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Abstract. One of the important ecological challenges is to capture the com-
plex dynamics and understand the underlying regulating ecological factors.

Allee effect is one of the important factors in ecology and taking it into ac-

count can cause significant changes to the system dynamics. In this work we
consider a two prey-one predator model where the growth of both the prey

population is subjected to Allee effect, and the predator is generalist as it

survives on both the prey populations. We analyze the role of Allee effect
on the dynamics of the system, knowing the dynamics of the model without

Allee effect. Interestingly we have observed through a comprehensive bifur-

cation study that incorporation of Allee effect enriches the local as well as
the global dynamics of the system. Specially after a certain threshold value

of the Allee effect, it has a very significant effect on the chaotic dynamics of
the system. In course of the bifurcation analysis we have explored all possible

bifurcations such as the existence of transcritical bifurcation, saddle-node bifur-

cation, Hopf-bifurcation, Bogdanov-Takens bifurcation and Bautin bifurcation
and period-doubling route to chaos respectively.

1. Introduction. The study of prey-predator interactions has been an important
issue in mathematical modeling and hence received considerable attention from
the researchers for the past few decades. After the classical work of Lotka [11] and
Volterra [19] significant progress has been made both in modeling approach and their
mathematical study. According to several previous works it is now an established
fact that applicability of the seminal theory based on the Lotka-Volterra formulation
is limited to a certain class of ecological problems as it mostly hints that if the
population density is small then the intraspecific competition between the species
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will be less. As discussed in [16] we see that these classical modeling approach can
not capture phenomena such as predator saturation, group defense etc. In fact the
Lotka-Volterra system fails to address many important processes and one of them is
Allee-effect, which was first reported by W. C. Allee in 1931 [3]. Allee effect mainly
signifies a decrease in per-capita growth rate at low population density which in
turn refers that individual fitness is directly proportionate to population density.
Allee effect can be caused by difficulties in mate finding, social dysfunction at small
population size, inbreeding depression,food exploitation, and predator avoidance or
defense etc [7, 8, 16]. During the last decades, several works can be found in the
literature addressing the issue of Allee effect [1, 2, 5, 6, 12, 14, 15]. Before going into
further details it is important to note that there can be two types of Allee effects
namely the strong and the weak Allee effects respectively. The strong Allee effect is
subjected to a threshold below which the population growth becomes negative [8,10].
But in the case of weak Allee effect the population growth decreases but remains
positive even in small population size [4, 7, 16].

In [6] and [14] the authors have studied models with Allee effect in the prey
growth where the functional responses were Holling Type-II and ratio-dependent
respectively. The authors have reported rich dynamics around the non trivial equi-
librium points, such as Hopf-bifurcation, Bogdanove-Takens bifurcation, disappear-
ance of limit cycle through homoclinic bifurcations etc. for both the systems. Spe-
cially the model considered in [14] exhibits very rich dynamics around the trivial
equilibrium point. Gonzalez et al have shown that incorporation of different types
of Allee effect can contribute to a significant change in the system dynamics [1, 2].
In fact they studied the existence of two and three limit cycles around the nontriv-
ial equilibria in [2] and [1] respectively. During 2015, in [15] Sen et al considered a
prey predator model where the predator was subjected to intraspecific competition.
Through a complete bifurcation analysis the authors have reported the existence
of cusp-bifurcation, homoclinic, heteroclinic bifurcations, generalized Hopf bifurca-
tion, along with other usual bifurcations such as transcritical,saddle-node and Hopf
bifurcations due to the presence of Allee effect in the prey growth function.

Thus from the literature it is well understood that the incorporation of Allee effect
in the modeling approach reflects and can counter the mechanisms such as animal
aggregation/grouping, predator invasion, intraspecific competition etc and hence
indeed increases the scope to capture the dynamics of a wider range of species. Also
going through the above works one important conclusion can be drawn is that the
presence of Allee effect in the prey growth for two-dimensional prey-predator model
prevents the appearance of large amplitude limit cycles due to the enrichment at
basic tropic level. Since in almost all the works reported till date on Allee effect the
researchers have considered two dimensional systems how the nature of the chaotic
dynamics would be affected was beyond the scope of the study unless we consider
diffusion or stochasticity in the system. But to capture the dynamics of complex
natural systems two dimensional ecological systems are merely adequate. Hence the
most important and ecologically relevant question is whether the inclusion of Allee
effect to one or more tropic levels for three and higher dimensional food-chain and
interacting population models can alter the scenario of chaotic oscillations or not.
This question is relevant for the reason that the occurrence of chaos in three and
higher dimensional population models are theoretical outcomes of the dynamics for
the concerned model but not agreed by every ecologist due to the lack of support
from field data.



INFLUENCE OF ALLEE EFFECT IN PREY POPULATIONS 885

Also from the mathematical point of view many works in literature on three or
higher dimensional prey-predator systems can be found, exploring very rich dynam-
ics such as local and global bifurcations, different types of chaos etc. Therefore it is
very important to address if the introduction of Allee effect in any way affects the
dynamical complexities for three or higher dimensional prey-predator systems.

In this work especially we are interested to see how Allee effect affects the chaotic
dynamics of a three dimensional prey-predator system where the predator is gen-
eralized and both the prey species are subjected to Allee effect in their growth
functions. Here we present a complete study of the system through stability and
bifurcation analysis. To emphasize on how the incorporation of Allee effect sup-
presses or enhances the chaotic behavior of the corresponding analogous model [18]
without Allee effect, we focus on the two parametric bifurcation diagrams taking the
two Allee effects as the bifurcation parameters. The paper is organized as follows.
In the next section the model has been proposed with a small discussion on the
motivation. The subsequent section addresses the study of the equilibria and their
stability behaviour. Next we present a complete study on the bifurcations that the
system undergoes. Finally we focus on the bifurcation diagrams and their signifi-
cance in the context of the underlying system parameters and finally the conclusion
in the

2. Model formulation. Takeuchi et al. [18] have studied a three dimensional two
prey one predator model in [18], where the predator is, generalist i.e. survived on
the two prey populations. The authors have worked with the model given by,

dN1

dt
= N1(a11 −N1 − a12N2 −m1P ), (1a)

dN2

dt
= N2(a22 − a21N1 −N2 −m2P ), (1b)

dP

dt
= P (−d3 + em1N1 + em2N2). (1c)

with, N1(0) > 0, N2(0) > 0, P (0) > 0. Here, aii(i = 1, 2) are the intrinsic growth
rate of the two preys N1, N2 respectively. a12 & a21 represent the coefficient of
competition of N1, and N2, while the parameters m1 and m2 signify the decrease
of N1 and N1 due to predation by the generalist predator P . The predator death
rate and an equal transformation rate of predator to the remaining N1 and N2 are
respectively denoted by d3 and e. In the above mentioned work the authors have
considered the two prey’s subjected to logistic growth rates and the exponential type
functional response. Even with such simplest modeling approach the system exhibits
rich dynamical behaviour such as bistability of equilibira, Hopf-bifurcation, period
doubling chaos etc. Hence it is a very natural question that how the introduction of
Allee effect will change the system dynamics. Influenced by these ideas we pose a
generalist prey-predator model where the prey growth rates are subjected to Allee
effects. But before we introduce the final model we would like to give a brief
discussion on the motivation for the incorporation of particular type of Allee effects
in the present work.

