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Abstract: Unraveling protein functional modules from protein-protein interaction networks is a cru-
cial step to better understand cellular mechanisms. In the past decades, numerous algorithms have been
proposed to identify potential protein functional modules or complexes from protein-protein interac-
tion (PPI) networks. Unfortunately, the number of PPIs is rather limited, and some interactions are
false positive. Therefore, the algorithms that only utilize PPI networks may not obtain the expected
results related to functional modules. In this study, we propose a novel semi-supervised functional
module detection method based on non-negative matrix factorization(NMF)(SNFM), which incorpo-
rate high-quality supervised PPI links from complexes as prior information.Our method outperforms
all the other competitors with improvements on performance by around 15.4% in Precision, 28.9% in
Recall, 27.1% in F-score (on DIP data set) by using PCDq as gold standards.
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1. Introduction

Proteins in cells seldom perform biological functions alone but form a larger molecular compo-
nent with each other to exert specific functions [1, 2] . With the development of high-throughput
technologies such as mass spectrometry [3, 4] and two-hybrid systems [5, 6], numerous interactions
among proteins have been acquired, resulting in large-scale protein-protein interaction (PPI) networks.
Identifying the underlying protein functional modules from PPI networks is important to explore the
biological process [7] in cells and to elucidate the disease-causing mechanisms [8] . Recent studies
suggest that proteins densely interacting with each other are more likely to perform similar or the same
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biological functions [9, 10], and various functional modules or protein complex detection algorithms
have been proposed [11–13].

Typically, the PPI networks are modeled as graphs in which the proteins are the nodes and the
interactions between the proteins are the edges [14]. A functional module can be regarded as sub-
graphs with the nodes connected to each other more densely than others in the rest of the graph [15,16]
with specific molecular functions. Thus, the goal of detecting functional modules from PPI networks
can be determined using graph clustering method. For example, the cliques (fully linked sub-graphs)
in a graph have been used for developing functional module detection algorithms, such as MC [17],
LCMA [18], and CFinder [19]. Other proposed particular methods include core-attachment based
methods, such as COACH [20]. However, these previous methods are only relied on the topological
structure of the PPI networks. In addition, the current available protein interactions are rather limited
and prone to be specious [21]. Therefore, to improve the performance, Zhang et al. [22] proposed a
generative model that takes the topological structure and Gene Ontology (GO) information together
to detect functional modules. Georgii et al. [23] used gene expression data or phenotype data to build
a weighted PPI network and then analyzed the functional modules in the PPI networks. Zhang et
al. [24] developed an NMF-based functional module detection method named CoNMF that employs
gene expression data and topological information simultaneously. To some extent, these methods
reduce the drawback of those solely relied on the PPI network data, however, incorporating multiple
data points would also induce more noises.

The databases on high-quality protein complexes, such as CORUM and PCDq [25], can be used
for detect functional modules. Qi et al. [26] propose a semi-supervised functional module detection
method named SCI-BN that extracts topological and biological features from known complexes and
then uses them to train a Bayesian network for each sub-graph. Yu et al. [2] utilized the known protein
complexes and the PPI network together to extract features and then used clique based algorithms to
detect the functional modules. However, these two supervised approaches extract features from known
complexes, which make them difficult to discover unknown functional modules.

To tackle these challenges, in this study, we propose a novel semi-supervised functional module
detection algorithm(SNFM). Instead of extracting features from known complexes, we treated the pro-
tein pairs in one common complex as must-link constraints that can be viewed as prior information for
our method. SNFM includes two main steps. The first step is to construct a similarity matrix of the
proteins according to the adjacency matrix, in which we use a self-similarity manner to construct the
similarity matrix as the featured matrix for the proteins. The second step is to factorize the similarity
matrix instead of the adjacency matrix to obtain the protein module indicator matrix. Meanwhile, the
protein pairs with must-link constraints are formulated as a graph regularization term. We will depict
main components of the algorithm in detail in the Methods section.

