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Abstract: In this paper, we formulate a new age-structured malaria model, which incorporates the
age of prevention period of susceptible people, the age of latent period of human and the age of latent
period of female Anopheles mosquitoes. We show that there exists a compact global attractor and
obtain a sufficient condition for uniform persistence of the solution semiflow. We obtain the basic
reproduction number R, and show that R, completely determines the global dynamics of the model,
that is, if Ry < 1, the disease-free equilibrium is globally asymptotically stable, if Ry > 1, there exists
a unique endemic equilibrium that attracts all solutions for which malaria transmission occurs. Finally,
we perform some numerical simulations to illustrate our theoretical results and give a brief discussion.
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1. Introduction

Malaria, an infectious disease caused by the malaria parasite, is one of the most severe public health
problems in the world. About half of the world population live in areas at risk of malaria transmission.
According to the World Malaria Report 2016 [1], in 2015, there were 212 million new clinical cases
of the disease and 429,000 deaths. The majority of malaria cases and deaths are concentrated in
Africa. Malaria transmission between people mainly involves malaria parasites infecting successively
two types of hosts: humans and female Anopheles mosquitoes. In humans, the parasites (sporozoites)
grow and multiply first in the liver cells. After a period of time, the parasites are found in the red cells
of the blood. The blood stage parasites are those that cause the symptoms of malaria. In the blood,
the parasites grow inside the red cells and then destroy them, releasing more daughter parasites that
continue the cycle by invading other red cells. A proportion of the blood stage parasites develop into
the gametocytes at some point of this process. When gametocytes are ingested by a female Anopheles
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mosquito during a blood meal, they start another different cycle of growth and multiplication in the
mosquito. After 10-18 days, the parasites (sporozoites) are found in salivary glands of the mosquito.
When the anopheles mosquito takes a blood meal on another human, the sporozoites are injected with
the mosquito’s saliva and start another human infection when they parasitize the liver cells. Thus,
the mosquito carries the disease from one human to another. Differently from the human host, the
mosquito does not suffer from the presence of the parasites [2].

Mathematical modeling of malaria transmission has always provided useful insights into malaria
transmission mechanism since the pioneer work of Ross [3] and Macdonald [4], it has also become
an important tool in understanding the dynamics of malaria transmission. Over the years, the Ross-
Macdonald model has been extended by many researchers [5, 6, 7, 8, 9, 10, 11, 12, 13]. Ruan et al.
[7] introduced modified Ross-Macdonald model to include two discrete time delays which represent
incubation periods of parasites within the human and the mosquito. They verified that extending the
incubation periods in either humans or mosquitos were beneficial to the malaria control. Cai et al.
[8] investigated the effect of distributed delays on the vector-host disease dynamics, they showed that
incubation periods can play significant role in affecting the disease transmission. Gao et al. [12]
presented a multi-patch malaria model to study the impact of mobility of vector and host populations on
malaria transmission. By using analysis and numerical simulation, they found that human movement
was a critical factor in the spatial spread of malaria around the world. Li et al. [13] investigated two
malaria models with relapse. They separated the dynamics into the fast time dynamics and the slow
time dynamics and showed the full dynamics were determined by the slow systems. Other models
about epidemic model or age-structured can be found in [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 35].

Prevention and treatment may be the effective way to reduce malaria transmission. In most malaria-
endemic countries, four interventionsicase management (diagnosis and treatment), insecticide-treated
nets (ITNs), intermittent preventive treatment of malaria in pregnant women (IPTp) and indoor residual
spraying (IRS) tmake up the essential package of malaria interventions. These measures are considered
to have made a major contribution to the reduction in malaria burden since 2000. However, global
investment for malaria has barely changed in recent years, which has affected malaria control to a
certain extent. In 2015, 43% of the population of sub-Saharan Africa were not covered by ITNs or
IRS, 69% of pregnant women did not receive three doses of IPTp and 36% of children with fever were
not taken for care [1]. Prevention of malaria may be more cost-effective than treatment of the disease in
the long run. In March 2010, the newest intervention recommended by the World Health Organization
is intermittent preventive treatment during infancy (IPTi). Studies show that IPTi can significantly
reduce clinical malaria and anemia in the first year of life, as well as hospital admissions associated with
malaria infection or for any cause [1]. Intermittent preventive treatment of malaria in pregnant women
(IPTp) is also a malaria intervention. WHO has recommended that pregnant women be given at least
three doses during each pregnancy [1]. Vaccination is also a means of prevention. RTS,S(developed
by PATH Malaria Vaccine Initiative (MVI) and GlaxoSmithKline (GSK) with support from the Bill
and Melinda Gates Foundation) is the most recently developed recombinant vaccine. Phase III clinical
trial indicated that RTS,S reduced the number of cases among young children by almost 50 percent and
among infants by around 25 percent. But, overall efficacy seem to wane with time [25]. According to
this, we introduce age structure in the prevention period of susceptible population in our model.

Motivated by the above, in this paper, we not only introduce age structure to explain the prevention
period of susceptible population but also involve age structures to account for the latent periods in
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humans and mosquitoes. We show that there exists a compact global attractor and obtain a sufficient
condition for uniform persistence of the solution semiflow. We also identify the basic reproduction
number R, and show that R, completely determines the global dynamics of our model.

This paper is organized as follows. In Section 2, we introduce the malaria model and present
some basic properties. In Section 3, we define the basic reproductive number and prove the local
stability of the disease-free equilibrium and the unique endemic equilibrium. In Section 4, we present
the uniform persistence and prove the global stability of the disease-free equilibrium and the unique
endemic equilibrium. In Section 5, we perform some numerical simulations. In Section 6, we give a
brief discussion.

2. Malaria model and basic properties

2.1. The model

We divide the total human population at time ¢ into five mutually-exclusive subgroups: susceptible
individuals S ,(7), protected individuals P(¢,a), where the parameter a denotes the preventive age of
the susceptible individuals, exposed individuals Ej(¢, ), where 6 denotes the latent age of the exposed
individuals, infective individuals [,(¢) and removed individuals R,(). We assume that the removed
individuals are given special protection, they will no longer be involved in the transmission process.
We divide the total vector population at time ¢ into three mutually-exclusive subgroups: susceptible
vectors S ,,(7), exposed vectors E,, (¢, T), where the parameter T denotes the latent age of the exposed
vectors, infective vectors /,,(¢). The flow among those subgroups is shown in the following flowchart
(Figure 1).

Human
S, i, ( L+ a)l ]
TN BEAS, L, TN [LE] .
A / 128 m \ 21 / h
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. : — \”T/, L
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Figure 1. Flowchart of the malaria transmission between mosquitoes and humans,
where [y,P], [y,E;] and [y3E,] represent fom v1(a)P(t,a)da, fom v2(0)E,(t,6)d6 and
fom v3(T)E,(t, T)dT, respectively.

By the flowchart (Figure 1) and noting that the removed individuals are decoupled, we can formulate

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1625-1653.



1628

the malaria model

as follows:
dS —+00
dht(t) = A1 = (1 + YIS (@) — BB1S n(D1(1) + f vi(@)P(t, a)da,
0
ds .,
dt(’) = s — S (t) = BB2S m(DH (D),
dI +00
;Et) _ ﬁ V2O En(t, 0)dO — (1 + @ + 8)L,(1),
dl;t(t) _ fo A (DE, (. )T — 1ol (D), —
(9Pét, a) + aP([,CZ) — _(,ul +’}/1(Cl))P(f, Cl),
t da
OE,(t,0) OE,(t,0
}gtt ) . 2(; ) = (1 + 1 0)EN1.6).
aEné(l‘, T) + OE,(1,7) = —(z + V3(T)En(t, 7),
t or

with the following initial and boundary conditions
P(1,0) = ¢S (1), Eup(t,0) = bB1S5(O1n(1), Epn(t,0) = bB2S w(DI(2),
P(0,a) = Py(a), E;0,0) = En(0), En(0,7) = Epo(7), (2.2)
Sh(o) = spo, 1h(0) = ipo, Sm(o) = Smo, Im(o) = im0,

where Po(a), Ejo(8), E,o(t) € L1 (0, +00) and sy, i 10> Smo imo € R. The meanings of the parameters
in (2.1) are explained in Table 1.

