
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2018043
AND ENGINEERING
Volume 15, Number 4, August 2018 pp. 961–991

QUANTIFYING THE SURVIVAL UNCERTAINTY OF

WOLBACHIA-INFECTED MOSQUITOES IN A SPATIAL MODEL

Martin Strugarek∗

AgroParisTech, 16 rue Claude Bernard, 75231 Paris Cedex 05, France
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Abstract. Artificial releases of Wolbachia-infected Aedes mosquitoes have
been under study in the past years for fighting vector-borne diseases such as

dengue, chikungunya and zika. Several strains of this bacterium cause cytoplas-

mic incompatibility (CI) and can also affect their host’s fecundity or lifespan,
while highly reducing vector competence for the main arboviruses.

We consider and answer the following questions: 1) what should be the

initial condition (i.e. size of the initial mosquito population) to have invasion
with one mosquito release source? We note that it is hard to have an invasion

in such case. 2) How many release points does one need to have sufficiently

high probability of invasion? 3) What happens if one accounts for uncertainty
in the release protocol (e.g. unequal spacing among release points)?

We build a framework based on existing reaction-diffusion models for the

uncertainty quantification in this context, obtain both theoretical and numeri-
cal lower bounds for the probability of release success and give new quantitative

results on the one dimensional case.

1. Introduction. In recent years, the spread of chikungunya, dengue, and zika
has become a major public health issue, especially in tropical areas of the planet
[1, 7]. All those diseases are caused by arboviruses whose main transmission vector
is the Aedes aegypti. One of the most important and innovative ways of vector
control is the artificial introduction of a maternally transmitted bacterium of genus
Wolbachia in the mosquito population (see [8, 22, 36]). This process has been
successfully implemented on the field (see [19]). It requires the release of Wolbachia-
infected mosquitoes on the field and ultimately depends on the prevalence of one
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sub-population over the other. Other human interventions on mosquito populations
may require such spatial release protocols (see [2, 3] for a review of past and current
field trials for genetic mosquito population modification). Designing and optimizing
these protocols remains a challenging problem for today (see [17, 34]), and may be
enriched by the lessons learned from previous release experiments (see [18, 26, 38])

This article studies a spatially distributed model for the spread of Wolbachia-
infected mosquitoes in a population and its success as far as non-extinction proba-
bilities are concerned. We address the question of the release protocol to guarantee
a high probability of invasion. More precisely, what quantity of mosquitoes need to
be released to ensure invasion, if we have only one release point? What if we have
multiple release points and if there is some uncertainty in the release protocol? We
obtain lower bounds so as to quantify the success probability of spatial spread of
the introduced population according to a mathematical model.

We define here an ad hoc framework for the computation of this success prob-
ability. As a totally new feature added to the previous works on this topic (see
[10, 15, 16, 21, 33, 37]), it involves space variable as a key ingredient. In this paper
we provide quantitative estimate and numerical results in dimension 1.

It is well accepted that stochasticity plays a significant role in biological modeling.
Probabilities of introduction success have already been investigated for genes or
other agents into a wild biological population. The recent work [4] makes use of
reaction-diffusion PDEs to describe the biological phenomena underlying sucessful
introduction as cytoplasmic analogues of the Allee effect. The infection of the
mosquito population by Wolbachia is seen as an “alternative trait”, spreading across
a population having initially a homogeneous regular trait. Other recent models have
been proposed either to compute the invasion speed ([9]), or get an insight into the
induced time dynamics of more complex systems, including humans or pathogens
(see [14, 20]). In the mosquito part, models usually feature two stable steady
states: invasion (the regular trait disappears) and extinction (the alternative trait
disappears). Since this phenomenon is currently being investigated as a tool to fight
Aedes transmitted diseases, the problem of determination of thresholds for invasion
in this equation is of tremendous importance.

The issue of survival probability of invading species has attracted a lot of atten-
tion by many researchers. Among such we may cite [6] and [31]. We stress, however,
that this is not the direction followed in this paper. In the cited articles indeed,
the basic underlying model is either a stochastic PDE or its discretization, and the
uncertainty concerning the initial state is not considered.

In other words, although in a deterministic model as ours one can in principle
numerically check for a specific initial configuration whether the invasion by the
Wolbachia-infected mosquitoes will be successful or not, in practice such a specific
initial condition is subject to uncertainty, and therefore the uncertainty quantifica-
tion of the success probability is a natural question.

Our modeling goes as follows: We consider on a domain Ω ⊆ Rd (usually
d ∈ {1, 2} and Ω = Rd), a frequency p : Ω → [0, 1] that models the prevalence
of the Wolbachia infection trait. More specifically, in the case of cytoplasmic in-
compatibility caused in Aedes mosquitoes by the endo-symbiotic bacterium Wol-
bachia, p is the proportion of mosquitoes infected by the bacterium (e.g. p = 1
means that the whole population is infected). Then, this frequency obeys a bistable
reaction-diffusion equation. We aim at estimating the invasion success probability
with respect to the initial data (= release profile).
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In [4, 32] it was obtained an expression for the reaction term f in the limit
Allen-Cahn equation

∂tp− σ∆p = f(p) (1)

in terms of the following biological parameters: σ diffusivity (in square-meters per
day, for example), sf (effect of Wolbachia on fecundity, = 0 if it has no effect);
sh (strength of the cytoplasmic incompatibility, = 1 if it is perfect); δ (effect on
death rate, di = δds where ds is the regular death rate without Wolbachia) and µ
(imperfection of vertical transmission, expected to be small). It reads as follows:

f(p) = δdsp
−shp2 +

(
1 + sh − (1− sf )( 1−µ

δ + µ)
)
p+ (1− sf ) 1−µ

δ − 1

shp2 − (sf + sh)p+ 1
. (2)

Bistable reaction terms are such that f < 0 on (0, θ) and f > 0 on (θ, θ+). Usually,
we consider θ+ = 1. This is the case if µ = 0.

The outline of the paper is the following. In the next section, we explain how to
use a threshold property for bistable reaction-diffusion equation in order to obtain
explicit sufficient conditions for invasion success of a release protocol (Theorem 2.1).
In a relevant stochastic framework, we show in Section 2.2 how these conditions
provide uncertainty quantification for invasion success when release locations are
random. Thanks to this, we prove in Section 2.3 that if the release domain is
wide enough (with an explicit bound), the success probability goes to 1 as the
number of releases goes to +∞. Our main tool is the construction of compactly
supported radially symmetric functions (in Section 2.4 for any dimension, and in
Section 3 for the 1-dimensional case) such that if the initial data is above one of such
functions, then invasion occurs. Section 3 and the following are devoted to the one
dimensional case. We prove in Section 4.1 that the sufficient conditions for invasion
are very hard to meet with a single release point (Proposition 5), and this leads to
considering multiple release locations. For a deterministic (Section 4.2, Lemma 4.1)
and a stochastic (Sections 4.3 and 4.4, Proposition 7) set of release profiles, we give
analytical formulae for uncertainty quantification. Numerical simulations illustrate
these results in dimension 1 in Section 5. We conclude in Section 6. Finally an
appendix is devoted to the study of the minimization of the perimeter of release in
one dimension.

2. Setting the problem: How to use a threshold property to design a
release protocol?

2.1. The threshold phenomenon for bistable equations. In Equation (1), we
assume that  ∃ θ ∈ (0, 1), f(0) = f(θ) = f(1) = 0,

f < 0 on (0, θ), f > 0 on (θ, 1),
∫ 1

0
f(x)dx > 0.

(3)

A consequence of this hypothesis is the existence of invading traveling waves. From
now on, we denote F the anti-derivative of f which vanishes at 0,

F (x) :=

∫ x

0

f(y) dy. (4)
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Since we have assumed F (1) > 0, by the bistability of the function f , there exists
a unique θc ∈ (0, 1) such that

F (θc) =

∫ θc

0

f(x)dx = 0.

In all numerical simulations we use the following values taken from [20, 12, 27]
for the Wolbachia and mosquito parameters:

ds = 0.27day−1, sf = 0.1, µ = 0, sh = 0.8,

δ = 0.3/0.27 = 10/9 and σ = 877m2.day−1.
(5)

In particular we obtain the profiles for f and its anti-derivative in Figure 1. In [20],
the authors used the notations φ = 1 − sf , δ = di/ds, u = 1 − sh and v = 1 − µ.
They gave a range of values of these parameters for three Wolbachia strains, namely
wAlbB, which has no impact on death (δ = 1) but reduces fecundity, wMelPop which
highly increases death rate but isn’t detrimental to fecundity, and wMel which
has a moderate impact on both. Values are given in Table 3 of the cited article
(which contains also a parameter r, standing for differential vector competence
of Wolbachia-infected mosquitoes for dengue, a feature we do not include in our
modelling since we focus on the mosquito population dynamics), see the references
therein for more details. According to the aforementioned references, the authors
always assumed perfect CI and maternal transmission, that is, with our notations
sh = 1 and µ = 0. Our notations mimic those of [4, 14], where they did not
give as detailed tables for the parameters as in [20], although we refer the reader
to the references they gave, which contain some quantitative estimations of these
parameters. Our choices in (5) for ds, sf and δ reflect the field data exposed in [12],
for the (life-shortening) wMel strain in the context of the city of Rio de Janeiro, in
Brazil.
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Figure 1. Profile of f defined in (2) (left) and of its anti-derivative
F (right) with parameters given by (5).