2. Methods

We first use the sparse subspace clustering method to construct the similarity matrix according to the
protein adjacency matrix and next take the constructed similarity matrix as the protein feature matrix
needed for the second step. The similarity matrix is constructed by taking into account the global
information of the entire PPI network. Then, the similarity matrix is factorized into two non-negative
matrices, and we propose an objective function based on NMF that takes protein pairs from complexes
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as must-link constraints. The similarity matrix obtained in the first step is decomposed to obtain the
protein module indicator matrix, and the protein pairs of must-link constraints are formulated as a graph
regularization term. We aim to improve the accuracy of the algorithm detecting the functional modules
of protein interaction networks. The main steps of the proposed model are described in Algorithm 1.

2.1. Subspace clustering

Given the PPI network G, G can be expressed as an adjacency matrix A = (x1, ..., xN) ∈ Rn×n. The
adjacency matrix is too sparse due to the limited protein-protein interactions. More importantly, the
adjacency matrix only considers the relationship between the proteins and their neighbors and ignores
the other topological information such as proteins with common neighbors that do not interact with
each other. Each protein in the PPI network can be expressed as a linear combination of other proteins.
Additionally, these n samples are from k subspaces S i , i = 1,...,k. The basic idea of sparse subspace
clustering [27] is that a protein xi, xi is represented as a linear combination of other proteins in the
same subspace. Its corresponding objective function is as follows:

min
Z

J1(Z) =
1
2
‖A − AZ‖2F

s.t. Zii = 0
(2.1)

where Z= [z1, z2, ..., zn], Z∈ Rn×n is the coefficient matrix. Zii = 0 is to avoid a protein expressed by
itself. The larger the coefficient Zi j means the sample xi is more similarity to sample x j; therefore,
the obtained similarity matrix has superior subspace structure and robustness. However, in the specific
application, there are noise data, or the sample is not clean, where E ∈ RN×N is the error matrix.

2.2. Supervised non-negative matrix factorization

Non-negative matrix factorization (NMF) [28] is a widely used matrix decomposition algorithm
that can be used to detect overlapping protein modules in unsupervised manner. NMF decomposes the
original matrix into two non-negative low-rank matrices, the product of which is the approximation of
the original matrix.

However, most unsupervised module detection algorithms only consider the topological information
of the PPI network. Moreover, due to the limited amount of PPI data obtained from high-throughput
biological experiments [29] and the false positive links in PPI data, it is difficult to develop accurate
functional modules by solely using PPI data. Currently, we can obtain information on high-quality
human protein complexes from databases, such as CORUM [30]. Although in small scale, human
protein complexes data is a high-quality data source of interaction network, which can be used as prior
information. Therefore, we can design a semi-supervised functional module detection algorithm that
combines the PPI data and the protein complexes data to compensate for the shortcomings of the PPI
data.

The network similarity matrix A∈ Rn×n
+ is used as the original input matrix. The main purpose of

the NMF algorithm is to decompose the similarity matrix into the product of two non-negative low-
rank matrices W ∈ Rn×k

+ and H∈ Rk×n
+ , where k� n. In this study, we use the Euclidean distance to

measure the distance between Z and WH. Yang et al. [31] proposed a supervised community detection
framework based on NMF and symmetric NMF. The objective function of the supervised model based
on the NMF is as follows:
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min
W≥0,H≥0

J2(W,H) = ‖A −WH‖2F + βTr(HLHT ) (2.2)

The matrix L is the Laplacian matrix, L = D - M. M is the must-link constraint matrix, and D is
its corresponding diagonal matrix. β is a positive parameter used to adjust the intensity of the prior
information.

The column vector of the original matrix A is the weighted sum of all the column vectors in the left
matrix W, and the weighted matrix is the primary color of the column vector corresponding to the right
matrix H; therefore, W is called the base matrix, and H is the coefficient matrix. The original matrix
can be replaced by a coefficient matrix, and the features of the original matrix can be characterized and
dimensionality reduced.

