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Abstract: In this paper, we formulate a new age-structured malaria model, which incorporates the
age of prevention period of susceptible people, the age of latent period of human and the age of latent
period of female Anopheles mosquitoes. We show that there exists a compact global attractor and
obtain a sufficient condition for uniform persistence of the solution semiflow. We obtain the basic
reproduction number R0 and show that R0 completely determines the global dynamics of the model,
that is, if R0 < 1, the disease-free equilibrium is globally asymptotically stable, if R0 > 1, there exists
a unique endemic equilibrium that attracts all solutions for which malaria transmission occurs. Finally,
we perform some numerical simulations to illustrate our theoretical results and give a brief discussion.
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1. Introduction

Malaria, an infectious disease caused by the malaria parasite, is one of the most severe public health
problems in the world. About half of the world population live in areas at risk of malaria transmission.
According to the World Malaria Report 2016 [1], in 2015, there were 212 million new clinical cases
of the disease and 429, 000 deaths. The majority of malaria cases and deaths are concentrated in
Africa. Malaria transmission between people mainly involves malaria parasites infecting successively
two types of hosts: humans and female Anopheles mosquitoes. In humans, the parasites (sporozoites)
grow and multiply first in the liver cells. After a period of time, the parasites are found in the red cells
of the blood. The blood stage parasites are those that cause the symptoms of malaria. In the blood,
the parasites grow inside the red cells and then destroy them, releasing more daughter parasites that
continue the cycle by invading other red cells. A proportion of the blood stage parasites develop into
the gametocytes at some point of this process. When gametocytes are ingested by a female Anopheles
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mosquito during a blood meal, they start another different cycle of growth and multiplication in the
mosquito. After 10-18 days, the parasites (sporozoites) are found in salivary glands of the mosquito.
When the anopheles mosquito takes a blood meal on another human, the sporozoites are injected with
the mosquito’s saliva and start another human infection when they parasitize the liver cells. Thus,
the mosquito carries the disease from one human to another. Differently from the human host, the
mosquito does not suffer from the presence of the parasites [2].

Mathematical modeling of malaria transmission has always provided useful insights into malaria
transmission mechanism since the pioneer work of Ross [3] and Macdonald [4], it has also become
an important tool in understanding the dynamics of malaria transmission. Over the years, the Ross-
Macdonald model has been extended by many researchers [5, 6, 7, 8, 9, 10, 11, 12, 13]. Ruan et al.
[7] introduced modified Ross-Macdonald model to include two discrete time delays which represent
incubation periods of parasites within the human and the mosquito. They verified that extending the
incubation periods in either humans or mosquitos were beneficial to the malaria control. Cai et al.
[8] investigated the effect of distributed delays on the vector-host disease dynamics, they showed that
incubation periods can play significant role in affecting the disease transmission. Gao et al. [12]
presented a multi-patch malaria model to study the impact of mobility of vector and host populations on
malaria transmission. By using analysis and numerical simulation, they found that human movement
was a critical factor in the spatial spread of malaria around the world. Li et al. [13] investigated two
malaria models with relapse. They separated the dynamics into the fast time dynamics and the slow
time dynamics and showed the full dynamics were determined by the slow systems. Other models
about epidemic model or age-structured can be found in [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 35].

Prevention and treatment may be the effective way to reduce malaria transmission. In most malaria-
endemic countries, four interventionsłcase management (diagnosis and treatment), insecticide-treated
nets (ITNs), intermittent preventive treatment of malaria in pregnant women (IPTp) and indoor residual
spraying (IRS) łmake up the essential package of malaria interventions. These measures are considered
to have made a major contribution to the reduction in malaria burden since 2000. However, global
investment for malaria has barely changed in recent years, which has affected malaria control to a
certain extent. In 2015, 43% of the population of sub-Saharan Africa were not covered by ITNs or
IRS, 69% of pregnant women did not receive three doses of IPTp and 36% of children with fever were
not taken for care [1]. Prevention of malaria may be more cost-effective than treatment of the disease in
the long run. In March 2010, the newest intervention recommended by the World Health Organization
is intermittent preventive treatment during infancy (IPTi). Studies show that IPTi can significantly
reduce clinical malaria and anemia in the first year of life, as well as hospital admissions associated with
malaria infection or for any cause [1]. Intermittent preventive treatment of malaria in pregnant women
(IPTp) is also a malaria intervention. WHO has recommended that pregnant women be given at least
three doses during each pregnancy [1]. Vaccination is also a means of prevention. RTS,S(developed
by PATH Malaria Vaccine Initiative (MVI) and GlaxoSmithKline (GSK) with support from the Bill
and Melinda Gates Foundation) is the most recently developed recombinant vaccine. Phase III clinical
trial indicated that RTS,S reduced the number of cases among young children by almost 50 percent and
among infants by around 25 percent. But, overall efficacy seem to wane with time [25]. According to
this, we introduce age structure in the prevention period of susceptible population in our model.

Motivated by the above, in this paper, we not only introduce age structure to explain the prevention
period of susceptible population but also involve age structures to account for the latent periods in
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humans and mosquitoes. We show that there exists a compact global attractor and obtain a sufficient
condition for uniform persistence of the solution semiflow. We also identify the basic reproduction
number R0 and show that R0 completely determines the global dynamics of our model.

This paper is organized as follows. In Section 2, we introduce the malaria model and present
some basic properties. In Section 3, we define the basic reproductive number and prove the local
stability of the disease-free equilibrium and the unique endemic equilibrium. In Section 4, we present
the uniform persistence and prove the global stability of the disease-free equilibrium and the unique
endemic equilibrium. In Section 5, we perform some numerical simulations. In Section 6, we give a
brief discussion.

2. Malaria model and basic properties

2.1. The model

We divide the total human population at time t into five mutually-exclusive subgroups: susceptible
individuals S h(t), protected individuals P(t, a), where the parameter a denotes the preventive age of
the susceptible individuals, exposed individuals Eh(t, θ), where θ denotes the latent age of the exposed
individuals, infective individuals Ih(t) and removed individuals Rh(t). We assume that the removed
individuals are given special protection, they will no longer be involved in the transmission process.
We divide the total vector population at time t into three mutually-exclusive subgroups: susceptible
vectors S m(t), exposed vectors Em(t, τ), where the parameter τ denotes the latent age of the exposed
vectors, infective vectors Im(t). The flow among those subgroups is shown in the following flowchart
(Figure 1).

Figure 1. Flowchart of the malaria transmission between mosquitoes and humans,
where [γ1P], [γ2Eh] and [γ3Em] represent

∫ +∞

0
γ1(a)P(t, a)da,

∫ +∞

0
γ2(θ)Eh(t, θ)dθ and∫ +∞

0
γ3(τ)Em(t, τ)dτ, respectively.

By the flowchart (Figure 1) and noting that the removed individuals are decoupled, we can formulate
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the malaria model as follows:

dS h(t)
dt

= Λ1 − (µ1 + ψ)S h(t) − bβ1S h(t)Im(t) +

∫ +∞

0
γ1(a)P(t, a)da,

dS m(t)
dt

= Λ2 − µ2S m(t) − bβ2S m(t)Ih(t),

dIh(t)
dt

=

∫ +∞

0
γ2(θ)Eh(t, θ)dθ − (µ1 + α + δ)Ih(t),

dIm(t)
dt

=

∫ +∞

0
γ3(τ)Em(t, τ)dτ − µ2Im(t),

∂P(t, a)
∂t

+
∂P(t, a)
∂a

= −(µ1 + γ1(a))P(t, a),

∂Eh(t, θ)
∂t

+
∂Eh(t, θ)
∂θ

= −(µ1 + γ2(θ))Eh(t, θ),

∂Em(t, τ)
∂t

+
∂Em(t, τ)

∂τ
= −(µ2 + γ3(τ))Em(t, τ),

(2.1)

with the following initial and boundary conditions
P(t, 0) = ψS h(t), Eh(t, 0) = bβ1S h(t)Im(t), Em(t, 0) = bβ2S m(t)Ih(t),
P(0, a) = P0(a), Eh(0, θ) = Eh0(θ), Em(0, τ) = Em0(τ),
S h(0) = sh0, Ih(0) = ih0, S m(0) = sm0, Im(0) = im0,

(2.2)

where P0(a), Eh0(θ), Em0(τ) ∈ L1
+(0,+∞) and sh0, ih0, rh0, sm0, im0 ∈ R+. The meanings of the parameters

in (2.1) are explained in Table 1.

Table 1. Description of parameters of the model (2.1).

Parameters Description
Λ1 the recruitment rate of the human population
µ1 the natural death rate of the human population
b the average number of bites per mosquito per unit time
β1 the probability of transmission from female anopheles mosquito to human
ψ the rate of prevention of the susceptible individuals
α the disease-induced death rate

γ1(a) the prevention wane rate depends on preventive age
γ2(θ) the rate at which latent individuals progress into infectious class
δ the remove rate

Λ2 the recruitment rate of the mosquito population
µ2 the death rate of mosquito population
β2 the probability of transmission from human to female anopheles mosquito
γ3(τ) the rate at which latent individuals progress into infectious class

Throughout this paper, we make the following assumptions and notations.
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(A1) : Λi, µi, βi, δ, α > 0, (i = 1, 2), ψ ≥ 0;
(A2) : γi ∈ L∞+ (0,+∞) (i = 1, 2, 3) with essential upper bounds γ̄i > 0 , respectively;
(A3) : P(0, 0) = ψS h(0), Eh(0, 0) = bβ1S h(0)Im(0), Em(0, 0) = bβ2S m(0)Ih(0).
For a, θ, τ ≥ 0, we denote
k1(a) = e−

∫ a
0 (µ1+γ1(s))da, K1 =

∫ +∞

0
γ1(a)k1(a)da, φ(a) = ψγ1(a)k1(a),

k2(θ) = e−
∫ θ

0 (µ1+γ2(s))dθ, K2 =
∫ +∞

0
γ2(θ)k2(θ)dθ,

k3(τ) = e−
∫ τ

0 (µ2+γ3(s))dτ, K3 =
∫ +∞

0
γ3(τ)k3(τ)dτ,

Y = R4
+ × (Ł1

+(0,+∞))3 with norm

‖ (x1, x2, x3, x4, x5, x6, x7) ‖Y =

4∑
i=1

| xi | +

7∑
i=5

∫ +∞

0
| xi(s) | ds.