Table 1. Description of parameters of the model (2.1).

Parameters Description
Ay the recruitment rate of the human population
i the natural death rate of the human population
b the average number of bites per mosquito per unit time
B the probability of transmission from female anopheles mosquito to human
v the rate of prevention of the susceptible individuals
« the disease-induced death rate
vi(a) the prevention wane rate depends on preventive age
v2(6) the rate at which latent individuals progress into infectious class
0 the remove rate
Ay the recruitment rate of the mosquito population
U the death rate of mosquito population
B2 the probability of transmission from human to female anopheles mosquito
v3(T) the rate at which latent individuals progress into infectious class

Throughout this paper, we make the following assumptions and notations.
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(A1) : Aj,ui, Bi0,a >0, =1,2), Yy > 0;
(A2) 1 y; € LT(0, +00) (i = 1,2, 3) with essential upper bounds y; > 0, respectively;
(A3) : P(0,0) = ¢S,(0), En(0,0) = bB1S1(0)1,(0), E,(0,0) = bB>S 1n(0)11(0).
For a, 0, ™ > 0, we denote
ki(@) = e~ e g = [y (@ki(a)da,  d(a) = Yyi(@)ki(a),
ka(0) = e b g [ (O)ka(6)d6,

ky(r) = e b b g = [Ty (Dks(1)d,
& =R* x (£1(0, +00))* with norm

4 7 +00
1 Ger 2, 3, X4, X5, X6, 37) o= D 13|+ ) f | xi(s) | ds.
i=1 i=5 Y0

2.2. Well-posedness

Base on the above assumptions, we can verify the local existence of unique and nonnegative solution
of the model (2.1) with the nonnegative initial conditions (see Webb [26] and Iannelli [27] ), thus obtain
the following proposition.

Proposition 2.1. Let x) € &/, then there exists € > 0 and neighborhood By C % with x, € B, such that
there exists a unique continuous function, ® : [0, €] X By — %, where ®(t, xy) is the solution to (2.1)
with ®(0, xp) = xp.

For t € [0, €],
+00 +00 —+00
| ©(z, x0) llr= S (@) + S (@) + In(?) + Ln(2) + f P(t,a)da + f E)(1,0)d6 + f E,(t,T)dr
0 0 0
and setting u = min{u,, 4, }, we deduce that || @(t, xy) || satisfies the following inequality:
d
7 | O, x0) lla< A1 + Ao — || @2, x0) ||,

therefore A N A+ A
+ +
L2 e‘ﬂf(%— Il %0 ll2), (2.3)

| ©(2, x0) [l <

which yields

A+ A
| D2, x0) |l < max{ ———

s xo llay ). (2.4)
Boundedness is a direct consequence of nonnegativity of solutions. Then we have following propo-
sition.

Proposition 2.2. Let xq € &, then there exists a unique continuous semiflow, ® : R, X% — %, where
(1, xo) is the solution to (2.1) with ®(0, xy) = xo, and (2.3), (2.4) are satisfied for t € R,. The following
set is positively invariant for system (2.1)

Q= {)C = (Sh(t)7Sm(t), Ih(t)a Im(t)’ P(t’ a)’ Eh(t’ 0)’ Em(t’ T)) € @ : ” X ”?]S

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1625-1653.



1630

From Proposition 2.2. and (2.3), we obtain the following proposition.

Proposition 2.3. (1) The solution of (2.1), ®(t,-), is point dissipative and Q attracts all points in 7/ ;
(2) Let B C % be bounded, then ®(t, B) is bounded;
(3)If xo € ¥ and || xo |l < A for some A > % then S (1), L), || P(t,-) llp, I Eit, ) I < A, (=
h, m).

2.3. Asymptotic smoothness

Integrating the equations for P, Ej, E,, in (2.1) along the characteristic lines,  —a=const., t —0=cost.,
t — T=const., respectively, we have

P(t—a,0)k(a), O0<a<t, Et-0,00k6), 0<6<t,
_ k - k(6
P, a) Po(a - t)kl(;(ci)t), 0<t<a, En(t,6) Ej0(0 - t)kz(zg(_)t), 0<t<8,
E,t—1,0k(r), 0<7t<1,
E,(t,7) = ks(7) (2.5)
EmO(T_t)kg(T—l‘)’ OSI<T.

Continuous semiflow {D(z, )}, is said to be asymptotically smooth, if each positively invariant
bounded closed set is attracted by a nonempty compact set.
We will use the following two lemmas [28] to prove the asymptotic smoothness of the semiflow.

Lemma 2.1. The semiflow ® : R, X ¥ — % is asymptotically smooth if there are maps Uy, U, :
Ry X% — % such that O(t, x) = U,(t, x) + Us(t, x), and the following hold for any bounded closed set
o/ C % that is forward invariant under ®:

(1) ,1_1520 diamUy(t, o/ ) = 0;

(2) there exists t; > 0 such that U\(t, o/) has compact closure for each t > t,.

Since # is an infinite dimensional space, infinite dimensional space L! (0, +o0) is a component of
% . For infinite dimensional space, we cannot deduce precompactness only from boundedness. We
apply following lemma.

Lemma 2.2. Let 9 be a bounded subset of L. (0, +o0). Then B has compact closure if and only if the
following conditions hold:

(i) sup 1) 1 ds < +oo;

(ii) lim [ 1 £(9) | ds = 0 uniformly in f € B;

(iii) hh%l+ f()+oo | f(s+h)— f(s)|ds =0 uniformly in f € B;
. h . .

(iv) hlir(r)1+ fo | f(s) | ds = O uniformly in f € A.

We are now ready to prove a result on the semiflow ® generated by system (2.1) is asymptotically
smooth.

Theorem 2.3. The semiflow ® generated by system (2.1) is asymptotically smooth.
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The proof of this theorem is in the appendix section.
Combining Proposition 2.3 and ® is asymptotically smooth, as well as the existence theory of global
attractors, the following result is immediate from Theorem 2.6 in [29] and Theorem 2.4 in [30].

Theorem 2.4. The semiflow ® has a global attractor A in %, which attracts any bounded subset of
78

3. Equilibria and their local stability

3.1. Existence of equilibria

System (2.1) always has the disease free equilibrium E, = (59,5°,0,0, P°(a),0.1,0,1), where

m?

Ay As
= , 8% ==, P%a)=yS%(a).
ey Ty D @TYsh@

Define the basic reproduction number by

_ b*B1\Batr A Ay
(w1 + @+ &)y +y(l — )’

X, represents the average number of secondary infectious human cases produced by a primary in-
fectious human case that is introduced into two entirely susceptible populations: humans and female
anopheles mosquitoes. The biological relevance of the threshold %, can be interpreted as follows.
There are

Ao

A
pi+ Yl = )

susceptible people and % susceptible female anopheles mosquitoes. A primary infectious human case
has a removal rate u; + a + ¢, the average infectious period is

1
i +a+d

During this time, the average number of mosquito bites from the susceptible mosquitoes is

b
U +a+6

so that the average number of infected but not infectious mosquitoes from the infectious human case

will be
bBr A,

(U +a+O)up

Then
bBr A,

(1 +a+ o) :

represents the total number of infectious female anopheles mosquitoes produced by infected but not
infectious mosquitoes. The infectious mosquitoes have a removal rate u,, the average infectious period
is ﬂlz During this time, the average number of mosquito bites from the susceptible mosquitoes is /%’
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so that the average number of infected but not infectious human cases from the infectious mosquitoes

will be
bBr Ay H5DB A

(U1 + @ + Oy + (1 — 27))

Then
bBy Ay F5bBI N It

(1 + @ + Oy + Y(1 = 27))
represents the average number of infectious human cases produced by infected but not infectious hu-
man cases. Therefore, the average number of secondary infectious human cases from a primary infec-
tious human case is

bBr Ay DB N
(U1 + @ + Oy + y(1 — 27))

which is %0.
Next, we investigate the endemic equilibria of system (2.1). Any endemic equilibrium (S}, S, I},
I, P*(a), E;(0), E, (7)) of system (2.1) should satisfy the following equations:
+00
A= (i +Y)S, = bBiS I, + f yi(@)P (a)da = 0,
0
Az —/125;:1 - bﬁzS;I; = 0,

f+°° Y200)E (0)dO = (u; + a + )1,
0

f Y:(DE, (7)dt = w1,
0 (3.1)

dP*
d(“) = —(u1 +71(@)P*(a),
a
dE;6) .

