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Abstract: We derive and analyze a Darwinian dynamic model based on a general difference equation
population model under the assumption of a trade-off between fertility and survival. Both inherent and
density dependent terms are functions of a phenotypic trait (subject to Darwinian evolution) and its
population mean. We prove general theorems about the existence and stability of extinction equilibria
and the bifurcation of positive equilibria when extinction equilibria destabilize. We apply these results,
together with the Evolutionarily Stable Strategy (ESS) Maximum Principle, to the model when both
semelparous and iteroparous traits are available to individuals in the population. We find that if the
density terms in the population model are trait independent, then only semelparous equilibria are ESS.
When density terms do depend on the trait, then in a neighborhood of a bifurcation point it is again
the case that only semelparous equilibria are ESS. However, we also show by simulations that ESS
iteroparous (and also non-ESS semelparous) equilibria can arise outside a neighborhood of bifurcation
points when density effects depend in a hierarchical manner on the trait.
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1. Introduction

Life history strategies that individuals adopt play a central and important role in the dynamics of
biological populations [1, 2]. The timing of reproduction, the allocation of resources toward repro-
duction, survival, metabolism and so on will determine whether a population will grow or decay and
whether it will successfully avoid extinction. The importance of resource allocation toward reproduc-
tion was recognized by Fisher in his now classic book on population genetics, in which he stated the
importance of knowing “what circumstances in the life history and environment would render prof-
itable the diversion of a greater or lesser share of the available resources toward reproduction” [3].
This question was focussed by Cole in his influential paper on life history modeling in terms of the
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two options: semelparity and iteroparity [4]. Semelparity means an individual has only one repro-
ductive event before death while iteroparity is characterized by multiple reproductive events over the
individual’s life. For plants, this distinction is between annuals (or monocarpic plants) and perennials
(polycarpic plants). As pointed out by Hughes [5], why organisms adopt one of these strategies or the
other is a very old question that traces its roots to Aristotle and Linnaeus. In his paper Cole concluded
that evolution should favor semelparity, a conclusion which, because iteroparity is widespread in the
biological world (even more so than semelparity), became known as “Cole’s Paradox”. While this
paradox was addressed by Charnov and Schaffer [6] by pointing out that Cole did not take juvenile
and adult mortality adequately into account, researchers continue to explore explanations that account
for the evolution of semelparity or iteroparity and to account for various mechanisms that favor one
life history strategy over the other or the switching between one or the other. These include density
dependence, stochasticity in demographic parameters, trade-offs and bet-hedging against environmen-
tal stochasticity, interactions with pathogens or mutualistic species, spatial structuring of habitats, and
combinations of these. Furthermore, in his review of the large literature on this topic, Hughes states
“that mathematical models purporting to explain the general evolution of semelparous life histories
from iteroparous ones (or vice versa) should not assume that organisms can only display either an
annual-semelparous life history or a perennial-iteroparous one” and argues in favor of a “continuum
of modes of parity” [5]. In keeping with this point of view, our goal here is derive and analyze an
evolutionary game theoretic model in which fertility and survival depend on a continuous trait that is
subject to the Darwinian principles of evolution and to use the model to investigate the evolutionary
stability or instability of semelparity and iteroparity.

Discrete time dynamic models, defined by maps or difference equations, have been widely used
in model studies of life history strategies and in particular in the study of semelparity and iteroparity.
Following the methodology of evolutionary game theory, or Darwinian dynamics [7], we will assume
the model parameters in a general difference equation population model depend on a phenotypic trait
v subject to the axioms of Darwinian evolution. This modeling methodology assumes the trait v is
normally distributed throughout the population at all times with a constant variance and, consequently,
the trait distribution is determined by the population mean trait u. The evolutionary game theoretic
version of a population model is built from assumptions on how an individual’s inherent fertility and
survival rates and how the effects of population density on these vital rates depend on an individual’s
trait v and the mean trait u of the population. The population equation is then coupled with an equation
for the mean trait, which together form a Darwinian dynamic model. The equation for the mean
trait (which goes by numerous names: the canonical equation of evolution [8], Fisher’s equation [3],
Lande’s equation [9] or the breeder’s equation [10]) states that the change in the mean is proportional
to the fitness gradient. For a discrete time model, fitness is the logarithm of the per capita population
growth rate and the gradient is with respect to the trait v (see (2.3)). For more on this modeling
methodology see [7].

In Section 2 we develop a Darwinian model under the key assumption that there is a trade-off

between fertility and survival (cf. (2.2) and (2.4)). That is to say, any change in the trait v that in-
creases survival is accompanied by a decrease in fertility (and vice versa). Since the fundamental issue
is population survival versus extinction, in Section 3 we focus our model analysis on the existence
and stability of extinction equilibria and on the bifurcation of positive equilibria when an extinction
equilibrium destabilizes. This analysis culminates in Theorem 3.1 and the bifurcation Theorem 3.2.
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In Section 4 we apply the analyses in Section 3 to a model in which there is assumed present both
semelparous and iteroparous traits. The unit of time is such that an individual reproduces at most once
during one time interval. We say a trait vs is semelparous if an individual with that trait has zero, or
nearly zero, survival probability during one time interval (and therefore reproduces, with high probabil-
ity, only once before death). Also in the model are traits vi that yield a high probability of survival and
hence reproduction more than once. The trait v has a continuous distribution throughout the population
and hence, in this model, there are not two binary strategies of semelparity and iteroparity. Instead
post-reproductive survival probability varies continuously from zero to positive values as a function of
the trait v. A population whose mean trait u equals a semelparous trait consists mostly of semelparous
individuals (or with a high probability of being semelparous), but it would still be the case that some in-
dividuals might have a relatively high chance of survival and a second period of reproduction. Stearns
[2] points out that this is indeed often the case in what are biologically classified as semelparous pop-
ulations. For convenience we will refer to a population with mean trait us near a semelparous trait vs

as a semelparous population. Populations with mean traits sufficiently different from a semelparous
trait (as determined by the modeler) will be called an iteroparous population. The analysis in Section
3 applied to the model provides conditions under which there exist stable semelparous equilibrium
populations and/or stable iteroparous equilibrium populations.

According to the theory of evolutionary stable strategies (ESS)∗, stable equilibria a population or
a Darwinian model are not, however, necessarily favored by evolution, that is to say are not immune
from invasion by mutant strategies. The ESS Maximum Principle states that an equilibrium trait is an
ESS if and only if it is the component of a stable equilibrium of the Darwinian equations and also lies
on a global maximum of the adaptive landscape.