2.2. Well-posedness

Base on the above assumptions, we can verify the local existence of unique and nonnegative solution
of the model (2.1) with the nonnegative initial conditions (see Webb [26] and Iannelli [27] ), thus obtain
the following proposition.

Proposition 2.1. Let x0 ∈ Y , then there exists ε > 0 and neighborhood B0 ⊂ Y with x0 ∈ B0 such that
there exists a unique continuous function, Φ : [0, ε] × B0 → Y , where Φ(t, x0) is the solution to (2.1)
with Φ(0, x0) = x0.

For t ∈ [0, ε],

‖ Φ(t, x0) ‖Y = S h(t) + S m(t) + Ih(t) + Im(t) +

∫ +∞

0
P(t, a)da +

∫ +∞

0
Eh(t, θ)dθ +

∫ +∞

0
Em(t, τ)dτ

and setting µ = min{µ1, µ2}, we deduce that ‖ Φ(t, x0) ‖Y satisfies the following inequality:

d
dt
‖ Φ(t, x0) ‖Y ≤ Λ1 + Λ2 − µ ‖ Φ(t, x0) ‖Y ,

therefore
‖ Φ(t, x0) ‖Y ≤

Λ1 + Λ2

µ
− e−µt(

Λ1 + Λ2

µ
− ‖ x0 ‖Y ), (2.3)

which yields

‖ Φ(t, x0) ‖Y ≤ max{
Λ1 + Λ2

µ
, ‖ x0 ‖Y }. (2.4)

Boundedness is a direct consequence of nonnegativity of solutions. Then we have following propo-
sition.

Proposition 2.2. Let x0 ∈ Y , then there exists a unique continuous semiflow, Φ : R+×Y → Y , where
Φ(t, x0) is the solution to (2.1) with Φ(0, x0) = x0, and (2.3), (2.4) are satisfied for t ∈ R+. The following
set is positively invariant for system (2.1)

Ω = {x = (S h(t), S m(t), Ih(t), Im(t), P(t, a), Eh(t, θ), Em(t, τ)) ∈ Y : ‖ x ‖Y ≤
Λ1 + Λ2

µ
}.

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1625–1653.



1630

From Proposition 2.2. and (2.3), we obtain the following proposition.

Proposition 2.3. (1) The solution of (2.1), Φ(t, ·), is point dissipative and Ω attracts all points in Y ;
(2) Let B ⊂ Y be bounded, then Φ(t, B) is bounded;
(3) If x0 ∈ Y and ‖ x0 ‖Y ≤ A for some A ≥ Λ1+Λ2

µ
, then S i(t), Ii(t), ‖ P(t, ·) ‖L1

+
, ‖ Ei(t, ·) ‖L1

+
≤ A, (i =

h,m).

2.3. Asymptotic smoothness

Integrating the equations for P, Eh, Em in (2.1) along the characteristic lines, t−a=const., t−θ=cost.,
t − τ=const., respectively, we have

P(t, a) =


P(t − a, 0)k1(a), 0 ≤ a ≤ t,

P0(a − t)
k1(a)

k1(a − t)
, 0 ≤ t < a,

Eh(t, θ) =


Eh(t − θ, 0)k2(θ), 0 ≤ θ ≤ t,

Eh0(θ − t)
k2(θ)

k2(θ − t)
, 0 ≤ t < θ,

Em(t, τ) =


Em(t − τ, 0)k3(τ), 0 ≤ τ ≤ t,

Em0(τ − t)
k3(τ)

k3(τ − t)
, 0 ≤ t < τ.

(2.5)

Continuous semiflow {Φ(t, ·)}t≥0 is said to be asymptotically smooth, if each positively invariant
bounded closed set is attracted by a nonempty compact set.

We will use the following two lemmas [28] to prove the asymptotic smoothness of the semiflow.

Lemma 2.1. The semiflow Φ : R+ × Y → Y is asymptotically smooth if there are maps U1,U2 :
R+ ×Y → Y such that Φ(t, x) = U1(t, x) + U2(t, x), and the following hold for any bounded closed set
A ⊂ Y that is forward invariant under Φ:

(1) lim
t→+∞

diamU2(t,A ) = 0;

(2) there exists tA ≥ 0 such that U1(t,A ) has compact closure for each t ≥ tA .

Since Y is an infinite dimensional space, infinite dimensional space L1
+(0,+∞) is a component of

Y . For infinite dimensional space, we cannot deduce precompactness only from boundedness. We
apply following lemma.

Lemma 2.2. Let B be a bounded subset of L1
+(0,+∞). Then B has compact closure if and only if the

following conditions hold:
(i) sup

f∈B

∫ +∞

0
| f (s) | ds < +∞;

(ii) lim
h→+∞

∫ +∞

h
| f (s) | ds = 0 uniformly in f ∈ B;

(iii) lim
h→0+

∫ +∞

0
| f (s + h) − f (s) | ds = 0 uniformly in f ∈ B;

(iv) lim
h→0+

∫ h

0
| f (s) | ds = 0 uniformly in f ∈ B.

We are now ready to prove a result on the semiflow Φ generated by system (2.1) is asymptotically
smooth.

Theorem 2.3. The semiflow Φ generated by system (2.1) is asymptotically smooth.
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The proof of this theorem is in the appendix section.
Combining Proposition 2.3 and Φ is asymptotically smooth, as well as the existence theory of global

attractors, the following result is immediate from Theorem 2.6 in [29] and Theorem 2.4 in [30].

Theorem 2.4. The semiflow Φ has a global attractor A in Y , which attracts any bounded subset of
Y .

3. Equilibria and their local stability

3.1. Existence of equilibria

System (2.1) always has the disease free equilibrium E0 = (S 0
h, S

0
m, 0, 0, P

0(a), 0L1 , 0L1), where

S 0
h =

Λ1

µ1 + ψ(1 −K1)
, S 0

m =
Λ2

µ2
, P0(a) = ψS 0

hk1(a).

Define the basic reproduction number by

R0 =
b2β1β2K2K3Λ1Λ2

(µ1 + α + δ)(µ1 + ψ(1 −K1))µ2
2

.

R0 represents the average number of secondary infectious human cases produced by a primary in-
fectious human case that is introduced into two entirely susceptible populations: humans and female
anopheles mosquitoes. The biological relevance of the threshold R0 can be interpreted as follows.
There are

Λ1

µ1 + ψ(1 −K1)

susceptible people and Λ2
µ2

susceptible female anopheles mosquitoes. A primary infectious human case
has a removal rate µ1 + α + δ, the average infectious period is

1
µ1 + α + δ

.

During this time, the average number of mosquito bites from the susceptible mosquitoes is

b
µ1 + α + δ

,

so that the average number of infected but not infectious mosquitoes from the infectious human case
will be

bβ2Λ2

(µ1 + α + δ)µ2
.

Then
bβ2Λ2

(µ1 + α + δ)µ2
K3

represents the total number of infectious female anopheles mosquitoes produced by infected but not
infectious mosquitoes. The infectious mosquitoes have a removal rate µ2, the average infectious period
is 1

µ2
. During this time, the average number of mosquito bites from the susceptible mosquitoes is b

µ2
,
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so that the average number of infected but not infectious human cases from the infectious mosquitoes
will be

bβ2Λ2K3bβ1Λ1

(µ1 + α + δ)µ2µ2(µ1 + ψ(1 −K1))
.

Then
bβ2Λ2K3bβ1Λ1K2

(µ1 + α + δ)µ2µ2(µ1 + ψ(1 −K1))

represents the average number of infectious human cases produced by infected but not infectious hu-
man cases. Therefore, the average number of secondary infectious human cases from a primary infec-
tious human case is

bβ2Λ2K3bβ1Λ1K2

(µ1 + α + δ)µ2µ2(µ1 + ψ(1 −K1))
,

which is R0.
Next, we investigate the endemic equilibria of system (2.1). Any endemic equilibrium (S ∗h, S

∗
m, I

∗
h,

I∗m, P
∗(a), E∗h(θ), E∗m(τ)) of system (2.1) should satisfy the following equations:

Λ1 − (µ1 + ψ)S ∗h − bβ1S ∗hI∗m +

∫ +∞

0
γ1(a)P∗(a)da = 0,

Λ2 − µ2S ∗m − bβ2S ∗mI∗h = 0,∫ +∞

0
γ2(θ)E∗h(θ)dθ = (µ1 + α + δ)I∗h,∫ +∞

0
γ3(τ)E∗m(τ)dτ = µ2I∗m,

dP∗(a)
da

= −(µ1 + γ1(a))P∗(a),

dE∗h(θ)
dθ

= −(µ1 + γ2(θ))E∗h(θ),

dE∗m(τ)
dτ

= −(µ2 + γ3(τ))E∗m(τ),

P∗(0) = ψS ∗h, E∗h(0) = bβ1S ∗hI∗m, E∗m(0) = bβ2S ∗mI∗h.

(3.1)

From (3.1) we can easily find that if R0 > 1, system (2.1) has a unique endemic equilibrium
E∗ = (S ∗h, S

∗
m, I

∗
h, I
∗
m, P

∗(a), E∗h(θ), E∗m(τ)), where

I∗h =

Λ1(1 −
1

R0
)

µ2(µ1 + α + δ)(µ1 + ψ(1 −K1))
bβ1K2K3Λ2

+
µ1 + α + δ

K2

, S ∗m =
Λ2

bβ2I∗h + µ2
, I∗m =

bβ2S ∗mI∗hK3

µ2
,

S ∗h =
(µ1 + α + δ)I∗h

bβ1K2I∗m
, P∗(a) = ψS ∗hk1(a), E∗h(θ) = bβ1S ∗hI∗mk2(θ), E∗m(τ) = bβ2S ∗mI∗hk3(τ).

Summarizing the discussions above, we have the following theorem.

