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Abstract. A Filippov epidemic model is proposed to explore the impact of
capacity and limited resources of public health system on the control of epi-
demic diseases. The number of infected cases is chosen as an index to represent
a threshold policy, that is, the capacity dependent treatment policy is imple-
mented when the case number exceeds a critical level, and constant treatment
rate is adopted otherwise. The proposed Filippov model exhibits various local
sliding bifurcations, including boundary focus or node bifurcation, boundary
saddle bifurcation and boundary saddle-node bifurcation, and global sliding
bifurcations, including grazing bifurcation and sliding homoclinic bifurcation
to pseudo-saddle. The impact of some key parameters including the threshold
level on disease control is examined by numerical analysis. Our results suggest
that strengthening the basic medical conditions, i.e. increasing the minimum
treatment ratio, or enlarging the input of medical resources, i.e. increasing
HBPR (i.e. hospital bed-population ratio) as well as the possibility and level
of maximum treatment ratio, can help to contain the case number at a rel-
atively low level when the basic reproduction number R0 > 1. If R0 < 1,
implementing these strategies can help in eradicating the disease although the
disease cannot always be eradicated due to the occurring of backward bifurca-
tion in the system.

1. Introduction. Emerging and reemerging infectious disease, for instance, the
2003 severe acute respiratory syndrome (SARS) [27, 19], the 2009 H1N1 influenza
epidemic [22, 38, 44], Ebola virus disease in west Africa [42, 23] and Zika virus
[2] have become major causes of mortality and morbidity in emergencies, where
collapsing health service and disease control programmes, poor access to health
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care, interrupted supplies and logistics are often the cruel reality. Global public
health systems of surveillance and response are used to fighting to curb infectious
diseases by controlling it at source [30] or slowing down its development course
[20, 5]. An efficient way to containing a disease during an outbreak is to provide
as much as possible medical resources, including sufficient medicine, health care
workers, hospital beds and etc. To explore the impact of limited medical resources
on the control of infectious diseases and evaluate the possible control strategies,
most of the available compartmental models either assume a constant treatment
rate or adopt medical resources dependent continuous functions to represent the
treatment rates [41, 45]. However, change of the level of available medical resources
were not well modeled in these models since usually the allocation and change of
medical resources do not occur in a continuous way.

As WHO statistic information system referred, in-patient beds density, as one of
the available indicators, can be adopted to access the level of health service delivery
[43]. Hence, the number of available hospital beds per 10000 population, termed
as hospital bed-population ratio (HBPR), is always used by the public health as
an approach of capturing availability of health services delivery. The variations
of the level of infected cases between communities and hospitals usually make it
difficult for the public health to evaluate and decide the number of hospital beds
needed to control the epidemic [1]. Setting sufficient beds to cover peak demands
usually leads to quite a lot of beds idle at other times while reducing hospital beds to
improving average bed occupancy level results in frequent overflows and congestions
within hospital. Hence, quantifying the impact of the number of hospital beds for
epidemics control remains a challenge and is therefore an important issue for public
health.

Recently, there have been modeling studies dedicated to exploring the impact of
the number of hospital beds on the future containing of disease [35, 24, 33, 43, 34].
Some have modeled the impact by embedding a continuous function in terms of the
number of hospital beds into the recovery rate [35, 34]. In fact, the medical resources
used to contain the disease are always limited and the policy to intervene the disease
varies depending on the number of infected individuals [32]. In particular, treatment
rate depends not only on the available resources of health system to the public
but also on the total infected individuals seeking treatment. On one hand, the
capacity of the hospital settings, especially the number of health workforce and the
facilities of the hospital are vital factors for efficient treatment of infection. On
the other hand, the proportion of infected individuals getting access of the medical
establishment to cure may change. Therefore, a considerable issue is to model and
study the impact of these factors on the control of epidemic disease.

In this paper, we choose the number of infected cases as an index to propose a
threshold policy [37, 44, 31, 28] (of course, we could adopt the size of population
who are exposed to the virus or the total number of susceptible and infected individ-
uals). In this case, the control strategy is formulated by using a piecewise smooth
function which depends on the density of infected individuals. The purpose of this
paper is then to formulate a novel mathematical model subject to the threshold
policy to study a Filippov system [21, 39, 8, 4]. In particular, when the number of
infected individuals is below the threshold level, the per capita treatment rate will
be a constant, representing the maximum per capita treatment rate; while above
the level, a weaker treatment policy will be adopted by incorporating the impact of
the capacity and limited resources of the health care system in terms of the HBPR



FILIPPOV EPIDEMIC MODEL WITH LIMITED HOSPITAL BEDS 741

and depends on the number of the infected individuals. Filippov systems have been
widely investigated [7, 11, 3, 6], especially the sliding mode bifurcations in generic
Filippov systems [17, 26, 18, 29] and the numerical methods for them [15, 13]. This
type of systems have gained considerable attention in recent years since they not
only behave differently from smooth systems but also found very important applica-
tions in many fields, such as pest control [37], power control in circuit [9],control of
ecological systems [14], evolutionary biology [12, 10], forest fire [16] and mechanical
systems with friction [25], and a few work found in the disease controlling[32, 40].
In [32], two parameters are adopted to model the treatment proportion for selective
treatment measure due to the limited medical resources while we will model the
hospital bed-population ratio by a parameter in this work.

The main purpose of this paper is to explore the impact of hospital bed-population
ratio (i.e. HBPR) on disease control using a Filippov system. Some natural ques-
tions to ask include how does the level of infected cases combined with the HBPR
affect the existence of the sliding modes, pseudo-equilibrium and sliding bifurcation?
Further, how does the threshold policy affect the course of disease transmission and
control outcome? To address these questions, we will focus on the sliding mode dy-
namics as well as the rich sliding bifurcations with variation of the threshold level.
The rest of this paper is organized as follows. In Section 2, a piecewise defined
treatment programme, which is termed as switching policy in control literature, is
proposed to incorporate the level of infected cases and the impact of HBPR into the
epidemic model. The sliding mode as well as all possible critical points are examined
in Section 3. In Section 4, we study the sliding bifurcation including local sliding
bifurcation and global sliding bifurcation. In Section 5, we investigate the impact
of some key parameters on the evolution of the epidemic disease. Some concluding
remarks and biological interpretations will be presented in the last section.

2. SIS Filippov model with switching treatment programme. As men-
tioned in the introduction, the medical resources can not always meet the increasing
treatment demand of the infecteds. As WHO referred, we adopt the hospital bed-
population ratio (i.e. HBPR and denoted by b) to evaluate the amount of medical
resources in the following. Due to the limited medical resources, the treatment
policy may vary as the amount of infecteds varies, so it is appropriate to set the
number of infected individuals as the index. It is reasonable to assume that when
the amount of infecteds is below a certain threshold level (denoted by Ic), the max-
imum per capita treatment rate (denoted by h1) is in effect due to the relatively
sufficient medical resources. As the number of infected individuals becomes larger
and larger and once it exceeds Ic, only a certain ratio of infectious people can get
treatment due to the insufficiency of the available medical resource. Note that the
available treatment ratio may depend on the HBPR and the number of infected
individuals. In particular, the treatment ratio decreases to h0 as the amount of
infecteds increases on one hand. On the other hand, the treatment ratio increases
as HBPR increases. Thus we adopt a saturated function to represent the treatment
policy, i.e. H1(b, I) = h0 + (h1 − h0)b/(b + I) for this scenario. It is clear that
H1(b, I) is bounded by the maximum per capita treatment rate h1 and minimum
per capita treatment rate h0.

We divide the population into two classes: susceptible (S) and infected (I) indi-
viduals and formulate an SIS epidemic model by considering the effect of disease-
induced mortality, which is important and appropriate for some epidemic diseases,
such as tuberculosis, AIDS and plague. Then the model takes the following form
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dS

dt
= Λ− µS − βSI

S + I
+H(I, ǫ)I,

dI

dt
=

βSI

S + I
− µI − νI −H(I, ǫ)I

(1)

with

H(I, ǫ) = ǫH1(b, I) + (1− ǫ)h1 (2)

and

ǫ =

{

0, σ(S, I, Ic) < 0,

1, σ(S, I, Ic) > 0,
(3)

where Λ represents the recruitment rate, µ is the natural death rate, β denotes the
basic transmission rate, ν stands for disease-induced mortality rate, the function
H(I, ǫ) represents the per capita treatment rate. σ(S, I, Ic) is a given function which
may depend on the number of susceptible individuals, infected individuals and the
threshold value Ic. But here we choose a particular form for function σ(S, I, Ic), i.e.
σ(S, I, Ic) = σ(I, Ic) = I − Ic, which indicates the amount of infected individuals is
the index to guide which treatment policy works for different cases. Further,H1(b, I)
is increasing as a function of the parameter b, where b represents the HBPR and
is used to characterize the impact of the capacity as well as the limited hospital
resources. A detailed examination of the property on the treatment rate H1(b, I)
can be found in [35].