L= =~ + 72(ODE; O),
dE; (1) .
T —(u2 + y3(0)E, (7),

-

P 0)=vyS,, E(0) =b8S,1I,, E,0)=>bBS,1I,.
From (3.1) we can easily find that if %, > 1, system (2.1) has a unique endemic equilibrium
E* = (S;.S;.I;.I;,. P*(a). E}(6), E;(7)), where

no Lo
e .
o Ry o _ A - bByS 1 5
" ,Uz(,ul+a/+5)(/ll+'ﬁ(1—e/"i/l))+ﬂ1+6¥+5’ "Bl " H2 ’
bp1 K 5\ S
(u +a+ o)l

Sp= » P(a) =yS,ki(a), E6) =bBiS L,k (0), E,(1)=0bBS, I k(7).

bp A1,

Summarizing the discussions above, we have the following theorem.

Theorem 3.1. System (2.1) always has the disease free equilibrium E,. Moreover, apart from E,, if
Ho > 1, system (2.1) has a unique endemic equilibrium E*.
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3.2. Local stability of the equilibria

Now we consider the linearized system of (2.1) at an equilibrium

E = (S S s Ins Ly P(a), En(6), E (7).

Let $,(t) = i) = Sp Sn®) = S(®) = Sy 1u®) = 1y®) = Ty Tn(t) = (1) = 1, Pla, 1) = P(a,1) =
P(a), Eu(t,0) = E,(t,0) — E,(0), E,(t, 7)) = E,(t,7) — E,(7), then removing the bar, we obtain the
following linearized system:

ds - = +°°
;t(t) =~ + YIS U = BBIS uln(1) = B 1S (D) + f ni(@P(t, a)da,
0
ds, - =
dt(’) = oS (0) = BBS () — BBTS 1),
dl, oo
c’f) = f V2O E(t,0)d0 — (u; + a + 8§)I,(1),
0
T [ @ = sl G-
0
PCD D -+ yr(@yPit,a),
t oa
OE(t,0) OE(t,0
hé(tt ), g(; ) = (i1 472 O)E 1. 6),
GE,,(;(I‘, T) + aEm(ta T) — _(#2 + 73(7))Em(t’ T),
t or

with the following initial and boundary conditions
P(t,0) = ¢S (1), En(t,0) = bBiSulu(®) + BB LS 1(D), En(t,0) = bBoS uli(1) + bBaI1S m(0).

Let
+00 " +00
HA(A) = f Yilwpe WOy (= 1,2), H5(D) = f Ya()e b gy,
0 0

For (3.2), let S,(¢) = Sge", S = S%e", I,(t) = Ige", L,(t) = If,)qeﬁ’, P(t,a) = Po(a)e”, E,(t,0) =
EXO)e", E,(1,7) = E)(1)e", we have

A+ + (1 = () + BB 1,)SO = —bB, S 1L,

(A + 12 + bBa1,)SC = —bB,S 12,

—+00
A+ +a+0l = f ¥2(0)E}(6)db,
0

A+ ), = f h y3(D)E,, (1), G-
0

Pa) = (A + iy + y1(a))P(a),
E)O) = —(A + ui +v2(8)EN(),
ES(1) = —(A + i + y3 () ES (1),
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with initial conditions
P°(0) = ¢S},

EX0) = b3S WIS + bR\ 1S, (3.4)
EN(0) = bBS 1) + bBa1S
We obtain from the system (3.3) that
SO — _bﬁlgf; 0 g0 _ _bﬂZSTn
h — ~ ‘m m = ~ *h*
A+ +y(1 = (D) + bBi1,) (A + pa + bBa1y)

On substituting the above two equations into the second and third equations of system (3.4), and by
simple calculation, we have

bB1 H5(D)S WA + iy + (1 — H5 ()

EJ0) = —Ep(0)
(A + )+ +y(1 = () + bBi 1)
and —
E2(0) = bB2 5 (A)S (A + ) _ E2(0).
A+ +a+0)A+ uy + bBr1y)
We derive that
£9(0) = — PBABWDS A+ + Y1 = H(D) b 5 DS A+ 1) ooy

A+ ) A+ + (L= F6Q) + L) (L + 1 + @ +8)A + 2 + bBa1,y)
We obtain the characteristic equation of model (2.1) at an equilibrium E as follows:

J@ =1,

DB\ B () HA( DS uS (A + py + (1 = () .
(A+ 1+ @ + ) A+ g + BBl )(A + py + w(1 — (D) + bBil,)

Theorem 3.2. (Local stability)
(i) The disease-free equilibrium E( of system (2.1) is locally stable if %, < 1 and unstable if %, > 1.
(ii) The endemic equilibrium E* of system (2.1) is locally stable if Z, > 1.

where f(1) =

Proof. First consider the local stability of the disease-free steady state Ej.

b*B1Ba (D) A (DA 1A
(A+ 1+ @ + ) (A + p)pa(y + Y(1 = 40)

Clearly, we have f(0) = %, f'(1) < 0 and }im f(A) = 0. Hence, if Z, > 1, then f(1) = 1 has a

unique positive real root. Thus, if Z, > 1, the disease-free steady state E|, is unstable.
If Z, < 1, the disease-free equilibrium Ej is locally stable. Otherwise, f(1;) = 1 has at least one
root Ay = a; + ib; satisfying a; > 0. But

f@) =

b*B1Batr KA Ay

5 :%0 <1.
(1 + @+ Oy (uy +y(1 = )

| f(Ao) |<
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Hence, if %, < 1, all roots of f(1) = 1 have negative real parts, then the disease-free equilibrium Ej is
locally stable.
Next, we consider the local stability of the endemic equilibrium E*.

b*B1Br (D) A5 (DS 1S 1 (A + iy + (1 = A1)

A) = .
@ (A+ 1 + @+ 0)( A+ pa + DB L) A+ py + y(1 — (D) + b1 L)

If Z, > 1, the endemic equilibrium E* is locally stable. Otherwise, f(1*) = 1 has at least one root
A" = a, + ib, satisfying a, > 0. But

. b*B\Br s 5SS
| f@) 1< .
(1 +a+ o
: (1 +a+ 6 .
Notice, §;S7 = ————-, k A< 1,H ,if %y > 1, all roots of f(1) = 1h
01c.e S DB B, w.e n0\‘)v.| ]“( ) | | ence, if %, | all roots of f(A4) ave
negative real parts, then the endemic equilibrium E* is locally stable. This completes the proof. O

4. Uniform persistence and global stability

4.1. Uniform persistence

In this subsection, our purpose is to show that system (2.1) is uniformly persistent when %, > 1.
Define

T .
My = {(x1, X2, X3, X4, X5, X6, X7)" € | At;, b €R: X3+ x4

+00 —+00
+ f v2(6 + t1)x6(0)dO + f v3(T + ) x7(T)dT > 0},
0 0
let OMy = % \ M,, then we have % = M, U dM,.

Theorem 4.1. The sets My and OM, are forward invariant under the semiflow ®(t, -). Also, the disease-
free equilibrium E of system (2.1) is globally asymptotically stable for the semiflow O(t, ) restricted
to OM,.

The proof of this theorem is in the appendix section. Theorem 4.1 states that if the number of
people and mosquitoes initially infected by plasmodium belongs to dM,, then malaria will eventually
die out. But if the number of people and mosquitoes initially infected by plasmodium belongs to M,
then whether malaria is eventually extinct, we need to verify by the following Theorem 4.2, Theorem
4.3 and Theorem 4.5.