We will always assume µ = 0 (perfect vertical transmission) in the following.
Complex dynamical behaviors can arise in the case when µ exceeds some threshold,
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as was proved in [39] for a system of two ordinary differential equations. For such
values of µ, in particular, population replacement may not be guaranteed by invasion
success. Note however that our results apply when µ > 0 is small. In this case the
“invasion” state is not exactly p = 1, but p = p+(µ) < 1, because of the flaw in
Wolbachia vertical (=maternal) transmission.

Moreover, following estimates from [12, 35] for Aedes aegypti in Rio de Janeiro
(Brazil), and general literature review and discussion in Section 3 of [27] we consider
that mosquitoes spread at around σ = 830m2/day (see the references given in [27]
for more details). With these estimations of the parameters, the quantitative results
we get are satisfactory because they appear to be relevant for practical purposes.
For example, in order to get a significant probability of success, the release perimeter
we find is around 595m wide (in one dimension). In the example from Figure 1,
θc ' 0.36.

We say that a radially symmetric function φ on Rd is non-increasing if φ(x) =
g(|x|) for some g that is non-increasing on R+.

The following result gives a criterion on the initial data to guarantee invasion.

Theorem 2.1. Let us assume that f is bistable in the sense of (3). Then, for
all α ∈ (θc, 1] there exists a compactly supported, radially symmetric non-increasing
function vα(|x|), with vα : R+ → R+ non-increasing, vα(0) = α (called “α-bubble”),
such that if p is a solution of

∂tp− σ∆p = f(p), (6)

p(t = 0, x) = p0(x) ≥ vα(|x|),

then p −−−→
t→∞

1 locally uniformly. Moreover, we can take Supp(vα) = BRα with

Rα =
√
σ inf
ρ∈Γ

√√√√ 1− ρd
(1− ρ)2

1( ∫ α
0

(
1− 1−ρ

α x
)d
f(x)dx

)
+

, (7)

where Γ = {ρ ∈ (0, 1),
∫ α

0
(1− 1−ρ

α x)df(x)dx > 0}.
In one dimension, we have the sharper estimate Supp(vα) = [−Lα, Lα] with

Lα =

√
σ

2

∫ α

0

dv√
F (α)− F (v)

. (8)

Remark 1. Clearly, the set Γ is nonempty. Indeed for ρ ∼ 1,∫ α

0

(1− 1− ρ
α

x)df(x)dx > 0,

since F (α) > 0. However, it is hard to say more unless we consider a specific
function f .

(Sharp) threshold phenomena are well-known for bistable reaction-diffusion equa-
tions (see [11, 24, 25, 30, 40]). In Theorem 2.1, we use this property to derive the
new formula (7), and (8), which are very useful to quantify invasion success uncer-
tainty. We postpone to Section 2.4 the proof of this result for dimension d ≥ 1,
which is based upon an energy method developed in [25]. When d = 1, we give an
alternative proof using sharp critical bubbles and a result of [11] in Section 3.1. To
the best of our knowledge, we give in Section 3.2 the first comparison between the
two approaches.
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We recall the definition of a “ground state” as a positive stationary solution v
of (1), i.e.:

−∆v = f(v)

that decays to 0 at infinity. In dimension d = 1 (and in some special cases in higher
dimensions, see [25]), such a ground state is unique up to translations. When
d = 1 we denote vθc the ground state which is maximal at x = 0. It is symmetric
decreasing and vθc(0) = θc, which is consistent with the notation vα in Theorem 2.1.
Although we won’t use it in the rest of the paper, we note that with a similar
argument, we have a sufficient condition for the extinction:

Proposition 1. In dimension d = 1, let p be a solution of equation (1), associated
with the initial value p0. If p0 < θ or p0 < vθc(· − ζ) for some ζ ∈ R, then p goes
extinct: p −−−→

t→∞
0 uniformly on R.

2.2. The stochastic framework for release profiles. When mosquitoes are
released in the field, the actual profile of Wolbachia infection in the days right after
the release is very uncertain. In order to quantify this uncertainty, we define in this
section an adequate space of release profiles. The preexisting mosquito population
is assumed to be homogeneously dense, at a level N0 ∈ R+.

From now on, we assume that we have fixed a space unit, so that we may talk
of numbers or densities of mosquitoes without any trouble.

We define a spatial process X·(ω) = X(·, ω) : Rd → R+ as the introduced
mosquitoes profile.

We expect that the time dynamics of the infection frequency will be given by
∂tp− σ∆p = f(p),

p(t = 0, τ ;ω) =
Xτ (ω)

Xτ (ω) +N0
.

(9)

We want to measure the probability of establishment associated with this set of
initial profiles.

Making use of Theorem 2.1, we want to give a lower bound for the probability of
non-extinction (which is equivalent to the probability of invasion, by the sharpness
of threshold solutions, as described in [24, 25]).

An initial condition Xτ ensures non-extinction if

∃α ∈ (θc, 1], ∃τ0 ∈ R, ∀τ ∈ Rd,
Xτ

Xτ +N0
≥ vα(τ + τ0), (NEC)

where vα is the “α-bubble” used in Theorem 2.1.
Now, we assume that we have a fixed number of mosquitoes to release, say N .

When we release mosquitoes in the field (out of boxes), they will spread out to find
vertebrates to feed on (if not fed in the lab prior to the release), to mate or to
rest. Many environmental factors may influence their spread (see [23]). As a very
rough estimate we consider that the distribution of the released mosquitoes can be
described by a Gaussian. A Gaussian profile is typically the result of a diffusion
process. However, we shall not use very fine properties of these profiles, and mainly
focus on a “significant spread radius”, so that this assumption is not too restrictive.
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Due to the above simplification, the set of releases profiles (“RP”) for a total of
N mosquitoes at k locations in a domain [−L,L]d is defined as

RP dk (N) :=
{
τ 7→ N

k

k∑
i=1

e
− (τ−τi)

2

2σi

(2πσi)d/2
, with τi ∈ [−L,L]d, σi ∈ [σ0−ε, σ0+ε]

}
, (10)

where σ0 is an estimated diffusion coefficient and ε > 0 represents the uncertainty
on this parameter (σi is the “significant spread radius”). In other words, for any
i between 1 and k, the release profile is locally at the i-th release point a centered
Gaussian with fixed amplitude N/k and variance σi.

The basic requirement for a release profile is that
∫
Rd Xτdτ = N . It is obviously

satisfied for the elements in RP dk (N).

We use uniform measure on
(
[−L,L]d × [σ0 − ε, σ0 + ε]

)k
to equip RP dk (N) with

a probability measure, denoted by M in the following.
According to our estimate, the success probability satisfies

P[Non-extinction after releasing N mosquitoes at k locations ]

≥ P[Xτ (ω) satisfies (NEC)], (SP)

where Xτ (ω) is taken in RP dk (N) according to the uniform probability measure.

2.3. First result: Relevance of under-estimating success. Though it may
seem naive, our under-estimation by radii given in Theorem 2.1 is rather good, and
this can be quantified in any dimension d. Indeed, in any dimension we can prove
convergence of our under-estimation in (SP) to 1 as the number of releases goes to
infinity, if we fix the number of mosquitoes per release.

More precisely, we define for a domain Ω ⊂ Rd,

P dk (N,Ω) :=M
{

(xi)1≤i≤k,∃α ∈ (θc, 1),∃x0 ∈ Ω,

x0 +BRα ⊂ Ω and ∀x ∈ x0 +BRα ,
N

k

k∑
i=1

Gσ,d(x− xi) ≥ α
}
, (11)

where Gσ,d(y) = 1
(2πσ)d/2

e−|y|
2/2σ and BRα = BRα(0) is the ball of radius Rα, cen-

tered at 0. Then, the probability of success of a random (in the sense of Section 2.2)
k-release of N mosquitoes in the d-dimensional domain Ω is bigger than P dk (N,Ω),
because of Theorem 2.1.

Fixing the number of mosquitoes per release and letting the number of releases
go to ∞ yield:

Proposition 2. Let 1 > α > θc, N ≥ N∗ := (2πσ)d/2 α
1−αN0 and Ω ⊂ Rd be a

compact set containing a ball of radius Rα. Then,

P dk (kN,Ω) −−−−→
k→∞

1. (12)

Proof. There are two ingredients for the proof: First, we minimize a Gaussian
at x on a ball centered at x by its value on the border of the ball. Second, if
we pick uniformly an increasing number of balls with fixed radius and center in
a compact domain, then their union covers almost-surely any given subset (this
second ingredient is connected with the well-known coupon collector’s problem).
Namely,

‖y‖ ≤
√

2σ log(2) =⇒ e−‖y‖
2/2σ ≥ 1/2.