After the work of W. C. Allee [3] the literature has been enriched by several
works where the Allee effect has been addressed and incorporated in the modelling.
Evidently in most of the works the system with Allee effect exhibits rich dynamics
than that without the Allee effect [1, 2, 5, 6, 12, 14, 15]. Surprisingly in those earlier
works authors have mainly considered the Allee effect in the prey growth function
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in two-dimensional prey-predator system. Recently there are few article available
where the authors have discussed the effects of Allee effect in the predator growth
rate. But hardly any work in literature can be found where generalist predator-prey
system with Allee effect in both the preys is considered. One more thing comes up,
when we go through the literature, is that the most common way of incorporating
Allee effect is multiplicative Allee effect. But many researchers have shown that
the additive Allee effect also shows complex dynamics [1,2,21]. In [21], the authors
have incorporated the additive Allee effect in a two dimensional population model
in a different but interesting way. Firstly they have considered the single species
population growth with logistic type growth as

dN

dt
= N(b− d− αN). (2)

where, b is the per capita maximum fertility rate of the population, d is the per
capita death rate and α denotes the strength of intra-competition. Then the authors
have incorporated an additive Allee effect in the prey-growth as follows.

dN

dt
= N

(
bN

A+N
− d− αN

)
, (3)

where A is the strength of the Allee effect. A similar formalism was also adopted
in [20].

Based upon these aforesaid literature, we now propose the following model:

dN1

dt
= N1

(
b1N1

N1 +A1
− d1 − k1N1

)
− a12N1N2 −m1N1P, (4a)

dN2

dt
= N2

(
b2N2

N2 +A2
− d2 − k2N2

)
− a21N1N2 −m2N2P, (4b)

dP

dt
= P (−d3 + em1N1 + em2N2). (4c)

After the transformation N1 = d1
k1
x,N2 = d1

k2
y, P = d1

m2
z, t = 1

d1
T , the dimen-

sionless model is given by,

dx

dt
= x

[
β1x

x+ α1
− 1− x− αy − εz

]
, (5a)

dy

dt
= y

[
β2y

y + α2
− γ − βx− y − z

]
, (5b)

dz

dt
= z[−β3 + dεx+ dµy], (5c)

where α1 = k1
d1
A1, β1 = b1

d1
, α = a12

k2
, ε = m1

m2
, α2 = k2

d1
A2, β2 = b2

d1
, β = a21

k1
, γ = d2

d1
,

β3 = d3
d1

, d = em2

k1
, µ = k1

k2
.

2.1. Positivity and boundedness: Firstly we discuss the boundedness and pos-
itivity of solutions of the system (5) starting from positive initial conditions. From
(5a) it is clear that the solution x(t)→ 0 as t→∞ for any x(0) > 0 when β1 ≤ 1.
Similarly, y(t) → 0 as t → ∞ when β2 ≤ γ. Hence we assume that β1 > 1 and
β2 > γ hereafter.
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The equation (5) can be written as,

x(t) = x(0)exp
[ ∫ t

0

( β1x(s)

x(s) + α1
− 1− x(s)− αy(s)− εz(s)

)
ds
]
,

y(t) = y(0)exp
[ ∫ t

0

( β2y(s)

y(s) + α2
− γ − βx(s)− y(s)− z(s)

)
ds
]
,

z(t) = z(0)exp
[ ∫ t

0

(
− β3 + dεx(s) + dµy(s)

)
ds
]
,

showing that x(t) ≥ 0, y(t) ≥ 0 and z(t) ≥ 0 whenever the initial conditions are
all positive. Hence all solutions remain within the first quadrant of the xyz-plane
starting from an interior point.

Next let us set, W = dx + dµy + z and choose 0 < λ < β3. Then after some
simple calculations from (5) we have,

Ẇ + λW ≤ dx(β1 + λ− x) + dµy(β2 + λ− y) + (λ− β3)z.

Both dx(β1 + λ− x) and dµy(β2 + λ− y) are quadratic functions, x and y are non-

negative variables, and bounded by, d(β1+λ)
2

4 and dµ(β2+λ)
2

4 respectively. Hence,

Ẇ + λW ≤ d(β1 + λ)2

4
+
dµ(β2 + λ)2

4
+ (λ− β3)z.

≤ d(β1 + λ)2

4
+
dµ(β2 + λ)2

4
= M(say),

where we have used the positivity of z and the parametric restriction 0 < λ < β3.
The above inequality implies W is bounded above and hence the boundedness of x,
y & z.

3. Equilibria and their stability: In this section we focus on the existence of
various equilibrium points and their local stability by analyzing the eigenvalues of
the Jacobian matrix evaluated around the equilibrium points.

Proposition 1. The model (5) admits trivial equilibrium points denoted by E0(0, 0,
0) which is always locally asymptotically stable.

Proof. Trivial.

Proposition 2. Assume β1 ≥ (1 +
√
α1)2 then,

(a) the model (5) can have at most two axial equilibria of the form E+
1 (x+1 , 0, 0) and

E−1 (x−1 , 0, 0) respectively for which the second prey and the predator population are
absent.
(b) E−1 is always a saddle point whenever exists. E+

1 is locally asymptotically stable

if x+ < β3

dε otherwise it is a saddle point. In particular if we consider α1 to be the

varying parameter then E+
1 is always locally asymptotically stable if β1 <

(
1 + β3

dε

)
or we will always have a range of values of α1 for which E+

1 is locally asymptotically

stable if
(

1 + β3

dε

)
< β1 <

(
1 + β3

dε

)2
.

Proof. We consider the equilibrium point for which second prey and predator pop-
ulation are absent. Substituting y = 0 and z = 0 in (5) we find the following
quadratic equation,

β1x

x+ α1
= 1 + x ⇒ x2 + (α1 + 1− β1)x+ α1 = 0. (6)
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The constant term is positive and hence we can find at most two positive real roots
leading to at most two axial equilibrium points, on x-axis, which will be denoted
by E+

1 (x+1 , 0, 0) and E−1 (x−1 , 0, 0) respectively with x−1 < x+1 . As the constant term
is positive, both the roots will be of same sign and hence the possibility of the case
x−1 < 0 < x+1 is excluded. Two roots of the equation are given by,

x±1 =
−(1 + α1 − β1)±

√
(1 + α1 − β1)2 − 4α1

2
.