Theorem 4.2. If %, > 1, then semiflow {®(t,-)}»0 generated by system (2.1) is uniformly persistent
with respect to the decomposition (My, dM,). Moreover, there is a compact subset Ay C My, which is
a global attractor for {®(t, -)};s0 in M.

Details of this proof are in appendix section. Theorem 4.2 shows that if %, is greater than 1, when
the number of people and mosquitoes initially infected by plasmodium belongs to M, malaria will
always exist at a certain scale.
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4.2. Global stablility

Let x € A, we can find a complete orbit {D(¢, -)},cr through x in A. By similar analytical method
used in [[31], subsection 3.2], system (2.1) can be written as

dS;t(t) = A= G SO = BBS D n(0) + fo @k @St - a)da,
dSCZ(t) = Ay = (128 () = BBS (D1 (0),
dl;;:t) = fo h Y2(O)Ei(t, 0)d6 — () + a + 6)I(0),
) _ f h Y3(DE (8, T)dT — ol (2),
dt 0

P(t,a) = ki(@yS (1 - a), 4.1

OE,(t,0) OE,(t,0
A0 FELD) s+ 0D, ),
Ey(2,0) = DB2S W(D)1n(2), (or En(t,0) = ka(0)DB1S w(t — O)1,,(t — 0)),
OE,(t, OE, (t,
200 T s+ (DDt
Ey(1,0) = bBaS m(D1i(1), (or Ey(t,7) = k3(T)bB2S w(t — 7)1 — 7)),
(Sh(O), Sm(o)’ Ih(o)’ Im(o)’ P(Oa a)9 Eh(o’ 9)’ Em(oa T)) € A.

Theorem 4.3. The disease-free equilibrium E of system (2.1) is globally asymptotically stable if Ry <
L.

The proof of this theorem is in the appendix section. Theorem 4.3 shows that if R, is less than 1,
malaria will be extinct regardless of whether the number of people and mosquitoes initially infected by
plasmodium belongs to M, or dM,,.

If Ry > 1, we have know that the system (2.1) is uniformly persistent and has a global attractor A,
in M,, meanwhile, let (S ,(0), S,.,(0), 1,(0), 1,,(0), P(0,a), E;(O,0), E,(0,7)) € Ay, system (2.1) can
be written as (4.1) (replace A with Ajp). In order to study the global stability of E*, we first prove the
following lemma.

Lemma 4.4. There exist e, M > 0 such that all solutions in Ay for t € R, the following inequalities are
satisfied
€ < Su(0), Su@), Li(®), In(t) < M, yeki(a) < P(t,a) < yMk(a),

bB1€%kx(0) < Ei(t, 0) < bBiM?ky(0), bBr€’ks (1) < E,(t,7) < bBaM k(7).
Proof. Let (S (1), S n(0), 1n(2), 1n(0), P(t, a), E(t, 0), E,(2, 7)) € Ap.
First we prove that S,(t) > 0, S,,(t) > 0 for t € R. We assume that there exists #; € R such that

ds ,(t )
S,.(t1) = 0. From (4.1) we have () > Ay > 0, then 47 > 0 such that §,,(t; —n) < 0. This

t
contradicts the Ay € M,. Thus, S,,(#) > O for ¢t € R. Similarly, we can get S,(¢) > 0 for r € R.
Next we prove that I,(r) > 0, I,,(t) > O for t € R. First we assume that there exists 7y € R such
that 7,(ty) = 0 and I,(t)) = 0, then according to I,(¢), I,(t) equations in (4.1), we can deduce that
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In(r) = 0, L,(t) = 0 for ¢ < to. Next form (4.1) we know [* Ey(t,0)d0 = [\ ka(@)bB1S (t — O)]n(t —
0)do = 0, [ E,(t,0)dr = [ ks(1)bB2S w(t — TM(t — T))dr = 0 for all t < f,, then obviously,
fom v2(0 + 51)Ex(t,0)do = 0, f()+°° v3(t + $)E,(t,T)dt = 0 for all 51, s, > 0. This contradicts the
Ay € My. On the other hand, we assume that there exists #, € R such that one of I,(¢)), 1,(t) is
positive, so without loss of generality, we assume that 1,(t)) = 0, 1,,(f9) > 0. Similarly, we have
L(t) =0, f0+°° Y3(T + $)E(t,T)dt = 0 for all s > 0,7 < t,. Then dl(1)

deduce that ,,(ty) = I,(t)e ™ obviously, I,,(f) — +oco as t — —oo. This contradicts the compactness
of Ay. Hence, I,(t) > 0, 1,(t) > 0 for all + € R. In addition, from (4.1), we deduce that P(t,a) >
0,Eu(t,0) >0, E, (t,T)>0forteR,a,0,T € R,.

According to the compactness of Ay, we know there exist €, M > 0 such that

= —up 1, (¢t) for all ¢t < 1y, we

€ < S§u(0), Sn(), (1), 1,(t) < M, yek(a) < P(t,a) < YyMk,(a),

b€k (0) < Eu(t, 0) < bB i M*ky(0), bBa€*ks(t) < E,(t,T) < b M*ks(7).
The proof is complete. m|

Theorem 4.5. If Ry > 1, then endemic equilibrium E* of system (2.1) is globally asymptotically stable
in M().

Details of this proof are in appendix section. Theorem 4.5 shows that if R, is greater than 1, when
the number of people and mosquitoes initially infected by plasmodium belongs to M, the number of
people and mosquitoes will eventually stabilize at E*.

5. Simulations for the malaria model

In this section, we present some numerical simulations to confirm the above theoretical results (i.e.,
Theorems 4.3 and 4.5). Some of the parameters are taken from[8] b = 0.2,8; = 0.015,6 = 0.05,; =
0.00004. Other parameters are estimated. we estimate other parameters as follows A; = 0.2,A, =
20,6, = 0.015,u, = 0.03,a = 0.001. Moreover, we assume that the prevention wane rate and the
removal rate from latent class take the form

) 0, O0<s<t,
i\s) =
y ’)/l" tist’

where i = 1,2,3, 1, = 12,1, = 7,13 = 10 (time units are days), y; = 0.001,y, = 0.11,y; = 0.1. By
solving Ry = 1, we obtain that ¥y = 0.4872. Obviously, R, decreases as the degree of prevention ¢
increases. Thus, first, we let & = 0.9 > ¥y, we can compute Ry = 0.5414 < 1, then the disease-
free equilibrium E, = (0.2426,666.667,0,0,0.2183k,(a), 0, 0) is globally stable, as depicted in Fig.2,
Fig.3. Next, we let ¢y = 0.3 < ¢y, we can compute Ry = 1.6239 > 1, then the endemic equilibrium
E* = (0.5025,594.5913,1.2122,41.0726,0.1507k,(a), 0.0619k,(6), 2.1623k3(7)) is globally stable, as
depicted in Fig.4, Fig.5. From the numerical simulations we can conjecture that increasing ¢, the rate
of prevention of the susceptible people, can eliminate malaria. This is consistent with the report [1] of
the WHO that prevention is considered to have made a major contribution to the reduction in malaria
burden since 2000.
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Figure 2. The trajectory of S,(¢), I;(?), S .(t) and I;(t) versus time with the initial condition

(0.3,100,0.02,2,0.1e75¢,0.1e7%5¢,100e705),
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Figure 3. The surface of P(t,a), E;(t,0) and E,(t,7) versus time and age with the initial
condition (0.3, 100,0.02,2,0.1e7%3%,0.1e7%5, 100e™%-").
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Figure 4. The trajectory of S ,(¢), I;(?), S ,,(t) and I,(t) versus time with the initial condition

(0.3,100,0.02,2,0.1e7%%,0.1e7%¢, 100e~0).
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Figure 5. The surface of P(t,a), E;(t,0) and E,(t,7) versus time and age with the initial
condition (0.3, 100,0.02,2,0.1e7%3¢, 0.1, 100e9).