968 MARTIN STRUGAREK, NICOLAS VAUCHELET AND JORGE P. ZUBELLI

Now, when we pick uniformly in a compact set the centers of balls of fixed radius
α, the probability of covering a given subset Ωc ⊂ Ω increases with the number k
of balls. Therefore it has a limit as k → +∞. In fact, this limit is equal to 1.

One can prove this claim using the coupon collector problem (see the classical
work [13] for the main results on this problem), after selecting a mesh for the
compact domain Ωc. We take this mesh such that each cell has diameter less than√

2σ log(2)/2, and positive measure. The domain Ω is compact, hence finitely many
cells is enough. Picking the center of a random ball in a given cell of the mesh has
probability > 0, and we simply need to have picked one center in each element to
be done. It remains to choose the (compact) set Ωc = BRα + x0 ⊂ Ω to conclude
the proof.

Remark 2. We could have been a little more precise, and get an estimate for
the expected value of the number k of small balls required to cover the domain.
According to classical results [13] on the coupon collector problem, it typically
grows as Nc log(Nc), where Nc is the number of cells. If the domain Ω has diameter

R, Nc is typically (2R/
√

2σ log(2))d, in dimension d.

Therefore we should expect E[k] ∼ d
(

2R√
2σ log(2)

)d
log( 2R√

2σ log(2)
), and for a typical

release area R should be of the same order as Rα.

In fact, any N > 0 enjoys the same property, but then we need to assume that
each cell contains a large enough number of release points.

Corollary 1. For any N > 0 and α ∈ (θc, 1), for Ω ⊂ Rd a compact set containing
a ball of radius Rα, then for any compact subset Ωc ⊂ Ω containing a ball of radius
Rα we have

P dk (kN,Ωc) −−−−→
k→∞

1.

Proof. Let ι = VN
∗

N W. With the same technique as for proving Proposition 2, we get
a coupon collector problem where ι coupons of each kind must be collected, whence
the result.

2.4. Proof of invasiveness in Theorem 2.1 in any dimension. We consider in
this section the proof of Theorem 2.1 in any dimension. The case d = 1 is postponed
to the next section.

We use an approach based on the energy as proposed by [25]. In the present
context, the energy is defined by

E[u] =

∫
Rd

(σ
2
|∇u|2 − F (u(x))

)
dx. (13)

It is straightforward to see that if p is a solution to (6), then the energy is non-
increasing along a solution, i.e.,

d

dt
E[p] = −

∫
Rd

(
σ∆p+ f(p)

)2
dx ≤ 0.

Thus, E[p](t) ≤ E[p0] for all nonnegative t and for p solution to (6). Moreover,
Theorem 2 of [25] states that if limt→+∞E[p(t, ·)] < 0, then p(t, ·) → 1 locally
uniformly in Rd as t → +∞. Thus, since t 7→ E[p(t, ·)] is non-increasing, it is
enough to choose p0 such that E[p0] < 0 to conclude the proof of Theorem 2.1.

For any α > θc, we construct p0(x) = vα(|x|) as defined in the statements of
Theorem 2.1. To do so, consider the family of non-increasing radially symmetric
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functions, compactly supported in BR0 with R0 > 0, indexed by a small radius
0 < r0 < R0, defined by φ(r) = 1 if r ≤ r0, φ(r) = R0−r

R0−r0 if r0 < r < R0, and

φ(r) ≡ 0 if r > R0.
For any 0 < r0 < R0, φ is continuous and piecewise linear. We define vα(r) =

αφ(r), for r ≥ 0. By the comparison principle, it suffices to find (r0, R0) such that
E[αφ] < 0 to ensure that Rα = R0 is suitable in Equation (7) of Theorem 2.1. To
do so, we introduce

Jd(r0, R0, α, φ) :=
E[αφ]

|Sd−1|
= α2σ

∫ ∞
0

rd−1|∇φ(r)|2dr

−
(rd0
d
F (α) +

∫ R0

r0

rd−1

∫ αφ(r)

0

f(s)dsdr
)
. (14)

Now, we use our specific choice of non-increasing radially symmetric function φ.
Introducing ρ := r0/R0, and with obvious abuses of notation, Jd stands again for

Jd(ρ,R0, α) := Rd0

( σ

dR2
0

1− ρd

(1− ρ)2
− F (α)

ρd

d
− 1− ρ

α

∫ α

0

(
1− 1− ρ

α
x
)d−1

F (x)dx
)
,

(15)
where F is the antiderivative of f (as introduced in (4)). After an integration by
parts, we have

Jd(ρ,R0, α) = Rd0

( σ

dR2
0

1− ρd

(1− ρ)2
−
∫ α

0

(
1− 1− ρ

α
x
)d
f(x)dx

)
.

We choose ρ ∈ (0, 1) such that∫ α

0

(
1− 1− ρ

α
x
)d
f(x)dx > 0 (16)

Then the energy Jd(ρ,R0, α) decreases to −∞ with R0 and is positive for R0 → 0,
so the minimal scaling ensuring negative energy is obtained for some known value

of R0 =: R
(d)
α (ρ), such that Jd(ρ,R

(d)
α (ρ), α) = 0. Namely,(

R(d)
α (ρ)

)2
= σ

1− ρd

(1− ρ)2

1∫ α
0

(
1− 1−ρ

α x
)d
f(x)dx

, (17)

which is a rational fraction in ρ. Thus we recover formula (7) in Theorem 2.1 by
minimizing with respect to those ρ satisfying constraint (16).

We examine in particular formula (17) in the case d = 1. To do so, we introduce

U(α) := F (α)− 1

α

∫ α

0

F (x)dx, V (α) :=
1

α

∫ α

0

F (x)dx. (18)

Since F (x) ≤ F (α) for x ≤ α, we know that U is positive and V is increasing with
respect to α (V ′(α) = 1

αU(α)). Moreover, V (θc) < 0. We get

R(1)
α (ρ) =

α
√
σ√

(1− ρ)(V (α) + ρU(α))
, (19)

under the constraint V (α) + ρU(α) > 0. The optimal choice for ρ is then ρ∗1(α) :=
1
2 −

1
2
V (α)
U(α) . It satisfies V (α) + ρ∗1(α)U(α) > 0 since U(α) = F (α) − V (α) > 0 and

F (α) > 0.
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Finally, ρ∗1 corresponds to a minimal radius

R(1),∗
α := R(1)

α (ρ∗1(α)) = 2
√
σ
α
√
U(α)

F (α)
, (20)

with U(α) as in (18).

Remark 3. We emphasize that Rα quantifies the minimal radius which ensures
invasion from level α, in the sense that it provides an upper bound for it. However,
we were not able to perform an analytical computation of the actual optimal radius
(=support size) of a critical bubble.

Remark 4. We note in passing that the same energy (13) appears for instance in
the review paper [5] and in associated literature, but is used in a different spirit
(stemming from statistical physics).

Before restricting to dimension 1 in the sequel, we end the general exposition
in this section with a numerical illustration. In order to help the reader getting a
clearer picture of the invasion problem we investigate in the present paper, Figure 2
displays the time dynamics of equation (1) in two spatial dimensions, with three
different initial conditions. In this simulation we use the function f defined in (2)
with parameter values given in (5). It illustrates the fact that with a fixed number
of release points taken uniformly in a rectangle, invasion typically appears only if
the size of the rectangle is well chosen.

If it is too small (Figure 2-Right) the pressure of the surrounding Wolbachia-free
environment is too strong for the infection to propagate. If it is too large (Figure
2-Left), the release points are likely to be too scattered and never reach and invasion
threshold. Whereas in Figure 2-Center, the release area and the number of releases
is sufficient to generate a wide enough domain of Wolbachia-infected mosquitoes
which spreads for larger times.

3. Critical bubbles of non-extinction in dimension 1.

3.1. Construction. In this section, we consider the particular one dimensional
case for which we can construct a sharp critical bubble. To do so, we consider the
following differential system:

σu′′α + f(uα) = 0 in R+, uα(0) = α, u′α(0) = 0. (21)

Proposition 3. System (21) admits a unique maximal solution uα; it is global
and can be extended by symmetry on R as a function of class C2. Moreover, if
α > θc, then Lα defined in (8) is finite and uα is monotonically decreasing on R+

and vanishes at Lα.

Definition 3.1. For α ∈ (θc, 1], we denote by an α-bubble in one dimension the
function vα defined by

vα(x) = uα(|x|)+ := max{0, uα(|x|)} .

From Proposition 3 and Definition 3.1 we have that vα is compactly supported
with supp(vα) = [−Lα, Lα].

Proof. Local existence is granted by Cauchy-Lipschitz theorem. Then, we multiply
Equation (21) by u′α,

σ

2

(
(u′α)2

)′
+
(
F (uα)

)′
= 0,
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Figure 2. Time dynamics with three different initial releases be-
longing to the set RP 2

50(N) of (10), with N/(N + N0) = 0.75.
Integration is performed on the domain [−L,L] with L = 50km.
The release box is plotted in dashed red on the first picture of each
configuration. Left: Release box [−2L/3, 2L/3]2. Center: Release
box [−L/2, L/2]2. Right: Release box [−L/12.5, L/12.5]2. From
top to bottom: increasing time t ∈ {0, 1, 25, 50, 75}, in days. The
color indicates the value of p (with the scale on the right).

which implies (since u′α(0) = 0, uα(0) = α and the domain is connected) that:

σ

2
(u′α)2 = F (α)− F (uα).



