,i, j)
. (5.1)

(ii) For x ∈ {2, ...,N−1} and (s, i, j) ∈ {(s′, x, j′) : s′ ∈ {1, ...,N− x−1}, j′ ∈ {0, ..., x}}∪ {(N− x, x, j′) :
j′ ∈ {1, ..., x − 1}},

Gmax(x; (s, i, j)) =
(i − j)γ1

q(s,i, j)
Gmax(x; (s, i − 1, j)) +

jγ2

q(s,i, j)
Gmax(x; (s, i − 1, j − 1)). (5.2)

(iii) For x ∈ {3, ...,N − 1} and (s, i, j) ∈ {(s′, i′, j′) : s′ ∈ {1, ...,N − x}, i′ ∈ {2, ..., x− 1}, j′ ∈ {0, ..., i′}} ∪
{(s′, i′, j′) : s′ ∈ {N − x + 1, ...,N − 3}, i′ ∈ {2, ...,N − s′ − 1}, j′ ∈ {0, ..., i′}} ∪ {(N − 2, 2, 1)},

Gmax(x; (s, i, j)) =
s(i − j)β1

q(s,i, j)
Gmax(x; (s − 1, i + 1, j)) +

s jβ2

q(s,i, j)
Gmax(x; (s − 1, i + 1, j + 1))

+
(i − j)γ1

q(s,i, j)
Gmax(x; (s, i − 1, j)) +

jγ2

q(s,i, j)
Gmax(x; (s, i − 1, j − 1)). (5.3)

Note that, similarly to (3.4)-(3.5), Eqs. (5.1)-(5.3) are derived by conditioning on the first transition
of X occurring from the current state (i, j,N − i − s).

Algorithm C.1. Computation of the probability distribution function Gmax(x; (s, i, j)), for states
(i, j,N − i − s) ∈ S \ l(0) and integers x ∈ {2, ...,N}.

Step 0: x := 2;
Step 0.1: s := 0;

for i ∈ {1, 2}, j ∈ {0, ..., i}, Gmax(x; (s, i, j)) := 1.
Step 0.2: From s = 1 to N − 2,

for i = 1, j ∈ {0, 1}, Gmax(x; (s, i, j))← (5.1);
for i = 2,

if s < N − 2,
for j ∈ {0, 1, 2}, Gmax(x; (s, i, j))← (5.2);
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if s = N − 2,
for j = 1, Gmax(x; (s, i, j))← (5.2).

Step 1: From x = 3 to N − 1,
Step 1.1: s := 0;

for i ∈ {1, ..., x}, j ∈ {0, ..., i}, Gmax(x; (s, i, j)) := 1;
if x = N − 1,

go to Step 1.3.
Step 1.2: From s = 1 to N − x − 1,

for i = 1, j ∈ {0, 1}, Gmax(x; (s, i, j))← (5.1);
for i ∈ {2, ..., x − 1}, j ∈ {0, ..., i}, Gmax(x; (s, i, j))← (5.3);
for i = x, j ∈ {0, ..., i}, Gmax(x; (s, i, j))← (5.2).

Step 1.3: s := N − x;
for i = 1, j ∈ {0, 1}, Gmax(x; (s, i, j))← (5.1);
for i ∈ {2, ..., x − 1}, j ∈ {0, ..., i}, Gmax(x; (s, i, j))← (5.3);
for i = x, j ∈ {1, ..., i − 1}, Gmax(x; (s, i, j))← (5.2).

Step 1.4: From s = N − x + 1 to N − 2,
Step 1.4.0: For i = 1, j ∈ {0, 1}, Gmax(x; (s, i, j))← (5.1);
Step 1.4.1: If N − s − 1 ≥ 2,

for i ∈ {2, ...,N − s − 1}, j ∈ {0, ..., i}, Gmax(x; (s, i, j))← (5.3);
Step 1.4.2: For i = N − s, j ∈ {1, ..., i − 1}, Gmax(x; (s, i, j))← (5.3).

Appendix D

The proof of Algorithm D.1 mostly uses our arguments in Section 3.1 and is therefore based on
an iterative computation of the matrix (−T∗(x))−1, where the entries of T∗(x) are the infinitesimal
rates for transitions between states of the class ∪x

j=1l∗( j) of transient states; specifically, for integers
x ∈ {1, ...,N − 1} the square matrix T∗(x) of order K(x) = 6−1x(3N(N + 3)− (x + 1)(3N − x + 4)) has the
structured form (3.2) with sub-matrices Qi,i′ replaced by Q∗j, j′ . The column vector t∗0(x) in Algorithm
D.1 is specified by

t∗0(x) = γ2

(
1K(1)

0K(x)−K(1)

)
.

Algorithm D.1. Computation of the mass function {P∗(1,2,0)(x) : x ∈ {1, ...,N − 1}}.

Step 0: x := 1;
p(x) := γ2(−Q∗1,1)−11K(1);
F∗max(x; (1, 2, 0)) := eK(1)(N)p(x);
P∗(1,2,0)(x) := F∗max(x; (1, 2, 0)).