6. Discussion and conclusion

Malaria is a dangerous and sometimes fatal disease caused by malaria parasite that commonly infect
female anopheles mosquitoes which take a blood meal on humans. It is one of the greatest challenges
in the field of global public health. The cost of malaria to individuals, families, communities, nations
is huge. This issue may become more serious due to lack of prevention. In our paper, we considered an
age-structured malaria epidemic model with prevention period of susceptible people and latent period
of two types of infected hosts. The basic reproduction number R, of our model (2.1) has been found
by the definition. Based on regional division of state space and selection of appropriate Lyapunov
functions, we proved that disease-free equilibrium E is globally asymptotically stable if Ry < 1, while
endemic equilibrium E* is globally asymptotically stable in M if Ry > 1.

We are easy to see that R, decreases as the rate of prevention ¢ increases, that is, increasing the
degree of prevention can lead to malaria extinct. Thus, the prevention is very important for the control
of malaria. If we don’t take into account the prevention period and latent period of two types of infected
hosts , and according to the dynamics of the ODE model in [32], we can easily know that the basic

. . ey 2 . ., . .
reproduction number R, is reduced to Ry = %, in addition, notice that 7] < 1, J% < 1,
2

J; < 1, we can find that Ry < Ry, so considering the prevention period and latent period of two types
of infected hosts can reduce the basic reproduction number, which are beneficial to understanding the
dynamics of malaria control.
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Proof of Theorem 2.3
Proof. We first decompose @ into the following two parts: U, U, defined respectively by

Ui(t, x) = (S (), S m(D), 1(0), L(0), P(2, ), En(t, ), E(2, ),

U2(ta .X) = (Oa 0’ 07 Oa wl’(ta ')9 lth(ta ')9 wEm(t’ ))9

where
{Q 0<ac<t, 0, 0<6<t,
Yp(t,a) = ki(a) Yen(t, 0) = k2(6)
Po(a —t 0<t , Eno(6 — 0< 0,
(a )kl(a—t) <t<a no( )kz(O— D’ t<
0 0<7t<t
’ = =0 ~ Pt —a,0k @), 0<ac<t,
= k =
Vin(1,7) { Eo(t—1) 30 , 0<r<rm, (ta) { 0, 0<t<a,
kg(T—t)

T — Eh(r - 9’ O)kz(@), 0 <6< L, - _ Em(t -1 O)kg(T), 0 <7<t
Eh(h@)—{ 0, 0<r<é. Em(t,T)—{ 0. O<i<t

for x = (S 1(0), S1(0), 1,(0), 1,,(0), Po(a), Eno(6), Ewno(7)), clearly, we have O(z, x) = U (z, x) + Us(z, x).
Let o C %, ris a constant greater than %, for each x € ./, we have || x ||l < r.

+oo reo k(6
| Ua(t, x) ||@=ft Py(a—1) ((_) 5 +ft EhO(H_t)kz(zg(_)t)de

+ f ” Enalt =7 (1(7) Sdr

(T ki(s + ) e ka(s + ) e k3(s+t)
—‘ﬂ PO( ) k]( ) +£ EhO(S) kz( ) S+j(; mO( ) ( ) ds

+00 oo "
:f Po(s)e_fs (111+71(l))dlds +f Eho(s)e_fs t(/11+72(1))dlds
0 0

—+00
S+t
+ f Eo(s)e™ & wtr®digg < omnt || |1, < e,
0

Thus, lim diam U,(t, </) = 0. In the following we show that U, (¢, <) has compact closure for each
t>0. o

From Proposition 2.3, we know that S;(¢), [;(f) (i = h,m) remain in the compact set [0, ] for all
t > 0. Next, we will show that ﬁ(t, a), E(Z, 0) and ET,,(I, 7) remain in a precompact subset of L7 (0, +o0)
which is independent of x.

E,(t—1,0k(r), 0<1<1,
0, 0<tr<r

0<E,(,7) :{

It is easy to show that
E,(t,7) < bpor’e™".
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Therefore, the conditions (i),(i7) and (iv) of Lemma 2.2 are satisfied. Now, we only to check the
condition (iii) of Lemma 2.2.

t

+00 t—h
f | E,(t, T +h) = E,(t,7) | dT = f | Ept, 7+ h) = En(t,7) | dT + f | E(t,7) | dt
0 0 t

—h

t

t—h
= f | E(t = 7 = h, 0)ks(7 + h) — E,p(t — 7,0)k3(7) | d + f | Ei(t — 7,00k3(7) | dt
0 t

—h
—h t=h __
Sf |Em(t—‘r—h,0)||k3(T+h)—k3(T)|dT+f | E.(t —7—h,0)
0 0

—E(t - 7,0) || k3(7) | dT + bB2r7h.

t—h t—h t—h
f | E(t—7 = h,0) || ks(r + h) — k3(7) | dt < bBar( f ks(7)dt — f k(7 + h)d7)
0 0 0

t—h !
= b, r( f ky(t)dt — f ks(s)ds)
0 h

t—h t—h t
= BBy f ks (T)dT — f ks(s)ds — f ks(s)ds)
0 h t—h

h t
= bBr( f ky(t)dt — f ks(s)ds) < bB,r*h.
0 t—h

1
i |< yor + (U1 + @ + O)r, | dS;t(t)

| Ep(t =7 =h,0) = E(t = 7,0) [= BBy | St =T = Mt =T = ) = S, (t = Dyt = 7) |

Notice that |

I< A1 + (Ui + @)r + bBir* + 1, we have

=bBi(|Sut—Tt-WILi(t-1-h)-Lt-0) |+ LE-D)St-7-h)=S,(t—7)])
< bBir(yar + (1 + @ + 8)r)h + bBir(A, + (1 + ©)r + bBir* + yir)h.

Then -
f | E(t =7 = h,0) = E,(t = 7,0) || ks(7) | dt
0
t—h
< BBir((7) + (uy + ) + (A + () + @)r + bByr* + flr))hf e ds.
0
bpr  _ 2 -
< T(()/z +uy +a+0)r+ (A + (uy +@)r +bBir° + yir))h.
Hence,

+00 ~ — b
f | E(t, T+h)— E,(t,7) | dt < 2bBor” + ﬂ((fg i +a+0)r+ (A + (U +@)r +bBir* +711)h.
0 M

Thus, condition (ii7) of Lemma 2.2 holds, then we can get that E;(r, 7) satisfies the conditions of
Lemma 2.2. In a similar way, ﬁ(z, a), E(t, ) also satisfy the conditions of Lemma 2.2. Therefore,
we obtain U, (¢, /) has compact closure for each t > 0, Using Lemma 2.1, we know semiflow © is
asymptotically smooth. This completes the proof. O
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Proof of Theorem 4.1

Proof. First we prove M, is forward invariant under the semiflow ®(z, -). Let ®(0, xo) € My, if 1,(0) > 0
or 1,,(0) > 0, From (2.1), it’s easy to know I,,(¢) > I,(0)e"*1+¢*" > ( or I,,(t) > I,,(0)e ' > 0, then M,
is forward invariant. Otherwise, if 1,(0) = 1,,(0) = 0, then without loss of generality, 9 ¢, € R, such
that [ y,(6 + 11)E(0,6)d8 > 0 (xo € My). V t € [0,11], 35 = 1; — 1 > 0 such that

+00 +00 +0oo
f v2(60 + $)E,(t,0)d0 > f v2(60 + $)E,(t,0)do0 = f v2(0 +t + $)E,(t,0 + t)dO
0 t 0

_ oo k(@ + 1)
= fo ¥2(0 + 1) E,(0, 0) ™0

If 4% € (0, ] such that I,(t,) > 0, then I,,(¥) > 0, VYt > t,, otherwise, since

dl; (1)) _
dt

+00
do > e~ f ¥2(0 + 1) Ex(0, 6)d6 > 0.
0

—+00
f Y20 E(t1,6)do > 0,
0

we know [,,(¢) > O for all ¢ > ;. Hence, ®(¢, My) C M,.
This completes the fact that ®(z, My) C My, i.e. M is forward invariant under the semiflow ®(z, -).
Next, we will prove dM, is forward invariant under the semiflow ®(z,-). Let (0, xy) € IM,, we
consider the following system

dl e
gﬂzl:admaﬁﬁmwwm+a+®h®’
dl, e
d(t) :f ’)@(T)Em(t, T)dT—,UZIm(t)’
t 0
OE,(t,0) OE,(1,0
A0 TELD) s+ 0D, ), ©D
OE,,(;(Z, T) N OE,(t,7) = —(Us + y3(T)En(t, 7),
¢ or

E(1,0) = bB1\S w(D1n(1),  En(t,0) = bB2S m(D)14(1),
En(0,0) = Ejo(0), En(0,7) = Eyo(7), 1,(0) =0, L,(0) =0.