Thus two roots are real and positive provided (1+α1−β1)2−4α1 > 0 and 1+α1−
β1 < 0. Note that (1− α1 − β1)2 − 4α1 = (β1 − (

√
α1 + 1)2)(β1 − (

√
α1 − 1)2) > 0

implies that β1 > (
√
α1 + 1)2 or β1 < (

√
α1 − 1)2, which lead to the following

conclusions,

• Case1. β1 < (1 +
√
α1)

2.
In this case (6) has no positive root and the E1 does not exist.

• Case2. β1 > (1 +
√
α1)

2.

In this case (6) has two distinct positive roots x+1 and x−1 . Hence (5) has two axial
equilibria E+

1 and E−
1 .

• Case3. β1 = (1 +
√
α1)

2.
In this case (6) has a unique axial equilibrium point E1.

Next we evaluate the Jacobian at E1 and which is given by,

J(E1) =

x1
[

α1β1

(x1+α1)2
− 1
]

−αx1 −εx1
0 −γ − βx1 0
0 0 −β3 + dεx1

 .

After some algebraic calculations we have
[

α1β1

(x−
1 +α1)2

− 1
]
> 0, &

[
α1β1

(x+
1 +α1)2

− 1
]
<

0. Hence E−1 is always a saddle point and E+
1 is locally asymptotically stable if

x+1 < β3

dε and a saddle point if x+1 > β3

dε . Further let us consider α1 to be the
varying parameter and

λ
E+

1
1 = x+1 −

β3
dε

=
−(1 + α1 − β1) +

√
(1 + α1 − β1)2 − 4α1

2
− β3
dε
,

dλ
E+

1
1

dα1
=

1

2

(
−1 +

α1 − β1 − 1√
(1 + α1 − β1)2 − 4α1

)
< 0,

when E+
1 exists since α1 ≤ (

√
β1 − 1)2. Thus, E+

1 will be always stable if β1 <(
1 + β3

dε

)
or it can be stable if

(
1 + β3

dε

)
< β1 <

(
1 + β3

dε

)2
. Otherwise E+

1 is a

saddle point.

Proposition 3. Assume β2 ≥ (
√
γ +
√
α2)2 then,

(a) the model (5) can have at most two axial equilibria given by E+
2 (0, y+2 , 0) and

E−2 (0, y−2 , 0) respectively.
(b) E−2 is always a saddle point whenever exists. E+

2 is locally asymptotically stable

if y+2 < β3

dµ and a saddle point if y+2 > β3

dµ . If we consider α2 to be the varying

parameter then E+
2 will be always stable if β2 <

(
γ + β3

dµ

)
or there exists a range

of values of α2 such that E+
2 is stable if

(
γ + β3

dµ

)
< β2 <

1
γ

(
γ + β3

dµ

)2
.

Proof. Similar as Proposition 2.



INFLUENCE OF ALLEE EFFECT IN PREY POPULATIONS 889

Proposition 4. The model (5) has a boundary equilibrium point E3(x3, 0, z3) where
the second prey population is absent if dβ1β3ε > (β3 + dε)(β3 + dα1ε). E3 is locally

asymptotically stable if α1β1 <
(
β3

dε + α1

)2
. Otherwise E3 is a saddle point.

Proof. Substituting y = 0 in (5) we have,

x3 =
β3
dε
, y3 = 0, z3 =

dβ1β3ε− (β3 + dε)(β3 + dα1ε)

(β3 + dα1ε)dε
(7)

It is easily seen that the in this case a unique equilibrium, denoted by E3(x3, 0, z3),
is feasible according to the following conditions.

• Case1. dβ1β3ε < (β3 + dε)(β3 + dα1ε).
In this case E3 does not exist.

• Case2. dβ1β3ε > (β3 + dε)(β3 + dα1ε).
In this case E3 is feasible.

The Jacobian at E3 is given by,

J(E3) =

x3
[

α1β1

(x3+α1)2
− 1
]

−αx3 −εx3
0 −γ − βx3 − z3 0

dεz3 dµz3 0

 .

It is easy to see that E3 is locally asymptotically stable if α1β1 < (x3 + α1)2 as all
the three eigenvalues of the matrix J(E3) are negative in this case. Otherwise E3

is a saddle point.

Proposition 5. The model (5) has a boundary equilibrium point E4(0, y4, z3) where
the first prey population is absent if dβ2β3µ > (β3 + dµγ)(β3 + dα2µ). E4 is locally

asymptotically stable if α2β2 <
(
β3

dµ + α2

)2
. Otherwise E4 is a saddle point.

Proof. Similar as Proposition 4.

Proposition 6. If β1 > (1 +
√
α1)2 & β2 > (

√
γ +
√
α2)2, the model (5) can

exhibit at most four boundary equilibrium point of the form E5(x5, y5, 0) where the
predator population is absent of which at most one equilibrium point can be locally
asymptotically stable. Otherwise all are unstable.

Proof. Let us consider the case of the existence of the predator free equilibrium
point. Thus if we plug z = 0 in (5) we have system of two quadratic equations
given by,

β1x

x+ α1
= 1 + x+ αy, (8)

β2y

y + α2
= γ + βx+ y. (9)

For each solution with positive components of the above equations the system (5)
will possess an equilibrium point given by E5(x5, y5, 0). To analyze the existence of
positive solutions of the above system of equations we consider the following cases.

If we assume β1 ≤ (1 +
√
α1)2 or β2 ≤ (

√
γ +
√
α2)2, then from the result of E1

& E2, we know that,

β1x− (1 + x)(x+ α1) < 0, ∀x ≥ 0,

or, β2y − (γ + y)(y + α2) < 0, ∀y ≥ 0.

Hence the E5 does not exist in this case.
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Now if both β1 > (1 +
√
α1)2 & β2 > (

√
γ +
√
α2)2 hold, (8) and (9) can be

written as

y = − (x− x+1 )(x− x−1 )

α(x+ α1)
& x = − (y − y+2 )(y − y−2 )

β(y + α2)
,

respectively. (8) has a local maxima at x =
√
α1(
√
β1 −

√
α1) > 0 and (9) has a

local extrema at y =
√
α2(
√
β2−

√
α2) > 0. Now if we solve for the value of y from

the above equations we will have a fourth degree polynomial in x for which at most
four feasible solutions are possible. It is difficult to find out the exact parametric
restrictions for which that polynomial will have four positive roots. But graphically
we can assert the possible feasibility and positions of those roots. Hence, we may
have at most four possible E5 as shown in Fig.1.
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Figure 1. Positions of the nullclines projected on the xy-plane
showing the feasibility of E5.