Theorem 3.1. System (2.1) always has the disease free equilibrium E0. Moreover, apart from E0, if
R0 > 1, system (2.1) has a unique endemic equilibrium E∗.
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3.2. Local stability of the equilibria

Now we consider the linearized system of (2.1) at an equilibrium

Ẽ = (S̃ h, S̃ m, Ĩh, Ĩm, P̃(a), Ẽh(θ), Ẽm(τ)).

Let S h(t) = S h(t) − S̃ h, S m(t) = S m(t) − S̃ m, Ih(t) = Ih(t) − Ĩh, Im(t) = Im(t) − Ĩm, P(a, t) = P(a, t) −
P̃(a), Eh(t, θ) = Em(t, θ) − Ẽh(θ), Em(t, τ)) = Em(t, τ) − Ẽm(τ), then removing the bar, we obtain the
following linearized system:

dS h(t)
dt

= −(µ1 + ψ)S h(t) − bβ1S̃ hIm(t) − bβ1 ĨmS h(t) +

∫ +∞

0
γ1(a)P(t, a)da,

dS m(t)
dt

= −µ2S m(t) − bβ2S̃ mIh(t) − bβ2 ĨhS h(t),

dIh(t)
dt

=

∫ +∞

0
γ2(θ)Eh(t, θ)dθ − (µ1 + α + δ)Ih(t),

dIm(t)
dt

=

∫ +∞

0
γ3(τ)Em(t, τ)dτ − µ2Im(t),

∂P(t, a)
∂t

+
∂P(t, a)
∂a

= −(µ1 + γ1(a))P(t, a),

∂Eh(t, θ)
∂t

+
∂Eh(t, θ)
∂θ

= −(µ1 + γ2(θ))Eh(t, θ),

∂Em(t, τ)
∂t

+
∂Em(t, τ)

∂τ
= −(µ2 + γ3(τ))Em(t, τ),

(3.2)

with the following initial and boundary conditions

P(t, 0) = ψS h(t), Eh(t, 0) = bβ1S̃ hIm(t) + bβ1 ĨmS h(t), Em(t, 0) = bβ2S̃ mIh(t) + bβ2 ĨhS m(t).

Let

Ki(λ) =

∫ +∞

0
γi(u)e−

∫ u
0 (λ+µ1+γi(s))dsdu, (i = 1, 2), K3(λ) =

∫ +∞

0
γ3(τ)e−

∫ τ
0 (λ+µ2+γ3(s))dsdτ.

For (3.2), let S h(t) = S 0
heλt, S m(t) = S 0

meλt, Ih(t) = I0
heλt, Im(t) = I0

meλt, P(t, a) = P0(a)eλt, Eh(t, θ) =

E0
h(θ)eλt, Em(t, τ) = E0

m(τ)eλt, we have

(λ + µ1 + ψ(1 −K1(λ)) + bβ1 Ĩm)S 0
h = −bβ1S̃ hI0

m,

(λ + µ2 + bβ2 Ĩh)S 0
m = −bβ2S̃ mI0

h ,

(λ + µ1 + α + δ)I0
h =

∫ +∞

0
γ2(θ)E0

h(θ)dθ,

(λ + µ2)I0
m =

∫ +∞

0
γ3(τ)E0

m(τ)dτ,

Ṗ0(a) = −(λ + µ1 + γ1(a))P0(a),
Ė0

h(θ) = −(λ + µ1 + γ2(θ))E0
h(θ),

Ė0
m(τ) = −(λ + µ2 + γ3(τ))E0

m(τ),

(3.3)
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with initial conditions 
P0(0) = ψS 0

h,

E0
h(0) = bβ1S̃ hI0

m + bβ1 ĨmS 0
h,

E0
m(0) = bβ2S̃ mI0

h + bβ2 ĨhS 0
m.

(3.4)

We obtain from the system (3.3) that

S 0
h =

−bβ1S̃ h

(λ + µ1 + ψ(1 −K1(λ)) + bβ1 Ĩm)
I0
m, S 0

m =
−bβ2S̃ m

(λ + µ2 + bβ2 Ĩh)
I0
h .

On substituting the above two equations into the second and third equations of system (3.4), and by
simple calculation, we have

E0
h(0) =

bβ1K3(λ)S̃ h(λ + µ1 + ψ(1 −K1(λ))

(λ + µ2)(λ + µ1 + ψ(1 −K1(λ)) + bβ1 Ĩm)
E0

m(0)

and

E0
m(0) =

bβ2K2(λ)S̃ m(λ + µ2)

(λ + µ1 + α + δ)(λ + µ2 + bβ2 Ĩh)
E0

h(0).

We derive that

E0
h(0) =

bβ1K3(λ)S̃ h(λ + µ1 + ψ(1 −K1(λ))

(λ + µ2)(λ + µ1 + ψ(1 −K1(λ)) + bβ1 Ĩm)

bβ2K2(λ)S̃ m(λ + µ2)

(λ + µ1 + α + δ)(λ + µ2 + bβ2 Ĩh)
E0

h(0).

We obtain the characteristic equation of model (2.1) at an equilibrium Ẽ as follows:

f (λ) = 1,

where f (λ) =
b2β1β2K2(λ)K3(λ)S̃ hS̃ m(λ + µ1 + ψ(1 −K1(λ))

(λ + µ1 + α + δ)(λ + µ2 + bβ2 Ĩh)(λ + µ1 + ψ(1 −K1(λ)) + bβ1 Ĩm)
.

Theorem 3.2. (Local stability)
(i) The disease-free equilibrium E0 of system (2.1) is locally stable if R0 < 1 and unstable if R0 > 1.
(ii) The endemic equilibrium E∗ of system (2.1) is locally stable if R0 > 1.

Proof. First consider the local stability of the disease-free steady state E0.

f (λ) =
b2β1β2K2(λ)K3(λ)Λ1Λ2

(λ + µ1 + α + δ)(λ + µ2)µ2(µ1 + ψ(1 −K1))
.

Clearly, we have f (0) = R0, f ′(λ) < 0 and lim
λ→∞

f (λ) = 0. Hence, if R0 > 1, then f (λ) = 1 has a
unique positive real root. Thus, if R0 > 1, the disease-free steady state E0 is unstable.

If R0 < 1, the disease-free equilibrium E0 is locally stable. Otherwise, f (λ0) = 1 has at least one
root λ0 = a1 + ib1 satisfying a1 ≥ 0. But

| f (λ0) |≤
b2β1β2K2K3Λ1Λ2

(µ1 + α + δ)µ2
2(µ1 + ψ(1 −K1))

= R0 < 1.
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Hence, if R0 < 1, all roots of f (λ) = 1 have negative real parts, then the disease-free equilibrium E0 is
locally stable.

Next, we consider the local stability of the endemic equilibrium E∗.

f (λ) =
b2β1β2K2(λ)K3(λ)S ∗hS ∗m(λ + µ1 + ψ(1 −K1(λ))

(λ + µ1 + α + δ)(λ + µ2 + bβ2I∗h)(λ + µ1 + ψ(1 −K1(λ)) + bβ1I∗m)
.

If R0 > 1, the endemic equilibrium E∗ is locally stable. Otherwise, f (λ∗) = 1 has at least one root
λ∗ = a2 + ib2 satisfying a2 ≥ 0. But

| f (λ∗) |<
b2β1β2K2K3S ∗hS ∗m

(µ1 + α + δ)µ2
.

Notice, S ∗hS ∗m =
(µ1 + α + δ)µ2

b2β1β2K2K3
, we know | f (λ∗) |< 1, Hence, if R0 > 1, all roots of f (λ) = 1 have

negative real parts, then the endemic equilibrium E∗ is locally stable. This completes the proof. �

4. Uniform persistence and global stability

4.1. Uniform persistence

In this subsection, our purpose is to show that system (2.1) is uniformly persistent when R0 > 1.
Define

M0 = {(x1, x2, x3, x4, x5, x6, x7)T ∈ Y | ∃ t1, t2 ∈ R+ : x3 + x4

+

∫ +∞

0
γ2(θ + t1)x6(θ)dθ +

∫ +∞

0
γ3(τ + t2)x7(τ)dτ > 0},

let ∂M0 = Y \ M0, then we have Y = M0 ∪ ∂M0.

Theorem 4.1. The sets M0 and ∂M0 are forward invariant under the semiflow Φ(t, ·). Also, the disease-
free equilibrium E0 of system (2.1) is globally asymptotically stable for the semiflow Φ(t, ·) restricted
to ∂M0.

The proof of this theorem is in the appendix section. Theorem 4.1 states that if the number of
people and mosquitoes initially infected by plasmodium belongs to ∂M0, then malaria will eventually
die out. But if the number of people and mosquitoes initially infected by plasmodium belongs to M0,
then whether malaria is eventually extinct, we need to verify by the following Theorem 4.2, Theorem
4.3 and Theorem 4.5.

Theorem 4.2. If R0 > 1, then semiflow {Φ(t, ·)}t≥0 generated by system (2.1) is uniformly persistent
with respect to the decomposition (M0, ∂M0). Moreover, there is a compact subsetA0 ⊂ M0, which is
a global attractor for {Φ(t, ·)}t≥0 in M0.

Details of this proof are in appendix section. Theorem 4.2 shows that if R0 is greater than 1, when
the number of people and mosquitoes initially infected by plasmodium belongs to M0, malaria will
always exist at a certain scale.
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4.2. Global stablility

Let x ∈ A, we can find a complete orbit {Φ(t, ·)}t∈R through x in A. By similar analytical method
used in [[31], subsection 3.2], system (2.1) can be written as

dS h(t)
dt

= Λ1 − (µ1 + ψ)S h(t) − bβ1S h(t)Im(t) +

∫ +∞

0
γ1(a)k1(a)ψS h(t − a)da,

dS m(t)
dt

= Λ2 − µ2S m(t) − bβ2S m(t)Ih(t),

dIh(t)
dt

=

∫ +∞

0
γ2(θ)Eh(t, θ)dθ − (µ1 + α + δ)Ih(t),

dIm(t)
dt

=

∫ +∞

0
γ3(τ)Em(t, τ)dτ − µ2Im(t),

P(t, a) = k1(a)ψS h(t − a),
∂Eh(t, θ)

∂t
+
∂Eh(t, θ)
∂θ

= −(µ1 + γ2(θ))Eh(t, θ),

Eh(t, 0) = bβ2S h(t)Im(t), (or Eh(t, θ) = k2(θ)bβ1S h(t − θ)Im(t − θ)),
∂Em(t, τ)

∂t
+
∂Em(t, τ)

∂τ
= −(µ2 + γ3(τ))Em(t, τ),

Em(t, 0) = bβ2S m(t)Ih(t), (or Em(t, τ) = k3(τ)bβ2S m(t − τ)Ih(t − τ)),
(S h(0), S m(0), Ih(0), Im(0), P(0, a), Eh(0, θ), Em(0, τ)) ∈ A.