Step 1: While x < N − 1,
x := x + 1;
if x = 2,

A1,2(x) := Q∗x−1,x;
A2,1(x) := Q∗x,x−1;
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else

A1,2(x) :=
(

0K(x−2)×K(x)
Q∗x−1,x

)
;

A2,1(x) :=
(
0K(x)×K(x−2),Q∗x,x−1

)
;

B2,2(x) :=
(
−Q∗x,x − A2,1(x)(−T∗(x − 1))−1A1,2(x)

)−1
;

B2,1(x) := B2,2(x)A2,1(x)(−T∗(x − 1))−1;
B1,2(x) := (−T∗(x − 1))−1A1,2(x)B2,2(x);
B1,1(x) := (−T∗(x − 1))−1(IK(x−1) + A1,2(x)B2,1(x));

(−T∗(x))−1 :=
(

B1,1(x) B1,2(x)
B2,1(x) B2,2(x)

)
;

p(x) := (−T∗(x))−1t∗0(x);
F∗max(x; (1, 2, 0)) := eK(x)(N)p(x);
P∗(1,2,0)(x) := F∗max(x; (1, 2, 0)) − F∗max(x − 1; (1, 2, 0)).

For x ∈ {1, ...,N − 1}, the restricted Laplace-Stieltjes transforms ϕ∗(1,2,0)(θ; x) and related moments
E[T n

max(2)1{Xmax(2) = x}|Y(0) = (1, 2, 0)] are characterized as the unique solutions to the systems of
linear equations (3.6) and (3.7), respectively, where the sub-matrices Q∗j, j′ and column vectors ϕ∗j(θ; x)
and m∗(n)

j (x) are now playing the role of Qi,i′ , ϕi(θ; x) and m(n)
i (x) in (3.6)-(3.7); more particularly, the

entries of ϕ∗j(θ; x) and m∗(n)
j (x) are given by ϕ∗( j,i,r)(θ; x) and E[T n

max(2)1{Xmax(2) = x}|Y(0) = ( j, i, r)],
where these restricted Laplace-Stieltjes transforms and related moments are defined –in a similar man-
ner to ϕ∗(1,2,0)(θ; x) and E[T n

max(2)1{Xmax(2) = x}|Y(0) = (1, 2, 0)]– by assuming that ( j, i, r) is the current
state of the LD-QBD processY at an arbitrary time. In Eq. (3.6), b(x) should be appropriately replaced
by a column vector b∗(x) consisting of sub-vectors b∗j(x), for j ∈ {x, ...,N}, with

b∗x(x) =



(N − x + 1)(x − 1)β2P∗(x,x,1)(x)
(N − x)(x − 1)β2P∗(x,x,2)(x)

...

(x − 1)β2P∗(x,x,N−x)(x)
0


,

b∗j(x) =



(N − j)(x − 1)β2P∗(x, j+1,0)(x)
(N − j − 1)(x − 1)β2P∗(x, j+1,1)(x)

...

(x − 1)β2P∗(x, j+1,N− j−1)(x)
0


, j ∈ {x + 1, ...,N − 1},

and b∗N(x) = 0. Then, an appeal to Algorithms D.2-D.3 with m∗(0)
j (x) = ϕ j(θ; x)|θ=0, for

j ∈ {1, ..., x − 1} and x ∈ {2, ...,N − 1}, yields an iterative computation of E[T n
max(2)|Y(0) =

(1, 2, 0)] = eK(1)(N)
∑N−1

x=2 m∗(n)
1 (x).

Algorithm D.2 Computation of the column vectors ϕ∗j(θ; x) with j ∈ {1, ..., x − 1}, for a fixed
integer x ∈ {2, ...,N − 1} and Re(θ) ≥ 0.
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Step 0: From j = 1 to x − 2,
H∗j(θ) := (θIK( j) −Q∗j, j − (1 − δ1, j)Q∗j, j−1H∗j−1(θ))−1Q∗j, j+1;

H∗x−1(θ) := (θIK(x−1) −Q∗x−1,x−1 −Q∗x−1,x−2H∗x−2(θ))−1b∗(x).
Step 1: ϕ∗x−1(θ; x) := H∗x−1(θ);

from j = x − 2 to 1,
ϕ∗j(θ; x) := H∗j(θ)ϕ

∗
j+1(θ; x).

Algorithm D.3 Computation of the column vectors m∗(n)
j (x), with j ∈ {1, ..., x − 1}, for fixed in-

tegers x ∈ {2, ...,N − 1} and n ≥ 1.

Step 0: From j = 1 to x − 2,
H
∗

j := (−Q∗j, j − (1 − δ1, j)Q∗j, j−1H
∗

j−1)−1Q∗j, j+1;

h
∗(n)
j := (−Q∗j, j − (1 − δ1, j)Q∗j, j−1H

∗

j−1)−1((1 − δ1, j)Q∗j, j−1h
∗(n)
j−1 + nm∗(n−1)

j (x));

h
∗(n)
x−1 := (−Q∗x−1,x−1 −Q∗x−1,x−2H

∗

x−2)−1(Q∗x−1,x−2h
∗(n)
x−2 + nm∗(n−1)

x−1 (x)).

Step 1: m∗(n)
x−1(x) := h

∗(n)
x−1;

from j = x − 2 to 1,
m∗(n)

j (x) := H
∗

jm
∗(n)
j+1(x) + h

∗(n)
j .
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