In particular, the function H(I, ǫ) can be rewritten as the following form

H(I, ǫ) =







h1, I < Ic,

h0 + (h1 − h0)
b

b + I
, I > Ic.

Model system (1) with (2) and (3) is a piecewise smooth dynamical system (PWS)[3].
In particular, it subjects to a threshold value and is indeed a so-called Filippov sys-
tem [21], i.e. systems of ordinary differential equations (ODES) with non-smooth
right-hand sides.

Denote Z = (S, I) and

X1(S, I) =

(

Λ− µS − βSI

S + I
+ h1I,

βSI

S + I
− µI − νI − h1I

)T

=̇ (f11(S, I), f12(S, I))
T ,

X2(S, I) =

(

Λ− µS − βSI

S + I
+

[

h0 + (h1 − h0)
b

b+ I

]

I,

βSI

S + I
− µI − νI −

[

h0 + (h1 − h0)
b

b+ I

]

I

)T

=̇ (f21(S, I), f22(S, I))
T ,

then system (1) with (2) and (3) can be written as the following Filippov system

dZ

dt
=

{

X1(S, I), σ(I, Ic) < 0
X2(S, I), σ(I, Ic) > 0.

(4)

The attraction region of system (4) is Ω = {(S, I) ∈ R2
+ : S + I ≤ Λ/µ}. For

system (4), σ = 0 defines the switching manifold

Σ = {(S, I) : I = Ic, (S, I) ∈ R2
+},
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which splits R2
+ into two parts:

G1(S, I) = {(S, I) : I < Ic, (S, I) ∈ R2
+},

G2(S, I) = {(S, I) : I > Ic, (S, I) ∈ R2
+}.

For convenience, system (4) restricted in region Gi is denoted as system SGi
, i =

1, 2. Different from the smooth counterparts, system (4) possesses more than one
equilibria [29, 26], which play an important role in determining complex dynamics
of the system.

Definition 2.1. Regular equilibrium of system (4) refers to those equilibria located
in the region Gi(i = 1, 2), which consists of real equilibrium and virtual equilibrium.

A real equilibrium Z∗ of Filippov system (4) (denoted by Zr
∗) refers to one which

is an equilibrium of subsystem SGi
(i = 1, 2) and locates in the corresponding region

Gi, i.e., it satisfies

X1(Z∗) = 0, σ(Z∗) < 0

or

X2(Z∗) = 0, σ(Z∗) > 0.

A virtual equilibrium Z∗ of Filippov system (4) (denoted by Zv
∗ ) refers to one

which is an equilibrium of subsystem SGi
(i = 1, 2) but locates in the opposite region

Gj(j = 1, 2 and j 6= i), i.e., it satisfies

X1(Z∗) = 0, σ(Z∗) > 0

or

X2(Z∗) = 0, σ(Z∗) < 0.

Definition 2.2. A boundary equilibrium Z∗ of Filippov system (4) refers to one
which is an equilibrium of subsystem SGi

(i = 1, 2) but locates on the discontinuity
boundary Σ, i.e. it satisfies

X1(Z∗) = 0, σ(Z∗) = 0

or

X2(Z∗) = 0, σ(Z∗) = 0.

Definition 2.3. A tangency point Z∗ of system (4) refers to a point Z∗ ∈ Σ (i.e.
σ(Z∗) = 0) and X1σ(Z∗) = 0 or X2σ(Z∗) = 0, where Xiσ(Z)(i = 1, 2) stands for
the Lie derivative of σ with respect of the vector field Xi at the point Z,i.e.

Xiσ(Z) = 〈σ(Z), Xi(Z)〉.
We examine the dynamics of the subsystems SG1

and SG2
separately in the

following.
Dynamics of subsystem SG1

. Let ri = µ+ ν + hi(i = 1, 2). The Jacobian of
system SG1

reads

J1(S, I) =









−µ− βI2

(S + I)2
− βS2

(S + I)2
+ h1

βI2

(S + I)2
βS2

(S + I)2
− r1









.

If we denote

δ1 = (tr(J1(S1, I1)))
2 − 4det(J1(S1, I1))

and the dynamics of system SG1
can be summarized in the following theorem.
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Theorem 2.4. There is a disease-free equilibrium E0 = (Λ/µ, 0) for system SG1
,

which is a stable node for R0 < 1 and a saddle for R0 > 1 with R0 = β/r1. The
endemic equilibrium E1 = (S1, I1) exists if R0 > 1 with

S1 =
r1I1
β − r1

, I1 =
(β − r1)Λ

µr1 + (µ+ ν)(β − r1)
,

which is a stable node for δ1 ≥ 0 and a stable focus for δ1 < 0. No endemic
equilibrium exists for R0 = 1.

Dynamics of subsystem SG2
. Denote

a0 = βµ+ ν(β − r0), a1 = bβ(µ+ ν) + Λ(r0 − β)− bνr1, a2 = bΛ(r1 − β)

and

C0 = [βb(µ+ ν)− Λ(r0 − β)− bνr1]
2 + 4βµbΛ(h0 − h1).

One can verify that there are two possible endemic equilibria of system SG2
if C0 > 0

and a0 > 0, denoted by Ei = (Si, Ii), i = 2, 3, with

Si =
Λ− (µ+ ν)Ii

µ
, I2 =

−a1 +
√
C0

2a0
, I3 =

−a1 −
√
C0

2a0
.

Only one endemic equilibrium E∗ = (S∗, I∗) or E4 = (S4, I4) exists if C0 = 0 or
a0 = 0, where

S∗ =
Λ− (µ+ ν)I∗

µ
, I∗ =

−a1
2a0

,

S4 =
Λ− (µ+ ν)I4

µ
, I4 =

bΛ(β − r1)

bν(r0 − r1) + Λ(r0 − β)
.

We address the existence of equilibria for system SG2
in detail according to whether

the basic reproduction number R0 is greater than unity and summarize the result
as follows.

Theorem 2.5. The disease-free equilibrium E0 always exists for system SG2
while

the existence of possible endemic states is given in Table 1.

Table 1. Existence of endemic equilibria for system SG2

Range of parameter values Existence of endemic equilibria

R0 > 1
−a1+

√
C0

2a0
< Λ

µ+ν
E2

R0 < 1

a0 > 0, a1 < 0, C0 > 0,
−a1+

√
C0

2a0
< Λ

µ+ν
E2, E3

a0 > 0, a1 < 0, C0 = 0,
−a1
2a0

< Λ
µ+ν

E∗

a0 = 0, a1 < 0,
−a2
a1

< Λ
µ+ν

E4

C0 < 0 Nonexistence

a0 > 0, a1 > 0, C0 ≥ 0 Nonexistence

a0 = 0, a1 ≥ 0 Nonexistence

R0 = 1
R1 > 1,

−a1
2a0

< Λ
µ+ν

E2

R1 ≤ 1 Nonexistence
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The disease-free equilibrium E0 is a node for R0 < 1 and it is a saddle for R0 > 1.
To determine the type of the endemic equilibria, we initially compute the Jacobian
of system SG2

as follows

J2(S, I) =









−µ− βI2

(S + I)2
− βS2

(S + I)2
+

(h1 − h0)b
2

(b + I)2
+ h0

βI2

(S + I)2
βS2

(S + I)2
− (h1 − h0)b

2

(b+ I)2
− r0









.

For any endemic equilibrium E = (S, I), we denote

tr(J2(S, I)) =
(−β + r0 − µ)I

2
+ 2b(r1 − β − µ)I + (−µ− β + r1)b

2

(b+ I)2
,

det(J2(S, I)) =
µ
{

[(β − r0)Λ + νb(r1 − r0)]I
2
+ 2Λb(β − r1)I + Λb2(β − r1)

}

(Λ− νI)(b + I)2
.

