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Abstract. Psoriasis is an autoimmune disorder, characterized by hyper-proli-
feration of Keratinocytes for the abnormal activation of T Cells, Dendritic

Cells (DCs) and cytokine signaling. Interaction of DCs and T Cells enable

T Cell to differentiate into Type 1 (Th1), Type 2 (Th2) helper T Cell de-
pending on cytokine release. Hyper-proliferation of Keratinocytes may occur

due to over expression of pro-inflammatory cytokines secreted by Th1-Cells

viz. Interferon gamma (IFN− γ), Transforming growth factor beta (TGF−β)
and Tumor necrosis factor alpha (TNF − α) etc. Deregulation of epidermal

happens due to signaling of anti-inflammatory cytokines like Interleukin 10

(IL − 10), Interleukin 4 (IL − 4) etc., released by Th2-Cells. In this article, we
have constructed a set of nonlinear differential equations involving the above

cell population for better understanding the impact of cytokines on Psoriasis.

System is analyzed introducing therapeutic agent (Biologic / IL − 10) for re-
ducing the hyper-proliferation of Keratinocytes. Effect of Biologic is used as a

surrogate of control parameter to reduce the psoriatic lesions. We also studied
its effect both in continuous and impulsive dosing method. Our study reveals

that impulsive dosing is more applicable compare with continuous dosing to

prevent Psoriasis.

1. Introduction. Psoriasis is a chronic, immune modulated autoimmune disease
that affects the skin with localized inflammation reactions. It is one of the compli-
cated and persistent skin disorders encountered till date. About 2− 3% individuals
worldwide are suffering from this irritating skin disease. The common form of
this disease is chronic plaque Psoriasis which occurs in nearly 90% of cases [1, 2].
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Psoriasis is a special condition of the dermal layers where hyper-proliferation of
Keratinocytes (skin cells) is chaotic due to interference’s within immune cell signal-
ing.

Basal Keratinocytes of dermis during cellular differentiation gradually migrates
to the skin surface and forms the outermost layer. This process is highly synchro-
nized by various co-stimulation factors within the immune cells. In the presence of
Co-stimulation molecules cytokine secretion is more pronounced by T Cells [3, 4].
Immune cell proliferation and polarization in organized pattern is controlled by
the cytokine milieu. Cytokines are special messenger molecules secreted by im-
mune cells and are associated with the cellular signal transduction, trafficking and
its modulation to impose activation or suppression of immune system. Naive T
Cells, after originated from bone marrow through thymus undergo a differentia-
tion with interaction of DCs post-synapse to produce Th1 and Th2 subtypes [5, 6]
under selected cytokine milieu. It is interesting to know that the synaptic locks
are short transient initially lasting from a few minutes to hours but in long run
it can develop stable T-DC synapse to initiate a T Cell polarization [7]. Psoriatic
hyper-proliferation of Keratinocytes is expressed by anomalous balance of immune
cell activation and differentiation e.g., T Cells, Dendritic Cells, Th1-Cells and Th2-
Cells [5, 6] and its associated signal cascade elevating the Keratinocyte growth.
The synaptic interactions may often produce asymmetric T Cell division and func-
tional diversity of T Cell heterogeneity [10]. The enhancement of Keratinocytes
population through different cytokine signaling by the immune cells is illustrated
in Figure 1. Under IL − 12 over crowded signaling molecules, T Cell differenti-
ates into large amount of Th1-Cells that secretes pro-inflammatory cytokines viz.
IFN−γ, TGF−β and TNF−α [11]. The role of TGF−β differs with its target cell
types. Keratinocytes has been shown to be a significant target tissue of TGF − β
and it differentiates by the influence of TGF − β signaling [12]. Under IFN − γ
cytokine environment macrophages are activated and also stimulated to increase
cellular activity [5]. Psoriasis is pronounced by Th1-Cells disorder, characterized
by the production of IFN− γ, TNF− α and TGF− β under the effect of cytokine
IL − 12 [13]. TNF − α alone cannot elicit immunologic reaction although secreted
from T Cell and APC but can raise a cytokine storm when combined with strong
synergism with IL − 17a [14]. Recent studies suggest that if the periphery envi-
ronment is IL − 4 dominated at the time of naive T Cells activation, it results in
enhancement of the density of Th2-Cells. Cytokines expressed by each subset posi-
tively regulate itself and negatively regulate the other subset either in paracrine or
autocrine signals [11, 15]. IL−4 exerts pleiotropic effects on the immune system and
may directly suppress Th1-mediated inflammation by converting the T helper cell
phenotype into Th2-Cells [16, 17, 18]. It is reported that IL− 10 cytokine promote
the enlargement of an anti-inflammatory cytokines configuration by inhibiting the
IFN− γ production of T Cells and natural killer cells particularly via the conquest
of IL − 12 synthesis in adjunct cells [19]. Although anti-inflammatory cytokines
secreted from Th2-Cells negatively regulate the Keratinocytes population [20, 21].
High level secretion of Th1 mediated cytokines, generalized as pro-inflammatory
cytokines are responsible for aggravating psoriatic lesion [6, 21].

