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Abstract. We apply SE -optimal design methodology to investigate optimal

data collection procedures as a first step in investigating information content

in ecoinformatics data sets. To illustrate ideas we use a simple phenomeno-
logical citrus red mite population model for pest dynamics. First the optimal

sampling distributions for a varying number of data points are determined.

We then analyze these optimal distributions by comparing the standard errors
of parameter estimates corresponding to each distribution. This allows us to

investigate how many data are required to have confidence in model parameter
estimates in order to employ dynamical modeling to infer population dynam-

ics. Our results suggest that a field researcher should collect at least 12 data

points at the optimal times. Data collected according to this procedure along
with dynamical modeling will allow us to estimate population dynamics from

presence/absence-based data sets through the development of a scaling rela-

tionship. These Likert-type data sets are commonly collected by agricultural
pest management consultants and are increasingly being used in ecoinformatics

studies. By applying mathematical modeling with the relationship scale from

the new data, we can then explore important integrated pest management
questions using past and future presence/absence data sets.

1. Introduction. Integrated pest management (IPM) is an ecosystem-based pro-
cess for managing pests that interfere with or damage crops. It investigates long-
term prevention of pests using a variety of methods, such as biological and cul-
tural controls [15]. IPM research relies heavily on information gained from data
sets, and recently, some entomologists have advocated the supplemental use of
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“ecoinformatics”. Ecoinformatics studies address ecological questions using obser-
vational, preexisting data rather than experimental, researcher-generated data and
often combine data sets from several sources into a larger data set [18, 19]. These
sources can include farmers, pest management consultants (PMC), federal and state
repositories, among others [18].

There are several weaknesses in experimental approaches that can be comple-
mented by ecoinformatics. For example, due to cost limitations, experiments are
often on a smaller scale, both spatially and temporally, while ecoinformatics ap-
proaches often reflect the scale of the farming that is being studied. The goals of
IPM include improving crop yield for farmers; however, information drawn from
experiments may only be relevant to a limited range of farming conditions. Ecoin-
formatics can include farmer participation from the start, and the farmers may be
more confident in the recommendations that are generated from analyzing their
own data [18, 19]. Although there are several benefits of applying ecoinformatics
methods to IPM research, an important potential weakness to address is the infor-
mation content of the data, which affects the accuracy of the resulting conclusions.
Ecoinformatics data sets are often heterogeneous due to the variety of sources and
sampling methods. In addition, pest densities and other variables of interest can
be measured qualitatively rather than quantitatively (e.g., “trace”, “low”, “mod-
erate”, and “high” densities in Likert-type [16] data sets as opposed to population
counts). There is, of course, a trade-off; collecting qualitative data is much more
time efficient but can significantly reduce the information content in the data. For
further discussions on the strengths and weaknesses of experimental and ecoinfor-
matics data sets, and for a review on ecoinformatics in the context of agricultural
entomology, see [18, 19, 12] and the references therein.

Our own efforts in dealing with such Likert type data sets arose in dealing with
qualitative data sets such as those in [17]. In order to use mathematical models to
detect trends in this type of data, population counts as well as corresponding Likert-
type data are needed to establish a scale between these two types of data. This
scale can then be applied to existing qualitative data sets. The optimal design for
quantitative data collection (sampling strategies including how often and how much
data to be collected) maximizes the accuracy in estimating population dynamics and
is the major focus of this brief note.