2.3. Semi-supervised NMF Functional Module

In the original semi-supervised NMF model, the adjacency matrix only considers the information
from the proteins and their neighboring proteins. Here, for SNFM, we use the similarity matrix con-
structed by sparse subspace clustering that takes into account the higher order neighbor information of
the proteins, such as the protein neighbor’s neighbor. We first use the subspace clustering method to
construct the similarity matrix based on the adjacency matrix. Then, we performed the semi-supervised
NMF algorithm with protein pairs from high-quality protein complexes as must links to improve the
quality of the detected functional modules from the PPI network. Next we describe the algorithm of
SNFM as follows:

min
W≥0,H≥0

J2(W,H) = ‖Z −WH‖2F + βTr(HLHT )

s.t. Zii = 0
(2.3)

where Z = [z1, z2, ..., zn], Z ∈ Rn×n is the coefficient matrix.

2.4. Optimization

2.4.1. Similarity matrix of PPI network

Subspace clustering is used to build the similarity of the PPI network that can be formulated as
follows:

min
Z

J1(Z) =
1
2
‖A − AZ‖2F

=
1
2

Tr(AAT − AZT − AZAT + AZZT AT )
(2.4)

where A is the adjacency matrix of a PPI network and is a constant, and Z is the only variable. We can
obtain the derivative of Z as follows:

∇Z J1(Z) = AT AZ − AT A (2.5)

Then using the KKT condition, we get the multiplicative iterative formula for Z as follows:

Z = Z �
AT

AT AZ
(2.6)

� represents the product of the two matrix corresponding elements.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 1933–1948



1937

2.4.2. Semi-supervised NMF

To minimize Eq. (2.3), we need to use the following matrix trace related knowledge: Tr (WH)=Tr
(HW), ‖A‖2F = Tr(AAT ), so Eq. (2.3) can be rewritten as follows:

min
W≥0,H≥0

J2(W,H) = Tr[(Z −WH)(Z −WH)T ] + βTr(HLHT )
(2.7)

Since W and H are both variables, Eq. (2.3) is not convex; therefore, to find the optimal W and H
that can make Eq. (2.3) reach the minimum, we update one while keeping the other fixed as a constant.
If we fix H as a constant, we can obtain a partial derivative of the objective function about W. The
derivation process is reported as follows:

∇W J2(W,H) = 2(WHHT − ZHT ) (2.8)

Similarly, if we fix W and treat H as a variable, the partial derivative of H can be calculated as
follows:

∇H J2(W,H) = 2(WT WH −WT Z + βHL) (2.9)

Next, using the KKT condition, we obtain the updated rules of W and H as follows:

W = W �
ZHT

WHHT
(2.10)

H = H �
WT Z + β(HM)

WT WH + β(HD)
(2.11)

where D ∈ Rn×n
+ is a diagonal matrix of M, L = D - M is the Laplacian matrix of the matrix M, and

Tr(·) is the trace of a matrix.
Matrices W and H are updated by the iterative iteration until the Eq. (2.3) converges or reaches the

maximum number of iterations sets in advance. The time complexity is shown in Table 1.

Table 1. Calculate the number of iterations in the SNFM model.

F-norm formulation

fladd flmlt fldiv overall

Eq. (2.6) 3n3 3n3+n2 n2 n3

Eq. (2.10) 2k2n+n2k 2k2n+n2k+nk nk n2k
Eq. (2.11) 3n2k+2k2n+ 2nk 3n2k+2k2n+nk nk n2k

3. Results

To validate the performance of SNFM, we conducted experiments on three human-related PPI net-
works.
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Algorithm 1 The proposed SNFM model
Input: adjacency matrix A, must-link set L, number of modules K and β , the maximum number of iterations T1, error ε1, error ε2, the

maximum number of iterations T2

1: Build the must-link constraint matrix M ∈ Rn×n
+ according to L

2: Initialize: W ≥ 0, H≥ 0, Z
3: while t < T1 do
4: Update Z according to Eq. (2.6)
5: Calculate the objective function value according to Eq. (2.1), denoted as Jt