A+ A
Since S,(1), S, () < A, where A = max{~22 || xo Ilu ). it follows that
L) < Iit), Eit,s) < Edt,s), (i = h,m), (6.2)
where R N
dl,(t © N .
;E ) = f Y20)En(t, 0)dO — () + a + 0)1,(2),
0
di,(t oo . .
dt() :f Y3(T)E,(t, T)dT — a1, (2),
N o (6.3)
OE,(1.0) OE, (1,0 .
ha(t ) + ha(g ) = —(u1 +y200))En(t, 6),
OF,.(t,7) OE,(t, 1 .
¢.7) + &7) = —(u2 + y3(0)En(t, 7),
ot or
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with the following initial and boundary conditions

Ey(t,0) = bB1AL(D), En(t,0) = bBAL), 6:4)
E(0,0) = Eng(6), En(0,7) = Epo(r), 1,0) =0, ,(0) = 0. '
By use of Volterra formulation, we have
{ Ext—6,00k(0), 0<60<t1, E,(t-7,0k(1), 0<T<1,
Ent,0) = k2(6) E.t,7) = k3 () (6.5)
En(0—t , 0<t<@, -
no( )k2(9—t) < E,o(t t)k3(T—t)’ 0<t<r
Substituting (6.5) into the first two equations of (6.3) yield
dl(t ! . .
;Zf ) bﬁlAf Y2(O)1u(t — Dk2(0)dO + F1(2) — (u1 + a + 6)1,(0),
0
dl,(t ' . . 6.6
dt( ) - bﬁzAf Y3(DI(t — Dk3(T)dT + Fa(t) — paly (1), ©6.6)
0
1,0y =0, 1,0 =0,

where

k()
ky(6 — 1)

k3 (7) -
ks(t—1)

Fi(@) = f Y2(0)Eno(0 — 1) do, F(1) = f Y3(DE (T — 1)

Since . .
Fi() < f Y2(0)Epp(0 — 1)d6 = f Y2(0 + D E;0(6)d6,
' 0

due to ®©(0, xo) € dM,, then F(t) = 0 for t+ > 0. In a similar way, we have F,(f) = 0 for ¢t > 0.
Accordingly, (6.6) has a unique solution I(t)= 0,3 = h,m) fort > 0.
From (6.5), we know that E,-(t, s) =0, =h,m)for0 < s <t Thus, forall u >0,

k2 (60)
ka6 — 1)

—+00
1726 + wEn(, 0) Il = f Y28 + u)Epo(6 — 1) do <[l ya(s + u + ) Ejo(s) |l = 0.
t

Similarly, we have || y3(7 + WE,(t,7) ”Li: 0.

By using (6.2) we can obtain that I,(t) = 0, L,(¢) = O,|| v2(0 + uy)E(t,6) ”Li: 0,1 ys(t +
w)E,(t,7) |lp= 0 for f,u;,uy > 0, and Ey(2,0), E,(t,7) — 0ast — +oo. Thus, M, is forward
invariant under the semiflow ®(¢, -).

Finally, we prove the disease-free equilibrium E, of system (2.1) is globally asymptotically stable
for the semiflow ®(t, -) restricted to dM,. In OM,, system (2.1) can be divided into the following two

subsystems
ds u(t "~
;t() = Ay — (uy + ¥)Su(0) +f Yi(@)P(t,a)da,
0

O0P(t, oP(t,
gr 2 é; 9 —(u1 + y1(@)P(t, a),

P(1,0) = ¢S (1), P(0,a) = Py(a),

(6.7)
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ds ,.(H)
= Ay — 1S ,,(0). 6.8
7 2 — 28 () (6.8)
Obviously, lim S,.(f) = 22. (6.7) has unique equilibrium (S9, P°(a)) = ( A WS %k (a))
e Tt ’ (1= o)

and S,(1) > 0, fom P(t,a)da > 0 for t > 0. Similar to the analysis of the section 2, (6.7) has a global
attractor A; of bounded sets in (0, +00) X (L1 (0, +00) \ 0.1).

Let x € A, we can find a complete orbit {D(z, -)},cr through x in A,;. By similar analytical method
used in [[31],subsection 3.2], system (6.7) can be written as

dS —+00
;t(t) = A1 = (1 +Y)S K@) + fo yi1(@)P(1, a)da,
P(t,a) = Wk @St - a), (©9)
(84(0), P(0,a)) € A,.
Meanwhile, we easily find that (6.9) can be written as
dsin) _ -~ .
Y75 Ay — (i +9)Sp(0) + ) ¢(@)S n(t — a)da, (6.10)
S4(0) = 8 no-

Using similar to the proof of lemma 4.2[33], we can get that any solution in (A is satisfied that
Su() > 0 for t € R. Once the stability of system (6.10) is obtained, in combination with (6.9), we
can obtain the stability of system (6.7). In the following, we will define Lyapunov functionals on A;.
Define

Vo(t) = S(t) = S0 — §1In g(t)+f ¢(a)f(5h(t—r) S0~ §%1n ”(; \drda,
h

h

It is not difficult to find that V(¢) is positive-definite with S 2 as its global minimum point. Since
compactness of A;, we can easily deduce V(¢) is bounded on A;. Calculating the derivative of V(¢)
along the solution of system (6.10), we obtain have

W = (I- S, ))(Al (1 +¢’)Sh([)+f0 ¢(a)Sh(t—Cl)da)
+ j(; d(a)(S (1) — St — a))da + Sg j(‘)+°° #(a)In ;',S('t( )(l)da'
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In addition, we have noted that A; = (u; + ¥)S! — f0+°° $(a)SYda, it follows that

dvi (11 +¢) +oo (t-a)
dtO: - Slh() Sh®) =SV + [ p@Su(t — ayda - S [ ¢(a) }:S’(t) da
YA () W(0) = SO+, = [ ¢@)S it — a)da
0 h(ZL a)
+it]11f0l//;p(a)l S0 Sn(t—a) Su(t—a)
0 s _ g0y _ 0 o (to Oall—a W(t—a
= -5 (sh(t)% P u S S T - = I = d(ada
+Y S (1) — l//S () (St -
_ i+ B o [+, Salt—a) St —a)
= 5 G0 SO?+89 [ s I Tg g Ha@da
- W(6) =S,
_(:u1+¢(1_¢%/1)) _Q0y2 0 [t _Sh(t_a) Sh(t_a)
50 (10 =S)P +5) [ (1 = ==+ In = o=)d(@da

dVy
Notice that .#] < 1, then o < 0 holds. Furthermore, the strict equality holds only if §,(r) = §. 9 Con-

sequently, S, 9 of (6.10) is globally asymptotically stable. In combination with (6.9), we have (S 0, P°(a))
of (6.7) is globally asymptotically stable. Hence, the equilibrium E is globally asymptotically stable
restricted to dM,. The proof of Theorem 4.1 is complete. O

Proof of Theorem 4.2

Proof. Since the disease-free equilibrium Ej is globally asymptotically stable restricted to M, apply-
ing Theorem 4.2 in [34], we need only to prove