Now the Jacobian at E5 is given by,

J(E5) =


x5

[
α1β1

(x5+α1)2
− 1
]

−αx5 −εx5
−βy5 y5

[
α2β2

(y5+α2)2
− 1
]

−y5
0 0 −β3 + dεx5 + dµy5


=

 | −εx5
Jx5y5 | −y5

0 0 | −β3 + dεx5 + dµy5

 .

Thus E5 is locally asymptotically stable iff,

−β3 + dεx5 + dµy5 < 0, Tr(Jx5y5) < 0 & Det(Jx5y5) > 0
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Also E5 is unstable if one of the following conditions satisfy.

−β3 + dεx5 + dµy5 > 0, (10)(
α1β1

(x5 + α1)2
− 1

)(
α2β2

(y5 + α2)2
− 1

)
< 0, (11)

α1β1
(x5 + α1)2

> 1 &
α2β2

(y5 + α2)2
> 1. (12)

Although we are unable to describe the complete analytical expression for which
E5’s are asymptotically stable or unstable, it can be easily verified that all the
equilibria with red dot in Fig.1 are unstable since either (11) or (12) is satisfied.
Only the equilibrium point pictured as green dot in Fig.1 may be stable. Hence the
proposition is shown.

Proposition 7. Let β1 > (1 +
√
α1)2 & β2 > (

√
γ +
√
α2)2 hold.

(a) The model (5) can have at most three interior equilibira denoted by E1∗(x1, y1,
z1), E2∗(x2, y2, z2) and E3∗(x3, y3, z3) such that, x1 > x2 > x3.
(b) E1∗ and E3∗ always remain unstable. E2∗ can be asymptotically stable or un-
stable depending on suitable parametric restrictions.

Proof. Lastly we concentrate on the interior equilibrium point i.e. the equilibrium
point of (5) for which all the components are strictly positive. The nullclines rep-
resenting the interior equilibrium point are given by,

β1x

x+ α1
− 1− x− αy = εz, (13)

β2y

y + α2
− γ − βx− y = z, (14)

dεx+ dµy = β3. (15)

Similar to Proposition 6. if β1 ≤ (1 +
√
α1)2 or β2 ≤ (

√
γ +
√
α2)2, it is clear

that,

β1x

x+ α1
− (1 + x)− αy < 0, ∀x, y ≥ 0,

or,
β2y

y + α2
− (γ + y)− βx < 0, ∀x, y ≥ 0.

Hence no interior equilibrium point is feasible in this case.
Now if β1 > (1 +

√
α1)2 and β2 > (

√
γ +
√
α2)2, then from the above three

equations if we solve for x by substituting the values of y& z we get,

G(x) ≡ A1x
3 +A2x

2 +A3x+A4 = 0 (16)

where,

A1 = −αd2ε2 + d2ε3 + d2εµ− βd2ε2µ,
A2 = 2αβ3dε− 2β3dε

2 − αα1d
2ε2 + α1d

2ε3 − β3dµ+ ββ3dεµ+ d2εµ+ α1d
2εµ

+αα2d
2εµ− β1d2εµ− α2d

2ε2µ− α1βd
2ε2µ+ β2d

2ε2µ− d2ε2γµ− α2d
2µ2

+α2βd
2εµ2,

A3 = −αβ2
3 + β2

3ε+ 2αα1β3dε− 2α1β3dε
2 − β3dµ− α1β3dµ− αα2β3dµ

+β1β3dµ+ α2β3dεµ+ α1ββ3dεµ− β2β3dεµ+ α1d
2εµ+ αα1α2d

2εµ
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−α1α2d
2ε2µ+ α1β2d

2ε2µ+ β3dεγµ− α1d
2ε2γµ− α2d

2µ2

−α1α2d
2µ2 + α2β1d

2µ2 + α1α2βd
2εµ2 + α2d

2εγµ2,

A4 = −αα1β
2
3 + α1β

2
3ε− α1β3dµ− αα1α2β3dµ+ α1α2β3dεµ− α1β2β3dεµ

+α1β3dεγµ− α1α2d
2µ2 + α1α2d

2εγµ2.

The system (5) will have interior equilibrium points only if (16) has positive root

x∗ such that y∗ = β3−dεx∗
dµ > 0 and z∗ = −γ − βx∗ − y∗ + β2y∗

α2+y∗
> 0.

The Jacobian at E∗ is given by,

J(E∗) =


x∗

[
α1β1

(x∗+α1)2
− 1
]

−αx∗ −εx∗
−βy∗ y∗

[
α2β2

(y∗+α2)2
− 1
]
−y∗

dεz∗ dµz∗ 0

 .

The corresponding characteristic equation is,

λ3 +B1λ
2 +B2λ+B3 = 0

where,

B1 = −
(
x∗

[
α1β1

(x∗ + α1)2
− 1

]
+ y∗

[
α2β2

(y∗ + α2)2
− 1

])
,

B2 =

(
x∗y∗

[
α1β1

(x∗ + α1)2
− 1

] [
α2β2

(y∗ + α2)2
− 1

]
+ dµy∗z∗ − αβx∗y∗

)
,

B3 = −Det(J(E∗)).

The interior equilibrium point will be locally asymptotically stable if Bi > 0, i =
1, 2, 3, and B1B2 > B3.

It is evident from the equation (16) that the system (5) can have at most three
interior equilibrium points. Although it is quite difficult to find out the analytical
conditions for their existence and stability, numerically it can be easily verified that
the system can possess three feasible interior equilibira. Also extensive numerical
results confirm that out of the three interior equilibrium points only one can be
stable while the other will remain unstable whenever they exist. To validate our
claim we give some numerical results as follows.

Let us consider the parameter set α = 1, α1 = .001, α2 = .00001, γ = 1, β =
1.5, β3 = 1, ε = 4, d = .5, µ = 1.

• For β1 = 2.5, β2 = 2.6 the system (5) has only one feasible interior equilibrium
points given by, E∗(x∗, y∗, z∗) = (0.499992, 0.0000332445, 0.248746). In this
case E∗ is an unstable point with two stable and one unstable manifolds.

• For β1 = 3.5, β2 = 2.6 the system possess two interior equilibria E1∗ and E2∗
whose components are given by E1∗(0.499984, 0.0000639227, 0.498241) and
E2∗(0.298348, 0.806608, 0.345838). Of the two E1∗ is an unstable equilibrium
point with two stable and one unstable manifolds and E2∗ is a locally asymp-
totically stable equilibrium point.