1
6: If the objective function value obtained by two iterations satisfies‖Jt

1 − Jt−1
1 ‖ < ε1 or t ≥ T1, the algorithm ends. Otherwise,

t = t + 1, and repeat steps 4 and 5
7: end while
8: while t < T2 do
9: Fix H, and update W according to Eq. (2.10)

10: Fix W, and update H according to Eq. (2.11)
11: Calculate the objective function value according to Eq. (6), denoted as Jt

2
12: If the objective function value obtained by two iterations satisfies‖Jt

2 − Jt−1
2 ‖ < ε2 or t ≥ T2, the algorithm ends. Otherwise,

t = t + 1 and repeat steps 9, 10 and 11
13: end while
Output: Protein module membership matrix H

3.1. Data and experimental setup

3.1.1. Data sets

Three human-related PPI networks, namely the DIP, HPRD and STRING10, were used in our exper-
iments. The DIP (Database of Interacting Proteins) [32] is a high-quality PPI database that integrates
protein interactions from various data sources. It also contains interaction data calculated by algorithms
from other reliable protein interaction databases with manually reviews. We extracted human-related
PPI data from DIP, which includes a total of 4673 protein interactions and 2943 proteins. The HPRD
(Human Protein Reference Database) [33] is a human-related database in which all of the information
was manually extracted by biologists from the literatures. We extracted a total of 9453 proteins and
36888 protein interactions. The version of the STRING database [34] used in this study is STRING10,
which is derived from several approaches, such as biological experiments, computational methods and
literature curation. To obtain a high-quality PPI network, according to the introduction in [35], we only
extracted the PPI data with a confidence score greater than 700 from the STRING10 database. Finally,
we established a PPI network containing 14,380 proteins and 218,163 interactions.

In this experiment, we also used two human-related protein complex databases, CORUM and PCDq,
as the validation data set. The CORUM (Comprehensive Resources for Mammalian Protein Com-
plexes) [36] database provides data on protein complexes in human-reviewed mammalian organisms,
all from the literature, excluding proteins obtained from high-throughput experimental data. We ob-
tained the human related protein complexes from CORUM and removed the proteins that were not
included in the human protein interaction data, so the number of protein complexes corresponding to
different PPI data was different. PCDq is a human protein complex database. The protein complex
data in this database is extracted from the integrated PPI network and then manually labeled for review
and matched to complex data in the existing literature.

The corresponding CORUM protein complex in the DIP network contains 746 proteins, and PCDq
contains 340 proteins. The corresponding CORUM protein complex in the HPRD network contains
1069 proteins, and PCDq contains 874 proteins. For STRING network, the corresponding CORUM
protein complex contains 1134 proteins and PCDq contains 845 proteins.
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3.1.2. Evaluation metrics

We used Precision, Recall, and F1 to measure the quality of the detected protein functional modules.
First, we defined the degree of coincidence between a protein complex Ga and a detected protein
functional module Db as follows:

OL(Ga,Db) =
|Ga ∩ Db|

2

|Ga| × |Db|
(3.1)

where |Ga| refers to the number of proteins in the protein complex Ga, |Db| refers to the number of
proteins in the detected functional module Db, and |Ga ∩ Db| refers to the number of proteins appearing
in both sets of Ga and Db. The larger the OL value, the more similar the two contrast sets are. In this
study, if OL(m, n) ≥ γ, we believe that the two protein sets m and n match successfully. According to
the introduction in [37,38], we set γ = 0.25 in this study. Next we defined the following two variables:

Nag = |{g|g ∈ Ga,∃d ∈ Db,OL(d, g) ≥ 0.25}| (3.2)

Nad = |{d|d ∈ Db,∃g ∈ Ga,OL(g, d) ≥ 0.25}| (3.3)

Subsequently, we defined the Precision, Recall, and F1 as follows:

Precision =

∣∣∣∣∣Nag

Db

∣∣∣∣∣ ,Recall =

∣∣∣∣∣Nad

Ga

∣∣∣∣∣ (3.4)

F1 =
2 × Precision × Recall

Precision + Recall
(3.5)

where F1 is the harmonic mean of the precision and recall. The larger the indicator, the better the
result of the detected functional module is.