972 MARTIN STRUGAREK, NICOLAS VAUCHELET AND JORGE P. ZUBELLI

Recall that F (x) =
∫ x

0
f(y)dy is positive and increasing from θc. Hence, for α > θc,

uα stays strictly below α except at 0; u′α cannot vanish unless uα = α. Hence, uα
is decreasing on R+.

Because uα is decreasing, its derivative is negative and thus:

√
σ
duα
dx

= −
√

2(F (α)− F (uα)). (22)

Then, uα, being monotonic, is invertible on its range. Let us define χα(uα(x)) = x,
so that uα(χα(ω)) = ω. By the chain rule, we have

dχα
dω

= −
√

σ

2(F (α)− F (ω))
,

so that,

χα(ω) =

∫ α

ω

√
σ

2(F (α)− F (v))
dv. (23)

Thus the function χα evaluated at ω is equal to the unique radius at which the
solution of (21) takes the value ω. It remains to prove that Lα = χα(0) is finite,
i.e. that v 7→ 1√

F (α)−F (v)
is integrable on (0, α). This function has the following

equivalents at α and 0:

1√
F (α)− F (v)

∼
v→α

1√
f(α)

1√
α− v

,

1√
F (α)− F (v)

∼
v→0+


1
v

√
− 2
f ′(0) if α = θc,

1√
F (α)

if α > θc.

Therefore Lα is finite if and only if α > θc.

Proposition 4. The limit bubble uθc (also known as the “ground state”) is expo-
nentially decaying at infinity.

Proof. The function uθc satisfies the following equation:
σ

2
(u′θc)

2 = F (θc)− F (uθc) = −F (uθc).

Hence, √
σu′θc = −

√
−2F (uθc) on R+.

Moreover, for small ε,
√
−2F (ε) = ε

√
−f ′(0) + o(ε).

As a consequence, as uθc gets small (at infinity), it is equivalent to the solution
of

y′ = −
√
−f ′(0)y,

that is x 7→ e−
√
−f ′(0)x.

Proof of Theorem 2.1 in dimension d=1. Let α ∈ (θc, 1], and let us assume that
the initial data for system (1) satisfies p(0, ·) ≥ vα where vα is the α-bubble defined
in Definition 3.1. From Proposition 3, it suffices to prove that p(t, ·) → 1 locally
uniformly on R as t→ +∞.

We first notice that the α-bubble vα is a sub-solution for (1). Indeed it is the
minimum between the two sub-solutions 0 and uα. Therefore, by the comparison
principle, if p(0, ·) ≥ vα, then for all t > 0, p(t, ·) ≥ vα.

Then, the proof follows from the “sharp threshold phenomenon” for bistable
equations, as exposed for example in [11, Theorem 1.3], which we recall below:
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Theorem 3.2. [11, Theorem 1.3] Let φλ, λ > 0 be a family of L∞(R) nonnegative,
compactly supported initial data such that
(i) λ 7→ φλ is continuous from R+ to L1(R);
(ii) if 0 < λ1 < λ2 then φλ1

≤ φλ2
and φλ1

6= φλ2
;

(iii) limλ→0 φλ(x) = 0 a.e. in R.
Let pλ be the solution to (1) with initial data pλ(0, ·) = φλ. Then, one of the

following alternative holds:
(a) limt→∞ pλ(t, x) = 0 uniformly in R for every λ > 0;
(b) there exists λ∗ ≥ 0 and x0 ∈ R such that

lim
t→∞

pλ(t, x) =

 0 uniformly in R (0 ≤ λ < λ∗),
uθc(x− x0) uniformly in R (λ = λ∗),
1 locally uniformly in R (λ > λ∗).

In our case, we define φλ(x) = vα(xλ ) for λ > 0. We have φ1 = vα. Since vα
is a sub-solution to (1), the solution to this equation with initial data φ1 stays
above vα for all positive time. From the alternative in the above Theorem, we
deduce that the solution to (1) with initial data vα converges to 1 as time goes to
+∞ locally uniformly on R. (Indeed, the ground state uθc is bounded from above
by θc < α.) By the comparison principle, we conclude that if p(0, ·) ≥ vα, then
limt→+∞ p(t, ·) = 1 locally uniformly as t→ +∞.

3.2. Comparison of the energy and critical bubble methods. Our construc-
tion of a critical α-bubble, inspired by [4], holds in dimension 1. In this context we
may compare the “minimal invasion radius” at level α for initial data, given by the
two sufficient conditions: being above an α-bubble (which is the maximum of two
stationary solutions), or being above an initial condition with negative energy.

We first compute the energy of the critical α-bubble vα of Definition 3.1,

E[vα] =

∫
R

(σ
2
|v′α|2 − F (vα)

)
dx.

From Equation (21), we have

E[vα] =

∫ Lα

−Lα

(
σ|v′α|2 − F (α)

)
dx = 2

∫ Lα

0

σ|v′α|2 dx− 2LαF (α).

Performing the change of variable v = vα(x) we have∫ Lα

0

|v′α|2dx =

∫ α

0

v′α(v−1
α (v)) dv =

1√
σ

∫ α

0

√
2(F (α)− F (v))dv,

where we use Equation (22) for the last equality. Finally, using the expression of
Lα in (8) we arrive at

E[vα] = 2
√
σ

∫ α

0

F (α)− 2F (v)√
2(F (α)− F (v))

dv.

To emphasize the difference between the two sufficient conditions, we observe
that when α→ θc, since F (θc) = 0, we obtain

E[vθc ] = 2
√
σ

∫ θc

0

√
−2F (v) dv > 0.

By continuity of α 7→ E[vα] we deduce

Lemma 3.3. The α-bubbles vα have positive energy if α is close to θc.
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Figure 3. Comparison of minimal invasion radii Rα (obtained by
energy) in dashed line and Lα (obtained by critical bubbles) in
solid line, varying with the maximal infection frequency level α.
The scale is such that σ = 1.

Remark 5. In particular, the energy estimate alone does not imply invasiveness
of the α-bubbles, which justifies the interest of our particular approach in one
dimension. We do not claim that the “energy” or the “bubble” method is better,
but we highlight the fact that they do not perfectly overlap.

Figure 3 gives a numerical illustration of the fact that α-bubbles give smaller
radii at level α, except for α ∼ 1, and at any rate provide a smaller minimal radius
for invasion when the same parameters as in Figure 1 are used.

4. Specific study of a relevant set of release profiles. In this section we
discuss a specific release protocol, with a total of N mosquitoes divided equally into
k locations, in a space of dimension 1. It yields a release profile in the set RP dk (N)
we defined in (10).

4.1. Analytical study of the case of a single release. In the case of a sin-
gle release (k = 1), we can easily describe the relationship between the mosquito
diffusivity σ and the total number of mosquitoes to release. Morally, as long as
the mosquitoes diffuse they could theoretically invade (in dimension 1) by a single
release, by introducing a sufficiently large amount of mosquitoes. This is the object
of the next proposition:

Proposition 5. Let Gσ(τ) := Gσ,1(τ) = 1√
2πσ

e−τ
2/2σ. The following equivalent

properties hold:
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(i) There exists σ+ : R∗+ → R∗+ such that NGσ satisfies (NEC) with τ0 = 0 if
and only if σ ∈ (0, σ+(N)].

(ii) There exists Nm : R∗+ → R∗+ such that NGσ satisfies (NEC) with τ0 = 0 if
and only if N ≥ Nm(σ).

Moreover, σ+ and Nm = σ−1
+ are increasing and in both cases, evolution in (1) with

initial data pσ,N := NGσ
NGσ+N0

yields invasion by the introduced population.

Part (i) of Proposition 5 asserts that if we fix the total number N of mosquitoes
to introduce, single introduction is a failure if diffusivity is too large. Part (ii)
is just the converse viewpoint: if we know estimates on the diffusivity (thanks to
field experiments like mark-release-recapture for example [35]), then we can define
a minimal number Nm of mosquitoes to introduce at a single location to succeed.

Remark 6. If α ∈ (θc, 1) makes NGσ satisfy (NEC) (“be above the α-bubble”),
then necessarily (evaluating at 0 to take the maximum of Gσ), α ≤ N

N+
√

2πσN0
. In

particular, our under-estimation of the probability is equal to 0 as soon as

N <
√

2πσN0
θc

1− θc
.

Equivalently, the density of mosquitoes at the center of the single release location
N√
2πσ

should exceed θc
1−θcN0 for our estimate to prove useful. (If θc = 0.8, this is

already 4 times the existing mosquito density. If θc = 2
3 , then it is only 2 times; in

the case of Figure 1, θc = 0.36 and then the ratio is only 0.56).