During the last few decades, widespread clinical and experimental investiga-
tions are being done for diagnosis of Psoriasis. Rapid cell cycle duration of pso-
riatic cell division elevates to 28 fold (35000 cells/day in lieu of 1246 cells/day) as
estimated by Weinstein et al. following [22]. Baker et al. have already found that
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pro-inflammatory cytokine plays a significant role in this uncontrolled psoriatic cell
division and also they shown that IFN− γ is found at raised levels in psoriatic skin
[23]. TNF − α has been secreted as a emergency or early psoriatic stages deliv-
ering inflammatory influence on the epidermal layers. Nockowski et al. observed
that the concentrations of TGF−β were significantly increased in level for patients
with Psoriasis [24]. For psoriatic patients, Alefacept, Efalizumab, Etanercept, In-
fliximab and Adalimumab are most commonly used drugs and are active TNF− α
blockers [25]. Recently, cytokine induced treatment for psoriatic patients is majorly
suggested by many biological or clinical experimentalist proposing that the anti-
inflammatory cytokine (IL− 4 and IL− 10) injecting may be a plausible treatment
for Psoriasis [17, 26]. IL− 10 can be administered subcutaneously as described by
Tzu et al. [27]. Clinical studies have demonstrated that IL − 10 reduces Th1-type
cytokine levels and induced remission of Psoriasis [26]. Numerous studies have
suggested the efficacy of recombinant human IL− 10 (rhIL− 10) in decreasing the
Psoriasis activity and achieving long-term remissions [28, 29, 30, 31, 32]. Although
a lot of experimental and clinical studies were performed yet a unified exploratory
analysis to predict and intervene the Psoriasis in mathematical conjecture is highly
needed.
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Figure 1. Schematic of the interactions between the components
of the model.
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In this direction Roy et al. have already instigated several mathematical models
on Psoriasis regulation by formulating the individual cell population of T Cells,
Dendritic Cells and Keratinocytes along with cytokine effect in a mechanistic ap-
proach described through a set of ordinary differential equations. They proposed
the basic mathematical model on disease Psoriasis and extended the mathemat-
ical model introducing the half-saturation constant and negative feedback control
approach in delay induced scheme [33]. Roy and Dutta already studied the ef-
fect of various Cytokines in the cell-biological network in this Psoriasis dynamics
[34, 35]. Recent theoretical works [36, 37] have demonstrated how homoeostatic
cell concentration, epidermal turnover time and the multilayered tissue structure
are interlinked with disease pathogenesis has been observed and also a complete
review using finite time stability properties of Psoriasis dynamics has been car-
ried out. In the previous study of Psoriasis in mathematical perceptive, it was
considered that only T Cells and Dendritic Cells play the crucial role. The in-
terplay of cytokines associated with T Cells differentiation (Th1 and Th2) with
pro-inflammatory and anti-inflammatory functionality is not mathematically well
explored. In this research article, we are interested to observe the effect of Th1

and Th2 through their cytokines network mathematically on disease pathogenesis.
Incorporating the therapeutic efficacy of the particular Biologic (IL − 10) on Th1-
Cell and its anti-inflammatory impact on immunologic interactions, a mathematical
model is demonstrated with the important biological connections for Psoriasis. We
also study the effect of Biologic in continuous as well as impulsive mode and com-
pared the results of the two strategies.