The ability to perform this data conversion is an important step for determin-
ing the information content in farmer-generated ecoinformatics data sets. There
are numerous methods to investigate quality (information content) of a data set,
among them the use of dynamical models and related sensitivity as well as statisti-
cal uncertainty quantification tools. In this context, information content of a data
set refers to the quality of the data with respect to accurate estimation of model
parameters with an acceptable statistical confidence associated with these parame-
ters. The parameters are first determined by solving an inverse problem such that
the model solution best fits the data. A data set with high quality contains suffi-
cient information to produce statistically accurate (such as acceptable confidence
intervals or some other associated measure of uncertainty) parameter estimates.
With accurate parameter estimates, a model solution can then realistically capture
population trends, which can help, for example, investigate the minimum pesticide
amount needed to reduce pest populations below an economic threshold. Exam-
ples of previous works using dynamical models to investigate information content
in ecological data include [1, 2, 3, 7].
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To illustrate the assessment of the quality of large ecoinformatics data sets, here
we consider a subset of the data from [17] from a single PMC who collected re-
peated measures of citrus red mite (CRM), Panonychus citri, densities over multi-
ple time points (e.g., longitudinal data – a necessity for applying dynamical systems
to data). CRMs are citrus pests that extract cell sap from leaves and fruit, which
causes yield loss and stippling that can reduce the grade of the fruit [13]. CRM
populations gradually increase over the spring and then sharply decline during the
hot summer months [11]. We wish to capture this growth trend using dynamical
modeling, as this will allow us to evaluate the information content in the data. In-
vestigating CRMs is a research pest management priority, specifically with respect
to secondary outbreaks and the relationship between pest densities and loss of fruit
quality/quantity.

The PMC generated data did not contain quantitative pest counts. Specifically,
the subset considered here only provided CRM infestation proportion, defined as
the proportion of leaves sampled that contain at least one CRM. That is,

infestation proportion =
infestation finding

infestation sample
,

where infestation sample is the number of sample units (leaves) checked, and infes-
tation finding is the number of sample units infested with one or more CRMs. This
sampling method provides no quantitative information as to how many CRMs are
present on each infested leaf. Thus, an increasing infestation proportion over the
spring months provides only indirect information as to the dynamics of the CRM
population. Therefore, we are not able to use only infestation proportion to analyze
the seasonal trend in the data.

Previous work reports relationships between infestation proportion and a total
population, which potentially could be used to convert our infestation proportion
data to population counts. The authors in [14] develop a sampling plan to predict
the total CRM population from the proportion of leaves infested with at least one
adult female on the lower surface of a leaf. However, this relationship was developed
based on lemon plants in Riverside and Ventura Counties in California. Thus this
relationship may not be applicable to our data collected on oranges and mandarins
in the San Joaquin Valley.

Therefore, we aim to apply optimal design methodology to determine when and
how often to collect count data from similar fields in order to develop a relationship
between CRM count and infestation proportion data, similar to that in [14]. That
is, in this paper we aim to answer the following questions

1. For a set time period and a fixed number of data points, when should data be
collected?

2. With optimized data collection time points, how many data points are needed?

Once data are collected according to the optimal design formulation, we can de-
termine a relationship between CRM infestation proportion and total population.
With this relationship, we can convert the infestation proportion data to population
counts and apply our dynamical model to investigate the quality of the ecoinfor-
matics data set as well as examine other pertinent IPM questions.

In Section 2 we introduce a simple CRM population model (primarily to illustrate
ideas since a more sophisticated validated population model is not available) as well
as the statistical model used in our optimal design formulation. The framework for
this SE -optimal design is then given in Section 3, with the implementation of the
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constrained optimization given in Section 4. Section 5 discusses computing standard
errors (SE) using asymptotic theory for Monte Carlo simulations. The results are
presented in Section 6 and conclusions are discussed in Section 7.

2. Dynamical modeling of CRM populations. Mathematical models are used
to represent biological systems and investigate hypotheses regarding the biological
processes. While a mechanistic model hypothesizes the relationships between differ-
ent biologically interpretable variables and parameters, a phenomenological model
solely aims to capture qualitative trends in the desired dynamics. We present a
simple phenomenological CRM population model since here, we only aim to apply
the model to optimal design methodology rather than hypothesize specific mecha-
nisms of population growth and death. That is, we use a model that represents the
general seasonal trends as represented in seasonal curves [11] and hence the model
is not based on specific growth/death mechanisms from a previously developed and
validated model. The simple mathematical model we use for this is given by

dx

dt
= g(t)x

(
1− x

K

)
− d(t)x, (1a)

g(t) = a sin(bt) (1b)

d(t) = −c cos(3bt) + c, (1c)

x0 = 100, (1d)