Proof of Proposition 5. Both the introduction profile given by the fraction
NGσ(τ)

NGσ(τ) +N0
and non-extinction bubbles from Theorem 2.1 built by (21) (uα(τ))α

are symmetric, radial-decreasing functions. Instead of comparing them, we compare
their reciprocals. We define Tσ,N such that for all p ∈ [0, α],

NGσ
(
Tσ,N (p)

)
NGσ

(
Tσ,N (p)

)
+N0

= p,

and χα such that uα(χα(p)) = p. Respectively, they read
Tσ,N (p) =

√
2σ

√
log
( N

N0

√
2πσ

1− p
p

)
,

χα(p) =

√
σ

2

∫ α

p

dv√
F (α)− F (v)

.

(24)

By construction, the following equivalence holds

∀τ ∈ R+,
NGσ(τ)

NGσ(τ) +N0
≥ uα(τ) ⇐⇒ ∀p s.t. 0 ≤ p ≤ α, χα(p) ≤ Tσ,N (p).

Using (24) this rewrites as

log
( N

N0

√
2πσ

)
≥
( ∫ α

p

dv

2
√
F (α)− F (v)

)2 − log
(1− p

p

)
,∀p ∈ [0, α]. (25)
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From (25), we define

Jα(p) := log(p)− log(1− p) +
( ∫ α

p

dv

2
√
F (α)− F (v)

)2
, (26)

I(σ,N) := log
( N√

2πσN0

)
. (27)

For any given N , the problem we want to solve amounts at finding couples (α, σ)
such that

∀p ∈ [0, α], Jα(p) ≤ I(σ,N). (28)

We study the function Jα. First, we note that Jα(p) −−−→
p→0

−∞, Jα(α) = log
(

α
1−α

)
and it is continuous. Moreover,

J ′α(p) =
1

p(1− p)
− 1√

F (α)− F (p)

∫ α

p

dv

2
√
F (α)− F (v)

,

and we may compute limp→α J
′
α(p) = 1

α(1−α) −
1

f(α) . Then, we can define

jα := max
p∈[0,α]

Jα(p), j∗ := min
α∈(θc,1]

jα.

Thus there exists α ∈ (θc, 1] such that (25) holds if and only if N ≥ N0

√
2πσej

∗
.

This gives Proposition 5 (i) with σ+(N) = e−2j∗

2π

(
N
N0

)2
and Proposition 5 (ii) with

Nm = N0
√

2πσ+e
j∗ .

Remark 7. With parameter values from (5), the expected number of mosquitoes
to release is huge, since we need to have Nm

N0

√
2πσ

= ej
∗ ' 7 · 1010 with j∗ ' 25,

where Nm
N0

√
2πσ

is the quotient between total mosquitoes to release and wild initial

population in an area of typical size
√

2πσ. (This is approximately the distance
diffused in 1 day, equal to 72m in this case). To obtain j∗ numerically, we used
MATLAB function fminbnd. Here, the model has a clear and crucial conclusion: it
is very hard to invade an area with a single, localized release. Therefore, we must
model several releases (whether in time or in space). In the rest of the paper we
discuss the case of releases at multiple locations at same time t = 0.

4.2. Equally spaced releases. If we space the k release points regularly in the
interval [−Lα, Lα], we want to check that (NEC) holds for

Xτ =
N

k

k−1∑
i=0

Gσ
(
τ + Lα(−1 +

2i

k − 1
)
)
.

Within a fairly good approximation, this is the case if

∀τ ∈ [−Lα, Lα],
Xτ

Xτ +N0
≥ α.

This holds in particular if

N ≥ Ñ(k, α, σ) =
N0

√
2πσ

2

α

1− α
ke

L2
α

2σ(k−1)2 .

If we fix σ then we may try to find optimal k and α in order to minimize Ñ .
Alternatively, we can do the same, fixing N or N/k (number of mosquitoes per
release), and find the optimal number of releases k.
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It is straightforward, keeping in mind that Lα is proportional to
√
σ, that the

optimal α here merely depends on k, not on σ. We may introduce

j∗(k) := min
α∈(θc,1)

α

1− α
eL

2
α/(2σ(k−1)2).

and find the minimal (in view of our sufficient criterion) value Ñ∗ for Ñ :

Lemma 4.1. For k equally spaced releases on the line, there exists an invading
release profile with L1 norm:

Ñ∗(k, σ) = N0

√
2πσ

k

2
j∗(k). (29)

However, we want to take into account the uncertainties and variability in the
release protocol and population fixation. Namely, the release points might not be

exactly equally spaced, so that introducing Ñ∗ mosquitoes would only give some
probability of success. This is what we want to quantify now and shall be addressed
in Section 4.3.

4.3. Multiple release locations: Towards a geometric problem. When we
sum several Gaussians, the profile is neither symmetric (in general), nor monotone.
Therefore the previous analytical argument does not apply. However, at the cost of
fixing σ we are left with a simple geometric problem.
First step: fixing σ and bounding by level rather than profile. We assume first that
there is no uncertainty on σ, which is taken as σ0 (ε = 0 in (10)). As a further
simplification, we shall not compare the introduction frequency profile to some α-
bubble (because it is too hard), but rather to the very simple upper bound of an
α-bubble: the characteristic function τ 7→ α1−Lα≤τ≤Lα .

Moreover, we assume that our k release locations (xi)1≤i≤k are within the com-
pact set [−L,L], for some L > 0. As above, we write

Gσ(y) :=
1√
2πσ

e−y
2/2σ,

and

G =
N

k

k∑
i=1

Gσ(· − xi).

We define

P (σ,
N

k
, (xi)1≤i≤k, L0, α) := min

[−Lα+L0,Lα+L0]
G (30)

Then, the probability of success for the release of N mosquitoes in a total of k
different sites in [−L,L]k, when they all spread according to σ diffusivity, and the
initial population density was N0, is given by:

Pk(N,L) = P
[
∃L0 ∈ R, ∃α ∈ (θc, 1), P (σ,

N

k
, (xi)1≤i≤k, L0, α) ≥ α

1− α
N0

]
. (31)

Here, the probability P is taken over all the real k-uples (xl)1≤l≤k such that −L <
x1 ≤ · · · ≤ xk < L, and [−L,L]k is equipped with the uniform measure.
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Second step: transformation into a geometric problem. In order to get a more
tractable bound, we make use of the following property:

Proposition 6. Let (xi)i ∈ [−L,L]k with x1 ≤ · · · ≤ xk. We define G =
N
k

∑k
i=1Gσ(· − xi).

If there is α ∈ (θc, 1) such that

N

k

1√
2πσ

≥ α

1− α
N0

and 1 ≤ l < m ≤ k such that

(i) ∀l ≤ j ≤ m− 1, xj+1 − xj ≤ 2
√

2 log(2)
√
σ,

(ii) xm − xl ≥ 2Lα,

then
G

G +N0
≥ vα

(
· −xm + xl

2

)
.

We notice that the constant 2
√

2 log(2) ' 2.35 is optimal with this property: if
two translated Gaussians centered at x0, x1 are at a distance x1 − x0 = λ

√
σ, with

λ > 2
√

2 log(2), then their sum is smaller at x0+x1

2 than at x0.

Proof. This property relies on the simple computation of the sum of two Gσs,
centered at −h and h (h > 0), is greater than Gσ(0) on [−h, h] as soon as h ≤√

2 log(2)
√
σ. Figure 4 illustrates this property.
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Figure 4. Two Gσ profiles and their sum (in thick line). The

level Gσ(0) is the dashed line. On the left, h =
√

2 log(2)σ. On

the right, h >
√

2 log(2)σ.

Indeed, considering the sum of two Gaussian Gσ,

ξ(x) =
1√
2πσ

(
e−

(x+h)2

2σ + e−
(x−h)2

2σ

)
= 2e−

h2

2σGσ(x) cosh(
xh

σ
).

Then, recalling that σG′σ(z) = −zGσ(z), we compute

1

2
e
h2

2σ σξ′(x) = −xGσ(x) cosh(
xh

σ
) + hGσ(x) sinh(

xh

σ
)

1

2
e
h2

2σ σ2ξ′′(x) = (h2 + x2 − 1

σ
)Gσ(x) cosh(

xh

σ
)− 2hxGσ(x) sinh(

xh

σ
).
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As a consequence, the sign of ξ′′(x) is that of

γ(x) := h2 + x2 − 2hx tanh(
xh

σ
)− 1

σ
.

We notice that γ(0) = h2 − 1
σ . Hence, ξ has a local maximum (resp. a local

minimum) at x = 0 if h <
√
σ (resp. h >

√
σ). Since ξ(0) = 2e−

h2

2σGσ(0), the

maximal h > 0 that ensures ξ(0) ≥ Gσ(0) is h = h0 :=
√

2 log(2)σ.
Now, we examine the necessary condition ξ′(x) = 0 for a local extremum on

(−h, h). It implies

x = h tanh(
xh

σ
).

This is true for x = 0 (and we have seen the condition on h −
√
σ to have a local

extremum indeed). Then, there is a solution x+ > 0 if, and only if, h2

σ > 1, i.e.
h >
√
σ. In this case, x+ is unique (and x− := −x+ is a solution as well).