One can get that the unique endemic equilibrium E2 is a stable focus or node if
R0 > 1.

For the coexistence of E2 and E3, note that det(J2(S∗, I∗)) = 0 and

sgn
(

det
(

J2(S, I)
)

)

= sgn
(

AI
2
+ 2Λb(β − r1)I + Λ(β − r1)b

2
)

with

A =
(

(β − r0)Λ + νb(β − r0)− νb(β − r1)
)

> 0,

then

det
(

J2(S2, I2)
)

> 0, det
(

J2(S3, I3)
)

< 0.

This indicates that E3 is a saddle while E2 and E∗ are anti-saddles. Further dis-
cussion yields

tr
(

J2(S2, I2)
)

=
(ν + h0 − β)I22 + 2b(ν + h1 − β)I2 + (ν + h1 − β)b2

(b+ I2)2
.

It follows that

sgn
(

tr
(

J2(S2, I2))
)

=sgn
(

(ν + h0 − β)I22 + 2b(ν + h1 − β)I2 + (ν + h1 − β)b2
)

=sgn
{[

a1
(

2a0bp1 − a1p0
)

+ 2a0
(

a2p0 − a0b
2p1
)

]

−
(

2a0bp1 − a1p0
)
√

C0

}

,

where p0 = β − ν − h0, p1 = β − ν − h1. Denote

B = a1
(

2a0bp1 − a1p0
)

+ 2a0
(

a2p0 − a0b
2p1
)

and

δ2 =
[

tr(J2(S2, I2))
]2

− 4det(J2(S2, I2)).

Then one can verify that E2 is a node for δ2 ≥ 0 while it is a focus for δ2 < 0. The
further conclusion is as following:

(i) E2 is stable if one of the following conditions holds

• β ≥ ν + h1;

• ν + h0 < β < ν + h1,
p1
p0

>
a1
2a0b

, (2a0bp1 − a1p0)
2C0 > B2.
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(ii) E2 is unstable if p1/p0 6= a1/(2a0b), (2a0bp1−a1p0)
2C0 6= B2 and both of the

above conditions do not hold.
For the existence of endemic equilibrium E4, it follows from

det
(

J2(S4, I4)
)

=
µ(β − r1)C

(bν + Λ)2(β − r0)2(h1 − h0)
> 0,

tr
(

J2(S4, I4)
)

= (β − r0 − µ)−
[

bν(h0 − h1) + Λ(r0 − β)
]2

(h1 − h0)(Λ + bν)2
< 0,

where

C = −µνβb2(h1 − h0)
2 + 2bµβΛ(r0 − β)(h1 − h0)− Λ2(r0 − β)3,

we conclude that E4 is a stable node or stable focus.

Theorem 2.6. (i) If R0 > 1, the endemic equilibrium E2 is a stable node or focus
for subsystem SG2

.
(ii) If there are two endemic equilibria E2 and E3, then E3 is a saddle while E2

is an anti-saddle.
(iii) If only one endemic equilibrium E∗ exists for the system, it appears as a

stable node or stable focus.

By implementing similar discussion as in [35], we obtain the rich dynamics of
system SG2

as the parameters vary. Here we omit the details and summarize the
main result as follows.

Theorem 2.7. (i) If there are two endemic equilibria E2 and E3 for system SG2
,

Hopf bifurcation occurs at E2 if

ν + h0 < β < ν + h1,
p1
p0

>
a1
2a0b

, (2a0bp1 − a1p0)
2C0 = B2.

(ii) Bogdanov-Takens bifurcation occurs if R0 < 1, a0 > 0, a1 < 0, C0 = 0,−a1/
(2a0) < Λ/(µ+ ν) and

ν + h0 < β < ν + h1,
p1
p0

>
a1
2a0b

, (2a0bp1 − a1p0)
2C0 = B2.

3. Sliding mode and equilibria. To establish the dynamics given by the Filippov
system (4), the first step is to rigorously define the local trajectory through a point
Z ∈ R2

+, especially those trajectories initiating from Z ∈ Σ and it becomes the
focus of this section. Those local trajectories initiating from the subregions G1 and
G2 are defined by the subsystems SG1

and SG2
as usual. To extend the definition

of a trajectory to the discontinuous boundary Σ, it is necessary to split Σ into three
distinct parts depending on whether the vector field points towards it [21, 25].

• Attracting sliding mode Σs, where the vector fields points toward Σs in both
G1 and G2.

• Repulsing sliding mode Σe, where the vector fields points away from Σe in
either of G1 and G2.

• Transversal sliding mode Σc, where the vector fields points toward Σc in
G1(G2) and away from Σc in G2(G1).

Existence of sliding mode. Indeed, no attracting sliding mode region exists for
Filippov system (4) due to the mechanisms of our model. Solving Xiσ(I, Ic) =
0 (i = 1, 2) yields

Sc1 =
(µ+ ν + h1)Ic
β − (µ+ ν + h1)

, Sc2 =
[(b + Ic)(µ+ ν + h0) + b(h1 − h0)]Ic

(b+ Ic)(β − (µ+ ν + h0))− b(h1 − h0)
.
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The repulsing sliding mode region takes the form

Σe = {(S, Ic) : Sc2 ≤ S ≤ Sc1}=̇Σe1

for R0 > 1 and
Σe = {(S, Ic) : S ≥ Sc2}=̇Σe2

for R0 < 1, β > r0 and Ic > Ic0, where Ic0 = b(r1 − β)/(β − r0). For R0 = 1, the
sliding mode region is also Σe2. On the sliding mode region Σe1 or Σe2 , it follows
from Filippov’s convex method [21, 39] that the sliding mode dynamics reads

dS

dt
= −µ

[

S − Λ− (µ+ ν)Ic
µ

]

=̇Fs(S, Ic). (5)

Equation (5) defines a one dimensional dynamical system on Σe1 or Σe2.
We will define the type of equilibrium on the repulsing sliding mode Σe [29],

which is special for Filippov system and plays an important role in the analysis of
global behavior.

Definition 3.1. A point Z∗ ∈ Σe is called a pseudo-equilibrium of Filippov system
(4) if it satisfies Fs(Z∗) = 0, which suggests a pseudo-equilibrium is indeed an
equilibrium of the sliding mode dynamics. We call pseudo-saddle to any pseudo-
equilibrium Z∗ ∈ Σe such that F ′

s(Z∗) < 0.

The following definition gives a more detailed characterization of a tangency
point.

Definition 3.2. A point Z∗ ∈ Σ is termed as a fold tangency point if one of the
following conditions hold.

(a) X1σ(Z∗) = 0, X2
1σ(Z∗) 6= 0, X2σ(Z∗) 6= 0.

(b) X2σ(Z∗) = 0, X2
2σ(Z∗) 6= 0, X1σ(Z∗) 6= 0.

Furthermore, if X2σ(Z∗) > 0 in possibility (a) or X1σ(Z∗) < 0 in possibility (b),
then Z∗ ∈ ∂Σe and it appears as a repulsing sliding fold tangency.

For case (a), we call a fold tangency point visible (invisible) if the trajectories
of subsystem SG1

initiating from Z∗ remains in region G1(G2) for any sufficiently
small period. It follows that a fold tangency point is visible (invisible) if we further
have X2

1σ(Z∗) < 0(X2
1σ(Z∗) > 0) in possibility (a). Similar definitions hold for case

(b).

An equilibrium Ss =
(

Λ− (µ+ ν)Ic
)

/µ exists for the sliding mode dynamics (5),
which suggests a possible pseudo-equilibrium Es = (Ss, Ic) exists for system (4) by
Definition 3.1. The feasibility of pseudo-equilibrium for system (4) in different cases
depends on whether Es lies in the domain of repulsing sliding mode region Σe1 or
Σe2.

Note that

Ss − Sc1 =
(I1 − Ic)

[

βµ+ ν(β − r1)
]

µ(β − r1)
,

we have
Ss ≤ Sc1 ⇐⇒ Ic ≥ I1

for R0 > 1. It follows from

Ss − Sc2 =

[

βµ+ ν(β − r0)
]

I2c +
[

bβ(µ+ ν)− Λ(β − r0)− bνr1
]

Ic − bΛ(r1 − β)

−µ(β − r0)(Ic − Ic0)

that Ss ≥ Sc2 provided one of the following set of inequalities satisfies.