with scalar observation process

f(t,θ) = x(t,θ), (2)

with parameters θ = (a, b, c,K) ∈ Rp, f ∈ Rm = R, and where x represents the
number of CRMs. The CRM population is assumed to grow logistically with time-
dependent intrinsic growth rate g(t) and carrying capacity K. The CRM population
death rate is also assumed to be time-dependent, given by d(t). The tuning param-
eters, a, b, and c, adjust the shape of the intrinsic growth and death rate curves
in this phenomenological model and hence do not have specific mechanistic-based
meaning. The simple functions g(t) and d(t) were chosen so that the CRM dynamics
in a 7 month season (January - July) generally reflect those reported in biological
literature [11, 12] with a minimal number of parameters. Other simple functions
commonly used in modeling, such as polynomials, can depend on a larger number
of parameters, which generally require more data to estimate. The model solution
for nominal parameters θ0 = (a0, b0, c0,K0) = (0.12, 0.015, 0.025, 250) is given in
Figure 2b and represents what studies suggest might be the dynamics of a typical
infestation period [11, 12].

In order to account for the uncertainty we would expect in observational data,
we consider the following statistical error model

Y (t) = f(t,θ0) + E(t), (3)

where Y (t) is a random variable, θ0 is the nominal parameter vector, and E is
assumed to be independent and identically distributed with mean 0 and variance
σ2
0 . A realization of the statistical error model is given by

y(t) = f(t,θ0) + ε(t), t ∈ [0, T ], (4)

where ε is a specific realization of the random variable E .
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3. SE optimal design formulation. We aim to determine the sampling times of
experiments in order to maximize the information content in the data collected. In
order to explain the optimal design methodology, we begin by giving an intuitive
explanation of information content (Subsection 3.1). With this, we then provide
the motivation for the specific type of optimal design implemented here (Subsection
3.2).

3.1. Information content. In this context, information content refers to the qual-
ity of the data in regards to estimating model parameters. That is, data with high
information content allow us to accurately estimate parameters as well as attach
high degrees of statistical confidence to these parameters. With this, one can hope
to infer valuable information about the actual population trends.

We first discuss the motivation behind the SE-optimal design formulation. That
is, we discuss how areas of high information content are determined. For intuition,
let us consider the effect that the parameters have on the model solution (i.e.,
sensitivity of the model solution with respect to the parameters over time). Figures
1a - 1d depict these sensitivities. From this, one can see that the sensitivity of the
model solution to a given parameter varies over time. Data taken at times where
the solution is more sensitive to a given parameter, correspond to more accurate
estimation of that parameter. For instance, consider the sensitivity of the carrying
capacity, K, given in Figure (1d). One can see that as the season progresses, the
sensitivity of the solution with respect to K steadily increases until it reaches its
maximum towards the end of the season. This makes sense as one expects to have
less information about the carrying capacity of the population early on, but attain
the most information about the carrying capacity when the population reaches its
maximum (around day 150). After this peak, there is little additional information
gained, which corresponds to the decrease in sensitivity observed at these later
times.

Among possible optimal design formulations (D-optimal, E-optimal, SE-optimal,
etc. [5, 6, 8]), it is common to base the design criterion on the Fisher Information
Matrix (FIM), as this indirectly includes information about the sensitivities. Section
3.2 discusses the FIM as well as the specific criterion for the SE -optimal design
formulation used here.

3.2. Optimal design criterion. Although sensitivities play a role in determining
information content, the individual sensitivities do not solely determine the optimal
sampling times. Rather, the criterion takes into account a combination of the effects
of sensitivities through the FIM. A derivation following [5, 6] is given next that
explains how minimizing a criterion dependent on the FIM determines the optimal
sampling times.