We say an equilibrium is an ESS equilibrium if its trait component is an ESS and discuss the bi-
furcation of ESS equilibria in the Remarks following Theorem 3.2. We apply the remarks to the
model in Section 4 with the result that, near the bifurcation points, semelparous equilibria are ESS but
iteroparous equilibria are not. On the other hand, equilibria outside the neighborhood of bifurcation
points can be ESS iteroparous equilibria. For this to happen density effects play a determining role,
since outside a neighborhood of a bifurcation point population densities are high. First we show (Sec-
tion 4.1) that if density effects are not trait dependent, then the model has no ESS iteroparous equilibria
at all. However, if density effects are trait dependent then we show, by means of simulations in Section
4.2, that there can exist ESS iteroparous equilibria. This occurs if the density dependence is not sym-
metrically distributed as a function of the trait v around the mean (e.g., in a Gaussian-like manner), as
is often assumed in Darwinian models [7]), but is instead hierarchical, i.e. the magnitude with which
population density affects an individual’s vital rates is a monotone function of its trait v.

We discuss our results and some of their the biological implications in Section 5.

2. Model derivation

We begin with a population dynamic model in which a population of reproducing individuals is cen-
sused at discrete time intervals. The population at any given census time results from only two sources,
namely, new individuals that were born, survived and matured since the last census and surviving in-
dividuals present at the last census. Let b be the number of new reproducing individuals produced per

∗”Strategy” is equivalent here to ”trait”.
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individual (per unit time) and let s denote the fraction of individuals that survive from one census to
the next census. Denoting xt by the census count at time t, we have

xt+1 = bxt + sxt.

We are interested in the case when the fertility and survival rates are density dependent. Such density
effects are due to intraspecific interactions amount individuals, such as cooperation or competition for
food resources, mates, territory, cannibalism, etc. Let b0 and s0 denote the inherent, i.e. density-free,
vital rates and let β (x) and σ (x) denote factors that describe how population density affects fertility
and survival:

b = b0β (x) , s = s0σ (x) .

In order for b0 and s0 to have the interpretation of inherent or intrinsic vita rates, we require

β (0) = σ (0) = 1.

Familiar examples of density factors are

1
1 + cx

, exp (−cx) (2.1)

for c > 0.
For the evolutionary model, we assume fertility and survival are dependent on a specific trait of an

individual and that this trait is subject to change by the principles of Darwinian evolution. To introduce
the dynamic evolution of both the population and the trait we follow the methodology of evolutionary
game theory (or Darwinian dynamics) [7]. The trait, which we denote by v, is assumed normally
distributed throughout the population with a constant variance but a mean u that will vary in time.
Since the inherent per capita vital rates b0 and s0 are the fertility and survival rates of an individual
in a density free environment, we assume they depend only on an individual’s trait v and not that of
other individuals, as represented by the mean u. A key assumption we make is that there is a trade-off
between fertility and survival (e.g. see [1, 2]) so that as functions of v the inherent vital rates have
opposite monotonicities at every value of v. Increased (respectively decreased) fertility comes at the
expense of decreased (respectively increased) survival. We model this assumption by replacing b0 and
s0 by

b0 f (v) and s0 (1 − f (v)) (2.2)

where the distribution of these vital rates as a function of v throughout the population is modeled by
f (v). We assume

0 ≤ f (v) ≤ 1.

so that b0 has the interpretation of the maximal possible fertility of an individual.
On the other hand, the intraspecific density effects experienced by an individual with trait v depend

on the traits of the other individuals in the population, as represented by the mean trait u. We capture
this by replacing b and s by

b = b0β (a1 (v, u) x) , s = s0σ (a2 (v, u) x)
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in which the factors ai (v, u) modify the density effects experienced by an individual with trait v in a
population with mean trait u. We assume ai (u, u) = 1 so that β (x) and σ (x) describe the density effects
on an individual whose trait equals population mean, i.e. when v = u.

For example, if one of the expressions (2.1) is used for the fertility density factor β (x) in a popula-
tion model equation, then in the evolutionary version of the model the density factor would be

β (a1 (v, u) x) =
1

1 + ca1 (v, u) x
or exp (−ca1 (v, u) x) .

Often used models for the factors ai (v, u) are functions of the difference between the individual’s
trait v and the population mean u, such as

exp
(
−w2 (v − u)2

)
.

(For example, see [7]). This assumes that the competition intensity felt by an individual occurs when
the individual’s trait v equals the population mean trait u (i.e. the individual has a trait equal to that of
most other individuals in the population). Another possibility is

exp (−w (v − u))

which describes a hierarchical (asymmetric) competition scenario. By hierarchical is meant, when
w > 0, that an individual with trait greater than the population mean trait experiences less competitive
pressure while one with a trait less than the mean experiences more competitive pressure. (The situation
is reversed if w < 0.)

Following the modeling methodology in [7] we track the time trajectories of both the population
and the mean trait by means of the equations

xt+1 = r (xt, v, ut)|v=ut
xt (2.3a)

ut+1 = ut + δ2 ∂v ln r (xt, v, ut)|v=ut
(2.3b)

for t = 0, 1, 2, ... where

r (x, v, u) = b0 f (v) β (a1 (v, u) x) + s0 (1 − f (v))σ (a2 (v, u) x) (2.4)

is the density and trait dependent per capita population growth rate of the population. We assume that
one and only one reproductive event occurs for an individual during the time unit.

The logarithm ln (r (x, v, u)) appearing in (2.3b) is called the fitness function. Equation (2.3b) states
that the change in the mean trait is proportional to the fitness gradient (with respect to an individual’s
trait). The constant of proportionality δ2 is called the speed of evolution. Depending on what under-
lying biological principles are used to derive (2.3b), δ2 is either equal or proportional to the assumed
constant variance of the trait within the population. Since the model assumes a normal distribution of
v throughout the population with a fixed variance, the distribution at any point in time is completely
determined by its mean ut whose dynamic is governed by the Darwinian equations (2.3).

We summarize the mathematical assumptions we impose on the model equations (2.3) in the fol-
lowing statement in which R is the set of real numbers, R+ the set of positive real numbers, R̄+ is the set
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of non-negative real numbers, and Γ is an open set in R that contains R̄+. We denote partial derivatives
by the notation

∂vci (v, u) , ∂vr (x, v, u) , ∂vur (x, v, u) , etc.

and derivatives for single variable functions by primes:

f ′ (v) , f ′′ (v) , β′ (z) , σ′ (z) , etc.

With regard to the inherent vital rates and the density terms in (2.3)-(2.4) we assume the following.