• If β1 = 5, β2 = 3 the system (5) exhibits three feasible interior equilibrium
points namely, E1∗(0.499983, 0.0000694776, 0.872492), E2∗(0.283221, 0.867116,
0.708018) and E3∗(0.00151324, 1.99395, 0.00376804). Here E1∗ and E3∗ are
unstable equilibria both having two stable and one unstable manifolds. E2∗
is locally asymptotically stable.
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Equilibrium Existence Stability

E0(0, 0, 0) Always LAS

E
+
1 (+, 0, 0) β1 ≥ (1 +

√
α1)

2 LAS if x
+
1 <

β3
dε ,

Saddle point if x
+
1 >

β3
dε

E
−
1 (+, 0, 0) β1 ≥ (1 +

√
α1)

2 Saddle point with one dimensional

unstable manifold if x
−
1 <

β3
dε , Saddle

point with two dimensional unstable

manifolds x
−
1 >

β3
dε

E
+
2 (0,+, 0) β2 ≥ (

√
γ +
√
α2)

2 LAS if y
+
2 <

β3
dµ ,

Saddle point if y
+
2 >

β3
dµ

E
−
2 (0,+, 0) β2 ≥ (

√
γ +
√
α2)

2 Saddle point with one dimensional

unstable manifold if y
−
2 <

β3
dµ , Saddle

point with two dimensional unstable

manifolds if y
−
2 >

β3
dµ .

E3(+, 0,+) dβ1β3ε > (β3 + dε)(β3 + dα1ε) LAS if (x3 + α1)
2 > β1α1

otherwise a saddle point

E4(0,+,+) dβ2β3µ > (β3 + dµγ)(β3 + dα2µ) LAS if (y4 + α2)
2 > β2α2

otherwise a saddle point

E5(+,+, 0) See proposition 6 See proposition 6

E∗(+,+,+) See proposition 7 See proposition 7

Table 1. Summary of existence and stability conditions for the
equilibria of (5).

4. Local bifurcations: The present section mainly reflects on how the equilibrium
points appear or disappear from one another and how the stability of the equilibria
changes through different types of local or global bifurcations.

In proposition 8 we present different conditions how the two branches of different
equilibria appear or disappear through several saddle node bifurcations.

Proposition 8. (a) The system (5) undergoes a saddle-node bifurcation at α1 =
(
√
β1 − 1)2, when E+

1 and E−1 coincide.
(b) The system (5) undergoes a saddle-node bifurcation at α2 = (

√
β2−

√
γ)2, when

E+
2 and E−2 coincide.

(c) Suppose that at α1 = α5∗
1 , Det(Jx5y5)|α5∗

1
= 0. Then the system (5) undergoes

a saddle-node bifurcation at α1 = α5∗
1 when two E5 coincide.

(d) If for α1 = αSN1 , G(x) = 0 has a double root then the system (5) exhibits another
saddle node bifurcating where two interior equilibrium points coincide.

Proof. (a) Let us assume α1 = α∗1 = (
√
β1 − 1)2. It is easy to see that E+

1 and

E−1 coincide at α1 = α∗1. Let v1 =

1
0
0

 and w1 =

 1

− α(
√
β1−1)

γ+β(
√
β1−1)

− ε(
√
β1−1)

−β3+dε(
√
β1−1)

 be the

eigenvectors corresponding to the zero eigenvalue of the matrices J(E1) and J(E1)T

respectively at α1 = (
√
β1 − 1)2.

Let us rewrite the system (5) as dX
dt = F . Then we have the following
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wT1 Fα1 |α∗
1

= −1 6= 0,

wT1 D
2F |α∗

1
(v1, v1) = − 2√

β1
6= 0.

Thus the system undergoes saddle-node bifurcation at α1 = α∗1.
(b) The proof is similar as given in (a).
(c) The slopes of the curves (8) and (9) at any point (x, y) are respectively given by
1
α

[
α1β1

(x+α1)2
− 1
]

and β[
α2β2

(y+α2)2
−1

] . Now Det(Jx5y5)|α5∗
1

= 0 implies that the curves

(8) and (9) touches each other and consequently two E5 coinside. Now if we proceed
as above then it is easy to prove that the system undergoes a saddle node bifurcation
at α = α5∗

1 .
(d) Similar to (a) & (c).

In the following we discuss how the equilibira E3 and E4 exchange their stability
with that of E1 and E2 respectively through transcritical bifurcations.

Proposition 9. (a) The system (5) undergoes Transcritical bifurcation at β3 = β∗3

≡
dε

[
−(1+α1−β1)±

√
(1+α1−β1)2−4α1

]
2 and E3 exchanges stability with E+

1 if β1 <(
1 + β3

d∗ε

)2
and with E−1 if β1 >

(
1 + β3

d∗ε

)2
respectively.

(b) The system (5) undergoes another Transcritical bifurcation at β3 = β∗3

≡
dµ

[
−(γ+α2−β2)±

√
(γ+α2−β2)2−4α2γ

]
2 and E4 exchanges stability with E+

2 if β2 <

1
γ

(
γ + β3

d∗µ

)2
and with E−2 if β2 >

1
γ

(
γ + β3

d∗µ

)2
respectively.

Proof. (a) Let v3 =


ε

α1β1
(x3+α1)2

−1

0
1

 and w3 =

0
0
1

 be the eigenvectors correspond-

ing to the zero eigenvalue of the matrices J(E3) and J(E3)T respectively.
Then we have the following,

wT3 Fβ3
|β∗

3
= 0,

wT3 DFβ3
v3|β∗

3
= −1,

wT3 D
2F (v3, v3)|β∗

3
=

2dε2

α1β1

(x3+α1)2
− 1

.

(b) Similarly as above.

In the next proposition we see how under different parametric restrictions the
system exhibits several Hopf-bifurcations of different equilibria. Specially we focus
on how the interior equilibrium point looses its stability through Hopf-bifurcation.
subsequently in proposition 11 we discuss the possible existence of Bogdanov-Takens
and generalized Hopf bifurcations of the interior equilibrium point.

Proposition 10. (a) The equilibrium point E3 undergoes an Hopf-bifurcation at

α1 = αH3
1 where αH3

1 is a root of the equation β1 − (β3+dεα1)
2

d2ε2α1
= 0.

(b) The equilibrium point E4 undergoes an Hopf-bifurcation at α2 = αH4
2 where αH4

2

is a root of the equation β2 − (β3+dµα2)
2

d2µ2α2
= 0.
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(c) The interior equilibrium point E2∗ looses its stability at α1 = αH∗
1 such that

JE2∗ has two purely imaginary eigenvalues.

Proof. (a) At the threshold value β1 = βH3
1 = (β3+dεα1)

2

d2ε2α1
the eigenvalues of the Jaco-

bian at E3 for the system (5) are given by, λ1 = −γ−βx3−z3, λ2 = +i
√
εβ3z3, λ3 =

−i
√
εβ3z3. Also d

dβ1
(Tr(JE3))|

β1=β
H3
1

=
dα1µ

(β3 + dα1µ)2
6= 0.