So, for h = h0 >
√
σ, we know that ξ has a local minimum at x = 0, is smooth,

has at most one local extremum on (0,+∞), and goes to 0 at +∞. Hence, this local
extremum exists and is a maximum. Therefore (and by symmetry), the minimum
of ξ on (−h, h) is attained at x = 0 or x = h. Since h = h0, ξ(h) > ξ(0) = Gσ(0).
We deduce that ξ > Gσ(0) on (−h, h).

We may use this property to prove Proposition 6. By condition (i) the above
lower-bound holds between xl and xm, and not only between two adjacent locations
xj , xj+1. Now, the first condition implies that Gσ(0) ≥ α

1−αN0. Combining these
two facts with xm − xl ≥ 2Lα implies that

G
G +N0

≥ α,

on [xl, xm] which is an interval of length at least 2Lα. Precisely, for all x ∈ R,

G(x− xm+xl
2 )

G(x− xm+xl
2 ) +N0

≥ α ≥ vα(x− xm + xl
2

).

As a consequence, we may translate the generic inequality (SP) into:

P 1
k (N, (−L,L)) = Pk(N,L) ≥ P

[
∃α ∈ (θc,

1

1 + N0

N k
√

2πσ
),∃1 ≤ l < m ≤ k,

xm − xl ≥ 2Lα and ∀l ≤ j ≤ m− 1, xj+1 − xj ≤ 2
√

2 log(2)
√
σ
]

(32)

Then, we define

L∗ := min
θc<α≤ 1

1+
N0
N
k
√

2πσ

Lα,

and equivalently estimate (32) reads

Pk(N,L) ≥ P
[
∃1 ≤ l < m ≤ k, xm − xl ≥ 2L∗ and

max
l≤j≤m−1

(xj+1 − xj) ≤ 2
√

2 log(2)
√
σ
]
. (33)

The study of the minimization of Lα with respect to α is discussed further in
Appendix.
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Remark 8. Note that for this estimate, we only consider initial data that are above
a characteristic function at level α on an interval of length 2Lα. This is far from
being the optimal way to be above the α-bubble vα.

Remark 9. It is easy to check that our estimate yields 0 (no information) as long as

k is too small, namely k
√

2 log(2)
√
σ ≤ L∗. A necessary condition for our estimate

not to yield 0 may read:

k ≥ 1√
2 log(2)

min
θc<α≤1

∫ α

0

dv√
2
(
F (α)− F (v)

) .
Specific discussion for α = θc. By Proposition 4, uθc decays exponentially. As a
consequence, no sum of Gσs may be above it. This is why this profile cannot be
used in our approach (because we consider that introduction profiles should be
Gaussian).

4.4. Analytical computations of the probability of success: Recursive for-
mulae. In order to compute analytically the right-hand-side in (33), we may intro-
duce the following notations:

• Tk(u, v) is the set of ordered k-uples between u and v (u < v ∈ R), the measure
of which is

τk(u, v) =
(v − u)k+

k!
.

• Cλk (u, v) ⊆ Tk(u, v) is the subset of k-uples such that y1 = u, yk = v and for
all l ∈ J1, k − 1K, yl+1 − yl ≤ λ. Its measure is denoted γλk (u, v).

• Bλ,R
∗

k (u, v) ⊆ Tk(u, v) is the subset of k-uples such that ∃1 ≤ l < m ≤
k, ym − yl ≥ R∗ and maxl≤j≤m−1(yj+1 − yj) ≤ λ. We denote βL,R

∗

k (u, v) its
measure.

Remark 10. Back to problem (33), we recover the problem of estimating β with
the notations of Proposition 7 through a simple change of variables. We divide all
positions (x1, . . . , xk) by

√
2σ. Then in the right-hand side of (33) we replace 2L∗

by

R∗ := min
α

∫ α

0

dv√
F (α)− F (v)

,

and 2
√

2 log(2)σ by λ := 2
√

log(2). This was done in order to simplify computa-
tions. Moreover, it shows that the success probabilities do not depend on diffusivity.
In fact, scaling in σ as we did merely amounts at choosing a space scale such that
σ = 1. Even though probabilities themselves do not make σ appear, one must
keep in mind that the corresponding release protocols (including the space between
release points or the size of the release box) are proportional to

√
σ.

We want to under-estimate the probability of success with k releases in the box

[−L,L]. In view of (SP), it amounts to computing
βλ,R

∗
k (−L,L)

τk(−L,L) . In fact, we get a

general recursive formula for β in the following proposition.

Proposition 7. Let k0 := VR
∗

λ W + 1. Then,

βλ,R
∗

k (−L, χ) =

k∑
i=k0

k−i+1∑
j=1

∫ χ−R∗

−L

∫ min(χ,u+(k−1)λ)

u+R∗
γλi (u, v)
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τj−1

(
− L, u − λ

)
− βλ,R

∗

j−1

(
− L, u − λ

))
τk−(i+j−1)

(
v + λ, χ

)
dvdu. (34)

Proof. The idea is simple: we count each “positive initial data”, that is an ordered
k-uple (yi)i such that a subfamily satisfies ym− yl ≥ R∗ and yi+1− yi ≤ λ between
l and m, according to its leftmost “positive sub-family”, which is then taken of
maximal length.

We shall use the index i to denote the length of this maximal family (between
k0 and k), and j its first rank (1 ≤ j ≤ k − i+ 1). Then,

βλ,R
∗

k (−L, χ) =

∫
[−L,χ]k

1{y1≤y2≤···≤yk}1{(y1,...,yk)∈Bλ,R
∗

k (−L,χ)}dy1 . . . dyk. (35)

Now, we split:

1{(y1,...,yk)∈Bλ,R
∗

k (−L,χ)} =

k∑
i=k0

k−i+1∑
j=1

1{yi+j−1−yj≥R∗}

j+i−2∏
l=j

1{yl+1−yl≤λ}

1{(y1,...,yj−1)6∈Bλ,R
∗

j−1 (−L,χ)}1{yj−yj−1>λ}1{yi+j−yi+j−1>λ}. (36)

This identity requires some explanations. It comes from the partition of B us-
ing maximal leftmost positive sub-family, as described above. Then, the term
1{(y1,...,yj−1)6∈Bλ,R

∗
j−1 (−L,χ)} simply comes from the definition of B. Since we consider

the leftmost positive subfamily, no family on its left should be positive. Moreover
no element on its left can be added, which justifies the 1{yj−yj−1>λ}. Then, we
have in addition that for j > 1 and yj ≤ χ,

1{(y1,...,yj−1)6∈Bλ,R
∗

j−1 (−L,χ)}1{yj−1≤yj}1{yj−yj−1>λ} = 1{(y1,...,yj−1)6∈Bλ,R
∗

j−1 (−L,yj−λ)},

with the obvious convention that B(u, v) = ∅ if v < u.
In addition, for i+ j − 1 < k∫

[−L,χ]k−(i+j−1)

1{yi+j−1≤···≤yk}1{yi+j−yi+j−1>λ}dyi+j . . . dyk

= τk−(i+j−1)(yi+j−1 + λ, χ)

=

(
χ− yi+j−1 − λ

)k−(i+j−1)

+(
k − (i+ j − 1)

)
!

.

Combining these results, and using (35) and (36) yields

βλ,R
∗

k (−L, χ) =

k∑
i=k0

k−i+1∑
j=1

∫ χ

−L
· · ·
∫ χ

xi+j−2

1{yj+i−1−yj≥R∗}

j+i−2∏
l=j

1{0≤yl+1−yl≤λ}

(
τj−1

(
− L, yj − λ

)
− βλ,R

∗

j−1

(
− L, yj − λ

))
τk−(i+j−1)

(
yi+j−1 + λ, χ

)
dyj . . . dyi+j−1, (37)

with conventions τ0 = 1 and β0 = 0, regardless of their arguments.
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We assume χ ≥ −L + R∗ (otherwise βλ,R
∗

k (−L, χ) = 0). Using the notation γ
we introduced, Equation (37) is simplified again into:

βλ,R
∗

k (−L, χ) =

k∑
i=k0

k−i+1∑
j=1

∫ χ−R∗

−L

∫ min(χ,u+(k−1)λ)

u+R∗
γλi (u, v)(

τj−1

(
− L, u− λ

)
− βλ,R

∗

j−1

(
− L, u− λ

))
τk−(i+j−1)

(
v + λ, χ

)
dvdu,

where u stands for yj and v for yi+j−1. This is our recursive formula (34).

Now, we may give an explicit formula for γλi (u, v). We should notice that by
definition,

γλi+2(u, v) =

∫ u+λ

u

∫ u1+λ

u1

· · ·
∫ ui−1+λ

ui−1

1v≥ui≥v−λdui . . . du1,

that is

γλi+2(u, v) =

∫ u+λ

u

γλi+1(u1, v)du1. (38)

Hence, we deduce the recursive formula,

Lemma 4.2. For all i, λ, u, v as above,

γλi+2(u, v) = λi+

i+1∑
k=1

(−1)k

i!

(( i

k − 1

)(
v−u−kλ)i++(−1)i+1

(
i− 1

k − 1

)(
kλ−(v−u)

)i
+

)
.