For the human protein functional module, we first defined the neighborhood affinity score between
the two protein sets as follows:

NA(p, g) =

∣∣∣Np ∩ Ng

∣∣∣2∣∣∣Np

∣∣∣ ∣∣∣Ng

∣∣∣ (3.6)

This value is used to measure the degree of overlap of the module p detected from the PPI network
with a known protein complex g. If the neighborhood affinity values of p and g satisfy NA(p, g) ≥ ω,
then we believe that p and g match. In this study, we set ω= 0.25. Suppose m = |P|, n = |G| , ti j

represents the number of proteins that existed in the ith detected protein functional module and the jth

protein complex simultaneously, and N j represents the number of proteins in the jth protein complex.
Then the calculation formulas for Sn (Sensitivity) , PPV (Positive Predictive) , ACC (Accuracy) and
MMR (Maximum Matching Ratio) are defined as follows:

S n =

∑n
j=1 maxi

{
ti j

}
∑n

j=1 N j

, PPV =

∑m
i=1 max j

{
ti j

}
∑m

i=1
∑n

j=1 ti j

(3.7)
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ACC =
√

S n × PPV ,MMR =

∑n
i=1 max jNA(i, j)

n
(3.8)

The greater the ACC and MMR values, the greater the ability of the corresponding algorithm is to
detect accurate functional modules from the PPI networks.

3.1.3. Parameter analysis

The SNFM has only one parameter: β, which is used to control the smoothness between the topo-
logical information and the prior information. To investigate the influence of various parameters β on
performance, we set the value range of β to 1, 2, 5, 10, 20, 50, 100 and 1000. Taking the DIP database
as an example, we used PCDq as the benchmark data set, and reported the changes of the correspond-
ing ACC and MMR. As shown in Figure 1, we found that when the value of β is approximately 1000,
our proposed SNFM algorithm achieved better results. Thus, in all of the experiments in this study, we
set β =1000.

Figure 1. The ACC and MMR values
corresponding to various β.
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Figure 2. The objective function in-
creases with the number of iterations.

3.1.4. Baseline algorithms

We chose the two state-of-the-art algorithms for functional module detection: DCU [39] and OH-
PIN [40], and four classical clustering algorithms, namely Markov clustering algorithm (MCL) [41],
By finding the maximal clique, [42] has proposed an algorithm named CMC that can remove or merge
clusters according to the interconnectivity. The NMF algorithm [28] is also used to detect functional
modules. The k-means [43] algorithm performs clustering by initializing the cluster center as baseline
methods.

3.2. Experimental results

We obtained the related results for the six baseline methods and SNFM algorithm on three PPI
networks. The corresponding Sn, PPV, ACC and MMR values of all comparison algorithms from
three PPI networks (DIP,HPRD and STRING10) are shown in Table 2. For all comparative community
detection algorithms, the algorithm proposed in this study SNFM includes a greater number of proteins
in the functional modules and only slightly fewer than the DCU and k-means algorithm in the DIP
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network compared with other algorithms. The optimal ACC and MMR values were obtained by SNFM
in all three protein interaction networks, and the number of detected modules that are matched protein
complexes achieve the best results in all of the algorithms. The DCU, OH-PIN, MCL, and Myclique
algorithms do not use priori information, and NMF and k-means use priori information. SNFM adopts
the must-link method, and the effect is strong. According to [31], the reliability of the prior information
is affirmed, indicating that the prior information is well utilized.

Additionally, we also analyzed the convergence speed of the SNFM objective function. In Figure
2, we show the trend of the value of the objective function as the number of iterations increases. We
found that after a certain number of iterations (approximately 100 times), the value of the objective
function tends to be stable; that is, we obtain the local optimal solution of the objective function.