Hence, E3 undergoes a Hopf-bifurcation at β1 = βH3
1 .At the threshold value

β1 = βH3
1 = (β3+dεα1)

2

d2ε2α1
the eigenvalues of the Jacobian at E3 for the system

(5) are given by, λ1 = −γ − βx3 − z3, λ2 = +i
√
εβ3z3, λ3 = −i

√
εβ3z3. Also

d
dβ1

(Tr(JE3
))|
β1=β

H3
1

=
dα1µ

(β3 + dα1µ)2
6= 0.

Hence, E3 undergoes a Hopf-bifurcation at β1 = βH3
1 .

(b) By similar arguments as above it can be shown that E4 undergoes a Hopf-

bifurcation at β2 = (β3+dµα2)
2

d2µ2α2
.

(c) It is quite difficult to give an analytical proof for the Hopf-bifurcation of the inte-
rior equilibrium point E2∗ but extensive numerical simulations show that the under
certain conditions E2∗ undergoes Hopf bifurcations which can be either supercritical
or subcritical depending upon the choice of different parametric combinations.

Proposition 11. (a) If there exists a set of parameters such that the Jacobian JE2∗

has zero eigenvalue of multiplicity two, the system undergoes a Bogdanov-Tackens
bifurcation at the point E2∗.
(b) If there exists a set of parameters such that the Lyapunov coefficient of the Hopf-
bifurcating limit cycle around E2∗ is zero then the system also exhibits a Bautin or
Generalized Hopf bifurcation.

Proof. Analytical conditions for these two bifurcations are difficult to produce. But
numerically it can be easily verified that the system exhibits both these bifurcations.
Here we present two such parameter sets in the following.

• The system undergoes BT bifurcation at α = 1, α1 = .001, α2 = .00001, γ =
1, β = 1.5, β1 = 4.290306, β2 = 3.2376946, β3 = 1, ε = 4, d = .5, µ = 1.

• E2∗ undergoes Bautin or generalized Hopf bifurcation at α = 1, α1 = .001, α2

= .00001, γ = 1, β = 1.5, β1 = 2.977584, β2 = 2.7448137, β3 = 1, ε = 4, d =
.5, µ = 1.

5. Local and global bifurcations: Numerical simulation results. In this sec-
tion we mainly focus on how the introduction of Allee effect influences the dynamics
of the underlying system. We construct two dimensional bifurcation diagrams tak-
ing α1 and α2 as the bifurcation parameters. We will also try to make comparison
of our results with the results for the model considered in [17] pp. 62–72. Here we
present two bifurcation diagrams in the α1α2 parametric plane shown in Fig. 2 and
Fig. 5.

In the first schematic bifurcation diagram, presented in Fig. 2 we have considered
the parameter set for which the system without Allee effect described in [17] pp.
62–72 possesses locally stable coexisting equilibrium point. Now we consider the
results for the model(5). The trivial equilibrium point E0(0, 0, 0) is always locally
asymptotically stable, for the system (5), irrespective of any parametric restrictions
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Figure 2. Schematic bifurcation diagram for the model (5) in
α1 α2-parametric space. Transcritical bifurcation curves (violet and
magenta), saddle-node bifurcation curve(s) (black, blue and cyan),
Hopf-bifurcation curve (yellow and green) and the red curve for
the first period doubling bifurcation for limit cycle divide the para-
metric space into seventeen regions (R1 → R17). Point marked in
black colour is Bogdanov-Takens bifurcation point, point of tan-
gency of transcritical bifurcation curve for E∗ and the saddle node
bifurcation curve for E5 is marked with a blue dot, and the point of
tangency transcritical bifurcation curve and the saddle node bifur-
cation curve for E∗ is marked with a red dot. Stability properties of
various equilibria with different parametric regions are summarized
at Table-1.

and hence we are not going to mention its stability at any parametric domain of the
bifurcation diagrams. It is worthy to mention that for any choice of parameter val-
ues there exists a nonempty basin of attraction for E0. In first bifurcation diagram
presented at Fig. 2 the two vertical lines given in violet and black colours, whose
expressions can be obtained from Proposition 9 and Proposition 8 respectively, rep-
resent the transcritical bifurcation curve for E3 and saddle-node bifurcation curve
for the equilibrium point E1. On the left of the violet line there is one more yellow
coloured vertical line which is the Hopf-bifurcation curve for E3 as described in the
Proposition 10. On the left of this line i.e. in the regions R1 to R7, E3 is locally
asymptotically stable and in the regions in between the yellow and violet curves
E3 is unstable and it looses stability through a Hopf-bifurcation on the yellow line.
Thus as we increase the value of α1, keeping α2 fixed, the parameters move through
the domains R1 → R15 → R16 → R17. E3 is stable in R1 and looses its stability
through Hopf-bifurcation as parameter α1 moves from R1 to R15 and then grad-
ually disappears through the appearance of E1 and later the two branches of E1

disappear through a saddle-node bifurcation. The same phenomena for E1 and E3

are observed as α1 moves through R2/R3 → R14 → R13 → R12. The dark cyan



INFLUENCE OF ALLEE EFFECT IN PREY POPULATIONS 897

Figure 3. Bifurcation diagram with respect to the parame-
ter α1, other parameter values are α = 1, α2 = 0.01, β =
1.5, β1 = 2, β2 = 2, β3 = 1, γ = 1, d = 0.5, µ = 1, ε =
5. α1 ∈ [0, 0.0082], [0.0083, 0.0118] and [0.0119, 0.0125] corre-
spond to regions R4R5 and R6 respectively. x-components of
E0, E3, E5, E1∗, E2∗ are marked in blue, green,red,magenta,black
colours in Fig 2 respectively. Continuous line represents stability
of concerned equilibrium point when α1 increases. E2∗ loses sta-
bility through Hopf-bifurcation at α1 ≡ α1H = 0.0083, first period
doubling occurs at α1 = 0.01185, chaotic dynamics is observed for
α1 ∈ [0.0125, 0.0135].

coloured horizontal line signifies the saddle-node bifurcation curve for E2, below the
line we find two equilibira E+

2 and E−2 among which E+
2 , is locally asymptotically

stable but E−2 is a saddle point and as α2 crosses the line from below they disappear
through saddle node bifurcation.