(4.1)

Theorem 4.3. The disease-free equilibrium E0 of system (2.1) is globally asymptotically stable if R0 <

1.

The proof of this theorem is in the appendix section. Theorem 4.3 shows that if R0 is less than 1,
malaria will be extinct regardless of whether the number of people and mosquitoes initially infected by
plasmodium belongs to M0 or ∂M0.

If R0 > 1, we have know that the system (2.1) is uniformly persistent and has a global attractorA0

in M0, meanwhile, let (S h(0), S m(0), Ih(0), Im(0), P(0, a), Eh(0, θ), Em(0, τ)) ∈ A0, system (2.1) can
be written as (4.1) (replace A with A0). In order to study the global stability of E∗, we first prove the
following lemma.

Lemma 4.4. There exist ε,M > 0 such that all solutions inA0 for t ∈ R, the following inequalities are
satisfied

ε ≤ S h(t), S m(t), Ih(t), Im(t) ≤ M, ψεk1(a) ≤ P(t, a) ≤ ψMk1(a),

bβ1ε
2k2(θ) ≤ Eh(t, θ) ≤ bβ1M2k2(θ), bβ2ε

2k3(τ) ≤ Em(t, τ) ≤ bβ2M2k3(τ).

Proof. Let (S h(t), S m(t), Ih(t), Im(t), P(t, a), Eh(t, θ), Em(t, τ)) ∈ A0.
First we prove that S h(t) > 0, S m(t) > 0 for t ∈ R. We assume that there exists t1 ∈ R such that

S m(t1) = 0. From (4.1) we have
dS m(t1)

dt
≥ Λ1 > 0, then ∃ η > 0 such that S m(t1 − η) < 0. This

contradicts theA0 ⊂ M0. Thus, S m(t) > 0 for t ∈ R. Similarly, we can get S h(t) > 0 for t ∈ R.
Next we prove that Ih(t) > 0, Im(t) > 0 for t ∈ R. First we assume that there exists t0 ∈ R such

that Ih(t0) = 0 and Im(t0) = 0, then according to Ih(t), Im(t) equations in (4.1), we can deduce that
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Ih(t) = 0, Im(t) = 0 for t ≤ t0. Next form (4.1) we know
∫ +∞

0
Eh(t, θ)dθ =

∫ +∞

0
k2(θ)bβ1S h(t − θ)Im(t −

θ))dθ = 0,
∫ +∞

0
Em(t, τ)dτ =

∫ +∞

0
k3(τ)bβ2S m(t − τ)Ih(t − τ))dτ = 0 for all t ≤ t0, then obviously,∫ +∞

0
γ2(θ + s1)Eh(t, θ)dθ = 0,

∫ +∞

0
γ3(τ + s2)Em(t, τ)dτ = 0 for all s1, s2 ≥ 0. This contradicts the

A0 ⊂ M0. On the other hand, we assume that there exists t0 ∈ R such that one of Ih(t0), Im(t0) is
positive, so without loss of generality, we assume that Ih(t0) = 0, Im(t0) > 0. Similarly, we have

Ih(t) = 0,
∫ +∞

0
γ3(τ + s)Em(t, τ)dτ = 0 for all s ≥ 0, t ≤ t0. Then

dIm(t)
dt

= −µ2Im(t) for all t ≤ t0, we

deduce that Im(t0) = Im(t)e−µ(t0−t), obviously, Im(t)→ +∞ as t → −∞. This contradicts the compactness
of A0. Hence, Ih(t) > 0, Im(t) > 0 for all t ∈ R. In addition, from (4.1), we deduce that P(t, a) >
0, Eh(t, θ) > 0, Em(t, τ) > 0 for t ∈ R, a, θ, τ ∈ R+.

According to the compactness ofA0, we know there exist ε,M > 0 such that

ε ≤ S h(t), S m(t), Ih(t), Im(t) ≤ M, ψεk1(a) ≤ P(t, a) ≤ ψMk1(a),

bβ1ε
2k2(θ) ≤ Eh(t, θ) ≤ bβ1M2k2(θ), bβ2ε

2k3(τ) ≤ Em(t, τ) ≤ bβ2M2k3(τ).

The proof is complete. �

Theorem 4.5. If R0 > 1, then endemic equilibrium E∗ of system (2.1) is globally asymptotically stable
in M0.

Details of this proof are in appendix section. Theorem 4.5 shows that if R0 is greater than 1, when
the number of people and mosquitoes initially infected by plasmodium belongs to M0, the number of
people and mosquitoes will eventually stabilize at E∗.

5. Simulations for the malaria model

In this section, we present some numerical simulations to confirm the above theoretical results (i.e.,
Theorems 4.3 and 4.5). Some of the parameters are taken from[8] b = 0.2, β1 = 0.015, δ = 0.05, µ1 =

0.00004. Other parameters are estimated. we estimate other parameters as follows Λ1 = 0.2,Λ2 =

20, β2 = 0.015, µ2 = 0.03, α = 0.001. Moreover, we assume that the prevention wane rate and the
removal rate from latent class take the form

γi(s) =

 0, 0 < s < ti,

γi, ti ≤ t,

where i = 1, 2, 3, t1 = 12, t2 = 7, t3 = 10 (time units are days), γ1 = 0.001, γ2 = 0.11, γ3 = 0.1. By
solving R0 = 1, we obtain that ψ0 = 0.4872. Obviously, R0 decreases as the degree of prevention ψ
increases. Thus, first, we let ψ = 0.9 > ψ0, we can compute R0 = 0.5414 < 1, then the disease-
free equilibrium E0 = (0.2426, 666.667, 0, 0, 0.2183k1(a), 0, 0) is globally stable, as depicted in Fig.2,
Fig.3. Next, we let ψ = 0.3 < ψ0, we can compute R0 = 1.6239 > 1, then the endemic equilibrium
E∗ = (0.5025, 594.5913, 1.2122, 41.0726, 0.1507k1(a), 0.0619k2(θ), 2.1623k3(τ)) is globally stable, as
depicted in Fig.4, Fig.5. From the numerical simulations we can conjecture that increasing ψ, the rate
of prevention of the susceptible people, can eliminate malaria. This is consistent with the report [1] of
the WHO that prevention is considered to have made a major contribution to the reduction in malaria
burden since 2000.
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Figure 2. The trajectory of S h(t), Ih(t), S m(t) and Ih(t) versus time with the initial condition
(0.3, 100, 0.02, 2, 0.1e−0.5a, 0.1e−0.5a, 100e−0.5a).

Figure 3. The surface of P(t, a), Eh(t, θ) and Em(t, τ) versus time and age with the initial
condition (0.3, 100, 0.02, 2, 0.1e−0.5a, 0.1e−0.5t, 100e−0.5t).
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Figure 4. The trajectory of S h(t), Ih(t), S m(t) and Ih(t) versus time with the initial condition
(0.3, 100, 0.02, 2, 0.1e−0.5a, 0.1e−0.5a, 100e−0.5a).
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Figure 5. The surface of P(t, a), Eh(t, θ) and Em(t, τ) versus time and age with the initial
condition (0.3, 100, 0.02, 2, 0.1e−0.5a, 0.1e−0.5a, 100e−0.5a).

6. Discussion and conclusion

Malaria is a dangerous and sometimes fatal disease caused by malaria parasite that commonly infect
female anopheles mosquitoes which take a blood meal on humans. It is one of the greatest challenges
in the field of global public health. The cost of malaria to individuals, families, communities, nations
is huge. This issue may become more serious due to lack of prevention. In our paper, we considered an
age-structured malaria epidemic model with prevention period of susceptible people and latent period
of two types of infected hosts. The basic reproduction number R0 of our model (2.1) has been found
by the definition. Based on regional division of state space and selection of appropriate Lyapunov
functions, we proved that disease-free equilibrium E0 is globally asymptotically stable if R0 < 1, while
endemic equilibrium E∗ is globally asymptotically stable in M0 if R0 > 1.

We are easy to see that R0 decreases as the rate of prevention ψ increases, that is, increasing the
degree of prevention can lead to malaria extinct. Thus, the prevention is very important for the control
of malaria. If we don’t take into account the prevention period and latent period of two types of infected
hosts , and according to the dynamics of the ODE model in [32], we can easily know that the basic
reproduction number R0 is reduced to R0 =

b2β1β2Λ1Λ2

(µ1+α+δ)µ1µ
2
2
, in addition, notice that K1 < 1, K2 < 1,

K3 < 1, we can find that R0 < R0, so considering the prevention period and latent period of two types
of infected hosts can reduce the basic reproduction number, which are beneficial to understanding the
dynamics of malaria control.
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Proof of Theorem 2.3

Proof. We first decompose Φ into the following two parts: U1,U2 defined respectively by

U1(t, x) = (S h(t), S m(t), Ih(t), Im(t), P̃(t, ·), Ẽh(t, ·), Ẽm(t, ·)),

U2(t, x) = (0, 0, 0, 0, ψP(t, ·), ψEh(t, ·), ψEm(t, ·)),

where

ψP(t, a) =


0, 0 ≤ a ≤ t,

P0(a − t)
k1(a)

k1(a − t)
, 0 ≤ t < a,

ψEh(t, θ) =


0, 0 ≤ θ ≤ t,

Eh0(θ − t)
k2(θ)

k2(θ − t)
, 0 ≤ t < θ,

ψEm(t, τ) =


0, 0 ≤ τ ≤ t,

Em0(τ − t)
k3(τ)

k3(τ − t)
, 0 ≤ t < τ,

P̃(t, a) =

{
P(t − a, 0)k1(θ), 0 ≤ a ≤ t,
0, 0 ≤ t < a,

Ẽh(t, θ) =

{
Eh(t − θ, 0)k2(θ), 0 ≤ θ ≤ t,
0, 0 ≤ t < θ,

Ẽm(t, τ) =

{
Em(t − τ, 0)k3(τ), 0 ≤ τ ≤ t,
0, 0 ≤ t < τ,

for x = (S h(0), S m(0), Ih(0), Im(0), P0(a), Eh0(θ), Em0(τ)), clearly, we have Φ(t, x) = U1(t, x) + U2(t, x).
Let A ⊂ Y , r is a constant greater than Λ1+Λ2

µ
, for each x ∈ A , we have ‖ x ‖Y ≤ r.