Table 2. Detailed results of compared algorithms on three human PPI networks using CO-
RUM and PCDq as gold standards.The maximum value of each metric is shown in bold, and
the next largest value is underlined. We used ”—” to indicate the algorithms with no results
after 24 hours. Among them, coverage represents the number of proteins contained in all of
the modules detected by each algorithm. The table shows the number of modules detected
by #m, the average size of the detected modules is marked by #as, and the number of modules
detected that matched the known protein complex is marked by #mm.

Network Method Coverage #as #m CORUM PCDq
#mm Sn PPV ACC MMR #mm Sn PPV ACC MMR

DIP SNFM 2715 7.459 364 161 0.458 0.238 0.330 0.293 216 0.620 0.506 0.560 0.417
MCL 2374 9.458 251 92 0.603 0.145 0.296 0.180 97 0.566 0.282 0.400 0.204
DCU 2937 4.298 1143 51 0.049 0.207 0.100 0.044 73 0.054 0.397 0.147 0.052

OH-PIN 984 9.109 129 18 0.031 0.307 0.098 0.029 20 0.032 0.485 0.124 0.027
k-means 2740 20.296 135 60 0.542 0.123 0.258 0.137 55 0.560 0.188 0.325 0.131
Mclique 985 3.280 751 142 0.031 0.339 0.102 0.033 145 0.032 0.447 0.120 0.031

NMF 2114 4.950 427 59 0.286 0.297 0.291 0.223 67 0.325 0.523 0.412 0.233

HPRD

SNFM 9437 19.181 492 220 0.482 0.237 0.338 0.256 344 0.658 0.375 0.497 0.295
MCL 8564 18.781 456 87 0.802 0.088 0.266 0.091 190 0.789 0.143 0.336 0.133
DCU 9450 5.875 3832 158 0.009 0.172 0.040 0.010 144 0.014 0.273 0.061 0.013

OH-PIN 3743 39.615 218 20 0.009 0.122 0.033 0.008 15 0.013 0.158 0.045 0.007
k-means 8681 25.913 335 79 0.355 0.130 0.215 0.134 84 0.388 0.175 0.261 0.094
Mclique 4288 3.563 11613 211 0.009 0.312 0.053 0.009 273 0.013 0.414 0.072 0.013

NMF 9260 10.559 877 826 0.310 0.240 0.273 0.233 539 0.354 0.355 0.354 0.201

String

SNFM 15513 32.386 479 171 0.458 0.243 0.334 0.211 313 0.680 0.377 0.506 0.290
MCL 13903 12.945 1074 145 0.792 0.105 0.289 0.143 307 0.646 0.202 0.362 0.172
DCU — — — — — — — — — — — — —

OH-PIN — — — — — — — — — — — — —
k-means 14981 28.002 535 164 0.472 0.226 0.327 0.198 184 0.462 0.251 0.340 0.160
Mclique — — — — — — — — — — — — —

NMF 15216 42.742 356 124 0.541 0.206 0.333 0.180 84 0.463 0.219 0.318 0.116

Finally, using DIP, HPRD and STRING data sets, we obtained both the results using CORUM data
as benchmark data(see Figure 3 (a), (b) and (c)) and those using the PCDq data as benchmark data (see
Figures 3 (d), (e) and (f)). The results demonstrate that the SNFM algorithm proposed in this study has
obtained the best results for precision(SNFM vs MCL for DIP database to improve 8%, recall(SNFM
vs NMF for DIP database to improve 14%) and F1(SNFM vs NMF for DIP database to improve 12%).
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(a) DIP(ml:CORUM;gs:CORUM)

p r e c i s i o n r e c a l l F 1
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8
 S N F M
 M C L
 D C U
 O H - P I N
 k - m e a n s
 M c l i q u e
 N M F

(b) HPRD(ml:CORUM;gs:CORUM)
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(c) STRING(ml:CORUM;gs:CORUM)
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(d) DIP(ml:CORUM;gs:PCDq)
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(e) HPRD(ml:CORUM;gs:PCDq)
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(f) STRING(ml:CORUM;gs:PCDq)

Figure 3. The precision, recall and F1 of compared methods on DIP, HPRD and STRING.
(a), (b) and (c) take CORUM as ground-truth; (d), (e) and (f) take PCDq as ground-truth
(”ml” means must-link and ”gs” means gold standard database).