The light cyan and the magenta curves are the saddle-node bifurcation curve
for E5 and the transcritical bifurcation curve for E∗ respectively. The two curves
touch each other at a point given by the blue dot. Below the cyan curve E1

5 and
E2

5 exist but none of which is stable as mentioned in section 3. Above this curve
both the equilibria disappear through the saddle-node bifurcation, the threshold for
this saddle-node bifurcation is discussed in Proposition 8. The magenta curve is
the transcritical bifurcation curve of the equilibrium point E∗ whose equation can
not be obtained explicitly. As α1 moves from the left of this curve to the region
R7 (R6 → R7), first a transcritical bifurcation takes place through which E1∗
disappears, and then one more transcritical bifurcation occurs as α1 crosses from
R8 → R9 where E2∗ disappears, there is an exchange of stability with E2

5 . Now on
the left of the magenta curve and below the light cyan curve there is the dotted blue
curve which represents the saddle-node bifurcation curve for the interior equilibrium
points. This curve touches the magenta curve at the red dot. The magenta and
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Figure 4. Peak-adding bifurcation: successive peaks appear as
the supplementary local maxima and minima occur in (c), (d) and
(e) for α1 = 0.0121, 0.0122 and 0.0123 respectively.

the blue dotted curve together divide the parametric plane into different domains
signifying the existence of the interior equilibria. The domains R7, R8 bounded
above by the magenta curve where one interior equilibrium point is feasible which
is locally unstable; no interior point exists in the domains lying above the magenta
and the blue dotted curve. The domains R4, R5, R6 bounded by the magenta and
the blue dotted curve contain two interior equilibria of which E1∗ is always locally
unstable and stability of E2∗ depends on different parametric restrictions. Now
within the domain bounded by the magenta and the blue dotted curve there are
three curves including the blue dotted curve coinciding at a point marked as black
dot. This black dot represents the Bogdanov-Taken’s(BT) bifurcation point, which
is the point of intersection of the saddle-node bifurcation curve and Hopf-bifurcation
curve for the interior equilibrium point E2∗. The green curve arising from the BT
point represents the Hopf-bifurcation curve of E2∗. On the left of this curve i.e in
the region R4, E2∗ is locally asymptotically stable and in the region bounded by the
green and red curves E2∗ looses its stability through a supercritical Hopf-bifurcation
and thus a locally stable limit cycle appears around E2∗. We have observed that
as α1 increases beyond the Hopf-bifurcation threshold, two periodic orbit exists
which appears through a period doubling at α1 = 0.0118 (see Fig. 3). Interstinly
if we further increase the value of α1 the system exhibits peak adding bifurcation,
the first peak appears at α1 = 0.0121 which is reflected at the bifurcation diagram.
Appearance of peaks are shown in Fig. 4 and ultimately we observe chaotic dynamics
and we find chaotic attractor around E2∗. The red curve in Fig. 2 represents the



INFLUENCE OF ALLEE EFFECT IN PREY POPULATIONS 899

first period doubling bifurcation curve through which the limit cycle first changes its
period from 1 to 2, whenever α1 crosses it. Clearly the route to chaos is not period
doubling rather it is a combination of period doubling and peak adding bifurcations.

An illustration of peak adding bifurcation is shown in Fig. 4. In this figure
we have plotted the time series for first prey population (x11) against time, after
deleting significant amount of initial transients, as α1 increases from 0.0119 to 0.0123
and the other parameters are fixed at α = 1, α2 = 0.01, β = 1.5, β1 = 2, β2 = 2,
β3 = 1, γ = 1, d = 0.5, µ = 1, ε = 5. In peak adding bifurcation supplementary
local maxima and minima emerges successively but the period of the limit cycle
does not change due to this bifurcation. Supplementary local maxima and minima
appear through the appearance of point of inflexions in the time series plot. Another
characteristic feature is the difference in the heights of supplementary maxima and
minima with the change of parameter value. Detailed description of peak-adding
bifurcation and its application in the context of single species population model are
available at [9, 13].

We have presented another bifurcation diagram at Fig. 3 for a better under-
standing of the dynamics as α1 moves through the domains R4 → R5 → R6. In
this figure we have presented x− components of various equilibrium points against
a range of values for α1 varies. Here blue, green, red, magenta, black lines rep-
resent the x− components of E0, E3, E5, E1∗, E2∗ respectively where the dotted
lines represent the components of unstable equilibia and the solid lines represent
components of the stable equilibia. In case of periodic and chaotic dynamics, local
maxima and minima of concerned x− component is plotted after deleting the ini-
tial transients.Stability of various equilibia for parameter values lying in different
domains of Fig. 2 are summarized in Table.2.

The second schematic diagram is presented in Fig. 5. In this case the parameters
are the same as discussed in [17] pp. 62–72 and the system is in the chaotic regime
in the absence of the Allee effects. This bifurcation diagram is quite similar to that
of Fig. 2. The only visible difference is due to the change in positions of the yellow
vertical line representing the Hopf-bifurcation curve for the equilibrium point E3

or the saddle-node bifurcation curve of E1(black vertical line). As a result three
new qualitatively different regions R4A, R5A and R6A have come up and one region
R11 disappears. The Figure-5 is prepared to have more insight to understand how
the dynamics is changing if α2 moves through R6 → R5 → R4. In this diagram
the blue, green,red,magenta,black lines represent the x− components of E0, E3,
E5, E1∗, E1∗. Stability of various equilibria for parameter values lying in different
domains of Fig. 5 are summarized in Table.3.

6. Conclusion. Prey-predator models with Allee effect in prey growth recently
have received significant attention from the researchers [1, 2, 5, 6, 12, 14, 15]. Sev-
eral ecological species are identified which exhibit Allee effects due to various rea-
sons [7, 8, 16]. Models with one prey and their specialist predator with various
types of functional responses exhibit comparatively rich dynamics compared to the
corresponding models without Allee effect. Most common observation for these in-
vestigations are the possibility of system’s collapse due to the extinction of both
the species depending upon their initial population densities and also due to some
global bifurcations when grazing pressure on prey species is significantly high. That
both the prey and predator species become extinct, depending upon the initial pop-
ulation densities, is a common feature for the models with strong Allee effect. Here
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Region Feasible Equilibria Attractors

R1 E0, E
+
1 , E

−
1 , E3 E0, E3

R2 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3 E0, E

+
2 , E3

R3 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 E0, E

+
2 , E3

R4 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E1∗, E2∗ E0, E

+
2 , E3, E2∗

R5 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E0, E

+
2 , E3 & stable limit

E1∗, E2∗ cycle around E2∗

R6 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E1∗, E2∗ E0, E

+
2 , E3

R7 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E2∗ E0, E

+
2 , E3

R8 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E2∗ E0, E

+
2

R9 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 E0, E

+
2

R10 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E

1
5 , E

2
5 E0, E

+
2

R11 E0, E
+
2 , E

−
2 , E

1
5 , E

2
5 E0, E

+
2

R12 E0, E
+
2 , E

−
2 E0, E

+
2

R13 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 E0, E

+
2

R14 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3 E0, E

+
2

R15 E0, E
+
1 , E

−
1 , E3 E0

R16 E0, E
+
1 , E

−
1 E0

R17 E0 E0

Table 2. Here E3 undergoes a subcritical Hopf-bifurcation and
E2∗ looses stability through supercritical Hopf-bifurcation. The
Hopf bifurcating limit cycle around E2∗ disappears through chaos.

we have made an attempt to understand the influence of Allee effect on a three
dimensional prey-predator model consisting with two prey and one predator. In
some sense the model can be considered as a prey-predator model with generalist
predator also as the predator can survive on any one of two prey populations. We
have introduced Allee effect in the growth equations for both the prey species and
the Allee effects are known to be additive in nature [1, 2, 21].