Wi(Eo) N My = 0,

where W(Ey) = {x € % : lim ®(t, x) = E,}. By way of contradiction, we assume that there exists a
—+00
Xo € M, such that x, € W,(E,). Then we can find a list of {x,} C M, such that

1
| ®(t, x,) — Eo lw< =, 2 0.
n
Denote D(t, x,) = (S (), S yn(0)s Lin(), Ln(0), Pu(t, ), Epn(t, -, Enn(t, -)). Then for all > 0, we have
1 1 1 1
S0 — < S <SV+—, §Y —— <8, <S° +-
n n n n

and @(¢, x,) C My. Similar to the first part of theorem 4.1 proof, we know that there exists #y > 0 such
that /1,,(r) > O for t > ¢ or I,,,(#) > O for t > 1y, so without loss of generality, we can take 7, = 0 and
1;,,(0) > 0. Since Ry > 1, we can choose large enough n such that Sg > %, S?n > % and

DB Ka (S = (S = )

f(n) = oG 101 0) > 1.
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Now we construct the following system

di, OV ]
;?) B fo V2O)En(t, 0)da — (ur + a + 5)I(0),
dl,, " E ;
d(t) - f v3(T)En(t, T)da — a1, (1),
t 0

OE(t,0)  OE,(t,6 .
}gt '+ }3(9 L= G+ 7200 Bt 0),

o A (6.11)
aE"(;(t’ D OED by B ),
t or

A 1.
En(1,0) = bBi(S), - (D),

. 1.
E,(1,0) = bBa(S ), - M(®),
Ep(0,6) = En(0,6), Ep(0,7) = Epn(0,7), 14(0) = [1n(0), [4(0) = L (0).

Using similar analysis of Sect.2, we can get existence, uniqueness, and nonnegative of solution to
system (6.11). By the comparison principle, we know

L,(t) = It), En(t,s) = Et,s), (i = h,m). (6.12)

By use of Volterra formulation, we have

Ext-0,00k(0), 0<6<t, En(t—1,00ks(1), 0<T<1,
Ent,0) = ka(6) E,(t,7) = ks(7) (6.13)
En@—1t , 0<t<@, -
no( )k2(0—t) < E,o(T t)k3(T—l‘)’ 0<t<rt.

Substituting (6.13) into the first two equations of (6.11) yield

dl:;;f) > bBi(S° — %) f Y2(O) Lt — O)ka(0)dO — (u; + o + 6)I(0),
0
i A X 6.14
d;( D> ba(st, - = f Vst = Dks(@)dT = ol (1), o
0

1,(0) = 1,(0), 1,(0) = I,,(0).

We can claim that at least one of ,,(), I,,(¢) is unbounded. Otherwise, we can use Laplace transform in
the first two inequations of (6.14) yield

{ — 14(0) + AL 2 LIy D) LI = (1 + @ + 6 LI,

A A A A 6.15
= 1(0) + AL[1,1() 2 L[ ](D) LI = po L[] (D), (1>

where LI = [ e iiwar, (i = h,m) for (1 > 0), L) = [~ 5Bi(SY = Hyya(@ka(O)ed0
and L[u](1) = fooo bB(S° — i)y3(r)k3(7)e‘”d7' for (1 > 0).
After a simple calculation, we obtain

Llu ]

LI IO LI (A + )+ g+ +0) )
-1 1,11 1,,(0 —1,,(0 0. 6.16
1+ Tl Ly DA 2 @)+ Frn S hu(©) > 0. (6.16)
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L[u](A) = L[u1](0), LIup](1) — L[u](0) as 4 — 0 by the Dominated Convergence Theorem.
Since

A+ ) A+ +a+9) 1
laz0= —— < 1,

Ly (D) L[z 1(D) f(n)

then there exists € > 0 such that

A+ ) A+u +a+9)
L[uy (D) L[uz](D)

-1<0

for all 4 € [0,&). According to (6.16), we have L[1,](0) < 0 for all A € (0,¢). But this contradicts
the nonnegative of I, (t = 0). Hence, at least one of I,(¢), [,,(¢) is unbounded. Since I;,(f) >
L), (i = h,m), we get that at least one of 1,(), 1,,,(¢) is unbounded. This contradicts the proposition
2.3. Therefore, Wy (Ey) N My = 0. By Theorem 4.2 [34] , we get that semiflow {D(z, -)},;»¢ generated by
system (2.1) is uniformly persistent. By Theorem 3.7 [29], we get that there exists a compact subset
Ay € My which is a global attractor for {D(z, -)};50 in M. O

Proof of Theorem 4.3

Proof. Using similar to the proof of lemma 4.2[33], we can get that any solution in A is satisfied that
Su(t), Su() > O0forreR.

Let g(x) = x — In x — 1, note that g(x) is non-negative and continuous on (0, +c0) with a unique root
at x = 1. Next, we construct the following Lyapunov function L = L; + L, + L3 on the global attractor
A, since compactness of A, we can easily deduce L is bounded on A, where

L = bﬁ“’%SO (—>+g(—)+ f ¢(a) f (2 ”( ) drda,
M2 0

bp

+00 +00
L, = f F(O)E(t, 0)do + f Fry(1)E,(t,7)dr, Ls3 = I+ —1y,
0 0 M2

K58,

h

1 —+00 )
Fi(0) = Wf Y2 (u)e” B v oDds gy (7 = ,Uﬁl f ya(u)e by ds gy
20 Jo 2 T

Calculating the derivative of L, L,, L; along solutions of system (4.1), respectively. In the
process of calculate the time derivative of L;, we used A, = S0, Ay = (u1 + ¥)S|) — S,

f é(a )fo ))d da = fo é(a )ft .8 ;(Or))drda and fo+oo é(a)da = y.#;. We can deduce
h h
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dL, _ (Sw=Sn)"  bBBaAs 0 (Sh—=S) U+ -
i —bp A5 s, m Sm—=58, )Ih—S—hbﬁllm— 5,50 <o Wn=Sp
+(1——)f ¢(a) ( )d —aw(l——) - "’(“)(Sh Su(t — a))da
b p@n 2 (t))
_ Q032 2 _ ¢O0
_ —bﬁlﬁg(‘g”s ak:2 —bﬂfz’%(s ~ S~ (ShSOSh)bﬁllm— 5 Sép(s — 502
m 2 h h
o Sut—a) - Syt—a) S5 Sh
—y b+ [ (- 50 +1In 5.0 )¢(a)da—%1w(1—s—h)+ X ¢(a)S—2da
_ (Sw=S5) bBiBAs or,  Si=Sp) i+ Y 0y
= —bp\ A3 S ST Sm =8I %S—hbﬁll _ng(sh_sh)
oo o Syt —a) Su(t—a) W« o
+ [ a S +In——— 5.0 —)p(a)da +ShSh(S,, 59
- g S Sel VBB oy S0 S0,
Sm ,UQ S m
_:u1+¢(1_¢%/1) _Q0y2 ‘oo o h(t_a) h(t_a)
ShS2 Sp—=8,)" + b (1 S0 +1In S0 )p(a)da.
dL2 +00

OE +00 aEm
=~k F1(0)((uy + y2(0)Ex(t, 0) + a—;)d@ - fo Fo(m) (12 + y3(T)E(1, T) + ?)Ch

= FIOE(0)+ FyO)E,(1.0) + [(F{(0) = (a1 + v2(0) F 1 (O)Ey(1. 0)d0
+ ["F @) - (o + 7@V F2(0)Ent, 1)

bBiSuln  VB\BrA5Smly e 1 +oo b
= - ——— v (O)E(t, 0)do — —_— E,.(t,7)d
s " A %Sgn(n( )d6 - | o VAOEn (1 D)
dL; 1
— = ﬁ(fo Y1(O)En(1, 0)d6 — (m+a+5)1h>+—( I v@Ea(t. 1)dt = o).
h
Therefore,
dL i +y(d -2 o con, (ro  Salt—a) Syt —a)
e 5,57 O(ih é;h) + 0(1 0 +In 90 )p(a)da
—bﬁl%(sm_sm) N b*BiBa5S wdn +€Y;‘5)Ih
Sm 125 %Sh
i+ (1 = 1) o2 . (o Sit—a) St - a)
- Sp—S8 1- 1 d
5,50 (2h 2) + 0( s " 50 )p(a)da
m = b
b8, (S Sn) L1525, (1—i)lh