‖ U2(t, x) ‖Y =

∫ +∞

t
P0(a − t)

k1(a)
k1(a − t)

da +

∫ +∞

t
Eh0(θ − t)

k2(θ)
k2(θ − t)

dθ

+

∫ +∞

t
Em0(τ − t)

k3(τ)
k3(τ − t)

dτ

=

∫ +∞

0
P0(s)

k1(s + t)
k1(s)

ds +

∫ +∞

0
Eh0(s)

k2(s + t)
k2(s)

ds +

∫ +∞

0
Em0(s)

k3(s + t)
k3(s)

ds

=

∫ +∞

0
P0(s)e−

∫ s+t
s (µ1+γ1(l))dlds +

∫ +∞

0
Eh0(s)e−

∫ s+t
s (µ1+γ2(l))dlds

+

∫ +∞

0
Em0(s)e−

∫ s+t
s (µ2+γ3(l))dlds ≤ e−µt ‖ x ‖Y ≤ re−µt.

Thus, lim
t→+∞

diam U2(t,A ) = 0. In the following we show that U1(t,A ) has compact closure for each
t ≥ 0.

From Proposition 2.3, we know that S i(t), Ii(t) (i = h,m) remain in the compact set [0, r] for all
t ≥ 0. Next, we will show that P̃(t, a), Ẽh(t, θ) and Ẽm(t, τ) remain in a precompact subset of L+

1 (0,+∞)
which is independent of x.

0 ≤ Ẽm(t, τ) =

{
Em(t − τ, 0)k3(τ), 0 ≤ τ ≤ t,
0, 0 ≤ t < τ.

It is easy to show that
Ẽm(t, τ) ≤ bβ2r2e−µτ.
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Therefore, the conditions (i),(ii) and (iv) of Lemma 2.2 are satisfied. Now, we only to check the
condition (iii) of Lemma 2.2.∫ +∞

0
| Ẽm(t, τ + h) − Ẽm(t, τ) | dτ =

∫ t−h

0
| Ẽm(t, τ + h) − Ẽm(t, τ) | dτ +

∫ t

t−h
| Ẽm(t, τ) | dτ

=

∫ t−h

0
| Ẽm(t − τ − h, 0)k3(τ + h) − Ẽm(t − τ, 0)k3(τ) | dτ +

∫ t

t−h
| Ẽm(t − τ, 0)k3(τ) | dτ

≤

∫ t−h

0
| Ẽm(t − τ − h, 0) || k3(τ + h) − k3(τ) | dτ +

∫ t−h

0
| Ẽm(t − τ − h, 0)

−Ẽm(t − τ, 0) || k3(τ) | dτ + bβ2r2h.∫ t−h

0
| Ẽm(t − τ − h, 0) || k3(τ + h) − k3(τ) | dτ ≤ bβ2r2(

∫ t−h

0
k3(τ)dτ −

∫ t−h

0
k3(τ + h)dτ)

= bβ2r2(
∫ t−h

0
k3(τ)dτ −

∫ t

h
k3(s)ds)

= bβ2r2(
∫ t−h

0
k3(τ)dτ −

∫ t−h

h
k3(s)ds −

∫ t

t−h
k3(s)ds)

= bβ2r2(
∫ h

0
k3(τ)dτ −

∫ t

t−h
k3(s)ds) ≤ bβ2r2h.

Notice that |
dIh(t)

dt
|≤ γ̄2r + (µ1 + α + δ)r, |

dS m(t)
dt

|≤ Λ1 + (µ1 + ϕ)r + bβ1r2 + γ̄1r, we have

| Ẽm(t − τ − h, 0) − Ẽm(t − τ, 0) |= bβ1 | S m(t − τ − h)Ih(t − τ − h) − S m(t − τ)Ih(t − τ) |

= bβ1(| S m(t − τ − h) || Ih(t − τ − h) − Ih(t − τ) | + | Ih(t − τ) || S m(t − τ − h) − S m(t − τ) |)

≤ bβ1r(γ̄2r + (µ1 + α + δ)r)h + bβ1r(Λ1 + (µ1 + ϕ)r + bβ1r2 + γ̄1r)h.

Then ∫ t−h

0
| Ẽm(t − τ − h, 0) − Ẽm(t − τ, 0) || k3(τ) | dτ

≤ bβ1r((γ̄1 + (µ1 + δ))r + (Λ1 + (µ1 + ϕ)r + bβ1r2 + γ̄1r))h
∫ t−h

0
e−µsds.

≤
bβ1r
µ

((γ̄2 + µ1 + α + δ)r + (Λ1 + (µ1 + ϕ)r + bβ1r2 + γ̄1r))h.

Hence,∫ +∞

0
| Ẽm(t, τ+ h)− Ẽm(t, τ) | dτ ≤ (2bβ2r2 +

bβ1r
µ

((γ̄2 +µ1 +α+δ)r + (Λ1 + (µ1 +ϕ)r + bβ1r2 + γ̄1r)))h.

Thus, condition (iii) of Lemma 2.2 holds, then we can get that Ẽm(t, τ) satisfies the conditions of
Lemma 2.2. In a similar way, P̃(t, a), Ẽh(t, θ) also satisfy the conditions of Lemma 2.2. Therefore,
we obtain U1(t,A ) has compact closure for each t ≥ 0, Using Lemma 2.1, we know semiflow Φ is
asymptotically smooth. This completes the proof. �
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Proof of Theorem 4.1

Proof. First we prove M0 is forward invariant under the semiflow Φ(t, ·). Let Φ(0, x0) ∈ M0, if Ih(0) > 0
or Im(0) > 0, From (2.1), it’s easy to know Ih(t) ≥ Ih(0)e−(µ1+α+δ)t > 0 or Im(t) ≥ Im(0)e−µ2t > 0, then M0

is forward invariant. Otherwise, if Ih(0) = Im(0) = 0, then without loss of generality, ∃ t1 ∈ R+ such
that
∫ +∞

0
γ2(θ + t1)Eh(0, θ)dθ > 0 ( x0 ∈ M0). ∀ t ∈ [0, t1], ∃ s = t1 − t ≥ 0 such that∫ +∞

0
γ2(θ + s)Eh(t, θ)dθ ≥

∫ +∞

t
γ2(θ + s)Eh(t, θ)dθ =

∫ +∞

0
γ2(θ + t + s)Eh(t, θ + t)dθ

=

∫ +∞

0
γ2(θ + t1)Eh(0, θ)

k2(θ + t)
k2(θ)

dθ ≥ e−(µ1+γ2)t
∫ +∞

0
γ2(θ + t1)Eh(0, θ)dθ > 0.

If ∃ t2 ∈ (0, t1] such that Ih(t2) > 0, then Ih(t) > 0, ∀t > t2, otherwise, since

dIh(t1)
dt

=

∫ +∞

0
γ2(θ)Eh(t1, θ)dθ > 0,

we know Ih(t) > 0 for all t > t1. Hence, Φ(t,M0) ⊂ M0.

This completes the fact that Φ(t,M0) ⊂ M0, i.e. M0 is forward invariant under the semiflow Φ(t, ·).
Next, we will prove ∂M0 is forward invariant under the semiflow Φ(t, ·). Let Φ(0, x0) ∈ ∂M0, we

consider the following system

dIh(t)
dt

=

∫ +∞

0
γ2(θ)Eh(t, θ)dθ − (µ1 + α + δ)Ih(t),

dIm(t)
dt

=

∫ +∞

0
γ3(τ)Em(t, τ)dτ − µ2Im(t),

∂Eh(t, θ)
∂t

+
∂Eh(t, θ)
∂θ

= −(µ1 + γ2(θ))Eh(t, θ),

∂Em(t, τ)
∂t

+
∂Em(t, τ)

∂τ
= −(µ2 + γ3(τ))Em(t, τ),

Eh(t, 0) = bβ1S h(t)Im(t), Em(t, 0) = bβ2S m(t)Ih(t),
Eh(0, θ) = Eh0(θ), Em(0, τ) = Em0(τ), Ih(0) = 0, Im(0) = 0.

(6.1)

Since S h(t), S m(t) ≤ ∆, where ∆ = max{
Λ1 + Λ2

µ
, ‖ x0 ‖Y }, it follows that

Ii(t) ≤ Îi(t), Ei(t, s) ≤ Êi(t, s), (i = h,m), (6.2)

where 

dÎh(t)
dt

=

∫ +∞

0
γ2(θ)Êh(t, θ)dθ − (µ1 + α + δ)Îh(t),

dÎm(t)
dt

=

∫ +∞

0
γ3(τ)Êm(t, τ)dτ − µ2 Îm(t),

∂Êh(t, θ)
∂t

+
∂Êh(t, θ)
∂θ

= −(µ1 + γ2(θ))Êh(t, θ),

∂Êm(t, τ)
∂t

+
∂Êm(t, τ)

∂τ
= −(µ2 + γ3(τ))Êm(t, τ),

(6.3)
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with the following initial and boundary conditions Êh(t, 0) = bβ1∆Îm(t), Êm(t, 0) = bβ2∆Îh(t),
Êh(0, θ) = Eh0(θ), Êm(0, τ) = Em0(τ), Îh(0) = 0, Îm(0) = 0.