3.3. Functional module cases analyses

To investigate the biological insights of detected modules, we performed functional enrichment
analysis using GO terms and listed the top 5 functional modules from DIP with significant biological
processes (see Table 3). We found that there exist high ratio of proteins derived from same or similar
protein complexes in the top 5 function modules. For example, in the M253, the proteins: PSMC2-6,
PSMD3-4, PSMD6-7,PSMD10,PSMD12 and PSMD13, are from the multiprotein complex involved
in the ATP-dependent degradation of ubiquitinated proteins. In addition, for the M263, which has
17 member proteins, we also found high ratio of proteins(e.g. MED6,12-17,19-20,23-26) in a same
protein complex. We further showed the corresponding subgraph mapped from DIP network, which
contains the 17 protein members of M263 and their first-order neighbors (see Figure 4). It showed
that although the number of links between those protein members is rather high, there exist two ob-
vious bipartite graph structures(Lee et al. [44] ) in the subgraph. We see that for the one part of the
bipartite network, MED20, MED17, and CCDC belong to M263, but GATA1 and MED10 do not be-
long to M263. In the other part of bipartite graph, MED15 and MED6 belong to M263, but SREBF2
and SREBF1 do not belong to M263. This indicates that SNFM could detect the functional modules
even with bipartite structures in a sparse network, such as DIP. This has been further validated by the
additional enrichment analyses of pathway for the typical protein groups(e.g. MED17, MED20 and
CCNC; MED6 and MED15, see Table 4) and GO terms for the whole M263(see Table 5).
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Figure 4. The protein members and their first-order neighbors of M263.The orange nodes
indicate the protein members in M263, and the blue nodes are their first-order neighbors. The
orange rectangular nodes satisfy the condition that they exist in the module, and they interact
with proteins in the same module. The orange round node indicates that all of the proteins
neighbors are not in M263.

Table 3. The top 5 functional modules from DIP with significant biological processes.
module ID size members GO ID p-value GO term

M253 28 KDM5A PSMD10 PSMD12 DDX5
SPI1 PSMD13 PRDM2 PSMD6
PSMB5 PSMD7 PSMD4 PSMD3
TIFA PSMD1 SFN MAP3K5
CREBBP LRRC45 BAD C9orf16
ELF1 PSMC5 PSMA4 PSMC6
PSMC3 PSMC4 PSMC2 PFDN6

GO:0006521 3.63E-29 Regulation of cellular amino
acid metabolic process

M331 16 UPF2 DDX6 UPF1 EPAS1 PARN
ADAP1 EDC3 EDC4 EXOSC7
EXOSC5 XRN1 XRN2 EXOSC3
EIF4E2 DCP2 DCP1B

GO:0043928 9.93E-21 Exonucleolytic nuclear-
transcribed mRNA catabolic
process involved in
deadenylation-dependent decay

M181 20 FBXW5 USP9X GPS1 CUL3 CUL2
CUL1 COPS7B COPS7A COPS4
LMAN1 COPS3 COPS6 COPS5
CDC34 COPS2 CASP4 ORMDL3
COPS8 CUL4B UBE2M

GO:0010388 1.46E-20 Cullin deneddylation

M263 17 CDK19 MED19 CCNC MED16
MED15 MED26 MED6 MED17
MED12 MED23 CDK8 MED25
MED14 MED24 MED13 MED20
ZFPM1

GO:0006367 2.94E-19 Transcription initiation from
RNA polymerase II promoter

M186 18 SMARCE1 SMARCD1 PBRM1
SMARCD2 SMARCC1 SMARCC2
SMARCB1 SMARCD3 ARID1A
SMARCA2 ACKR4 PVRL4 ARID2
PVRL3 PVRL2 RCOR1 PVRL1
SEC31A

GO:0006337 1.49E-18 Nucleosome disassembly
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Table 4. The SupperPathway analysis of members in the bipartite graph.