Sm H2

Notice that 7] < 1,if Ry < 1, then L < O holds. Let T is the largest invariant subset of { la.y= 0},
the equality holds only if S,,(f) = S Sy =S8% L =0. InT, S, =S° for allt then we
have dsh(’) = 0. Combining this with (4.1), it follows that I,,(r) = O for all ¢, moreover, P(t,a) =
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ngkl (@), E,(t,T) =0, Ey(t,6) =0forallt € R, a, 6, T € R,. Hence, T = {E;}. Assume that there
exists x € A\ T and we can find ®(z, x) C A through x at r = 0, with alpha limit set a(x). Since x # E,
we can deduce that t — L(d(¢, x)) is a non-increasing and bounded function, then L is a constant on
a(x). Since a(x) is invariant in A, we know a(x) = T. From Theorem 3.2 we know that the disease
free equilibrium E| is locally asymptotically stable, which implies x = E, this contradicts the x # Ej.
Hence, A = {E,}. This proves that E is globally asymptotically stable. This completes the proof. O

Proof of Theorem 4.5

Proof. We define the following Lyapunov function V = V| + V, + V3 + V4 + V5 4+ Vj on the global
attractor Ay, using lemma 4.4, we can easily deduce V is bounded on A, where

St 1 oo ; E,(t,60)
Vi= bﬁll* f ¢(a)f g(————— )drda) Vo = %f(; G1(O)E},(0)g( E:6) )do,
I 1 S E,(t,7)
V= e 1*) = G V= f GA(IE; (a( .
I:rl Im
Vo= —m__g(lmy

HE, (0T,

G(0) =

+00 oo
f yz(u)e—fg (111+72(s))dsd9’ Gy (1) = f ’)’3(”)6’_ [ (ll2+y3(s))dsd‘['.
6 T

1
E;(0) E;(0)

Calculating the derivative of V along a solution in Ay . In the process of calculate the time derivative
of Vi, we notice that Ay = bB,S; I, + (u1 +¢¥)S ), — fom ¢(a)S da.

dv, 1 (Sn=S))

dr bBiL,  SuS: (1 +Y)(S; = Sw) +bBi(S; Iy, — Suly) + fom ¢(a)(S (t — a) — S*)da)
+00 ¢(a) (l — Cl)
+bﬁ1*(f —(Sp=S h(t—a))da+f0 #(a) In hSh da)
= (1 _ﬁ_ShI +£)_(ﬂl+¢(1—%/))(sh h)2
- Sy S bBIL5S 1S
1 h(t —a) _ Sut-a)
bﬁll* f ( B Sh(l) +1n S (t) )¢( )d
v, 1 e ) E:(6) OE(1,0)
praali [T GI®E; )1 - o ,9))E;;(9) 6.
By using
OE,  OE, 0 Eyt,0) 1 E;(0)
o 00 (1 +72(0)E %g( E;(6) )= E;(g)(l Eq. 9)) + (U1 +y2(0)Ep),
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we have

de_ _L h(t’e)
o g GIOE0) - g( E0) )do
_ GI(0O)E,0) (Eh(f,()))+ 1 e (Eh(t,e)
ST s SEO0 T 4K SE®m
Eh(t,O))_ 1 e (Eh(t 9))72(9)E 7(0) 48
R VA
him him %
”%—P&%wjt%p@f V2(O)E;(O)(

)G E; + E; (6)G1)do

= &
Ey(t,0) 3 Ey(1,60)

= (

E,(0) E,(0)

dV3 = I* +00
@ TEo" —,—>,*<f0 YAOE (1, 0)d0 — (1 + a + 5)I;)
= : OV, (1. 0)d6 — — 1
B %E*(O)f Y2(0)En(t, 0) TEOT
i+ a+O  (uy+a+d),

JGE0)  JGE;0)
J5E;(0)

m+a+o

I va0)En(r, 0)de

Recalling that I} = , then

*

dVs

1 +00
dr %E;(O)fo &

—_— OE,(t,0)do+ 1 — —.
JGE OV, fo Y2(0)E(2, 6) I

(O)E(t, 6)do —

Thus,

= J Sady G (= A - S
dt Sh Sy I bBIS 1S
1 +00 Sut—a) Sp(t—a)
+ —— +1In a)da
BRIT, S30 s, 7
Eu(t,0) I,

roo C  LE\,6)
1, VZ(H)Eh(H)(_b,E—,’;(@+ +In =222 0 = Uy ag + I_F'

+
L E;(0)
Notice that Ay = bB,S .1, + oS ;,, we can get

dt Sw Sty I bBBIS,S:
0 E,(t71) 1 E; (1)
Notice that 8_ g( E (D) ) = E;;l(r)(l - E( ))( 72 + (U2 + y3(7))Ey), we have

1 cn 0 En(t7)
= " G.(DE;, ()5 E* - )dt
_ GOEWO  Ent.0) 0) 1 f*"" m<r 7)
=~ o

E(t,0) 1" f m<t 7) n(ﬂﬁ()
E»(0) & (r) Ez(0)

S I
: 1 ys(EL (X

dvs
dt

NGLE;, + EX (1)G,)dt

8( dr

E,(t,1) E,(t,7)
—1-1In
E: (1) E: (1)

S I,
L R P
(S,,,I,j S* 1*) JE(0) Y0

1 —In ——=)dé.

).
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JGE* (0
Notice that I’ = 3—'”(), we have
M2
dVe I,

i - AEO0 _I_)I_*(fo Vs(@En(t, DT = pol)

_ [y (@Eu Pt — [ ys(OEn(t, T)dr + —2m al!
JGE,(0) o YRR SGE, (O, Yo VT JAE;(0)
__ el
JE;,(0)
1 +00 I* —+ 00 I
= — E S N— E -2
TEO) I @ENt dT TE O, J r(@ENt,T)dT + -
Thus,
A3V
2 Sh Sl iy _totSa = SiF
dt S Sili T bBaliS .S,
1 L E,(t, T) E,.(t,7) L
Er(r)(— 22 1 +1 dr+1- 2.
YR b OB LT 1= g
- 1 va(0)E;6)de | 1 v @E;(dr _, t
usin , =1, , We can ge
Y TTRE 0) HE;,(0) s
J 6
av _ ’;Vi - (1_ﬁ+ln5_)+(1_5* S*)_(lll"'lﬂ(l—«%/l))(sh—s}i)z
dt — dt Sh Sh Sm bBIS 1S
WS, —S;)? 1 h(t—a) St —a)
- S T d
bBLS S, "L, ha OR Sh(t) TS, M
1 oo E,(t,7) E,(1,7)
- _LEntT) 1+1
@ b OO e 22 Enm
+00 I;;Eh(ta 9) I*Eh(t 9)
S — OEO)(—2—2"~ 4 | +1In -L—"")qp.
Vg b POBOC g )
It follows from the non-negativity of g, we know that cfi_‘t/ <0, and
dv I'E,(t,7) [FE,(t,6)
=0 Sut)=S%, Su)=8", = =1, = 1. 6.17
dt & Su0) =54 Sl =5, L.Ex (1) LE; ) ©.17)

Let T* is the largest invariant subset of {£* |4 )= 0}, then we have dsh(t) =0, dS’”(l) = 0. Combining

this with (4.1), we can obtain that 7,,(¢) = I; for all ¢, P(t,a) = ¢Sk, (a) Further, Im(t) = [ for all 7, in
combining with (6.17), we can get E;(t,0) = E;(0), E,(t,7) = E, (7). Hence, T* = {E*}. According
to the proof of the theorem 4.3, we can easily obtain that A, = {E*}. This proves that E* is globally
asymptotically stable. The proof is complete. O
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