(6.4)

By use of Volterra formulation, we have

Êh(t, θ) =


Êh(t − θ, 0)k2(θ), 0 ≤ θ ≤ t,

Eh0(θ − t)
k2(θ)

k2(θ − t)
, 0 ≤ t < θ,

Êm(t, τ) =


Êm(t − τ, 0)k3(τ), 0 ≤ τ ≤ t,

Em0(τ − t)
k3(τ)

k3(τ − t)
, 0 ≤ t < τ.

(6.5)

Substituting (6.5) into the first two equations of (6.3) yield

dÎh(t)
dt

= bβ1∆

∫ t

0
γ2(θ)Îm(t − θ)k2(θ)dθ + F1(t) − (µ1 + α + δ)Îh(t),

dÎm(t)
dt

= bβ2∆

∫ t

0
γ3(τ)Îh(t − τ)k3(τ)dτ + F2(t) − µ2 Îm(t),

Îh(0) = 0, Îm(0) = 0,

(6.6)

where

F1(t) =

∫ +∞

t
γ2(θ)Eh0(θ − t)

k2(θ)
k2(θ − t)

dθ, F2(t) =

∫ +∞

t
γ3(τ)Em0(τ − t)

k3(τ)
k3(τ − t)

dτ.

Since

F1(t) ≤
∫ +∞

t
γ2(θ)Eh0(θ − t)dθ =

∫ +∞

0
γ2(θ + t)Eh0(θ)dθ,

due to Φ(0, x0) ∈ ∂M0, then F1(t) ≡ 0 for t ≥ 0. In a similar way, we have F2(t) ≡ 0 for t ≥ 0.
Accordingly, (6.6) has a unique solution Îi(t) ≡ 0, (i = h,m) for t ≥ 0.
From (6.5), we know that Êi(t, s) = 0, (i = h,m) for 0 ≤ s ≤ t. Thus, for all u ≥ 0,

‖ γ2(θ + u)Êh(t, θ) ‖L1
+
=

∫ +∞

t
γ2(θ + u)Eh0(θ − t)

k2(θ)
k2(θ − t)

dθ ≤‖ γ2(s + u + t)Eh0(s) ‖L1
+
= 0.

Similarly, we have ‖ γ3(τ + u)Êm(t, τ) ‖L1
+
= 0.

By using (6.2) we can obtain that Ih(t) = 0, Im(t) = 0, ‖ γ2(θ + u1)Eh(t, θ) ‖L1
+
= 0, ‖ γ3(τ +

u2)Em(t, τ) ‖L1
+
= 0 for t, u1, u2 ≥ 0, and Eh(t, θ), Em(t, τ) → 0 as t → +∞. Thus, ∂M0 is forward

invariant under the semiflow Φ(t, ·).
Finally, we prove the disease-free equilibrium E0 of system (2.1) is globally asymptotically stable

for the semiflow Φ(t, ·) restricted to ∂M0. In ∂M0, system (2.1) can be divided into the following two
subsystems 

dS h(t)
dt

= Λ1 − (µ1 + ψ)S h(t) +

∫ +∞

0
γ1(a)P(t, a)da,

∂P(t, a)
∂t

+
∂P(t, a)
∂a

= −(µ1 + γ1(a))P(t, a),

P(t, 0) = ψS h(t), P(0, a) = P0(a),

(6.7)
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dS m(t)
dt

= Λ2 − µ2S m(t). (6.8)

Obviously, lim
t→+∞

S m(t) = Λ2
µ2
. (6.7) has unique equilibrium (S 0

h, P0(a)) = (
Λ1

µ1 + ψ(1 −K1)
, ψS 0

hk1(a)),

and S h(t) > 0,
∫ +∞

0
P(t, a)da > 0 for t > 0. Similar to the analysis of the section 2, (6.7) has a global

attractorA1 of bounded sets in (0,+∞) × (L1
+(0,+∞) \ 0L1).

Let x ∈ A1, we can find a complete orbit {Φ(t, ·)}t∈R through x inA1. By similar analytical method
used in [[31],subsection 3.2], system (6.7) can be written as


dS h(t)

dt
= Λ1 − (µ1 + ψ)S h(t) +

∫ +∞

0
γ1(a)P(t, a)da,

P(t, a) = ψk1(a)S h(t − a),
(S h(0), P(0, a)) ∈ A1.

(6.9)

Meanwhile, we easily find that (6.9) can be written as


dS h(t)

dt
= Λ1 − (µ1 + ψ)S h(t) +

∫ +∞

0
φ(a)S h(t − a)da,

S h(0) = S h0.

(6.10)

Using similar to the proof of lemma 4.2[33], we can get that any solution in A1 is satisfied that
S h(t) > 0 for t ∈ R. Once the stability of system (6.10) is obtained, in combination with (6.9), we
can obtain the stability of system (6.7). In the following, we will define Lyapunov functionals on A1.
Define

V0(t) = S h(t) − S 0
h − S 0

h ln
S h(t)
S 0

h

+

∫ +∞

0
φ(a)
∫ a

0
(S h(t − r) − S 0

h − S 0
h ln

S h(t − r)
S 0

h

)drda.

It is not difficult to find that V0(t) is positive-definite with S 0
h as its global minimum point. Since

compactness of A1, we can easily deduce V0(t) is bounded on A1. Calculating the derivative of V0(t)
along the solution of system (6.10), we obtain have

dV0

dt
= (1 −

S 0
h

S h(t)
)(Λ1 − (µ1 + ψ)S h(t) +

∫ +∞

0
φ(a)S h(t − a)da)

+
∫ +∞

0
φ(a)(S h(t) − S h(t − a))da + S 0

h

∫ +∞

0
φ(a) ln

S h(t − a)
S h(t)

da.
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In addition, we have noted that Λ1 = (µ1 + ψ)S 0
h −
∫ +∞

0
φ(a)S 0

hda, it follows that

dV0

dt
= −

(µ1 + ψ)
S h(t)

(S h(t) − S 0
h)2 +

∫ +∞

0
φ(a)S h(t − a)da − S 0

h

∫ +∞

0
φ(a)

S h(t − a)
S h(t)

da

−ψK1
S 0

h

S h(t)
(S h(t) − S 0

h) + ψK1S h(t) −
∫ +∞

0
φ(a)S h(t − a)da

+S 0
h

∫ +∞

0
φ(a) ln

S h(t − a)
S h(t)

da

= −
(µ1 + ψ)

S h(t)
(S h(t) − S 0

h)2 − ψK1S 0
h + S 0

h

∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da

+ψK1S h(t) −
ψK1S 0

h

S h(t)
(S h(t) − S 0

h)

= −
(µ1 + ψ)

S h(t)
(S h(t) − S 0

h)2 + S 0
h

∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da

+
ψK1

S h(t)
(S h(t) − S 0

h)2

= −
(µ1 + ψ(1 −K1))

S h(t)
(S h(t) − S 0

h)2 + S 0
h

∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da.

Notice that K1 < 1, then
dV0

dt
≤ 0 holds. Furthermore, the strict equality holds only if S h(t) = S 0

h. Con-

sequently, S 0
h of (6.10) is globally asymptotically stable. In combination with (6.9), we have (S 0

h, P0(a))
of (6.7) is globally asymptotically stable. Hence, the equilibrium E0 is globally asymptotically stable
restricted to ∂M0. The proof of Theorem 4.1 is complete. �

Proof of Theorem 4.2

Proof. Since the disease-free equilibrium E0 is globally asymptotically stable restricted to ∂M0, apply-
ing Theorem 4.2 in [34], we need only to prove

Ws(E0) ∩ M0 = ∅,

where Ws(E0) = {x ∈ Y : lim
t→+∞

Φ(t, x) = E0}. By way of contradiction, we assume that there exists a
x0 ∈ M0 such that x0 ∈ Ws(E0). Then we can find a list of {xn} ⊂ M0 such that

‖ Φ(t, xn) − E0 ‖Y <
1
n
, t ≥ 0.

Denote Φ(t, xn) = (S hn(t), S mn(t), Ihn(t), Imn(t), Pn(t, ·), Ehn(t, ·), Emn(t, ·)). Then for all t ≥ 0, we have

S 0
h −

1
n
< S hn(t) < S 0

h +
1
n
, S 0

m −
1
n
< S mn(t) < S 0

m +
1
n

and Φ(t, xn) ⊂ M0. Similar to the first part of theorem 4.1 proof, we know that there exists t0 ≥ 0 such
that Ihn(t) > 0 for t ≥ t0 or Imn(t) > 0 for t ≥ t0, so without loss of generality, we can take t0 = 0 and
Ihn(0) > 0. Since R0 > 1, we can choose large enough n such that S 0

h >
1
n , S 0

m >
1
n and

f (n) =
b2β1β2K2K3(S 0

h −
1
n )(S 0

m −
1
n )

µ2(µ1 + α + δ)
> 1.
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Now we construct the following system

dÎh(t)
dt

=

∫ +∞

0
γ2(θ)Êh(t, θ)da − (µ1 + α + δ)Îh(t),

dÎm(t)
dt

=

∫ +∞

0
γ3(τ)Êm(t, τ)da − µ2 Îm(t),

∂Êh(t, θ)
∂t

+
∂Êh(t, θ)
∂θ

= −(µ1 + γ2(θ))Êh(t, θ),

∂Êm(t, τ)
∂t

+
∂Êm(t, τ)

∂τ
= −(µ2 + γ3(τ))Êm(t, τ),

Êh(t, 0) = bβ1(S 0
h −

1
n

)Îm(t),

Êm(t, 0) = bβ2(S 0
m −

1
n

)Îh(t),

Êh(0, θ) = Ehn(0, θ), Êm(0, τ) = Emn(0, τ), Îh(0) = Ihn(0), Îm(0) = Imn(0).

(6.11)

Using similar analysis of Sect.2, we can get existence, uniqueness, and nonnegative of solution to
system (6.11). By the comparison principle, we know

Iin(t) ≥ Îi(t), Ein(t, s) ≥ Êi(t, s), (i = h,m). (6.12)

By use of Volterra formulation, we have

Êh(t, θ) =


Êh(t − θ, 0)k2(θ), 0 ≤ θ ≤ t,

Eh0(θ − t)
k2(θ)

k2(θ − t)
, 0 ≤ t < θ,

Êm(t, τ) =


Êm(t − τ, 0)k3(τ), 0 ≤ τ ≤ t,

Em0(τ − t)
k3(τ)

k3(τ − t)
, 0 ≤ t < τ.