Given data corresponding to a distribution of sampling times, P (t), one often
evaluates how accurately a model solution fits these data via a weighted least squares
cost functional. For instance, consider the error functional given below

J(y,θ) =

∫ T

0

1

σ2(t)
(y(t)− f(t,θ))2dP (t). (5)

Note that this error functional represents a more general case where the variance
in the data can change over time (although in our problem variance is assumed
constant). The lower the value of J , the more closely the model fits the data. Our
question is what distribution of sampling times can produce the smallest J value?
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(a) Sensitivity for a (b) Sensitivity for b

(c) Sensitivity for c (d) Sensitivity for K

Figure 1. Traditional sensitivities for model parameters.

Since the goal is to determine the optimal sampling times prior to data collec-
tion, we wish to use (5) to develop a minimization criterion that is based on the
mathematical model and is independent of the data. Recall, the statistical model
is of the form

y(t) = f(t,θ0) + ε(t). (6)

Then expanding f(t,θ) about the nominal parameter set θ0 using a Taylor Series,
we obtain

f(t,θ) ≈ f(t,θ0) +∇θf(t,θ0)(θ − θ0), (7)

where ∇θ is given by [∂θ1 , . . . , ∂θp ]. Note that ∇θf is an 1× p matrix, which gives
the sensitivity of the solution with respect to the parameters. Now let us substitute
(6) and (7) into the functional given in (5), resulting in the modified functional

J̃(y,θ) =

∫ T

0

1

σ2(t)

(
ε(t)−∇θf(t,θ0)(θ − θ0)

)2

dP (t), (8)

where J ≈ J̃ in a neighborhood of θ0. Note that
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∇θJ̃(y,θ) = −2

∫ T

0

1

σ2(t)

(
ε(t)−∇θf(t,θ0)(θ − θ0)

)
∇θf(t,θ0)dP (t).

We observe that a minimum argument θ̃ in cost functional (8) (tacitly assumed
to occur in the interior of the set of possible of values) implies that

∇θJ̃(y, θ̃)

= −2

∫ T

0

1

σ2(t)

(
ε(t)−∇θf(t,θ0)(θ̃ − θ0)

)
∇θf(t,θ0)dP (t)

= −2

∫ T

0

1

σ2(t)

(
ε(t)∇θf(t,θ0)− (θ̃ − θ0)T∇θf(t,θ0)T∇θf(t,θ0)

)
dP (t) = 01×p,

(9)

or equivalently∫ T

0

ε(t)

σ2(t)
∇θf(t,θ0)dP (t)−(θ̃−θ0)T

∫ T

0

1

σ2(t)
∇θf(t,θ0)T∇θf(t,θ0)dP (t) = 01×p.

(10)
We see that this equation contains the Generalized Fisher Information Matrix
(GFIM), defined by

F (P,θ0) =

∫ T

0

1

σ2
0(s)
∇θf(s,θ0)T∇θf(s,θ0)dP (s). (11)

Since our optimal mesh is considered to be a discrete set of time points, we can
now introduce a discretization of the sampling distribution P (t). Without loss of
generality we can consider these distributions as probability measures on [0, T ],
where the set of all such measures is denoted P (0, T ). Suppose for points τ =
{ti}Ni=1 ∈ [0, T ] we have

Pτ =

N∑
i=1

∆ti , (12)

where ∆ti is the Heaviside function (with the derivative being the Dirac delta func-
tion) with atom at {ti} (see Appendix 7). That is,

∆ti(t) =

{
1, t ≥ ti
0, t < ti.

(13)

Considering the measure P given above, we have the discrete version of (10) given
by

N∑
i=1

ε(ti)

σ2(ti)
∇θf(ti,θ0)− (θ̃− θ0)T

N∑
i=1

1

σ2(ti)
∇θf(ti,θ0)T∇θf(ti,θ0) = 01×p. (14)

We observe that this contains the discrete form Fisher Information Matrix given by

F (Pτ ,θ0) =

N∑
i=1

1

σ2(ti)
∇θf(ti,θ0)T∇θf(ti,θ0), (15)

which is tacitly assumed to be of full rank. Now consider that we want θ̃ to be as
similar to θ0 as possible and solve for (θ̃ − θ0)T in (14):

(θ̃ − θ0)T = bF−1, or (θ̃ − θ0) = F−1bT , (16)
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where b = b(Pτ ,θ0) =