H1. The inherent vital rates satisfy 0 < s0 < 1 and b0 > s0. The density terms β (z) and
σ (z) are twice continuously differentiable functions mapping Γ into R̄+ that satisfy β (0) =

σ (0) = 1. Furthermore, β (z) z is bounded and 0 ≤ s0σ (z) < 1 for all z ∈ R̄+

Note that if b0 < s0 then (2.3a) and (2.4) imply xt+1 < s0xt for all t and any population with x0 > 0
goes extinct, regardless of the trait dynamics.

With regard to the trait dependencies we make the following assumptions.

H2. f and ai are twice continuously differentiable functions on R and R×R respectively that
satisfy 0 ≤ f (v) ≤ 1 and ai (v, u) ≥ 0, ai (u, u) = 1 respectively.

The Darwinian equations (2.3) model evolutionary changes in the distributions of a trait v within an
inter-breeding population. Another notion of evolutionary change concerns the invasibility of a popu-
lation by a low density population of mutant individuals that do not interbreed with the original popu-
lation. This notion has played a central role in theories of speciation. If a population with mean trait u
is immune to such an invasion, then the trait u is called an evolutionarily stable strategy or trait (ESS).
The ESS maximum principle [7] states that the trait component ue of a (locally asymptotically) stable
equilibrium (xe, ue) of the Darwinian equations (2.3) is an ESS if (and only if) the adaptive landscape
ln r (xe, v, ue) has a global maximum at v = ue.

In the next section we investigate the existence and stability properties of equilibria of equations
(2.3). We are interested in two types of equilibria (x, u), those with x = 0 which we call extinction
equilibria, and those with x > 0, which we call positive equilibria.

3. A bifurcation analysis of the Darwinian model (2.3)

The equilibrium equations associated with the Darwinian equations (2.3) are (assuming δ2 , 0, so
that evolution occurs)

x = r (x, v, u)|v=u x (3.1a)
0 = ∂vr (x, v, u)|v=u . (3.1b)

(x, u) = (0, u) is an extinction equilibrium if and only if u solves the equation

0 = ∂vr (0, v, u)|v=u . (3.2)

We refer to solutions u of this equation as critical traits. The equations for equilibria (x, u) with x , 0
are

1 = r (x, v, u)|v=u (3.3a)
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0 = ∂vr (x, v, u)|v=u . (3.3b)

By the linearization principle, we study the local asymptotic stability (LAS) of an equilibrium of the
Darwinian equations (2.3) by investigating the eigenvalues of the Jacobian J (x, u) evaluated at the
equilibrium. The Jacobian of (2.3) is

J (x, u) =

(
(r (x, v, u) + ∂xr (x, v, u) x)|v=u (∂vr (x, v, u) + ∂ur (x, v, u))|v=u x
δ2∂x (∂v ln r (x, v, u)|v=u) 1 + δ2∂u (∂v ln r (x, v, u)|v=u)

)
.

From the fact that ∂vr (x, v, u) = 0 at an equilibrium, it follows that the differential terms in the second
row reduce, when evaluated at an equilibrium, to

∂x (∂v ln r (x, v, u)|v=u) =
∂xvr (x, v, u)

r (x, v, u)

∣∣∣∣∣
v=u

∂u (∂v ln r (x, v, u)|v=u) =
∂vvr (x, v, u) + ∂uvr (x, v, u)

r (x, v, u)

∣∣∣∣∣
v=u

.

The Jacobian, when evaluated at an equilibrium, is then

J (x, u) =

(
r (x, v, u) + x∂xr (x, v, u) ∂ur (x, v, u) x

δ2 ∂xvr(x,v,u)
r(x,v,u) 1 + δ2 ∂vvr(x,v,u)+∂uvr(x,v,u)

r(x,v,u)

)∣∣∣∣∣∣
v=u

. (3.4)

At a nonzero equilibrium, r (x, u, u) = 1 in J (x, u). Our point of view will be to study the existence and
stability of equilibria as they depend on b0, i.e. we will use b0 as a bifurcation parameter.

3.1. Extinction equilibria

From (2.4) the equation (3.2) for a critical trait u = uc reduces to

f ′ (uc) = 0,

i.e. critical traits are critical points of f (v). The upper right entry of the Jacobian J (0, uc) vanishes and
therefore its eigenvalues are the diagonal terms. Using (2.4) we calculate these eigenvalues to be

λ1 = r (0, v, uc)|v=uc
= b0 f (uc) + s0 (1 − f (uc)) > 0

λ2 = 1 + δ2 ∂vvr (0, v, uc) + 0
r (0, v, uc)

∣∣∣∣∣
v=uc

= 1 + δ2 b0 − s0

b0 f (uc) + s0 (1 − f (uc))
f ′′ (uc) .

Recall from H1 that b0 > s0. If f ′′ (uc) > 0 then λ2 > 1 and the extinction equilibrium (x, u) = (0, uc)
is unstable for all values of b0 > s0.

Assume f ′′ (uc) < 0. The eigenvalue λ2 is a decreasing function of b0 > s0 which at b0 = s0 equals
1 and satisfies

lim
b0→+∞

λ2 = 1 + δ2 f ′′ (uc)
f (uc)

.

Thus, if

δ2 < −2
f (uc)

f ′′ (uc)
(3.5)
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then |λ2| < 1 for all b0 > s0 and the stability by linearization of the extinction equilibrium is determined
by λ1. Define

bc
0 :=

1 − s0 (1 − f (uc))
f (uc)

. (3.6)

Note that s0 < 1 in H1 implies
bc

0 > s0.

The linearization principle yields the following theorem.

Theorem 3.1. Assume H1 and H2 hold for the Darwinian equations (2.3) with (2.4) and that uc is a
generic critical trait (i.e. a critical trait such that f ′′ (uc) , 0) for which f (uc) > 0.

(a) If f ′′ (uc) < 0 and δ2 satisfies (3.5) (i.e. the speed of evolution is not too fast) then the extinction
equilibrium (x, u) = (0, uc) is unstable for b0 > bc

0 and (locally asymptotically) stable for b0 < bc
0.

(b) If f ′′ (uc) > 0 or if the inequality (3.5) for δ2 is reversed, then the extinction equilibrium (x, u) =

(0, uc) is unstable for all b0 > s0

3.2. Positive equilibria

The extinction equilibrium’s loss of stability in Theorem 3.1(a) suggests a canonical transcritical
bifurcation of equilibria. This is the subject of Theorem 3.2 below, which establishes this local bifur-
cation, describes the global extent of the bifurcating continuum of positive equilibria, and deals with
the relationship between the stability of bifurcating positive equilibria near the bifurcation point and
the direction of bifurcation.