(39)

Proof. Obviously, γλ2 (u, v) = 1v≥u≥v−λ and we deduce from (38)

γλ3 (u, v) = λ+
(
v − u− 2λ

)
+
−
(
λ− (v − u)

)
+
−
(
v − u− λ

)
+

Then, using (38) again proves (39) by induction.

Remark 11. For k < 2k0, formula (34) simplifies a lot for it is no longer recursive.

It enables us to compute βλ,R
∗

k0
(−L,L).

βλ,R
∗

k0
(−L,L) =

∫ L−R∗

−L

∫ min(L,u+(k0−1)λ)

u+R∗
γλk0(u, v)dvdu. (40)

Then by (39) we know γλk0(u, v). With the change of variables w = v + u, when
L > −L+ (k0 − 1)λ, equation (40) becomes

βλ,R
∗

k0
(−L,L) =

∫ L−(k0−1)λ

−L

∫ (k0−1)λ

R∗

(
λk0−2+

k0−1∑
k=1

(−1)k

(k0 − 2)!

((k0 − 2

k − 1

)
(w − kλ)k0−2

+ + (−1)k0−1

(
k0 − 3

k − 1

)
(kλ− w)k0−2

+

))
dwdu

+

∫ L−R∗

L−(k0−1)λ

∫ L−u

R∗
γλk0(u, u+ w)dwdu. (41)

Clearly, the first integral in the right-hand side of (41) may be written as(
2L− (k0 − 1)λ

)
f1(λ,R∗),
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where f1 does not depend on L. With the change of variables z = L−u, the second
term in the right-hand side of (41) becomes

f2(λ,R∗) :=

∫ (k0−1)λ

R∗

∫ z

R∗

(
λk0−2 +

k0−1∑
k=1

(−1)k

(k0 − 2)!

((k0 − 1

k − 1

)
(w − kλ)k0−2

+

+ (−1)k0−1

(
k0 − 3

k − 1

)
(kλ− w)k0−2

+

))
dwdz.

In particular, it appears that it does not depend on L. (Recall that by definition,

k0 = VR
∗

λ W + 1).
For χ ∈ (−L+R∗,−L+ (k0 − 1)λ), we can compute similarly

βλ,R
∗

k0
(−L, χ) =

∫ χ−(−L)

R∗

∫ z

R∗
γλk0(0, w)dwdz,

and notice that our expressions are consistent since

βλ,R
∗

k0
(−L,−L+ (k0 − 1)λ) =

∫ −L+(k0−1)λ−(−L)

R∗

∫ z

R∗
γλk0(0, w)dwdz = f2(λ,R∗).

All in all, βk0 is expressed as follows:

βλ,R
∗

k0
(−L, χ) =


0 if χ+ L ≤ R∗∫ χ−(−L)

R∗

∫ z

R∗
γλk0(0, w)dwdz if χ+ L ∈ (R∗, (k0 − 1)λ),(

χ+ L− (k0 − 1)λ)
)
f1 + f2 if χ+ L > (k0 − 1)λ

(42)

(This is an affine function for χ+ L > (k0 − 1)λ, with pent f1(λ,R∗)).
Then, we obtain a bound on the probability of success with k0 (the minimal

number of) releases after dividing by τk0(−L,L) :

Pk0(L) ≥
βλ,R

∗

k0

τk0
(−L,L) =

k0!

(2L)k0

(
(2L− (k0 − 1)λ)f1(λ,R∗) + f2(λ,R∗)

)
.

In particular, we see that this underestimation of the success probability is in-

creasing and then decreasing, and thus reaches a unique maximum at L = L̂.
We find

2L̂ = λ
(
V
R∗

λ
W + 1

)
− k0

k0 − 1

f2(λ,R∗)

f1(λ,R∗)
.

We may note that introducing the non-negative and non-decreasing function

Γλ,R
∗

k (z) :=

∫ z

R∗
γλk (0, w)dw

we get

f1(λ,R∗) = Γλ,R
∗

k0

(
(k0 − 1)λ

)
,

f2(λ,R∗) =

∫ (k0−1)λ

R∗
Γλ,R

∗

k0
(z)dz.

As a consequence, f2 ≤
(
(k0 − 1)λ−R∗

)
f1 and thus

2L̂ ≥ k0

k0 − 1
R∗.
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5. Numerical results. Now, we present some numerical results we obtained on
this set of release profiles. Numerical simulations confirm the intuition of Proposi-
tion 2. Our under-estimation is not very bad. Indeed, as one increases the number
of release points (k) in a fixed perimeter, with a fixed number of mosquitoes per
release, then our under-estimation of the probability of success converges to 1.

6 8 10 12 14 16
Release area radius (L)
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Figure 5. Under-estimation βλ,R
∗
(−L,L) of introduction success

probability for L ranging from R∗/2 = 5.49 to 3R∗/2 = 16.47. The
seven curves correspond to increasing number of release points.
(From bottom to top: 20 to 80 release points).

Figure 5 shows the probability profile as a function of the size L of the release
box, for 20, 40 and 80 release points. With parameter values from (5), R∗ = 10.981,
λ = 1.665 and thus k0 = 8. The curves are obtained by a simple Monte-Carlo
method. They lead to the appearance of an optimal size for the release box (6.3
in this example), that does not seem to depend on the number of release points
between 20 and 80.

However, for small (relatively to k0) numbers of releases, the probabilities are
very small. In the case of 10 release points, the maximal probability we find is
about 1.10−5.

Our numerical values are somehow consistent with field experiments: typically,
the space between release points is less than λ

√
2σ, which is about 68m, and the

optimal box size is approximately equal to 6.3 ×
√

2σ ' 257m, with the values
from (5).

The factor 2
√

2 log(2) is crucial with this respect. Losing it changes λ from

2
√

log(2) ' 1.665 to 1/
√

2 ' 0.707 and makes k0 (“the minimal theoretical number
of releases to make our under-estimation of the probability of success positive”)
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Figure 6. Effect of losing the constant 2
√

2 log(2) in Proposition

6: under-estimation βλ,R
∗
(−L,L) of introduction success proba-

bility for L ranging from R∗/2 = 5.49 to 3R∗/2 = 16.47, with 80
release points.

increase from 8 to 17. We show in Figure 6 the probability profile for 80 releases in
this case, to illustrate the loss with this “worse” geometric estimation. It culminates
at around 50% only and is comparable with the green curve (for 40 release points)
of Figure 5.

6. Conclusion and perspectives. We considered spatial aspects of a biological
invasion mechanism associated to release programs and their uncertainty. We vali-
dated the framework in the one-dimensional case, and the two-dimensional case is
the natural extension.

Two difficulties must be tackled in higher dimensions. First, the radial-symmetric
“α-bubbles” may still exist, but we no longer have an exact formula like (8) for their
support. Second, the geometric problem underlying our estimation gets harder, but
not impossible to manage. To deal with it, we need an analogue of Proposition 6
in order to get a lower bound for a sum of Gaussians in two dimensions.

An interesting feature of the approach we introduced is that it can be extended
to cases when neither sub-solutions nor geometric properties are available. Heuris-
tically, we need first a criterion to tell us if a given initial data belongs to a “set
of interest”. Second, we need to put a probability measure on the set of “feasible
initial data”. Combining these, we compute the probability that the criterion is
satisfied. This probability gives an insight into the role any given aspect of the
release protocol plays.
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We used a sufficient condition for invasion, the criterion from Theorem 2.1. How-
ever, we proved that our under-estimation of probability is rather good: in partic-
ular, it converges to 1 when the number k of releases goes to ∞. This fact is the
object of Proposition 2, holds true in any dimension, and is supported by numerical
simulations in dimension 1.

We have always considered a homogeneous “context of introduction”, so that the
stochasticity would only affect the release process itself. Another natural continua-
tion of this work, trying to go further into spatial stochasticity for release protocols,
is the use of other stochastic parameters, such as the diffusion process (here it is
given by a deterministic diffusivity σ), or the local carrying capacity. We let this
open for further research.

Some other questions remain open. For instance: in one dimension, we considered
releases in [−L,L]. We know that if 2L < L∗ then our condition in the right-hand
side of (33) is zero. On the other hand, this right-hand side goes to 0 as L→ +∞.

This suggests that there exists a (non-necessarily unique) size L̂ that maximizes

this right-hand side. Back to (40), we obtained in Remark 11 a lower bound for L̂
in this case:

L̂ ≥ R∗
1 + VR

∗

λ W
VR∗λ W

. (43)

It is a numerical conjecture that the optimal value of L is close to 1
2 (λ + R∗) for

any k. For this particular protocol feature (the optimal size of the release area),
our approach already provides an interesting indication which - to the best of our
knowledge - has not been used in previous release experiments.

As a possible follow-up to this work, one can set up several optimization prob-
lems. First, on a purely theoretical side, how to optimize the threshold functions
in Theorem 2.1 with respect to a cost functional such as the L1 norm (for the to-
tal number of released mosquitoes)? Then, if we fix a cost, how to maximize the
under-estimated probability of success with respect to the size of the release area?
Ultimately, how to optimize a release protocol (playing on the probability law of
the release profiles space)?