N∑
i=1

ε(ti)

σ2(ti)
∇θf(ti,θ0). We see that b contains the observa-

tional random error term, ε, on which we would not want to base our design.
From (16) one can see why a minimization criterion for the optimal design for-

mulation is based on F−1. Now let us recall the optimal design problem. That is,
we wish to determine the optimal P̂τ such that, for J : Rp×p → R+,

J (F (P̂τ ,θ0)) = min
Pτ∈P (0,T )

J (F (Pτ ,θ0)). (17)

Specifically for SE -optimal design, JSE is given by

JSE(F ) =

p∑
k=1

1

θ20,k
(F−1)kk. (18)

Minimizing this cost functional corresponds to minimizing the sum of the squared
normalized standard errors, where standard errors are used to calculate confidence
intervals for parameter estimates (see Section 5.1).

4. Constrained optimization and SE design implementation. The
SE -optimal design computational method utilizes a constrained optimization to
determine the mesh of time points, τ∗ = {t∗i }, i = 1, . . . , N , that satisfy

J (F (Pτ∗ ,θ0)) = min
τ∈T
J (F (Pτ ,θ0)), (19)

where T is the set of all time meshes such that 0 < t2 < · · · < tN−1 < T . The
algorithm used to implement this constrained optimization is MATLAB’s fmincon.
Since the optimal mesh should contain 0 and T , which are assumed to be known,
we optimize over N − 2 parameters. To enforce the linear time mesh constraint in
fmincon, we use the following linear system

At ≤ b, (20)

where A is an (N − 1)× (N − 2) matrix, t is an (N − 2)× 1 time vector, and b is
an (N − 1)× 1 vector. For this implementation, (20) has the following form:

−1 0

1 −1
. . .

0
. . .

. . . 0
. . . 1 −1

0 1




t2

...

tN−1

 ≤


−1
−1

...

T − 1


. (21)

This constraint forces the first optimized mesh point to be greater than or equal to
1, the final optimized mesh point to be less than or equal to T − 1, and all interior
mesh points to be at least one day apart (since this is reasonable in the field).
Furthermore, note that although we are dealing with discrete days, we do not force
this in the optimization. Once the optimal mesh is determined, we round to the
nearest whole number. This seems reasonable in practice since we are not concerned
with what time of day sampling occurs. For this experiment, we consider grids with
N = 6, 12, 18, 24, and 30. This corresponds to sampling 6 times in the sampling
season (January through July) and considers how doubling the number of samples
improves our ability to estimate parameters accurately. Since uniform sampling
may be more feasible in practice, we compare the standard errors corresponding
to the optimal grids to those of uniform grids. Figure 2a depicts the distribution
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(a) Optimized meshes for N mesh points

(b) Sample meshes on model solution

Figure 2. Optimized meshes resulting from SE -optimal implementation.

of sampling times for the optimized grids. Figure 2b shows these distributions for
N = 6 and N = 12 along the solution curve.

We note that the optimized time meshes cluster to areas of high information con-
tent, based on the cost functional in (18). To provide intuition as to why this occurs,
we plot in Figure 3a the cost value (J) for the optimal mesh, the uniform mesh,
and two hypothetical meshes for N = 12. The hypothetical meshes were designed
to have clustering similar but not identical to the optimal mesh. As expected, the
optimized mesh produces the smallest cost value, while Mesh 2 (the most similar to
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(a) Grids with N = 12 mesh points

(b) Performance for Meshes

Figure 3. Relationship between sampling distribution and corre-
sponding performance (cost).

the optimal mesh) has the second lowest cost. We observe that the uniform mesh
has the largest cost. In the context of inverse problems, it is advantageous to have
multiple samples in time periods with high information content.

5. Standard error methodology. We first implement the constrained optimiza-
tion scheme using the SE design formulation to determine the optimal distribution
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of sampling points τ∗ = {t∗j}Nj=1 for fixed values of N . We then generate simu-
lated data corresponding to these optimal meshes as well as to uniform meshes and
compare standard errors for different sampling distributions. The following section
describes the method for computing asymptotic standard errors for scalar models
such as the one given in model (1).