If (x, u) is an equilibrium of (2.3)-(2.4) with parameter b0, then we refer to

[b0, (x, u)] ∈ Ω := R+ × (Γ × R)

as an equilibrium pair. An equilibrium pair with x > 0 is a positive equilibrium pair and with x = 0 is
an extinction equilibrium pair. If uc is a critical trait, then [b0, (0, uc)] is an extinction equilibrium pair
for all values of b0. Let S denote the closure of the set of positive equilibrium pairs of (2.3)-(2.4).

If an extinction equilibrium pair [b0, (0, uc)] lies in S for some value of b0, then we say this extinc-
tion pair is a bifurcation point and that positive equilibrium pairs bifurcate from [b0, (0, uc)]. We say
the bifurcation at [b0, (0, uc)] is forward (respectively backward) if b0 > bc

0 (respectively b0 < bc
0) for

the positive solution pairs in a neighborhood of [b0, (0, uc)]. We say the bifurcation is stable (respec-
tively unstable) if the bifurcating positive equilibria lying in a neighborhood of [b0, (0, uc)] are locally
asymptotically stable (respectively unstable) equilibria of the Darwinian equations (2.3).

The proof of the theorem below, which relies on the implicit function theorem and the celebrated
global bifurcation theorems of Rabinowitz [11], appears in the Appendix. Define

κ := −
[
bc

0 f (uc) β′ (0) + s0 (1 − f (uc))σ′ (0)
]
. (3.7)

A continuum is a closed and connected set.

Theorem 3.2. Assume H1 and H2 hold for the Darwinian equations (2.3) with (2.4) and that uc is a
generic critical trait (i.e. a critical trait such that f ′′ (uc) , 0) for which f (uc) > 0. Assume κ , 0 and
let bc

0 be defined by (3.6).
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(a) S contains a continuum S + that contains (i.e. bifurcates from) the extinction equilibrium[
bc

0, (0, uc)
]
, in a neighborhood of which S +\

{[
bc

0, (0, uc)
]}

consists of positive equilibria. Moreover,

S +\
{[

bc
0, (0, uc)

]}
either contains only positive equilibrium pairs and is unbounded in Ω (with b0 > s0)

or it contains another extinction equilibrium pair
[
b∗0, (0, u∗)

]
with b∗0 > s0 and u∗ , uc.

(b) If κ > 0 then the bifurcation at
[
bc

0, (0, uc)
]

is forward and if κ < 0 then it is backward.

(c) Suppose f ′′ (uc) < 0 and that δ2 satisfies (3.5). If κ > 0 then the bifurcation at
[
bc

0, (0, uc)
]

is
stable and if κ < 0 then it is unstable.

(d) If f ′′ (uc) > 0 or if the inequality (3.5) for δ2 is reversed, then the bifurcation at [b0, (0, uc)] is
unstable (regardless of the direction of bifurcation).

Remark 1. Part (a) of Theorem 3.2 says that the continuum of positive equilibrium pairs [b0, (x, u)],
x > 0, of the Darwinian equations (2.3) bifurcates from

[
bc

0, (0, uc)
]

and is either unbounded in Ω or
connects to another extinction equilibrium with a critical trait different from uc.

Remark 2. From Theorems 3.1 and 3.2 we see that a bifurcation from an extinction equilibrium for
a generic critical trait uc results in stable positive equilibria only when f (v) has a local maximum at
v = uc and the bifurcation at b0 = bc

0 (where the extinction equilibrium loses stability) is forward (i.e.
κ > 0). An unstable bifurcation occurs when f (v) has a local minimum at v = uc regardless of the
direction of bifurcation.

Remark 3. The ESS Maximum Principle states that a trait ue associated with an equilibrium (xe, ue)
of the Darwinian equations (2.3) is an ESS (evolutionarily stable trait or strategy) if and only if the
equilibrium is (locally asymptotically) stable and the adaptive landscape ln r (xe, v, ue) has a global
maximum at v = ue [7]. A population (mutant species) with a different trait cannot successfully invade,
at low density, a population with an ESS mean trait.

If, in the Darwinian model (2.3), the distribution f (v) has a local maximum at a critical trait v = uc

then so does (for b0 > s0) the inherent population growth rate

r (0, v, u) = b0 f (v) + s0 (1 − f (v)) = (b0 − s0) f (v) + s0 (3.8)

and hence so does the inherent adaptive landscape ln r (0, v, u). The trait ue of any positive equilibrium
(xe, ue) is, by the equilibrium equations (3.3), a critical trait of the adaptive landscape ln r (xe, v, ue) at
which fitness ln r (xe, ue, ue) = 0.

Remark 4. For the positive equilibria bifurcating from, and sufficiently near, the extinction equilibrium
(0, uc) at a generic critical trait uc which is a local maximum of f (v) (cf. Theorem 3.2(c)) the fitness
landscape ln r (xe, v, ue) has, by continuity, a local maximum at v = ue. If the fitness landscape does
not have a global maximum at v = ue, then by the ESS Maximum Principle ue is not an ESS. Sufficient
conditions that imply the fitness landscape has a global maximum at v = ue, and hence that ue is an
ESS, are (by continuity) that f (v) has a unique global maximum at v = uc and that f (±∞) = 0.

If the trait component ue of a stable positive equilibrium (xe, ue) of the Darwinian equations (2.3) is
an ESS, then we call (xe, ue) an ESS equilibrium.
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4. Semelparity versus iteroparity

In model (2.3) inherent survival s0 (1 − f (v)) can vary from 0 to s0. If survival s0 (1 − f (v)) equals
0 at a trait v = us (i.e. f (us) = 1) then an individual reproduces only once and dies, i.e. an individual
with trait v = us is semelparous. We refer to a population with mean trait us or “significantly near” us

as a semelparous population and to an equilibrium (xe, ue) with ue ≈ us as a semelparous equilibrium.
If, on the other hand, ue is not “significantly close” to us, so that the inherent survival s0 (1 − f (ue))
is significantly far from 0, then the equilibrium is an iteroparous equilibrium. What is meant by
“significantly” and what the cut-off survival probability between these two life histories strategies is,
of course, arbitrary and up to the modeler to decide.

A trait v = us such that f (us) = 1 is a semelparous trait. Note by H2 that the distribution f (v) has a
global maximum at such semelparous trait and therefore individuals with mean trait us maximize their
inherent fertility b0 f (u) at the expense of reproducing only once. By Remark 4 the positive equilibria
(xe, ue) forward bifurcating from and near the extinction equilibrium (0, us) at bs

0 = 1 in Theorem 3.2(c)
are ESS semelparous equilibria.

Similarly, forward bifurcating positive equilibria have ESS iteroparous traits if the critical trait uc

is located at a global maximum of f (v), but f (uc) is significantly less that 1. Of more interest here,
however, is the case when both semelparous and iteroparous traits are present in the distribution f (v),
in order to study which trait is favored by evolution (i.e. which is an ESS). Toward this end we assume
the following.