(6.13)

Substituting (6.13) into the first two equations of (6.11) yield

dÎh(t)
dt
≥ bβ1(S 0

h −
1
n

)
∫ t

0
γ2(θ)Îm(t − θ)k2(θ)dθ − (µ1 + α + δ)Îh(t),

dÎm(t)
dt

≥ bβ2(S 0
m −

1
n

)
∫ t

0
γ3(τ)Îh(t − τ)k3(τ)dτ − µ2 Îm(t),

Îh(0) = Ihn(0), Îm(0) = Imn(0).

(6.14)

We can claim that at least one of Îh(t), Îm(t) is unbounded. Otherwise, we can use Laplace transform in
the first two inequations of (6.14) yield − Îh(0) + λL[Îh](λ) ≥ L[u1](λ)L[Îm](λ) − (µ1 + α + δ)L[Îh](λ),

− Îm(0) + λL[Îm](λ) ≥ L[u2](λ)L[Îh](λ) − µ2L[Îm](λ),
(6.15)

where L[Îi](λ) =
∫ +∞

0
e−λt Îi(t)dt, (i = h,m) for (λ > 0), L[u1](λ) =

∫ ∞
0

bβ1(S 0
h −

1
n )γ2(θ)k2(θ)e−λθdθ

and L[u2](λ) =
∫ ∞

0
bβ2(S 0

m −
1
n )γ3(τ)k3(τ)e−λτdτ for (λ ≥ 0).

After a simple calculation, we obtain

L[u1](λ)L[u2](λ)
λ + µ2

(
(λ + µ2)(λ + µ1 + α + δ)
L[u1](λ)L[u2](λ)

− 1)L[Îh](λ) ≥ Ihn(0) +
L[u1](λ)
(λ + µ2)

Imn(0) > 0. (6.16)
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L[u1](λ)→ L[u1](0),L[u2](λ)→ L[u2](0) as λ→ 0 by the Dominated Convergence Theorem.
Since

(λ + µ2)(λ + µ1 + α + δ)
L[u1](λ)L[u2](λ)

|λ=0=
1

f (n)
< 1,

then there exists ε > 0 such that

(λ + µ2)(λ + µ1 + α + δ)
L[u1](λ)L[u2](λ)

− 1 < 0

for all λ ∈ [0, ε). According to (6.16), we have L[Îh](λ) < 0 for all λ ∈ (0, ε). But this contradicts
the nonnegative of Îh(t), (t ≥ 0). Hence, at least one of Îh(t), Îm(t) is unbounded. Since Iin(t) ≥
Îi(t), (i = h,m), we get that at least one of Ihn(t), Imn(t) is unbounded. This contradicts the proposition
2.3. Therefore, Ws(E0) ∩ M0 = ∅. By Theorem 4.2 [34] , we get that semiflow {Φ(t, ·)}t≥0 generated by
system (2.1) is uniformly persistent. By Theorem 3.7 [29], we get that there exists a compact subset
A0 ⊂ M0 which is a global attractor for {Φ(t, ·)}t≥0 in M0. �

Proof of Theorem 4.3

Proof. Using similar to the proof of lemma 4.2[33], we can get that any solution in A is satisfied that
S h(t), S m(t) > 0 for t ∈ R.

Let g(x) = x − ln x − 1, note that g(x) is non-negative and continuous on (0,+∞) with a unique root
at x = 1. Next, we construct the following Lyapunov function L = L1 + L2 + L3 on the global attractor
A, since compactness ofA, we can easily deduce L is bounded onA, where

L1 =
bβ1K3

µ2
S 0

mg(
S m

S 0
m

) + g(
S h

S 0
h

) +

∫ +∞

0
φ(a)
∫ a

0
g(

S h(t − r)
S 0

h

)drda,

L2 =

∫ +∞

0
F1(θ)Eh(t, θ)dθ +

∫ +∞

0
F2(τ)Em(t, τ)dτ, L3 =

1
K2S 0

h

Ih +
bβ1

µ2
Im,

F1(θ) =
1

K2S 0
h

∫ +∞

θ

γ2(u)e−
∫ u
θ

(µ1+γ2(s))dsdu, F2(τ) =
bβ1

µ2

∫ +∞

τ

γ3(u)e−
∫ u
τ

(µ2+γ3(s))dsdu.

Calculating the derivative of L1, L2, L3 along solutions of system (4.1), respectively. In the
process of calculate the time derivative of L1, we used Λ2 = µ2S 0

m, Λ1 = (µ1 + ψ)S 0
h − ψK1S 0

h,∫ +∞

0
φ(a)
∫ a

0
g(

S h(t − r)
S 0

h

)drda =
∫ +∞

0
φ(a)
∫ t

t−a
g(

S h(r)
S 0

h

)drda and
∫ +∞

0
φ(a)da = ψK1. We can deduce
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dL1

dt
= −bβ1K3

(S m − S 0
m)2

S m
−

b2β1β2K3

µ2
(S m − S 0

m)Ih −
(S h − S 0

h)

S 0
h

bβ1Im −
µ1 + ψ

S hS 0
h

(S h − S 0
h)2

+(1 −
S 0

h

S h
)
∫ +∞

0
φ(a)

S h(t − a)
S 0

h

da −K1ψ(1 −
S 0

h

S h
) +
∫ +∞

0

φ(a)
S 0

h

(S h − S h(t − a))da

+
∫ +∞

0
φ(a) ln

S h(t − a)
S h(t)

da

= −bβ1K3
(S m − S 0

m)2

S m
−

b2β1β2K3

µ2
(S m − S 0

m)Ih −
(S h − S 0

h)

S 0
h

bβ1Im −
µ1 + ψ

S hS 0
h

(S h − S 0
h)2

−ψK1 +
∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da −K1ψ(1 −

S 0
h

S h
) +
∫ +∞

0
φ(a)

S h

S 0
h

da

= −bβ1K3
(S m − S 0

m)2

S m
−

b2β1β2K3

µ2
(S m − S 0

m)Ih −
(S h − S 0

h)

S 0
h

bβ1Im −
µ1 + ψ

S hS 0
h

(S h − S 0
h)2

+
∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da +

K1ψ

S hS 0
h

(S h − S 0
h)2

= −bβ1K3
(S m − S 0

m)2

S m
−

b2β1β2K3

µ2
(S m − S 0

m)Ih −
(S h − S 0

h)

S 0
h

bβ1Im

−
µ1 + ψ(1 −K1)

S hS 0
h

(S h − S 0
h)2 +

∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da.

dL2

dt
= −

∫ +∞

0
F1(θ)((µ1 + γ2(θ))Eh(t, θ) +

∂Eh

∂θ
)dθ −

∫ +∞

0
F2(τ)((µ2 + γ3(τ))Em(t, τ) +

∂Em

∂τ
)dτ

= F1(0)Eh(t, 0) + F2(0)Em(t, 0) +
∫ +∞

0
(F′1(θ) − (µ1 + γ2(θ))F1(θ))Eh(t, θ)dθ

+
∫ +∞

0
(F′2(τ) − (µ2 + γ3(τ))F2(τ))Em(t, τ)dτ

=
bβ1S hIm

S 0
h

+
b2β1β2K3S mIh

µ2
−
∫ +∞

0

1
K2S 0

h

γ2(θ)Eh(t, θ)dθ −
∫ +∞

0

bβ1

µ2
γ3(τ)Em(t, τ)dτ.

dL3

dt
=

1
K2S 0

h

(
∫ +∞

0
γ1(θ)Eh(t, θ)dθ − (µ1 + α + δ)Ih) +

bβ1

µ2
(
∫ +∞

0
γ3(τ)Em(t, τ)dτ − µ2Im).

Therefore,

dL
dt

= −
µ1 + ψ(1 −K1)

S hS 0
h

(S h − S 0
h)2 +

∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da

−bβ1K3
(S m − S 0

m)2

S m
+

b2β1β2K3S 0
mIh

µ2
−

(µ1 + α + δ)
K2S 0

h

Ih

= −
µ1 + ψ(1 −K1)

S hS 0
h

(S h − S 0
h)2 +

∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da

−bβ1K3
(S m − S 0

m)2

S m
+

b2β1β2K3S 0
m

µ2
(1 −

1
R0

)Ih.

Notice that K1 < 1, if R0 < 1, then dL
dt ≤ 0 holds. Let T is the largest invariant subset of { dL

dt |(4.1)= 0},
the equality holds only if S m(t) = S 0

m, S h(t) = S 0
h, Ih(t) = 0. In T , S m(t) = S 0

m for all t, then we
have dS h(t)

dt ≡ 0. Combining this with (4.1), it follows that Im(t) = 0 for all t, moreover, P(t, a) =
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ψS 0
hk1(a), Em(t, τ) = 0, Eh(t, θ) = 0 for all t ∈ R, a, θ, τ ∈ R+. Hence, T = {E0}. Assume that there

exists x ∈ A\T and we can find Φ(t, x) ⊂ A through x at t = 0, with alpha limit set α(x). Since x , E0,
we can deduce that t → L(Φ(t, x)) is a non-increasing and bounded function, then L is a constant on
α(x). Since α(x) is invariant in A, we know α(x) = T . From Theorem 3.2 we know that the disease
free equilibrium E0 is locally asymptotically stable, which implies x = E0, this contradicts the x , E0.
Hence,A = {E0}. This proves that E0 is globally asymptotically stable. This completes the proof. �

Proof of Theorem 4.5

Proof. We define the following Lyapunov function V = V1 + V2 + V3 + V4 + V5 + V6 on the global
attractorA0, using lemma 4.4, we can easily deduce V is bounded onA0, where

V1 =
1

bβ1I∗m
(g(

S h

S ∗h
) +

∫ +∞

0
φ(a)
∫ a

0
g(

S h(t − r)
S ∗h

)drda), V2 =
1

K2

∫ +∞

0
G1(θ)E∗h(θ)g(

Eh(t, θ)
E∗h(θ)

)dθ,

V3 =
I∗h

K2E∗h(0)
g(

Ih

I∗h
), V4 =

1
bβ2I∗h

g(
S m

S ∗m
), V5 =

1
K3

∫ +∞

0
G2(τ)E∗m(τ)g(

Em(t, τ)
E∗m(τ)

)dτ,

V6 =
I∗m

K3E∗m(0)
g(

Im

I∗m
),

G1(θ) =
1

E∗h(0)

∫ +∞

θ

γ2(u)e−
∫ u
θ

(µ1+γ2(s))dsdθ, G2(τ) =
1

E∗m(0)

∫ +∞

τ

γ3(u)e−
∫ u
τ

(µ2+γ3(s))dsdτ.