• R0 > 1, Ic ≤ I2;
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• R0 < 1, β > r0, Ic > Ic0, I3 ≤ Ic ≤ I2;
• R0 = 1, Ic < Ic0.

Then we conclude that the pseudo-equilibrium Es is feasible if one of the following
conditions holds.

(a) R0 > 1, I1 ≤ Ic ≤ I2;
(b) R0 < 1, β > r0, Ic > Ic0, I3 ≤ Ic ≤ I2;
(c) R0 = 1, Ic < Ic0.
Equilibria. We address all possible critical points for system (4) as follows.
Regular Equilibrium. In terms of Definition 2.1, the disease-free equilibrium E0

is real and independent of the size of threshold level Ic; the endemic equilibrium E1

is real provided Ic > I1 while it is virtual provided Ic < I1; the endemic equilibrium
Ei(E∗) is real for Ic < Ii(Ic < I∗) while Ei(E∗) is virtual for Ic > Ii(Ic > I∗),
i = 2, 3, 4.

Boundary Equilibrium. There are up to five equilibria of Filippov system (4) col-
liding with the switching boundary Σ at distinct moments, so five possible boundary
equilibria exist according to Definition 2.2, i.e.

Eb
1 =

(

r1Ic
β − r1

, Ic1

)

, Eb
i =

(

Λ− (µ+ ν)Ic
µ

, Ici

)

, i = 2, 3, 4, 5

if Ic = Ici, Ici = Ii for E
b
i with i = 1, 2, 3, 4 and Ic = Ic5, Ic5 = I∗ for Eb

5.
Pseudo-equilibrium. Only a pseudo-equilibrium Es is feasible if one of the fol-

lowing conditions satisfies.
(a) R0 > 1, I1 ≤ Ic ≤ I2;
(b) R0 < 1, β > r0, Ic > Ic0, I3 ≤ Ic ≤ I2;
(c) R0 = 1, Ic < Ic0.
Furthermore, the pseudo-equilibrium Es is a pseudo-saddle if it is defined well

on the sliding mode region Σe1 or Σe2.
Tangency point. By Definition 2.3, two tangency points coexist for system (4) if

R0 > 1, represented by

Et
1 = (Sc1, Ic), Et

2 = (Sc2, Ic),

and there is one tangency point Et
2 if R0 < 1, β > r0, Ic > Ic0 or R0 = 1.

According to Definition 3.2, fold tangency points can be classified as visible and
invisible ones, so we examine the type of tangency points Et

i (i = 1, 2) as follows.
For Et

1, it follows from



















sgn
(

X2σ(E
t
1)
)

= sgn

(

βSc1

Sc1 + Ic
− b(h1 − h0)

b+ Ic
− r0

)

= 1,

X2
1σ(E

t
1) =

βI2c
(Sc1 + Ic)2

f11(Sc1, Ic) +

[

βS2
c1

(

Sc1 + Ic
)2 − r1

]

f12(Sc1, Ic),

that

sgn
(

X2
1σ(E

t
1)
)

= sgn

(

Λ(β − r1)− µr1Ic − (µ+ ν)(β − r1)Ic
β − r1

)

,

so if Ic < I1, one gets X
2
1σ(E

t
1) > 0 and then Et

1 is invisible in such case; if Ic > I1,
one has X2

1σ(E
t
1) < 0 and then Et

1 is visible. Furthermore, since X2σ(E
t
1) > 0, the

fold tangency point Et
1 is a repulsing fold tangency.
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For the tangency point Et
2, similar argument gives















sgn
(

X1σ(E
t
2)
)

= sgn
(

(β − r1)Sc2 − r1Ic
)

= −1,

X2
2σ(E

t
2) =

βI2c

(Sc2+Ic)2
f21(Sc2, Ic)+

[

βS2
c2

(

Sc2+Ic
)2

−

(h1−h0)b2

(b+ Ic)2
−(µ+ν+h0)

]

f22(Sc2,Ic),

so

sgn
(

X2
2σ(E

t
2)
)

=sgn

{

−
[

µβ + ν(β − r0)
]

I2c +
[

Λ(β − r0)− b(βµ+ βν − r1ν)
]

Ic + Λb(β − r1)

(β − r0)Ic + b(β − r1)

}

.

(6)
There are two possibilities according to whether R0 is greater or less than unity.
If R0 > 1, one gets that Et

2 is visible for Ic < I2 and invisible for Ic > I2. If
R0 < 1, since the sliding mode region exists for β > r0 and Ic > Ic0, we focus our
examination on such case and there are the following three subcases to consider in
terms of the existence of endemic equilibrium for system SG2

. (i) For the coexistence
of two endemic equilibria E2 and E3, one gets

I3 < Ic < I2 ⇒ X2
2σ(E

t
2) > 0

according to (6), so Et
2 is visible; while we get X2

2σ(E
t
2) < 0 if Ic > I2 or Ic < I3,

so Et
2 is invisible. (ii) For the existence of endemic equilibrium E∗, if Ic 6= I∗,

we have X2
2σ(E

t
2) < 0, so Et

2 is invisible. (iii) For the nonexistence of endemic
equilibrium, we derive X2

2σ(E
t
2) < 0, so Et

2 is invisible. Moreover, it follows from
X1σ(E

t
2) < 0 that the fold tangency point Et

2 is a repulsing fold independent of the
level of threshold Ic.

Once we have examined the sliding dynamics as well as all possible critical points
for system (4), we turn to discuss the discontinuity-induced bifurcation in the follow-
ing section, which is special for Filippov system and refer to a type of bifurcations
involving structural changes in the sliding mode domain.

4. Sliding bifurcation. In this section, we focus our attention on sliding bifur-
cation, in which some sliding segment on the switching boundary is involved. Ac-
cording to [29, 17], all sliding bifurcations can be classified as local and global
bifurcations. The local sliding bifurcations include boundary equilibrium bifurca-
tion and double tangency bifurcation. Those sliding bifurcations are called global
if they involve nonvanishing cycles. Global bifurcations include grazing (touching)
bifurcation, sliding homoclinic bifurcation to pseudo-saddle, or pseudo-saddle-node
or saddle, and the sliding heteroclinic bifurcation between pseudo-saddles, etc. In
the following, we choose the threshold value Ic as a bifurcation parameter and fix
all other parameters unchanged.

4.1. Local sliding bifurcation. We initially examine the local sliding bifurca-
tion for system (4), which include boundary equilibrium bifurcation and double
tangency bifurcation. There are four distinguished boundary equilibrium bifurca-
tions, i.e. boundary node (BN), boundary focus (BF), boundary saddle (BS) and
boundary saddle-node bifurcation (BSN) [29, 26]. Further, if the boundary equilib-
rium bifurcation involves changes of the real/virtual character, it is also termed as
real/virtual equilibrium bifurcation. Double tangency bifurcation is a type of bifur-
cations triggered by the collision of two tangency points. Since the tangency points
Et

1 and Et
2 are distinct and impossible to collide for Ic > 0, no double tangency
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bifurcation will occur. Thus, in the following we are devoted to the boundary equi-
librium bifurcation, which is induced by the collision of a hyperbolic equilibrium
with the discontinuity boundary Σ. For such purpose, we introduce the following
definition [17].

Definition 4.1. A boundary equilibrium bifurcation occurs at a critical point Z∗ ∈
Σ if X1(Z∗) = 0 (or X2(Z∗) = 0) and DXi(Z∗) is invertible (i.e. det(DXi(Z∗)) 6= 0)
for i = 1, 2.

When a boundary equilibrium bifurcation occurs, we can observe two cases. One
is persistence, where a real equilibrium becomes a pseudo-equilibrium; the other is
non-smooth fold, where a real equilibrium disappears after colliding together with
a pseudo-equilibrium. Implementing a similar discussion as in [17], one gets the
conditions to distinguish between the two possible types of unfolding of a boundary
equilibrium as the parameter Ic is perturbed from the critical value. Without loss
of generality, we take the boundary equilibrium Eb

1 as an example and state the
conditions as following.