H3. There exist two (generic) critical traits us and ui at which maxima of f (v) occur. We
assume f (us) = 1 and hence us is a semelparous trait at which f (v) attains a global maxi-
mum. We also assume ui is an iteroparous trait, i.e. f (ui) < 1 and hence f (v) does not attain
a global maximum at ui.

Under the criteria of Theorem 3.2(c), forward bifurcating positive equilibria from the extinction equi-
libria (0, us) and (0, ui) are, respectively, ESS semelparous equilibria and non-ESS iteroparous equilib-
ria. These bifurcations occur at the critical b0 values bs

0 and bi
0 given by (3.6) respectively, namely

bs
0 = 1 and bi

0 =
1 − s0 (1 − f (ui))

f (ui)
> 1.

Under assumption H3 there is, of course, a local minimum of f (v) at a trait um between us and ui but
the bifurcating positive equilibria from the extinction equilibrium (0, um) are unstable, according to
Theorem 3.2(d).

Corollary 1. In addition to the assumptions of Theorem 3.2 assume H3 holds for the Darwinian equa-
tions (2.3) with (2.4). Then no ESS iteroparous equilibria arise from bifurcations at extinction equilib-
ria, at least locally in a neighborhood of the bifurcation points.

In the following examples we illustrate the conclusions of Theorem 3.2 and the Corollary 1. In
Example 4.1 we show that in the absence of trait dependent density terms β and σ, the only ESS
equilibria of the Darwinian model (2.3) are semelparous. Example 4.2 is an example that shows, on
the other hand, that it is possible for ESS iteroparous equilibria to occur outside the neighborhood of
the bifurcation points (i.e. for sufficiently high equilibrium density), if density effect terms are trait
dependent.
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4.1. Trait independent density terms

Assume H3 and suppose ai (v, u) ≡ 1 in the Darwinian equations (2.3) so that the density terms are
trait independent. The equilibrium equations for positive equilibria (xe, ue) are

1 = b0 f (ue) β (xe) + s0 (1 − f (ue))σ (xe)

0 = f ′ (ue) (b0β (xe) − s0σ (xe))

Suppose f ′ (ue) , 0. Then from the second equation we see that b0β (xe) = s0σ (xe). But if this
equality is used in the first equation, we obtain s0σ (xe) = 1 in contradiction to H1. If follows that
f ′ (ue) = 0. That is to say, the trait component ue in any positive equilibrium (xe, ue) must be a critical
point ue = uc of f (v). It follows that the trait components ue of the positive equilibria (xe, ue) that
bifurcate from an extinction equilibrium (0, uc), as guaranteed by Theorem 3.2, are all equal to uc.
Thus, the positive equilibria retain the characteristics of the critical trait from which they bifurcate. In
particular, if uc = us is a semelparous trait, then all equilibria on the (global) bifurcating continuum
are semelparous. Similarly, for the (global) continuum bifurcating from an extinction equilibrium at
an iteroparous extinction equilibrium (0, ui).

Note that the first equilibrium equation evaluated at an equilibrium (x, u) = (xe, ue), together with
H1, imply

b0β (xe) − s0σ (xe) =
1 − s0σ (xe)

f (ue)
> 0.

At a positive equilibrium

r (xe, v, ue) = (b0β (xe) − s0σ (xe)) f (v) + s0σ (xe)

is a re-scaled and shifted version of f (v) and therefore it, and the adaptive landscape ln r (xe, v, ue), has
the same local and global maxima as f (v).

We conclude, in this case of trait independent density terms, that the semelparous equilibria (xe, us)
are ESS equilibria (even outside the neighborhood of the bifurcation point (0, us) at bs

0 = 1). Similarly,
the iteroparous equilibria (xe, ui) are not ESS equilibria (even outside the neighborhood of the bifurca-
tion point (0, us) at bi

0). In summary, in the absence of trait dependent density effects in the Darwinian
model (2.3), there are no ESS iteroparous equilibria. The only ESS equilibria are semelparous. This
supports Cole’s conclusion that evolution favors semelparity.

4.2. Trait dependent density terms

We showed in Section 4.1 that there are no ESS iteroparous equilibria of the Darwinian model (2.3)
when density effects are trait independent. Even if density effects are trait dependent, we showed above
that bifurcating iteroparous equilibria, in a neighborhood of the bifurcation point, are not ESS equilibria
(while bifurcation semelparous equilibria are). In this section we show by means of an example that
ESS iteroparous equilibria are possible outside a neighborhood of the bifurcation point.

We assume the distribution f (v) has exactly two maximum as shown in Figure 1. A global maxi-
mum occurs at the semelparous trait us = 0 and a local maximum occurs at a iteroparous trait ui near
1. The specific mathematical expression used in the simulations is given in the caption of Figure 1.
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Figure 1. The distribution f (v) = exp
(
−v2

)
exp

(
−v2 (1 − v)2 /w

)
has two maxima when

w < 1/8. The graph is drawn for w = 0.05. The global maximum of 1 occurs at the
semelparous trait vs = 0 and a local maximum of 0.38789 occurs at the iteroparous trait
vi ≈ 0.94365. A local minimum of 0.21697 occurs at vm ≈ 0.55635.

To complete the Darwinian model (2.3) we need to choose expressions for the density terms β and σ
and the trait dependent factors ai (v, u). For the density terms we choose the rational functions, often
used in population modeling,

β (z) =
1

1 + c1z
, σ (z) =

1
1 + c2z

, ci > 0. (4.1)

As is commonly done in Darwinian models, we assume the factors ai are functions of the difference
v − u. That is to say, the intensity of the intraspecific competitive interactions felt by an individual
depends on how different the individual is from most other individuals (as measured by the mean trait).