Calculating the derivative of V along a solution in A0 . In the process of calculate the time derivative
of V1, we notice that Λ1 = bβ1S ∗hI∗m + (µ1 + ψ)S ∗h −

∫ +∞

0
φ(a)S ∗hda.

dV1

dt
=

1
bβ1I∗m

(S h − S ∗h)
S hS ∗h

((µ1 + ψ)(S ∗h − S h) + bβ1(S ∗hI∗m − S hIm) +
∫ +∞

0
φ(a)(S h(t − a) − S ∗h)da)

+
1

bβ1I∗m
(
∫ +∞

0

φ(a)
S ∗h

(S h − S h(t − a))da +
∫ +∞

0
φ(a) ln

S h(t − a)
S h

da)

= (1 −
S ∗h
S h
−

S hIm

S ∗hI∗m
+

Im

I∗m
) −

(µ1 + ψ(1 −K1))(S h − S ∗h)2

bβ1I∗mS hS ∗h
+

1
bβ1I∗m

∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da.

dV2

dt
=

1
K2

∫ +∞

0
G1(θ)E∗h(θ)(1 −

E∗h(θ)
Eh(t, θ)

)
∂Eh(t,θ)
∂t

E∗h(θ)
dθ.

By using

∂Eh

∂t
= −

∂Eh

∂θ
− (µ1 + γ2(θ))Eh,

∂

∂θ
g(

Eh(t, θ)
E∗h(θ)

) =
1

E∗h(θ)
(1 −

E∗h(θ)
Eh(t, θ)

)(
∂Eh

∂θ
+ (µ1 + γ2(θ))Eh),
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we have
dV2

dt
= −

1
K2

∫ +∞

0
G1(θ)E∗h(θ)

∂

∂θ
g(

Eh(t, θ)
E∗h(θ)

)dθ

=
G1(0)E∗h(0)

K2
g(

Eh(t, 0)
E∗h(0)

) +
1

K2

∫ +∞

0
g(

Eh(t, θ)
E∗h(θ)

)(G′1E∗h + E∗
′

h (θ)G1)dθ

= g(
Eh(t, 0)
E∗h(0)

) −
1

K2

∫ +∞

0
g(

Eh(t, θ)
E∗h(θ)

)
γ2(θ)E∗h(θ)

E∗h(0)
dθ

= (
S hIm

S ∗hI∗m
− 1 − ln

S hIm

S ∗hI∗m
) −

1
K2E∗h(0)

∫ +∞

0
γ2(θ)E∗h(θ)(

Eh(t, θ)
E∗h(θ)

− 1 − ln
Eh(t, θ)
E∗h(θ)

)dθ.

dV3

dt
=

I∗h
K2E∗h(0)

(1 −
I∗h
Ih

)
1
I∗h

(
∫ +∞

0
γ2(θ)Eh(t, θ)dθ − (µ1 + α + δ)Ih)

=
1

K2E∗h(0)

∫ +∞

0
γ2(θ)Eh(t, θ)dθ −

I∗h
K2E∗h(0)Ih

∫ +∞

0
γ2(θ)Eh(t, θ)dθ

+
(µ1 + α + δ)I∗h

K2E∗h(0)
−

(µ1 + α + δ)Ih

K2E∗h(0)
.

Recalling that I∗h =
K2E∗h(0)
µ1 + α + δ

, then

dV3

dt
=

1
K2E∗h(0)

∫ +∞

0
γ2(θ)Eh(t, θ)dθ −

I∗h
K2E∗h(0)Ih

∫ +∞

0
γ2(θ)Eh(t, θ)dθ + 1 −

Ih

I∗h
.

Thus,

d
3∑

i=1
Vi

dt
= (1 −

S ∗h
S h
− 1 − ln

S hIm

S ∗hI∗m
+

Im

I∗m
) −

(µ1 + ψ(1 −K1))(S h − S ∗h)2

bβ1I∗mS hS ∗h
+

1
bβ1I∗m

∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da

+
1

K2E∗h(0)

∫ +∞

0
γ2(θ)E∗h(θ)(−

I∗hEh(t, θ)
IhE∗h(θ)

+ 1 + ln
Eh(t, θ)
E∗h(θ)

)dθ + 1 −
Ih

I∗h
.

Notice that Λ2 = bβ2S ∗mI∗h + µ2S ∗m, we can get

dV4

dt
= (1 −

S ∗m
S m
−

S mIh

S ∗mI∗h
+

Ih

I∗h
) −

µ2(S m − S ∗m)2

bβ2I∗hS mS ∗m
.

Notice that
∂

∂τ
g(

Em(t, τ)
E∗m(τ)

) =
1

E∗m(τ)
(1 −

E∗m(τ)
Em(t, τ)

)(∂Em
∂τ

+ (µ2 + γ3(τ))Em), we have

dV5

dt
= −

1
K3

∫ +∞

0
G2(τ)E∗m(τ)

∂

∂τ
g(

Em(t, τ)
E∗m(τ)

)dτ

=
G2(0)E∗m(0)

K3
g(

Em(t, 0)
E∗m(0)

) +
1

K3

∫ +∞

0
g(

Em(t, τ)
E∗m(τ)

)(G′2E∗m + E∗
′

m (τ)G2)dτ

= g(
Em(t, 0)
E∗m(0)

) −
1

K3

∫ +∞

0
g(

Em(t, τ)
E∗m(τ)

)
γ3(τ)E∗m(τ)

E∗m(0)
dτ

= (
S mIh

S ∗mI∗h
− 1 − ln

S mIh

S ∗mI∗h
) −

1
K3E∗m(0)

∫ +∞

0
γ3(τ)E∗m(τ)(

Em(t, τ)
E∗m(τ)

− 1 − ln
Em(t, τ)
E∗m(τ)

)dτ.
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Notice that I∗m =
K3E∗m(0)

µ2
, we have

dV6

dt
=

I∗m
K3E∗m(0)

(1 −
I∗m
Im

)
1
I∗m

(
∫ +∞

0
γ3(τ)Em(t, τ)dτ − µ2Im)

=
1

K2E∗m(0)

∫ +∞

0
γ3(τ)Em(t, τ)dτ −

I∗m
K3E∗m(0)Im

∫ +∞

0
γ3(τ)Em(t, τ)dτ +

µ2I∗m
K3E∗m(0)

−
µ2Im

K3E∗m(0)

=
1

K3E∗m(0)

∫ +∞

0
γ3(τ)Em(t, τ)dτ −

I∗m
K3E∗m(0)Im

∫ +∞

0
γ3(τ)Em(t, τ)dτ + 1 −

Im

I∗m
.

Thus,

d
6∑

i=4
Vi

dt
= (1 −

S ∗m
S m
− 1 − ln

S mIh

S ∗mI∗h
+

Ih

I∗h
) −

µ2(S m − S ∗m)2

bβ2I∗hS mS ∗m
+

1
K3E∗m(0)

∫ +∞

0
γ3(τ)E∗m(τ)(−

I∗mEm(t, τ)
ImE∗m(τ)

+ 1 + ln
Em(t, τ)
E∗h(τ)

)dτ + 1 −
Im

I∗m
.

By using

∫ +∞

0
γ2(θ)E∗h(θ)dθ

K2E∗h(0)
= 1,

∫ +∞

0
γ3(τ)E∗m(τ)dτ

K3E∗m(0)
= 1, we can get

dV
dt

=

d
6∑

i=1
Vi

dt
= (1 −

S ∗h
S h

+ ln
S ∗h
S h

) + (1 −
S ∗m
S m

+ ln
S ∗m
S m

) −
(µ1 + ψ(1 −K1))(S h − S ∗h)2

bβ1I∗mS hS ∗h

−
µ2(S m − S ∗m)2

bβ2I∗hS mS ∗m
+

1
bβ1I∗m

∫ +∞

0
(1 −

S h(t − a)
S h(t)

+ ln
S h(t − a)

S h(t)
)φ(a)da

+
1

K3E∗m(0)

∫ +∞

0
γ3(τ)E∗m(τ)(−

I∗mEm(t, τ)
ImE∗m(τ)

+ 1 + ln
I∗mEm(t, τ)
ImE∗m(τ)

)dτ

+
1

K2E∗h(0)

∫ +∞

0
γ2(θ)E∗h(θ)(−

I∗hEh(t, θ)
IhE∗h(θ)

+ 1 + ln
I∗hEh(t, θ)
IhE∗h(θ)

)dθ.

It follows from the non-negativity of g, we know that
dV
dt
≤ 0, and

dV
dt

= 0 ⇔ S h(t) = S ∗h, S m(t) = S ∗m,
I∗mEm(t, τ)
ImE∗m(τ)

= 1,
I∗hEh(t, θ)
IhE∗h(θ)

= 1. (6.17)

Let T ∗ is the largest invariant subset of {dV
dt |(4.1)= 0}, then we have dS h(t)

dt ≡ 0, dS m(t)
dt ≡ 0. Combining

this with (4.1), we can obtain that Ih(t) = I∗h for all t, P(t, a) = ψS ∗hk1(a). Further, Im(t) = I∗m for all t, in
combining with (6.17), we can get Eh(t, θ) = E∗h(θ), Em(t, τ) = E∗m(τ). Hence, T ∗ = {E∗}. According
to the proof of the theorem 4.3, we can easily obtain that A0 = {E∗}. This proves that E∗ is globally
asymptotically stable. The proof is complete. �
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