MED20 MED17 CCNC MED15 MED6 CDK8 MED24

Regulation of lipid metabolism by Peroxisome
proliferator-activated receptor alpha (PPARalpha)

X X X X X X X

Gene Expression X X X X X X

Metabolism X X X X X

Developmental Biology X X X X

RNA Polymerase II Transcription Initiation And Pro-
moter Clearance

X X

Thyroid hormone signaling pathway X X

Signaling by NOTCH1 X X

Transcriptional activity of SMAD2/SMAD3-SMAD4
heterotrimer

X X

GPCR Pathway X

HIV Life Cycle X X

DNA Damage/Telomere Stress Induced Senescence X

PEDF Induced Signaling X

SuperPaths is the unified GeneCards pathways that links to other pathways according to information
extracted from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and other databases. MED20,
MED17 and CCDC are the first bipartite structures, MED15 and MED6 are the second bipartite struc-
tures, and CDK8 and MED24 are other members randomly selected in the module.

The more pathways shared by genes within the two map structures, the stronger the correlation is
between them, which means the proteins should be clustered into the same module. Regulation of
lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha) and Metabolism
are more special gene functions. This finding also illustrates the reliability of our proposed SNFM
model for functional module detection.

We performed GO analysis on all proteins in M263. Table 5 lists the GO-terms including the follow-
ing: biological process (BP), cellular component (CC), and molecular Function (MF). For example, the
MF is GO:0001104( the RNA polymerase II transcription cofactor activity), and the P-value is 2.16E-
16, and the genes contained are MED19, MED15, MED26, MED17, MED24, MED14, MED13 and
MED20, which account for 8/17 of all of the genes. Table 5 shows that MED17 and MED20 are highly
correlated. Unfortunately, MED17 and MED20 have not interacted with each other in the DIP net-
work, and most of the compared algorithms have not clustered them into the same module, except for
k-means. However, the detected module by k-means, which contains MED17 and MED20, is too large
(∼1700 proteins). [45] has shown that larger modules have more diverse biological meanings.
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Table 5. Module Gene Ontology analysis.
GOTERM BP DIRECT
GO:0006367 transcription initiation from RNA poly-
merase II promoter
(P-value = 1.56E-11)

MED16, MED26,
MED17, MED24,
MED14, MED13

GO:0030521 androgen receptor signaling pathway
(P-value = 4.67E-10)

MED16, MED17,
MED24, MED14,
MED13

GOTERM CC DIRECT
GO:0016592 mediator complex
(P-value = 6.95E-29)

MED19, MED6, MED15, MED16, MED26,
MED17, CDK8, MED24, MED14, CCNC, MED13,
MED20

GO:0070847 core mediator complex
(P-value = 0.06 )

MED6, MED14

GOTERM MF DIRECT
GO:0001104 RNA polymerase II transcription co-
factor activity
(P-value = 2.16E-16)

MED19, MED15, MED26, MED17, MED24,
MED14, MED13, MED20

GO:0003713 transcription coactivator activity
(P-value = 7.43E-08)

MED16, MED26,
MED17, MED14,
MED13, MED20

4. Conclusion

In this study, we propose a novel semi-supervised functional module detection model named SNFM,
which uses the similarity matrix constructed by subspace clustering to not only consider the first-order
neighbor information of proteins but also integrates global information from the PPI networks. The
obtained similarity matrix is the feature matrix of the PPI network, and the use of limited prior infor-
mation extracted from known reliable protein complexes allows for discovering the protein functional
modules with significant biological meaning in the PPI networks. Through experiments on real human
PPI networks (DIP, HPRD, and STRING10), we found that our proposed SNFM algorithm performs
better in detecting protein functional modules. Because we currently have a high-quality protein com-
plex with a small amount of data, our future work will consider designing a protein functional module
detection algorithm that combines multiple biological datasets.
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