In this example, we assume no trait dependence in the survival density term, i.e. a2 (v, u) ≡ 1, and
that the trait dependence in the fertility density term is a decreasing function of v − u. This models a
hierarchical trait dependence in intraspecific competition in that individuals with traits larger than the
mean experience less competition. Specifically, we take

a1 (v, u) = exp (−w1 (v − u)) , w1 > 0. (4.2)

Under these assumptions, in the Darwinian model (2.3) we have

r (x, v, u) = b0 f (v)
1

1 + c1 exp (−w1 (v − u)) x
+ s0 (1 − f (v))

1
1 + c2x

. (4.3)

There are 3 critical traits us, um and ui located at the critical points of f (v). By Theorems 3.1 and 3.2,
as b0 increases bifurcations occur at three critical values bs

0 < bi
0 < bm

0 given by (3.6). Since the density
terms (4.1) are decreasing functions of z, the bifurcations are forward (κ > 0 at each bifurcation). By
Remarks 2 and 4, the forward bifurcations at bs

0 and bi
0 are stable, since the semelparous trait us and

the iteroparous trait ui are located at local maxima of f (v), and the bifurcation at bm
0 is unstable, since

um is located at a local minimum. As pointed out above, locally near the bifurcations at bs
0 and bi

0 the
bifurcating equilibria are ESS semelparous equilibria and non-ESS iteroparous equilibria respectively.
This sequence of bifurcations is represented by the iconic phase plane portraits in Figure 2.
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Figure 2. (A)-(B) show the bifurcation of stable ESS semelparous equilibria as b0 increases
through bs

0 = 1. (C) shows the bifurcation of stable non-ESS iteroparous equilibria as b0

increases through bi
0. (D) shows the bifurcation of unstable positive equilibria as b0 increases

through bm
0 .

Figure 3. Sample orbits in the (x, u)-phase plane and the adaptive landscapes of stable equi-
libria are shown for the Darwinian model equations (2.3) with (4.3) and with the distribution
f (v) given in Figure 1. The extinction equilibria are (0, us) = (0, 0), (0, ui) ≈ (0, 0.94365) and
(0, um) ≈ (0, 0.55635). Parameter values are s0 = 0.8, c1 = c2 = 0.1, w1 = 2 and δ2 = 0.01.
The three b0 bifurcation points are bs

0 = 1, bi
0 ≈ 1.3156, and bm

0 ≈ 1.7218. Initial conditions
(x0, u0) are (a) (10, 0.25) and (b) (10, 0.75). (A) For b0 = 0.99 the two sample orbits (a)
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and (b) illustrate that the two extinction equilibria (0, us) = (0, 0) and (0, ui) ≈ (0, 0.94365)
are stable. (B) For b0 = 1.25 the two sample orbits illustrate (b) the stability of the ex-
tinction equilibrium (0, ui) and (a) the bifurcation of a stable ESS semelparous equilibrium
(xe, ue) ≈ (2.430, 0.028). (C) For b0 = 1.45 two sample orbits illustrate the stability of (b)
an ESS semelparous equilibrium (xe, ue) ≈ (4.340, 0.036) and (a) of a non-ESS iteroparous
equilibrium (xe, ue) ≈ (0.519, 0.951).

Figure 4. Phase plane and adaptive landscape plots are shown for the parameter values
used in Figure 1 but with b0 = 2.0 and 5. In both phase planes the two sample orbits have
initial conditions (x0, u0) are (10, 0.25) and (10, 0.75). (A) For b0 = 2.0 the orbit (b) tends
to an ESS semelparous equilibrium (xe, ue) ≈ (2.620, 0.966) and the orbit (a) tends to an
ESS iteroparous equilibrium (0, ui) ≈ (9.556, 0.044). (B) For b0 = 5.0 the orbit (b) tends to
a non-ESS semelparous equilibrium (xe, ue) ≈ (13.856, 0.985) and the orbit (a) tends to an
ESS iteroparous equilibrium (0, ui) ≈ (28.439, 0.051).

Sample orbits in Figures 3 illustrate the bifurcations and multiple attractors for the phase plane plots
(B) and (C) in Figure 2. Parameter values are given in the figure captions. These sample orbits corrob-
orate the occurrence of the sequential bifurcation of ESS semelparous equilibria followed by non-ESS
iteroparous equilibria at the predicted bifurcation values of bs

0 and bi
0. They also illustrate that these

bifurcations result in multiple attractors and hence initial condition dependent extinction and survival
as well as initial condition dependent semelparous and iteroparous equilibria life history strategies.
For selected larger values of b0, Figure 4 shows orbits that approach ESS iteroparous equilibria (which
are non-ESS equilibria at bifurcation). Interestingly it can occur that both semelparous and iteroparous
equilibria are ESS equilibria (see Figure 4A) or that the iteroparous equilibrium becomes an ESS equi-
librium and the semelparous becomes non-ESS equilibrium (see Figure 4B).
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We note that when we used the symmetric distribution

a1 (v, u) = exp
(
−w2

1 (v − u)2
)

(4.4)

instead of the hierarchical distribution (4.2), we found no simulation evidence of ESS iteroparous
equilibria.

5. Discussion and conclusion

The Darwinian equations (2.3) constitute a dynamic evolutionary model based on a scalar difference
equation for the dynamics of a population in which a phenotypic trait, and hence the model coefficients,
change over time due to Darwinian evolutionary principles. The model components accounting for
density effects remain general. The key assumption with regard to the dependence of the inherent
fertility and survival rates on the phenotypic trait is that they suffer a trade off, i.e. a change in an
individual’s trait that results in an increase (or a decrease) in fertility is accompanied by a decrease
(or, respectively, an increase) in survival. Another key assumption is that the intensity of the density
effects on an individual’s fertility and survival is not only dependent on its phenotypic trait, but that of
the remaining individuals in the population as represented by the population mean phenotypic trait.

Theorems 3.1 and 3.2 give conditions under which positive equilibria bifurcate from an extinction
equilibrium and under which they are stable or unstable. Extinction equilibria (x, u) = (0, uc) occur at
critical traits and in the model (2.3) a trait at which fertility is maximized, and hence survival drops to 0,
is a critical trait that describes a semelparous life history strategy. When the bifurcation is forward and
when evolution does not occur too rapidly, the bifurcating positive equilibria are (locally asymptotically
stable). By the ESS Maximum Principle, the bifurcating positive equilibria are ESS equilibria if (and
only if) their trait component lies at a global maximum of the adaptive landscape.

A trait is a semelparous trait us if the survival probability of an individual with that trait equals 0
(and hence it has no second reproductive event). An individual with a trait v near a semelparous trait
us has a low probability of survival and second reproduction, and this is true if the population mean
u is near us. We call a population a semelparous population if its mean trait is near a semelparous
trait and an iteroparous population otherwise (how near is near enough is up to the modeler). Suppose
both semelparous and iteroparous critical traits are present in the model, such as the one in Section 4,
that the bifurcations are forward (which occurs if the density effects are negative), and that evolution
is not too rapid. Then our analysis results in several broad conclusions concerning the evolution of
semelparity or iteroparity and how it is influenced by the dependence of density effects on the evolving
phenotypic trait:

1. If the density effects in a population model are not in any way dependent on the evolving pheno-
typic trait (but inherent fertility and/or survival are), then only semelparous equilibria are ESS equilib-
ria (Section 4.1). This case supports Cole’s contention that evolution should favor semelparity.