Definition 4.2. For system (4), if

det(J1(Sic1, Ic1)) 6= 0
∂σ(Ic1, Ic)

∂Ic
− J3(Sic1, Ic1)J

−1
1 (Sic1, Ic1)J4(Sic1, Ic1) 6= 0

J3(Sic1, Ic1)J
−1
1 (Sic1, Ic1)

(

X2(Sic1, Ic1)−X1(Sic1, Ic1)
)

6= 0,

a non-smooth fold is observed for

J3(Sic1, Ic1)J
−1
1 (Sic1, Ic1)

(

X2(Sic1, Ic1)−X1(Sic1, Ic1)
)

< 0

while persistence is derived at the boundary equilibrium bifurcation point for

J3(Sic1, Ic1)J
−1
1 (Sic1, Ic1)

(

X2(Sic1, Ic1)−X1(Sic1, Ic1)
)

> 0,

where J3(S, I) stands for the Jacobian of σ(I, Ic) with respect to the the state
variable (S, I), J4(S, I) represents the Jacobian of X1 with respect of the parameter
Ic, Sic1 denotes the abscissa of the boundary equilibrium Eb

1.

The similar condition can be presented for other boundary equilibria and we omit
them here.

For the case that only one endemic equilibrium E2 exists for system SG2
, there

are two boundary equilibria Eb
1 and Eb

2 for Filippov system (4). According to section
2, det(J2(E

b
2)) > 0 for R0 > 1. Further calculation yields

det(J1(E
b
1)) =

µr1I1
S1 + I1

+
(µ+ ν)βI21
(S1 + I1)2

,

det(J1(E
b
2)) =

β(µ+ ν)I22
(S2 + I2)2

+ µ

[

βS2I2
S2 + I2

+
(h1 − h0)I2

b+ I2

]

,

det(J2(E
b
1)) =

[

ν(r1 + β)2 + βµ(β − r1)
][

(β − r1)(Λ + bν) + bβµ
]2 − C

β
[

(β − r1)(Λ + bν) + bβµ
]2

with

C = βµ(r1 − r0)
[

(β − r1)
2(Λ2 + 2bνΛ) + 2bβµΛ(β − r1)

]

,

so a boundary focus (or node) bifurcation occurs for R0 > 1 when Ic passes through
the critical value Ic2. If detJ2(E

b
1) 6= 0, a boundary focus (node) bifurcation hap-

pens for R0 > 1 when Ic passes through another critical value Ic1. Indeed, a
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boundary equilibrium bifurcation is triggered by the collision of the regular equi-
librium, pseudo-equilibrium and tangency point (or two of them) as the threshold
value Ic passes through the critical level.

For boundary equilibrium Eb
1, the first three conditions in Definition 4.2 hold,

so according to Definition 4.2, the type of unfolding depends on the sign of the
following formula

sgn
(

J3(Sic1, Ic1)J
−1
1 (Sic1, Ic1)

(

X2(Sic1, Ic1)−X1(Sic1, Ic1)
)

)

=sgn

{

(h1 − h0)Ic1
b+ Ic1

[

h1 − µ− βI2c1
(Sic1 + Ic1)2

− βS2
ic1

(Sic1 + Ic1)2

]}

=sgn

{

(h1 − µ− β)r21 + 2(h1 − µ)r1(β − r1) + (h1 − µ− β)(β − r1)
2

(β − r1)2

}

=sgn
(

− 2r21 + β(r1 + ν + 2h1 − β)
)

.

Thus, a non-smooth fold occurs if

− 2r21 + β(r1 + ν + 2h1 − β) > 0, (7)

while persistence is derived if

− 2r21 + β(r1 + ν + 2h1 − β) < 0. (8)

Implementing the similar process for boundary equilibrium Eb
2, we derive that the

type of unfolding of Eb
2 is determined by

sgn
(

J3(Sic2, Ic2)J
−1
2 (Sic2, Ic2)

(

X1(Sic2, Ic2)−X2(Sic2, Ic2)
)

)

=sgn

{

(h1 − h0)Ic2

b+ Ic2

[

− h0 + µ−

(h1 − h0)b2

(b+ Ic2)2
+

βI2
c2

(Sic2 + Ic2)2
+

βS2
ic2

(Sic2 + Ic2)2

]}

=sgn

{

(µ− h0)−
b2(h1 − h0)

(b + Ic2)2
+

β
[

Λ− (µ+ ν)Ic2
]2

+ βµ2I2
c2

(Λ− νIc2)2

}

=sgn

{

(Λ−νIc2)
2
[

(−h0+β+µ)(b+Ic2)
2
−b2(h1−h0)

]

−2µβIc2(b+Ic2)
2
[

Λ−(µ+ν)Ic2
]

}

,

where Sic2 is the abscissa of boundary equilibrium Eb
2. It follows that the persis-

tence happens for β + µ ≥ h0 and

2β(b+ Ic2)
2

b2(h1 − h0)− (b+ Ic2)2(β + µ− h0)
<

(Λ− νIc2)
2

µIc2
[

Λ− (µ+ ν)Ic2
] (9)

while a non-smooth fold appears for β + µ ≥ h0 and

2β(b + Ic2)
2

b2(h1 − h0)− (b+ Ic2)2(β + µ− h0)
>

(Λ − νIc2)
2

µIc2
[

Λ− (µ+ ν)Ic2
] . (10)

If we choose the parameters as Λ = 8, µ = 0.1, β = 1.8, h0 = 0.2, h1 = 0.8, b =
5, ν = 0.6, Ic = 8.2934(a), Ic = 6.6667(b), Ic = 9.2934(c), Ic = 9.7934(d) and keep
Ic as a bifurcation parameter, Fig.1 shows the boundary node bifurcation occurs
when the threshold parameter Ic passes through the critical value Ic1 or Ic2, where
Ic1 = 6.6667, Ic2 = 9.2934, det(J2(E

b
1)) = 0.011. In Fig.1, the red solid circle points

(i.e. Er
1 , E

r
2) stand for the real endemic equilibria while the red hollow ones (i.e.

Ev
2 ) denote the virtual equilibria. The hollow square dots (i.e. E0) represent the

unstable disease-free equilibria and the solid diamond dot (i.e. Es) denote the
pseudo-equilibria. The stable (unstable) manifolds of the pseudo-saddle Es are
depicted by blue (green) lines. The grey thick solid lines are used to show the
repulsing sliding mode region while the grey thin dashed lines are to represent the
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Figure 1. Boundary node bifurcation for Filippov system (4).

transversal sliding mode region. All the black solid lines stand for the trajectories
of system (4). In the rest of this work, unless otherwise stated, we always use these
notations.

The pseudo-saddle Es, stable node Er
1 and visible tangency point Et

1 coexist for
Ic > Ic1 and Ic = 8.2934 as shown in Fig.1(a). They collide together simultaneously
when Ic decreases and reaches the critical value Ic1, denoted by Eb

1, as shown in
Fig.1(b). In this case, Eb

1 is a pseudo-saddle with an incoming sliding orbit. Further,
since (7) holds ture, a non-smooth fold occurs, which indicates the real equilibrium
Er

1 disappears after it collides with the pseudo-equilibrium Es. However, as Ic
increases and reaches the critical value Ic2, another boundary node bifurcation
occurs, which is due to the collision of real endemic equilibrium Er

2 , the visible
tangency point Et

2 and the pseudo-equilibrium Es, denoted by Eb
2, as shown in

Fig.1(c). In such scenario, Eb
2 is also a pseudo-saddle with an incoming sliding

orbit. It is worth noting that (10) is satisfied, which implies the occurrence of non-
smooth fold in this process. In fact, as Ic increases further, the pseudo-saddle Eb

2

is superseded by an invisible tangency point Et
2 and a virtual equilibrium Ev

2 for
Ic > Ic2 and Ic = 9.7934 as shown in Fig.1(d). This shows how a catastrophic
disappearance of a stable equilibrium occurs.