Firstly we admit that the inclusion of Allee effects in the growth equations of both
the prey species makes the mathematical analysis quite difficult and in most of the
cases we are unable to find explicit conditions for stability of equilibrium point(s)
and thresholds for various local bifurcations. However, with the help of numerical
simulations we have explored the rich dynamics exhibited by the model by consid-
ering the Allee effect parameters as bifurcation parameters. In case of the three
dimensional model we have considered here, the trivial equilibrium point is always
stable as the basin of attraction of the extinction steady-state is a non-empty set
under any choice of parameter values (this is clear from Table-1 and Table-2). All
possible local and global bifurcation scenarios are presented in two schematic bifur-
cation diagrams, where we have used schematic diagrams as some of the bifurcation
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Figure 5. Schematic bifurcation diagram for the model (5) in
α1 α2-parametric space. Transcritical bifurcation curves (violet
and magenta), saddle-node bifurcation curve(s) (black, blue and
cyan), Hopf-bifurcation curve (yellow and green) and the red curve
for the first period doubling bifurcation for limit cycle divide the
parametric space into sixteen regions (R1 → R16) and three more
regions R4A, R5AR6A. Point marked in black colour is Bogdanov-
Takens bifurcation point, point of tangency of transcritical bifur-
cation curve for E∗ and the saddle node bifurcation curve for E5

are marked with a blue dot and the point of tangency transcritical
bifurcation curve and the saddle node bifurcation curve for E∗ is
marked with a red dot. Stability properties of various equilibria
with different parametric regions are summarized at Table-1.

curves are very close to each other when we plot them against actual parameter
values. Another important observation is the suppression of chaos due to the Allee
effects in prey growths as we have observed chaotic dynamics for a short range of
values for the Allee effect parameter. However the appearance and disappearance
of chaos is not only due to period-doubling and reverse period-doubling bifurcations
rather we have observed the appearance of peak adding bifurcation also. Hence we
can say that Allee effects in prey growths can suppress the chaotic dynamics and
the route to chaos is different from the model without Allee effect.

Negative growth rate of prey population at their low population density results
in the extinction of one or more species depending upon the strengths of various
interactions as well as the initial population densities. However with the increased
strength of Allee effect on any one or both the prey population always drives the
system towards total extinction. Our claim is based upon the stability of extinction
steady-state in the regions R15, R16, R17 in Fig. 2 and in the regions R14, R15,
R16 in Fig. 4. All the populations coexist at their steady-state or exhibit oscil-
latory/aperiodic coexistence when the strengths of Allee effects are not very high
and of course depending upon the initial population densities. Another interesting
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Figure 6. Bifurcation diagram with respect to the parame-
ter α2, other parameter values are α = 1, α1 = 0.005, β =
1.5, β1 = 2, β2 = 2, β3 = 1, γ = 1, d = 0.5, µ = 1, ε =
10. α2 ∈ [0.05423, 0.056], [0.056, 0.0642] and [0.0643, 0.07] cor-
respond to regions R4R5 and R6 respectively. x-components of
E0, E3, E5, E1∗, E2∗ are marked in blue, green, red, magenta,black
colours respectively Fig 5. Continuous line represents stability of
concerned equilibrium point when α2 decreases. E2∗ loses stabil-
ity through Hopf-bifurcation at α2 ≡ α2h = 0.0642, first period
doubling occurs at α2 = 0.0577, chaotic dynamics is observed for
α2 ∈ [0.05423, 0.056].

feature is the appearance of tri-stability for a range of parameter values. Fig. 3
shows that E0, E3 and E2∗ are stable for α1 < α1H , we see the stability of E0 and
E3 and oscillatory or aperiodic coexistence of three species for α1H < α1 < α1.
Here α1 = α1H is the Hopf-bifurcation threshold and chaotic dynamics disappears
through crisis at α1. In order to visualize the existence of chaotic regime we have
plotted the bifurcation diagram for a short range of values of α1 but for large α1

we find extinction of one or more species. Similar argument holds for Fig. 5. In
summary, the introduction of Allee effects in both the prey population induces rich
dynamics due to appearance of various equilibrium points and their change in sta-
bility behaviors due to number of local and global bifurcations. Survival of three
species is solely dependent upon the strengths of inter- and intra-specific interac-
tions as well as the initial population densities. It is important to mention here that
the conclusions are based upon a relatively simple model, as the consumption of
prey by the predator is assumed to follow the law of mass action. Our future goal
will be to examine dynamics of similar or other type of models with a saturating
functional response as well as predator dependent functional responses.

Acknowledgments. We are grateful to the anonymous referees for their valuable
comments towards improving our manuscript.
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Region Feasible Equilibria Attractors

R1 E0, E
+
1 , E

−
1 , E3 E0, E3

R2 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3 E0, E

+
2 , E3

R3 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 E0, E

+
2 , E3

R4 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E1∗, E2∗ E0, E

+
2 , E3, E2∗

R5 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E0, E

+
2 , E3 & stable limit

E1∗, E2∗ cycle around E2∗

R6 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E0, E

+
2 , E3

E1∗, E2∗

R7 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E2∗ E0, E

+
2 , E3

R8 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E2∗ E0, E

+
2

R9 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 E0, E

+
2

R10 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E

1
5 , E

2
5 E0, E

+
2

R11 E0, E
+
2 , E

−
2 E0, E

+
2

R12 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 E0, E

+
2

R13 E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3 E0, E

+
2

R14 E0, E
+
1 , E

−
1 , E3 E0

R15 E0, E
+
1 , E

−
1 E0

R16 E0 E0

R6A E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E1∗, E2∗ E0, E

+
2

R5A E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E0, E

+
2 & stable limit

E1∗, E2∗ cycle around E2∗

R4A E0, E
+
1 , E

−
1 , E

+
2 , E

−
2 , E3, E

1
5 , E

2
5 , E1∗, E2∗ E0, E

+
2 , E2∗

Table 3. Here E3 undergoes a subcritical Hopf-bifurcation and
E2∗ looses stability through supercritical Hopf-bifurcation. The
Hopf bifurcating limit cycle around E2∗ disappears through chaos.
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