2. If density effects do depend on the evolving phenotypic trait, then bifurcating semelparous equi-
libria are ESS equilibria and bifurcating iteroparous equilibria are not ESS equilibria, at least in a
neighborhood of the bifurcation points. This conclusion again supports Cole’s contention, but only for
equilibria in neighborhoods of bifurcation points.

3. Outside the neighborhood of a bifurcation point, it is possible for iteroparous equilibria to be
ESS equilibria. We have not analytically proved this, but only illustrated it by means of simulations of
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an example model (Section 4.2). This example illustrates the possibility of the simultaneous existence
of both an ESS semelparous equilibrium and an ESS iteroparous equilibrium. In this multiple attractor
scenario, the evolution to iteroparity or semelparity is initial condition dependent. The example also
illustrates the possibility that the ESS property of equilibria can reverse roles, with the iteroparous
equilibria becoming ESS equilibria and semelparous equilibria becoming ESS equilibria outside the
neighborhoods of the bifurcation points. There are two a key assumptions in this example that affect
these results.

First, the trait effect on the fertility density factor is asymmetric (4.2), by which is meant that
an individual with a trait larger than the population mean trait suffers a reduced effect of population
density on its fertility. A hierarchy based on the trait with regard to intraspecific competition for
resources would result in such an asymmetry. For example, if trees are competing for sunlight, then
an individual tree will experience less competition if it is taller than most other trees, i.e. taller than
the mean tree height. Similar competitive hierarchy could be based on any number physical attributes,
such as body size or mobility, or behavioral traits such as aggressiveness, etc. We also ran simulations
using a symmetric density factor (4.4) but found no evidence of ESS iteroparous equilibria.

Second, in the example it is assumed that the iteroparous trait is larger than the semelparous trait.
Thus, in this example, the benefits to an individual with the iteroparous trait, which result in it being
an ESS, are twofold: not only does an iteroparous trait confer a higher inherent survival probability but
also a reduced negative effect of density on fertility. This in turn raises the population growth rate r at
the iteroparous trait, which in the simulation example was enough to result in a global maximum at the
iteroparous equilibrium.

4. Typically, with both semelparous and iteroparous traits are present, the Darwinian model (2.3)
has multiple stable equilibria and, as a result, the asymptotic alternatives of extinction versus survival
as well as the life history strategies of semelparity versus iteroparity are initial condition dependent.

In reaching the conclusions above, we focused on forward (stable) bifurcations at critical traits.
Backward bifurcations can result from positive density effects at low density, i.e. component Allee
effects, which can produce at negative κ value. By Theorem 3.2 such bifurcations are always unstable,
but it is common in population models (which typically have negative density effects at high densi-
ties) for backward bifurcations to produce strong Allee effects, i.e. multiple attractor scenarios for
subcritical values of b0 in which both the extinction equilibrium and a positive attractor exist (outside
a neighborhood of the bifurcation point) [12]. What the nature of the equilibria are, semelparous or
iteroparous, and what is their ESS status would be a interesting questions to investigate.

We also have restricted attention to scalar difference equations as population models and therefore
ignored any population structure. General bifurcation results are available for both population and
evolutionary models for structured populations (by means of matrix equations) [13], [14], [15], [16]
and the study of semelparous and iteroparous evolution would be enhanced by a study of such models
since they take into account more detailed life history patterns.
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Appendix

Proof of Theorem 3.2. (a) We introduce y = u − uc into the equilibrium equations (3.1) with (2.4),
namely, into the two algebraic equations

x = b0 f (u) β (a1 (u, u) x) x + s0 (1 − f (u))σ (a2 (u, u) x) x
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0 = b0 f ′ (u) β (a1 (u, u) x) + b0 f (u) β′ (a2 (u, u) x) ∂va1 (u, u) x

+ s0
(
− f ′ (u)

)
σ (a1 (u, u) x) + s0 (1 − f (u))σ′ (a2 (u, u) x) ∂va2 (u, u) x

and write the Taylor expansions (with remainder) of the left sides of the equations in x and y centered
on x = y = 0 to obtain

x = b0 f (uc) x + s0 (1 − f (uc)) x + b0h1(x, y) + h2(x, y)
0 = b0 f ′′ (uc) y + b0 f (uc) β′ (0) ∂c

va1x + b0h3 (x, y)

− s0 f ′′ (uc) y + s0 (1 − f (uc))σ′ (0) ∂c
va2x + h4 (x, y)

where |hi (x, y)| = O
(
x2 + y2

)
and we have introduced the notation

∂c
va1 := ∂va1 (uc, uc) , ∂c

va2 = ∂va2 (uc, uc) .

By moving all terms not involving the bifurcation parameter b0 to the left sides of both equations and
writing the result in matrix format, we obtain(

1 − s0 (1 − f (uc)) 0
−s0 (1 − f (uc))σ′ (0) ∂c

va2 s0 f ′′ (uc)

) (
x
y

)
= b0

(
f (uc) 0

f (uc) β′ (0) ∂c
va1 f ′′ (uc)

) (
x
y

)
+ b0

(
h1 (x, y)
h3 (x, y)

)
+

(
h2 (x, y)
h4 (x, y)

)
Multiplying both sides of this equation by the inverse of the matrix on the left side, we get the nonlinear
operator equation

z = b0Lz + H (b0, z)

where

ẑ =

(
x
y

)
, L =

 f (uc)
1−s0(1− f (uc)) 0

f (uc)
s0 f ′′(uc)

(1−s0(1− f (uc)))β′(0)∂c
va1+s0(1− f (uc))σ′(0)∂c

va2

1−s0(1− f (uc))
1
s0


H (b0, ẑ) = b0

(
h1 (x, y)
h3 (x, y)

)
+

(
h2 (x, y)
h4 (x, y)

)
= O

(
‖ẑ‖2

)
to which we can apply the global bifurcation theorems in [11]. The result is the existence of a contin-
uum in S that contains (i.e. bifurcates from) an extinction equilibrium [b0, (0, uc)] where b0 equals a
characteristic value of L, i.e. a reciprocal of the (simple) eigenvalues of L, which are (3.6) and s0.

Consider first the case b0 = bc
0. In a neighborhood of [bc

0, (0, uc)], the bifurcating equilibria are
approximated by an eigenvector of L associated with eigenvalue bc

0 (this is a well known fact of bifur-
cation theory, but also see the proof of (b) below) whose x component is a multiple of

1 − s0

s0 (1 − (1 − f ) s0)
> 0.