5.1. Asymptotic theory for computing standard errors. Consistent with the
statistical error model given in equation 4, we estimate our parameters by solving an
inverse problem with an ordinary least squares (OLS) formulation, following [9, 10].
The OLS estimator is given by

ΘOLS = ΘN
OLS = argminθ

N∑
j=1

[Yj − f(tj ,θ)]2, (22)

which is estimated as

θ̂OLS = θ̂NOLS = argminθ

N∑
j=1

[yj − f(tj ,θ)]2. (23)

Since the dependence of our estimate on the OLS formulation is understood, the
OLS subscript notation will be dropped. Next, we compute the sensitivity matrix

χj,k =
∂f(tj , θ̂)

∂θ̂k
, j = 1, . . . , N, k = 1, . . . , p, (24)

which is done using the complex step method [4]. That is,

∂f(tj , θ̂)

∂θ̂k
=
∂x(tj , θ̂)

∂θ̂k
=

Im(x(tj , θ̂ + ihek))

h
, (25)

where h is size of the perturbation, ek is the kth unit vector in Rp, and i is the
imaginary unit. Note that χ = χN is an N × p matrix. The true, constant variance
is given by

σ2
0 =

1

N
E

[
N∑
j=1

[Yj − f(tj ,θ0)]2

]
. (26)

We can estimate this variance by

σ̂2 =
1

N − p

[
N∑
j=1

[yj − f(tj , θ̂)]2

]
. (27)

The true covariance matrix is approximately given by

ΣN0 ≈ σ2
0

[
χT (θ0)χ(θ0)

]−1
, (28)

and the true Fisher Information Matrix (FIM) is given by

F = F (τ,θ0) = (ΣN0 )−1. (29)

When θ0 and σ2
0 are unknown, the covariance matrix is estimated by

Σ̂N (θ̂) = σ̂2
[
χT (θ̂)χ(θ̂)

]−1
, (30)

for which the corresponding estimate of the FIM is

F̂ = F (τ, θ̂) = (Σ̂N (θ̂))−1. (31)

Then, the asymptotic standard errors are given by

SEk(θ0) =
√

(ΣN0 )kk, k = 1, . . . , p, (32)
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which are estimated by

SEk(θ̂) =

√
(Σ̂N (θ̂))kk, k = 1, . . . , p. (33)

The confidence interval for parameter estimate θ̂k with a confidence level of 100(1−
α)%, is given by

[θ̂k − t1−α/2SEk(θ̂), θ̂k + t1−α/2SEk(θ̂)], (34)

where α ∈ [0, 1] and t1−α/2 is computed from the Student’s t distribution with N−p
degrees of freedom.

5.2. Monte Carlo methods for asymptotic standard errors. Monte Carlo
(MC) trials can be used to examine the average asymptotic behavior of the standard
errors. This accounts for the variability in residual errors in simulated data sets (as
we have indicated earlier, no experimental quantitative data sets are available to
test our results). For each Monte Carlo trial, data are simulated as

yj = f(tj ,θ0) + εj , j = 1, . . . , N, (35)

where θ0 is the nominal parameter set, N corresponds to the number of time points
in the optimal mesh {t∗j}Nj=1, and εj is a realization of Ej ∼ N (0, σ2

0) for σ0 = 20.
For each trial, parameters are estimated and standard errors calculated using the
OLS procedure described in Section 5.1. The average standard errors and parameter
estimates are calculated over 1000 Monte Carlo trials. This provides the average
performance of each optimal grid over 1000 noisy data sets.

6. Results. In Figure 4, the average standard errors are given for each parameter
over 1000 Monte Carlo trials for both the optimized and uniform time meshes
corresponding to N = 6, 12, 18, 24, and 30. Observe that for each N , the standard
errors for the optimized grids are lower than those of the uniform grids, which is
expected. Also note that as N increases, the standard errors for both the optimized
and uniform grids decrease. It should be noted that although the optimized grids
consistently perform better than the uniform grids, the standard errors for both
might be considered acceptable, as they are all at least one order magnitude smaller
than their corresponding parameter value.