Note that the endemic equilibrium E3 is a saddle provided it is feasible, so a
boundary saddle bifurcation may occur once E3 collides with the tangency point at
the critical parameter value Ic = Ic3 as shown in Fig.2. The type of unfolding of
the boundary equilibrium Eb

3 is determined by

sgn
(

J3(Sc3, Ic3)J
−1
2 (Sc3, Ic3)

(

X1(Sc3, Ic3)−X2(Sc3, Ic3)
)

)

=sgn

{

(Λ−νIc3)
2
[

(h0−β−µ)(b+Ic3)
2+b2(h1−h0)

]

+2µβIc3(b+Ic3)
2
[

Λ−(µ+ν)Ic3
]

}

,
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where Sc3 represents the abscissa of Eb
3. Then a non-smooth fold is observed if

(9) is true and persistence is derived if (10) holds. In this scenario, (10) is true
and so persistence occurs. In Fig.2(a), the virtual equilibrium Ev

3 , stable focus Er
2 ,
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Figure 2. Boundary saddle bifurcation for Filippov system (4).
Here we choose Ic as a bifurcation parameter and fix all other
parameters as follows: Λ = 5, µ = 0.08, β = 1.4, h0 = 0.3, h1 =
0.7, b = 3, ν = 0.7, Ic = 2(a), Ic = 1.1463(b), Ic = 1(c).

visible tangency point Et
2, pseudo-saddle Es and the disease-free equilibrium E0

coexist for Ic > Ic3 with Ic3 = 1.1463 and Ic = 2. As Ic decreases and passes
through the critical value Ic3, the virtual equilibrium Ev

3 , visible tangency point Et
2

and pseudo-saddle Es collide together simultaneously, denoted by Eb
3, which results

in a boundary saddle bifurcation as shown in Fig.2(b). As Ic further decreases
and Ic < Ic3, the boundary saddle Eb

3 is replaced by the visible tangency point
Et

2 and the standard saddle Er
3 , as shown in Fig.2(c) with Ic = 1. It is worth

mentioning that different monotonicity levels of Ic yield different phenomena if we
take Ic as a variable. In fact, if Ic is decreasing, we get the following variation order,
i.e. Fig.2(a) → (b) → (c), which shows how a pseudo-saddle becomes a standard
saddle. If Ic is increasing, we get the change order Fig.2(c) → (b) → (a), which
indicates the real equilibrium Er

3 turns into the pseudo-equilibrium Es in this case.
It follows from Theorem 2.2 that a unique endemic equilibrium E∗ exists for

system SG2
if R0 < 1, a0 > 0, a1 < 0, C0 = 0. In fact, E∗ is a saddle node point

of system SG2
and is actually the result of the collision of two endemic equilibria

E2 and E3. A boundary saddle node bifurcation occurs when E∗ collides with the
repulsing sliding mode region Σe2, according to [26], as shown in Fig.3(b) with
Ic = Ic5 and Ic5 = 2.5661. Saddle node point Er

∗ and invisible tangency point Et
2

coexist for Ic < Ic5, as shown in Fig.3(a). The saddle node point Er
∗ collides with

the invisible tangency point Et
2, which results in occurrence of the boundary saddle

node point Eb
2 with a sliding stable manifold as shown in Fig.3(b). If Ic > Ic5, E

b
2

is replaced by invisible tangency point Et
2 and virtual equilibrium Ev

∗ , as shown in
Fig.3(c).
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Figure 3. Boundary saddle node bifurcation for Filippov system
(4). Here we choose Ic as a bifurcation parameter and fix all other
parameters as follows: Λ = 6, µ = 0.1, β = 1.4, h0 = 0.3, h1 =
0.7834, ν = 0.6, Ic = 2(a), Ic = 2.5661(b), Ic = 3(c).

For other cases with the existence of endemic equilibrium E2, E4 or E∗, boundary
node (or focus) bifurcation occurs once the threshold parameter Ic passes through
the critical value Ic2, Ic4 or Ic5 as shown in Fig.4 (g)-(h).

4.2. Global sliding bifurcation. Now we turn to examine the bifurcations of
limit cycles of (4). Basically, there are three types of limit cycles for Filippov
system (4) [29], i.e. standard periodic cycles, sliding periodic cycles and crossing
periodic cycles. Standard periodic solutions refer to the cycles lying entirely in
region G1 or G2; sliding periodic cycles are those cycles having a sliding segment
in Σe; crossing periodic cycles represent the periodic solutions having only isolated
points in common with Σe. In what follows we address grazing bifurcation and
pseudo-homoclinic bifurcations for system (4) by choosing the threshold level Ic as
bifurcation parameter and specifying other parameters as shown in Fig.4.

Grazing bifurcation. The bifurcation that occurs once the standard piece of
a periodic cycle touches the switching boundary Σ is said to be grazing bifurcation
(or touching bifurcation) [29]. It follows from Fig.4(c) that an unstable standard
cycle exists in region G2 with Ic = 4.95. In such scenario, there are five critical
points, i.e. the real endemic equilibrium Er

2 , virtual endemic equilibrium Ev
3 , stable

disease-free equilibrium Er
0 , pseudo-equilibrium Es and visible tangency point Et

2,
two stable manifolds of the pseudo-saddle Es, denoted by the blue solid lines, and
two unstable manifolds of it, denoted by the green solid lines. As the parameter Ic
increases and reaches the value Ic = 5.03, grazing bifurcation occurs as shown in
Fig. 4(d), where the closed orbit is tangent to the repulsing sliding mode region Σe2

at the tangency point Et
2, which is a so-called crossing cycle. As Ic further increases,

the crossing cycle becomes a sliding cycle, which contains a piece of sliding segment,
as shown in Fig. 4(e) with Ic = 5.2.

It is worth noting that local sliding bifurcation happens at the critical threshold
value Ic3, i.e. real/virtual equilibrium bifurcation or boundary saddle bifurcation,
before the occurrence of grazing bifurcation, as shown in Fig. 4(a)-(c) with Ic3 =
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4.7844. A real endemic equilibrium Er
3 and invisible fold tangency point Et

2 coexist
as shown in Fig. 4(a) with Ic < Ic3 and Ic = 4, where Er

3 is a saddle. With the
increasing of Ic and Ic = Ic3, the saddle point Er

3 collides with tangency point Et
2

and becomes boundary saddle Eb
3, which results in boundary saddle bifurcation,

where Eb
3 possesses a stable sliding manifold as shown in Fig.4(b). If we further

increase Ic, the boundary saddle disappears and is replaced by the tangency point
Et

2, pseudo-saddle Es and virtual equilibrium Ev
3 . This process shows how a real

equilibrium becomes a virtual equilibrium.
Bifurcation of a sliding homoclinic orbit to pseudo-saddle. If a pseudo-

equilibrium of system (4) is a pseudo-saddle, it can have a sliding trajectory which
initiates and returns back to it at certain threshold parameter values. This is
indeed the so-called sliding homoclinic orbit. If a sliding cycle collides with such
a pseudo-saddle, a sliding homoclinic bifurcation occurs as shown in Fig.4(e)-(g).
It follows from Fig.4(e) that a sliding cycle, two pieces of stable manifolds and
unstable manifolds of the pseudo-saddle Es coexist with Ic = 5.2. As Ic increases
and reaches about 6.009782, the trajectory departing from the tangency point Et

2

becomes the stable manifold of the pseudo-saddle and the sliding cycle collides with
the pseudo-saddle Es as shown in Fig.4(f), where the sliding cycle is replaced by a
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Figure 4. Local and global sliding bifurcations for Filippov sys-
tem (4). We select Ic as a bifurcation parameter and fix all other
parameters as follows: Λ = 8, µ = 0.1, β = 1.8, h0 = 0.2, h1 =
2, b = 3.28, ν = 0.6, Ic = 4(a), Ic = 4.7844(b), Ic = 4.95(c), Ic =
5.03(d), Ic = 5.2(e), Ic = 6.009782(f), Ic = 6.3(g), Ic = 6.8556(h).
Here the black thick solid line represents a periodic cycle while the
blue thick solid line stands for the homoclinic cycle.
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Figure 4. Continued.

sliding homoclinic orbit. As Ic further increases, the sliding homoclinic orbit breaks
and no periodic orbit exists as shown in Fig.4(g). If Ic continues to increase and
passes through Ic2 with Ic2 = 6.8556, a local sliding bifurcation (i.e. boundary node
bifurcation) occurs as shown in Fig.4(h).

It follows from Fig.4 that as the threshold level increases from 4 to 6.8556, Filip-
pov system (4) exhibits the interesting local and global sliding bifurcations sequen-
tially, i.e. boundary saddle bifurcation → grazing bifurcation → sliding homoclinic
bifurcation → boundary node bifurcation. This illustrates a series of rich dynamics
and suggests that the control outcomes may be sensitive to the threshold value.