Appendix: Uniqueness of the minimal radius. In this appendix we investigate
sufficient conditions for the uniqueness of a minimal radius among the α bubbles
we constructed in Section 3. More precisely, we establish the number of bubbles of
a given radius (which is typically 2). General results in any dimension on the exact
multiplicity of solutions for such problems (semilinear elliptic Dirichlet problems)
have been obtained in [28] and [29], so in essence the results below are not new
and are even contained in the cited articles. However we emphasize that our proof,
limited to dimension 1, uses very simple arguments and even provides an equivalent
formulation of the problem in terms of a single real function h built from f and F ,
see formula (45) below.

Let f ∈ C2([0, 1],R) be a bistable function in the sense of (3) and F (x) =∫ x
0
f(y)dy its antiderivative as introduced in (4).
We make the following assumptions:

f ′(0) < 0, f ′(θ) > 0, f ′(1) < 0, (B0)

F (1) > 0, (B1)

∀x ∈ [0, 1],
(
f ′(x) + xf ′′(x)

)
f(x) ≤ x

(
f ′(x)

)2
. (B2)
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Under assumption (B1), there exists a unique θc ∈ (θ, 1) such that F (θc) = 0. We
introduce

g(x) := xf ′(x)/f(x). (44)

By simple computation we have

Lemma .1. Under assumption (B0), (B2), g is decreasing on [0, θ) and on (θ, 1]. In
addition, g(0) = 1, g(θ−) = −∞, g(θ+) = +∞ and g(1) = −∞. As a consequence,
there exists a unique α1 ∈ (θ, 1) such that

g(α1) = 1.

We add the following assumption:

∀α > max(θc, α1), F (α)
(
f(α) + αf ′(α)

)
≤ α

(
f(α)

)2
. (B3)

Now, we recall the α-bubble radius, as introduced before, for α ∈ (θc, 1]:

Lα =
√
σ

∫ α

0

dv√
2
(
F (α)− F (v)

) .
Proposition 8. Under conditions (B0), (B1), the bistable (in the sense of (3))
function f is such that Lα reaches its minimum on (θc, 1] (which is well-defined) at
points in (θc, 1).

If in addition (B2), (B3) hold, then there exists a unique α0 ∈ (θc, 1) such that

Lα0
= min

α
Lα,

and for all L > Lα0
, there exists unique α±(L) with α−(L) ∈ (θc, α0) and α+(L) ∈

(α0, 1) such that Lα±(L) = L.

Remark 12. Although assumptions (B0) and (B1) are very general, (B2) and (B3)
are debatable. They yield a simple sufficient condition for uniqueness of minimum
(which is the object of Proposition 8), but are by no means necessary to get it. We
expect that they can be refined and improved in order to get uniqueness for a wider
class of bistable functions.

Using f defined by (2) with values from (5), we verified numerically that (B2)-
(B3) are satisfied. Indeed, using MATLAB we found that x(f ′(x))2 − f(x)(f ′(x) +
xf ′′(x)) and x(f(x))2−F (x)(f(x)+xf ′(x)) are increasing on [0, 1] and [α1, 1] (with
max(θc, α1) = α1), respectively. The former is equal to 0 at 0, and the latter is
approximately equal to 2 · 10−4 > 0 at α1 in this case, hence the two assumptions
hold.

Generally, we can check that (B2)-(B3) hold for the classical bistable function
f(x) = x(1− x)(x− θ) with θ ∈ (0, 1/2). We first compute

f ′(x) + xf ′′(x) = −9x2 + 4(1 + θ)x− θ.
Then (B2) is equivalent to

(9x2 − 4(1 + θ)x+ θ)x(x2 − (1 + θ)x+ θ) ≤ x(3x2 − 2(1 + θ)x+ θ)2

⇐⇒
−13(1 + θ)x2 + 10θx− 5θ(1 + θ) ≤ −12(1 + θ)x2 + 6θx− 4θ(1 + θ)

⇐⇒
0 ≤ (1 + θ)x2 − 4θx+ θ(1 + θ).
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The discriminant of this second-order polynomial is −4θ(1 − θ)2 < 0, so this in-
equality holds for any θ ∈ (0, 1). Then a straightforward computation shows that
α1 = 1+θ

2 .
Now, we want to check (B3). To do so we compute

F (x) = −1

4
x4 +

1 + θ

3
x3 − θ

2
x2.

Then (B3) is equivalent to

x2(
1

4
x2 − 1 + θ

3
x+

θ

2
)(4x2 − 3(1 + θ)x+ 2θ) ≤ x3(x2 − (1 + θ)x+ θ)2

⇐⇒

x2(1 + θ)(2− 3

4
− 4

3
) +

θ

2
x+ θ(1 + θ)(2− 3

2
− 2

3
) ≤ 0.

Then we recall that 2 − 3
4 −

4
3 = − 1

12 < 0, so we just need to show that the
discriminant is negative. This discriminant is equal to

θ2

4
− θ(1 + θ)2

9
=
θ

4

(
θ − 4

9
(1 + θ)2

)
< 0.

Hence simplest bistable functions of the form f(x) = x(1 − x)(x − θ) satisfy our
assumptions (B2) and (B3), and in particular the set of such functions is non-empty.

Proof. Without loss of generality we assume
√
σ =

√
2 to get rid of the constant.

From (8), we deduce the equivalent expression:

Lα =

∫ α

0

( 1√
F (α)− F (v)

− 1√
f(α)(α− v)

)
dv +

∫ α

0

dv√
f(α)(α− v)

=
1√
f(α)

(∫ α

0

( √
f(α)√

F (α)− F (v)
− 1√

α− v
)
dv + 2

√
α
)

Hence

d

dα
Lα =

1√
αf(α)

+
1

2
√
f(α)

∫ α

0

( 1

(α− v)3/2
−
( f(α)

F (α)− F (v)

)3/2)
dv,

which is a continuous function from (θc, 1) to R. It is easily seen that d
dαLα goes

to −∞ as α → θ+
c , and to +∞ as α → 1− (recalling f(1) = 0). Therefore, we

know that Lα reaches its minimum (which is well-defined) at points strictly in the
interior of (θc, 1). This is the first point of Proposition 8.

Then, d
dαLα = 0 if and only if

1√
α

+
1

2

∫ α

0

( 1

(α− v)3/2
−
( f(α)

F (α)− F (v)

)3/2)
dv = 0.

For α ∈ (θc, 1), we introduce

h(α) :=

∫ 1

0

( 1

(1− w)3/2
−
( αf(α)

F (α)− F (αw)

)3/2)
dw. (45)

Then d
dαLα = 0 if and only if h(α) = −2. In addition, h(θc) = −∞ and

h(1) = +∞ are well-defined by continuity.
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We compute

h′(α) = −3

2

∫ 1

0

(
αf(α)

)1/2(
F (α)− F (αw)

)5/2((f(α) + αf ′(α)
)(
F (α)− F (αw)

)
− αf(α)

(
f(α)− wf(αw)

))
dw, (46)

and introduce

z(α,w) :=
(
f(α) + αf ′(α)

)(
F (α)− F (αw)

)
− αf(α)

(
f(α)− wf(αw)

)
.

Now, we are going to prove that under conditions (B2), (B3), for all α ∈ (θc, 1],
w ∈ [0, 1],

z(α,w) ≤ 0,

with strict inequality almost everywhere. First, we notice that z(α, 1) = 0 and

z(α, 0) = F (α)
(
f(α) + αf ′(α)

)
− αf(α)2.

Then we compute

∂wz = −αf(αw)
(
f(α) + αf ′(α)

)
+ αf(α)f(αw) + α2wf(α)f ′(αw)

= α2wf(α)f ′(αw)− α2f(αw)f ′(α).

Now, denoting g(x) = xf ′(x)/f(x), we get

∂wz = αf(αw)f(α)
(
g(αw)− g(α)

)
. (47)

We are going to make use of the assumptions on f and equation (47) to prove that
z ≤ 0.

Recall that there exists a unique α1 ∈ (θ, 1) such that g(α1) = 1. If α ≤ α1, then
for all w ∈ [0, α/θ), g(αw) ≤ g(α) while for all w ∈ (α/θ, 1], g(αw) ≥ g(α) (these
facts are stated in Lemma .1).

Hence w 7→ z(α,w) is increasing on [0, 1]. Since z(α, 1) = 0, it implies that z ≤ 0.
Now, if α > α1, there exists a unique β(α) ∈ (0, θ) such that g(β(α)) = g(α).

In this case, if w ∈ [0, α/β(α)] ∪ (θ, 1], g(αw) ≥ g(α). If w ∈ (α/β(α), θ), then
g(αw) < g(α). Hence, ∂wz ≤ 0 on [0, β(α)/α] and ∂wz ≥ 0 on [β(α)/α, 1]. It implies
that z ≤ 0 if, and only if, z(α, 0) ≤ 0 for all α > α1. This is assumption (B3).

All in all, we proved that z ≤ 0 for all α,w. Hence h′(α) > 0, and there exists a
unique α0 ∈ (θc, 1) such that h(α0) = −2.

We conclude that Lα is decreasing on (θc, α0) and increasing on (α0, 1]. Hence
α0 is the unique minimum point of Lα, and the uniqueness of α±(L) follows.
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