In Figure 5, 95% confidence intervals are given using the average standard errors
for each parameter corresponding to the optimal grids for N = 6, 12, 18, 24, and 30.
The average parameter estimate is given by the dot at the center of each interval
and is close to the nominal value. We observe that as N increases, the confidence
intervals for each parameter become more narrow, with the most substantial de-
crease in interval width being between N = 6 and N = 12. This suggests that as
the number of mesh points on the optimal grid increase, we are able to estimate the
parameters with increasing accuracy.

From Figures 4 and 5 we see that data collected according to the optimal grid
design provide acceptable standard errors, which allow us to be confident in the
parameter estimates. However, we see that there is not a substantial improvement in
standard errors and confidence intervals for N > 12. This decrease in improvement
as N increases is reasonable due to the fact that sampling times cluster around
areas of high information content, leading to a limiting effect in improvement.
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(a) SE for a (b) SE for b

(c) SE for c (d) SE for K

Figure 4. Average standard errors (over 1000 MC trials) for each
parameter, comparing optimized versus uniform grids for N = 6,
12, 18, 24, and 30.

7. Discussion. We have determined an optimal design with regards to when obser-
vational CRM data should be collected. This optimal design criterion provides that
data are collected in such a way that parameters can more confidently be estimated.
Population count data collected according to the optimal grids would permit the
use of dynamical modeling to infer CRM population sizes over a growing season.
More importantly, with simultaneously collected corresponding proportional data
(collected at the same time and with regards to the same sample unit), a scaling
relationship between the population size in counts and corresponding proportional
data could be estimated. This could allow us to make use of the current and fu-
ture farmer-generated data sets consisting of only proportional data to develop and
validate a suite of mechanistic mathematical models for use in investigating pest
population dynamics using the broad ecoinformatics datasets.

We first addressed the question, given a fixed number of data collection points,
when are the optimal times to collect data? To do this, we use the SE -optimal design
framework for fixed N = 6, 12, 18, 24, and 30 to obtain the optimal sampling grid.
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(a) Confidence intervals for a (b) Confidence intervals for b

(c) Confidence intervals for c (d) Confidence intervals for K

Figure 5. Confidence intervals for each parameter for N = 6, 12,
18, 24, and 30 on the optimized grids.

We observed that the optimal sampling time points tend to aggregate in areas of high
information content, resulting in clustered time points. In addition, this clustering
could be beneficial when collecting the data; a field researcher would only need to
collect data for intermittent time periods compared to uniformly throughout the
entire growing season.

The next question we considered is given these optimal meshes, how much data
should a field researcher collect? We analyzed the performance of these meshes
by comparing the standard errors of parameter estimates corresponding to each
grid. The parameters were estimated using OLS methodology and MC simulations.
As expected, a higher number of data points coincides with lower standard errors,
with limiting improvement. In addition, the optimized grid performs better than
uniform grids of the same size. We felt this was an important comparison as uniform
sampling is often the procedure for research data collection in the field.

In order to further determine how much data are adequate for dynamical mod-
eling, we calculated confidence intervals for the estimated parameters. It is clearly
seen that there is no significant decrease in confidence interval width for N > 12.
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Since there are reasonable standard errors for all N examined, dynamical modeling
could be beneficial with as few as 6 data points at optimal times. However, we
recommend a minimum of 12 data points due to the significant decreases in the
size of confidence intervals between N = 6 and N = 12. The days at which these
samples should be taken are given as [0 33 34 35 88 89 140 141 177 178 179 210],
where day 0 corresponds to January 1st, and day 210 corresponds to approximately
July 31st in the examples considered here.

Answering the optimal sampling distribution questions (when and how much data
to collect) is dependent, of course, upon the mathematical model chosen to repre-
sent the population dynamics. For example, it might be expected that growth/death
rates may depend on density of the pests and hence a corresponding model (even
a phenomenological one such as (1)) would require density dependent coefficients.
Also, our phenomenological model solution represents only typical dynamics ob-
served in a single growing season. To account for more realistic, time-varying,
biological factors such as weather, predator-prey interactions, etc., a more mecha-
nistic model would need to be developed and validated. Thus, we emphasize the
importance of interdisciplinary collaboration to pursue all aspects of the efforts rep-
resented here.