5. Impact of interventions of Filippov system (4). One of our purposes in
this study is to seek better strategies for curbing the spread of diseases, and to
examine when and how to implement the control measure to contain the number of
infected individuals to be less than some acceptable level if it is almost impossible
to eradicate an infectious disease. An efficient way is to reduce the level of infected
cases in steady state as small as possible. To realize this goal, we will examine the
impact of parameters associated with interventions on the dynamics, especially the
equilibrium level of infected individuals of Filippov system (4) in this section. Due
to the biological significance of each parameter and their effect on disease control, we
focus only on the impact of threshold parameter Ic, HBPR parameter b, maximum
and minimum per capita treatment rate h1 and h0 in this section.

Impact of threshold level Ic. We start from the effect of the variation of
the threshold level Ic on the the sliding mode region. Fig.5 shows the possible
sliding modes and pseudo-equilibrium for different values of parameter Ic. We
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Figure 5. Evolution of the sliding modes and pseudo-equilibria
for Filippov system (4) with respect to the threshold level Ic. Here
we fix all other parameters as follows: Λ = 8, µ = 0.1, β = 1.8, h0 =
0.2, ν = 0.6 and h1 = 0.8, b = 5(a);h1 = 2, b = 3.28(b).

select Ic = 0, 1, 2, · · · , 20 in each subplot. The black solid lines represent the vertical
isoclines for system SG1

and system SG2
, denoted by gs1 and gs2, respectively. The

grey thin solid lines represent the horizontal isoclines for system SG1
and system

SG2
, denoted by gi1 and gi2, respectively. The grey thick solid lines stand for the

sliding mode regions with various threshold levels Ic. The red cycle points are
the regular endemic equilibria while the red diamond points denote the pseudo-
equilibria of the system (4). Subplot (a) and (b) show the case R0 > 1 and the case
R0 < 1, respectively.

It is clear that the pseudo-equilibria and sliding modes are sensitive to the thresh-
old level Ic. If the basic reproduction number is greater than unity, Fig.5 (a) indi-
cates that the sliding mode region enlarges as Ic increases. In particular, if we let
Ic < 6.6667, for instance, Ic = 6, the endemic equilibrium of system SG1

(i.e.E1) is
virtual, that of system SG2

(i.e. E2) is real and no pseudo-equilibrium exists. If Ic
increases and reaches Ic = 6.6667, a boundary equilibrium Eb

1 appears. If Ic further
increases such that 6.6667 < Ic < 9.2934, for example Ic = 7, a pseudo-equilibrium
Es and two real endemic equilibria appears. If Ic increases to Ic = 9.2934, another
boundary equilibrium Eb

2 is feasible. Note that the pseudo-equilibrium disappears
while virtual endemic equilibrium E2 and real endemic equilibrium E1 coexist for
Ic > 9.2934, for example Ic = 10. If R0 < 1, it follows from Fig.5(b) that the repuls-
ing sliding mode region is feasible only when the threshold level satisfies Ic > Ic0.
Similar argument to that on Fig.5(a) yields the evolution of sliding mode regions
as well as equilibria.

It follows from the above discussion that we can increase the threshold level Ic
such that only endemic equilibrium E1 = (S1, I1) of system SG1

is real for R0 > 1,
where I1 represents a relatively low equilibrium level of infection. If R0 < 1, the
infectious disease cannot be eradicated due to the existence of multiple endemic
equilibria of system SG2

. However, Fig.5(b) shows that both endemic equilibria of
system SG2

can be virtual if Ic is increased to a high level in such scenario, so neither
of them can be the attractor of the Filippov system. This indicates that increasing
the threshold level Ic can lead to the nonexistence of real endemic equilibria, i.e.
only the disease free equilibrium is real in such scenario.



758 AILI WANG, YANNI XIAO AND HUAIPING ZHU

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20
(a)

S
c1

b

S

S
c2

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6
(b)

 

 

b

S

S
c2

Figure 6. Evolution of the sliding modes (grey thick solid lines),
the regular endemic equilibria (circle points and square points) and
pseudo-equilibria (diamond points) for Filippov system (4) with
respect to the parameter b. Here we fix all other parameters as
follows: Λ = 8, µ = 0.1, β = 1.8, h0 = 0.2, ν = 0.6 and h1 =
0.8, Ic = 8.6(a);h1 = 2, Ic = 8(b).

Impact of HBPR parameter b. Due to the significance of hospital bed-
population ratio (HBPR) on the control of disease, it is essential to examine the
impact of HBPR parameter b on disease infection. To this purpose, we numerically
conduct the analysis about the effect of b on the variation of sliding mode and
equilibria, as shown in Fig.6. The black circle points represent the endemic equilibria
of system SG2

with higher endemicity while the square ones denote the endemic
equilibria of system SG1

(shown in Fig.6(a)) or the endemic equilibrium of system
SG2

with lower endemicity (shown in Fig.6(b)). The solid ones of those are real
equilibria while the hollow ones are virtual equilibria. We select the parameter b as
a bifurcation parameter and all other parameters are fixed as indicated in Fig.6, with
R0 > 1 for subplot (a) and R0 < 1 for subplot (b). Fig.6 shows that the sliding
mode region shrinks as the parameter b increases for both R0 > 1 and R0 < 1.
For R0 > 1, Fig.6 (a) indicates that two endemic equilibria (E1, E2) coexist for
system (4), one (i.e. E1) for system SG1

and the other (i.e. E2) for system SG2
.

Further, E1 is real and independent of the size of parameter b while a real/virtual
equilibrium bifurcation occurs at E2, i.e. the real equilibrium E2 becomes a virtual
one when the parameter b passes through a critical value around b = 12, where the
pseudo-equilibrium Es disappears. In fact, Es is feasible for b less than the critical
value b = 12. It follows from Fig.6(b) that the sliding mode region is feasible only
when the parameter b satisfies b < bc with bc = (β − r0)Ic/(r1 − β), and here
we have bc = 8. In such scenario, both endemic equilibrium E2 and E3 exist for
the parameter b less than a critical value about b = 3.4315. The one with lower
endemicity (i.e. E3) is virtual provided it is feasible while a real/virtual equilibrium
bifurcation is triggered at E2 when the parameter b passes through a certain critical
value around 2.6, below which the pseudo-equilibrium is feasible.

The above discussion demonstrates that only endemic equilibrium of free system
exists for Filippov system (4) by increasing the HBPR (i.e. b) for R0 > 1, which
indicates I1 stands for the equilibrium level of infected individuals in this case. If
R0 < 1, a backward bifurcation is triggered for system SG2

when the parameter b
passes through the critical value b = 3.4315. In particular, if R0 < 1 and b > 3.4315,
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no stable endemic equilibrium exists for system SG2
; for b < 3.4315, there are two

endemic equilibria, which collide together and are substituted by a unique endemic
equilibrium for b = 3.4315. Note that only those real stable equilibria can be the
attractor of system (3) and endemic equilibrium E2 is real for R0 < 1, b < 2.6, so
the coexistence of stable disease free equilibrium and endemic equilibrium occurs
at b = 2.6 for system (3). This indicates that no endemic equilibrium exists besides
the disease-free equilibrium E0 when the number of hospital beds is enough large,
so E0 becomes the unique attractor in such scenario.

Note that here increasing Ic or b makes the Filippov system work as system SG1
,

and consequently this bifurcation result is rather obvious. Moreover, we refer back-
ward to the co-existence of a stable disease free equilibrium and a stable endemic
equilibrium when the basic reproductive number is less than unity, i.e., the back-
ward bifurcation leads to bistability for R0 < 1 as a parameter varies. In particular,
the real endemic equilibrium E2, which can be stable, begins to exist for system (3)
besides the disease free equilibrium when the parameter b passes through the value
b = 2.6, as addressed above, so a backward bifurcation occurs.

Impact of the maximum and minimum treatment rate. In this section,
we focus on the impact of maximum and minimum per capita treatment rate (i.e.
h1 and h0) on the equilibrium level of infected individuals for system SG2

in the
following.