According to Theorem 1.25 in [11] the bifurcating continuum S contains two subcontinua one of which
S + consists, in a neighborhood of the bifurcation point, of positive equilibria (and the other of which
consists of equilibria with x < 0, in which we are not interested). Moreover, according to this theorem,
S + connects to
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(i) either the boundary of Ω

(ii) or the extinction equilibrium [s0, (0, uc)], located at the other characteristic value s0 of L.

It is possible that S + consists entirely of positive equilibrium pairs. If it does not, however, then there
exists a sequence of positive equilibrium pairs [b(i)

0 ,
(
x(i), u(i)

)
] ∈ S + such that

lim
i→∞

[b(i)
0 ,

(
x(i), u(i)

)
] = [b∗, (0, u∗)]

for some b∗ ≥ s0 and u∗ , uc. Positive equilibria pairs satisfy the two algebraic equations (3.3), which
implies as i→ ∞ that

1 = b∗ f (u∗) + s0 (1 − f (u∗))

0 = (b∗ − s0) f ′ (u∗) .

If b∗ = s0, then the first equation implies the contradiction s0 = 1. Therefore f ′ (u∗) = 0 and u∗ is a
critical trait. This rules out the alternative (ii) and leaves us with the alternatives stated in part (a) of
Theorem 3.2.

(b) We can use the implicit function theorem to solve the equilibrium equations (3.3) for x and u
as functions of b0. By the definition (3.6) of bc

0 these equations are satisfied by x = 0 and u = uc

when b0 = bc
0. The implicit function theorem guarantees (twice continuously differentiable) solutions

x = ξ (b0) and u = υ (b0) of equations (3.3) that satisfy ξ
(
bc

0

)
= 0 and υ

(
bc

0

)
= uc provided the Jacobian

of these equations is nonsingular at x = 0 , u = uc and b0 = bc
0. This Jacobian is the diagonal matrix(

−κ 0
∗

1−s0
f (uc) f ′′ (uc)

)
and hence is nonsingular under our assumptions that κ , 0 and f ′′ (uc) , 0. (The asterisk denotes an
entry in the Jacobian that we do not need.)

An implicit differentiation of equation (3.3a)

1 = b0 f (υ (b0)) β (a1 (υ (b0) , υ (b0)) ξ (b0)) + s0 (1 − f (u))σ (a2 (υ (b0) , υ (b0)) ξ (b0))

with respect to b0, followed by an evaluation at b0 = bc
0, results in

0 = bc
0 f (uc) + b0 f (uc) β′ (0) ξ′

(
bc

0
)

+ s0 (1 − f (uc))σ′ (0) ξ′
(
bc

0
)

and hence
ξ′

(
bc

0
)

=
f (uc)
κ

.

Thus since ξ
(
bc

0

)
= 0 it follows that if κ > 0 (respectively κ < 0) then x = ξ (b0) > 0 for b0 ' bc

0 and
the bifurcation is forward (respectively backward).

(c) To study the stability by linearization of the bifurcating positive equilibria, at least in a neigh-
borhood of the bifurcation point

[
bc

0, (0, uc)
]
, we consider the Jacobian (3.4) evaluated at a positive

equilibrium (at which, by (3.3a), r (x, u, u) = 1)

J (x, u) =

(
(1 + x∂xr (x, v, u))|v=u (∂ur (x, v, u) x)|v=u

δ2 (∂xvr (x, v, u))|v=u 1 + δ2 (∂vvr (x, v, u) + ∂uvr (x, v, u))|v=u

)
.
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For the positive equilibria x = ξ (b0) , u = υ (b0) on the bifurcating continuum, this Jacobian becomes
a function of b0 which we denote by J (b0). In order to utilize the linearization principle, we need to
investigate the two eigenvalues λ1 (b0) and λ2 (b0) for b0 near bc

0.
Because the appearance of u in r (x, v, u) given by (2.4) is always associated with a factor of x,

any u derivative of r equals 0 when evaluated at x = 0. Thus, ∂uvr (0, uc, uc) = 0. A straightforward
calculation shows

∂vvr (0, uc, uc) =
(
bc

0 − s0
)

f ′′ (uc) =
1 − s0

f (uc)
f ′′ (uc) .

Thus,

J
(
bc

0
)

=

(
1 0

δ2∂xvr (0, uc, uc) 1 + δ2 1−s0
f (uc) f ′′ (uc)

)
and hence

λ1
(
bc

0
)

= 1, λ2
(
bc

0
)

= 1 + δ2 1 − s0

f (uc)
f ′′ (uc) .

Under the assumptions in (c),
∣∣∣∣λ2

(
bc

0

)∣∣∣∣ < 1 and hence |λ2 (b0)| < 1 for b0 near bc
0. It follows that

stability by linearization is determined by λ1 (b0). Specifically, the positive equilibrium will be stable
(respectively unstable) for b0 near bc

0 if λ′1
(
bc

0

)
< 0 (respectively λ′1

(
bc

0

)
> 0). We need a formula for

this derivative.
The left and right eigenvectors of J (b0) associated with eigenvalue λ1 (b0) are

ŵL
(
bc

0
)

=
(

1 0
)

and ŵR
(
bc

0
)

=

(
−δ2 1−s0

f (uc) f ′′ (uc)
δ2∂xvr (0, uc, uc)

)
.

An implicit differentiation of J (b0) ŵR (b0) = λ1 (b0) ŵR (b0) with respect to b0 followed by an evalua-
tion at b0 = bc

0 and an application of the Fredholm alternative yield the formula

λ′1
(
bc

0
)

=
ŵL

(
bc

0

)
J′

(
bc

0

)
ŵR

(
bc

0

)
ŵL

(
bc

0

)
ŵR

(
bc

0

) .

Now
ŵL

(
bc

0
)

ŵR
(
bc

0
)

= −δ2 1 − s0

f (uc)
f ′′ (uc)

and

λ′1
(
bc

0
)

=

(
ξ′

(
bc

0

)
∂xr (0, uc, uc) 0

)
ŵR

(
bc

0

)
−δ2 1−s0

f (uc) f ′′ (uc)
=

f (uc)
κ

∂xr (0, uc, uc) .

A calculation using (2.4) shows that ∂xr (0, uc, uc) = −κ so that we arrive at

λ′1
(
bc

0
)

= − f (uc) < 0.

In the case of a forward bifurcation when the bifurcating positive equilibria correspond to b0 ' bc
0,

we conclude that λ′1 (b0) / 1 and the equilibria are stable by the linearization principle. However, in
the case of a backward bifurcation when the bifurcating positive equilibria correspond to b0 / bc

0, we
conclude that λ′1 (b0) ' 1 and the equilibria are unstable.
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(d) In this case λ2 (b0) is either greater than 1, if f ′′ (uc) > 0, or less than −1, if the inequality on δ2

in (3.5) is reversed.
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