Being able to infer population level dynamic information from proportional data
collected by farmers would allow us to investigate important questions relating
to ecoinformatics. Presence/absence sampling is more time efficient compared to
counting individuals, which enables the collection of a larger volume of data (both
spatially and temporally). This facilitates more timely pest management decisions.
Once a scaling relationship between count and proportional data is estimated, large
proportional data sets in combination with mathematical modeling can be used to
investigate problems such as the minimal number of pesticide treatments needed
while not reducing crop yield. In addition, a better understanding of crop vulner-
ability to pest damage over time could help define a window of crop sensitivity
in the growing season. Furthermore, we could investigate the impact of pests on
mandarin varieties, which make up a rapidly growing part of citrus production in
the San Joaquin Valley, CA. To date, there have been few formal investigations into
this impact, making it a meaningful problem to pursue in interdisciplinary efforts.

Appendix. In Section 3.2 the notion of a cost functional dependent on a distribu-
tion, P (t), is introduced in equation (5). We then discuss the Generalized Fisher
Information Matrix, where a discretization of the distribution provides us with the
discrete Fisher Information Matrix. In this section of the appendix we provide the
mathematical details for using the discretization of a distribution (Pτ ) via Heaviside
functions to go from equation (11) to equation (15) (the GFIM to the FIM).

We begin by introducing the Heaviside function with atom at {ti} (Figure 6a) is
defined as

∆ti(t) =

{
1, t ≥ ti
0, t < ti,

(36)

with derivative given by the Dirac delta “function” (Figure 6b):

d

dt
∆ti(t) = δti(t),

where
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δti(t) =

{
+∞, t = ti

0, t 6= ti.

Properties of the Dirac delta function include∫ ∞
−∞

δti(s)ds = 1,

and ∫ ∞
−∞

f(t)δti(t)dt = f(ti).

Consider points τ = {ti}Ni=1 ∈ [0, T ], and define

Pτ (t) =

N∑
i=1

∆ti(t), (37)

which is plotted in Figure 6c.
The derivative of Pτ (t) (Figure 6d) is given by

P ′τ (t) =
d

dt
Pτ (t) =

d

dt

(
N∑
i=1

∆ti(t)

)
=

N∑
i=1

(
d

dt
∆ti(t)

)
=

N∑
i=1

δti(t).

Consider the following for some function f(t) and distribution of sampling times
P (t): ∫ T

0

f(t)dP (t) =

∫ T

0

f(t)P ′(t)dt.

Letting P = Pτ , we have∫ T

0

f(t)dPτ (t) =

∫ T

0

f(t)P ′τ (t)dt

=

∫ T

0

f(t)[δt1(t) + · · ·+ δtN (t)]dt

=

∫ T

0

f(t)δt1(t)dt+ · · ·+
∫ T

0

f(t)δtN (t)dt

=

N∑
i=1

f(ti).

With this, one can see beginning with GFIM and introducing a distribution
discretized as above we have the following

F (P,θ0) =

∫ T

0

1

σ2
0(s)
∇θf(s,θ0)T∇θf(s,θ0)dP (s)

=

∫ T

0

1

σ2
0(s)
∇θf(s,θ0)T∇θf(s,θ0)P ′(s)ds

=⇒ F (Pτ ,θ0) =

∫ T

0

1

σ2
0(s)
∇θf(s,θ0)T∇θf(s,θ0)P ′τ (s)ds

=

∫ T

0

1

σ2
0(s)
∇θf(s,θ0)T∇θf(s,θ0)[δt1(s) + · · ·+ δtN (s)]ds

=

N∑
i=1

1

σ2(ti)
∇θf(ti,θ0)T∇θf(ti,θ0).
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Figure 6. Heaviside functions and Dirac delta “functions”.
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