Fig.7 is to show the variation of the number of infected individuals in steady states
as the maximum per capita treatment rate h1 varies. The black solid (dashed) lines
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Figure 7. Evolution of the infected cases with respect to the maxi-
mum per capita treatment rate h1. Here we fix all other parameters
as follows: Λ = 8, µ = 0.1, β = 1.8, ν = 0.6, b = 5, h0 = 0.2.

represent the number of infected individuals with high (low) endemicity in steady
states, i.e. I2 (I3). The grey solid line describes the variation of basic reproduction
number R0 with the maximum treatment rate h1. Solving R0 = 1 and C0 = 0 with
respect to h1 yields h11 = β − (µ+ ν) and

h12 =
4βµbΛ− 2D1 −

√

(

4βµbΛ− 2D1

)2 − 4b2ν2
(

D2
1 + 4βµbr0Λ

)

2b2ν2
− (µ+ ν),

D1 = bν
[

Λ(r0 − β)− βb(µ+ ν)
]

,
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respectively. Denote

L1 =
{

(S, I) ∈ R2
+ : S = h11

}

, L2 =
{

(S, I) ∈ R2
+ : S = h12

}

.

Then L1 divides the whole domain into two parts, the one to the left of which
is for R0 > 1 while the one to the right is for R0 < 1. Line L2 also divides
the whole region into two parts, the part to the left of which stands for C0 >
0, (−a1+

√
C0)/(2a0) < Λ/(µ+ ν) while the part to the right of which is for C0 ≤ 0

or (−a1 +
√
C0)/(2a0) > Λ/(µ+ ν)). So, there is a unique endemic equilibrium E2

for subsystem SG2
if h1 < h11 (i.e. R0 > 1, C0 > 0), which is stable in some cases;

two endemic equilibria E2 and E3 coexist for subsystem SG2
if h11 < h1 < h12 (i.e.

R0 < 1, C0 > 0, (−a1 +
√
C0)/(2a0) < Λ/(µ + ν)), and E2 is stable in some cases

while E3 is unstable; no endemic equilibrium is feasible for h1 > h12 (i.e. R0 < 1
and C0 < 0 or (−a1 +

√
C0)/(2a0) < Λ/(µ+ ν)); a unique endemic equilibrium E∗

exists for h1 = h12 (i.e. R0 < 1, C0 = 0). Further discussion yields that a backward
bifurcation occurs when the parameter h1 passes through the critical value h12 on
one hand. On the other hand, a saddle-node bifurcation occurs at h1 = h12, which
implies E∗ is a saddle-node as the result of the collision of E2 and E3.

It follows from Fig.7 that I2 decreases as h1 increases for h1 < h12, which im-
plies that the number of infected cases decreases as the maximum treatment rate
increases. If we select the maximum treatment rate properly such that h1 > h12,
only the disease free equilibrium E0 is the attractor.
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Figure 8. Evolution of the equilibria with respect to the minimum
per capita treatment rate h0. Here we fix all other parameters
as follows: Λ = 8, µ = 0.1, β = 1.8, ν = 0.6 and b = 5, h1 =
1.05(a); b = 3.28, h1 = 2(b).

By choosing the minimum per capita treatment rate h0 as a bifurcation parameter
and fixing all other parameters, the evolution of the number of infected cases is
clearly depicted in Fig.8. Solving C0 = 0 in terms of h0 gives

h01 =
2D2Λ− 4βµbΛ−

√

(

4βµbΛ− 2D2Λ
)2 − 4Λ2

(

D2
2 − 4βµbΛr1

)

2Λ2
− (µ+ ν),

D2 = βΛ− bνr1 + bβ(µ+ ν).

Denote

L4 =
{

(S, I) ∈ R2
+ : S = h01

}

.
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According to Fig.8(a), the equilibrium number of infected cases for system SG2
can

be contained at a low level by enhancing the minimum per capita treatment rate h0

for R0 > 1. Similar argument yields that increasing the minimum treatment rate
can lead to the existence of only disease free equilibrium E0 for system SG2

.

6. Discussion and conclusions. It has been observed that treatment programme
plays a significant role in controlling the emerging and reemerging infectious dis-
eases, such as HIV [36] and Ebola [23], and usually the control programme is im-
plemented only when the number of infected individuals reaches or exceeds the
threshold level Ic. In this study, we propose a Filippov epidemic model by using
a piecewise smooth function to reflect the treatment rate, which incorporates the
impact of number of hospital beds. By taking the number of infected cases as a crit-
ical index, we define a threshold policy as follows: the treatment policy, depending
on HBPR and the number of infected cases, is implemented when the number of
infected individuals is above the threshold level; below this level, a larger treatment
ratio, which is indeed the maximum per capita treatment ratio the health care sys-
tem can provide, is adopted. Our modeling and results extend the recent work [35]
on the impact of threshold policy on the control of infectious diseases.

Based on the dynamics of two subsystems of the Filippov system, we investigate
the long-term dynamical behavior, which reveals much more complex dynamics
compared to those for the continuous counterpart. In particular, we have examined
the sliding mode, pseudo-equilibrium, multiple attractors in Section 3 and Section 4,
respectively. As the threshold value varies, bifurcation analysis of piecewise smooth
systems [17, 29] on the proposed Filippov epidemic model yields the following lo-
cal sliding bifurcations theoretically, i.e. regular/virtual equilibrium bifurcation,
boundary equilibrium bifurcation including BN (see Fig.1), BF, BS (see Fig.2) and
BSN bifurcations (see Fig.3), and global sliding bifurcations including grazing bi-
furcation (see Fig.4) and sliding homoclinic bifurcation (see Fig.4). Our results
demonstrate that variety of threshold level can give rise to diversity of long-term
dynamical behavior.

It is worth emphasizing that understanding of impact of threshold policy will
lead to the development of effective control programmes for public health, so we
have examined the impact of some key parameters related to the control measure
in Section 5. According to Fig.5(a), if the basic reproduction number is greater
than unity, we can choose proper threshold level such that the real equilibrium of
system SG1

, or that of system SG2
, or both of them together with the unique pseudo-

equilibrium act as the attractors for Filippov system (4), which implies that different
threshold levels and initial states lead to different levels of total number of infected
cases. It follows from Fig.5 and Fig.6 that we can select a proper threshold value
or the number of hospital beds such that the endemic equilibrium with the lowest
endemicity or the disease free equilibrium appears as the attractor (i.e. the endemic
one of system SG1

for R0 > 1 while disease free equilibrium for R0 < 1). This
observation indicates that the course of an outbreak as well as the control outcome
are sensitive to the threshold level and the available HBPR. If the infectious disease
is on the course of becoming endemic (R0 > 1), it is essential to increase the medical
resources, i.e, to increase the number of hospital beds therefore the possibility of
implementing maximum treatment ratio to control the infection to a relatively low
level. For the case when R0 < 1, the infection can still become endemic due to the
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possible existence of backward bifurcation of system SG2
, increasing the medical

resources therefore be essential to control the spreading of infection.
In most cases, it is impossible to eradicate an epidemic disease from the popula-

tion. We have investigated how the maximum and minimum treatment rate affect
the equilibrium level of infected individuals in Section 5. Fig.7 and Fig.8 show
that the number of infected individuals at the steady state is closely related to the
maximum and minimum per capita treatment rate. The maximum and minimum
per capita treatment rate remain effective for reducing transmission during the out-
break. In particular, if R0 > 1, strengthening the basic medical conditions and
increasing medical resources, i.e. increasing the minimum and maximum treatment
ratio, will result in a relative low level of infected cases, as shown in Fig.8 (a) and
Fig.7. Increasing maximum treatment rate h1 (or minimum treatment rate h0 if
R0 < 1) such that h1 > h12 (or h0 > h01) will aid in eradicating the disease, as
shown in Fig.7 and Fig.8 (b).

It is worth noting that we choose the size of infected individuals as an index.
In fact, the number of susceptible individuals can also affect on the implementa-
tion of control measures, especially on those immunization policies, so it is more
appropriate for modeling the impact of limited resources on vaccination policies.
Moreover, it is more natural to choose the total number of susceptible individuals
and infected individuals as an index, especially for the combined control measure
based on treatment and vaccination policy, which may be difficult and interesting,
and we leave this for future work.

In conclusion, we propose a Filippov epidemic model to study the impact of
HBPR on the disease control by incorporating a piecewise defined treatment pro-
gramme in this paper. The main results illustrate the significant role of switching
treatment programme in response to the call of controlling the epidemic disease.
Indeed, to illustrate the main idea, we formulate a simple SIS model without con-
sidering the effect of hospitalized infection. Generally, those hospitalized has no con-
tact with susceptible individuals, so no transmission occurs. An SIH (susceptible-
infective-hospitalized) model of three dimension could then be more natural, which
we will consider in the future work.
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