The article begins with a general introduction followed by our formulated math-
ematical model with assumptions and the basic property of the system is also dis-
cussed in Section 2. In Section 3, we have studied the model system analytically
exploring the existence and stability criteria of endemic equilibria. In Section 4,
we investigate the optimal control (drug) therapeutic approach and existence con-
ditions integrating the dynamical nature of the system. Section 5, includes analysis
of the explicit version of the system through impulsive therapy (IL−10) and the dy-
namical consequences with fixed impulse dosing. Section 6, represents the numerical
simulation of system dynamics without and with therapy. Finally, we discuss about
the results and concluding remarks which we have obtained in different sections in
Section 7.

2. The model.

2.1. Model formulation with suitable assumptions: We develop a mathe-
matical model of Psoriasis by introducing different cells to reflect the cell-biological
relationships in expressing the disease. Here, T (t), M(t), T1(t), T2(t) and K(t)
represent the densities of naive T Cells, Dendritic Cells, Th1-Cells, Th2-Cells and
epidermal Keratinocytes respectively at any time t. Naive T Cells and DCs strictly
originated from bone marrow through thymus at a constant rate. The accumulation
rate of naive T Cells and DCs in the area proximity at the suitable management
are a and b respectively. T Cells and DCs are two different types of immune cells
with dissimilar features in human immune system. Therefore, we have assumed
different activation rates of T Cells and DCs for justification of our mathematical
model. The rate at which T Cells trigger Dendritic Cells is denoted as δ1. On the
other hand, δ2 is the rate of stimulation of Dendritic Cells with T Cells. In math-
ematical perceptive the interaction obey the Law of Mass Action. Under mixing
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homogeneity, the combined interaction of naive T Cells and DCs contributes the
subtype of T Cells (Th1 and Th2) concentration. Rate of enhancement of the DC
density is α due to effect of pro-inflammatory cytokines secreted by Th1. The per
capita removal rates of T Cells and DCs are assumed by µ1 and µ2 respectively
throughout normal sequence. Based on the above considerations, growth rate of
the T Cells and DCs can be demonstrated as follows :

dT

dt
= a− δ1TM − µ1T,

dM

dt
= b− δ2TM + αT1 − µ2M. (1)

Assumed that Th1 (T1(t)) and Th2 (T2(t)) cells are furnished due to cytokine confor-
mational changes of naive T Cells after the interaction with Dendritic cells (DCs) at
a rate η1 and η2 respectively. Th1-Cells proliferation is motivated by itself through
pro-inflammatory cytokine network a rate β1 and also Th1-Cells proliferation is
inhibited by Th2-Cells a rate β2. We also consider that γ1 is the rate of positive
contribution of Th2 on its own population and Th1 gives negative effect on Th2-Cell
density at a rate γ2. Apoptosis rate of Th1 and Th2 cells are noted by µ3 and µ4

respectively due to normal cell death. The equations for Th1 and Th2 cells :

dT1
dt

= η1TM +
β1T1

1 + β2T2
− µ3T1,

dT2
dt

= η2TM +
γ1T2

1 + γ2T1
− µ4T2. (2)

Psoriasis is characterized by hyper-proliferation of Keratinocytes due to over ex-
pression of pro-inflammatory cytokines released by Th1-Cells. Keratinocytes prolif-
eration may reduced to a certain level by the effect of anti-inflammatory cytokines
secreted by Th2-Cells. ξ1 and ξ2 are denoted the cytokines effect on Keratinocytes
by Th1 and Th2 cells respectively. Here we consider c is the growth rate of Ker-
atinocyte population due to cell migration from dermal layer to epidermal layer or
protein and the removal rate of Keratinocytes is considered as µ5. The dynamics
of Keratinocytes is furnished by the following equation

dK

dt
= cK +

ξ1T1
1 + ξ2T2

− µ5K. (3)

Assembling together the above three subsystems (1, 2, 3), we can rewrite the full
mathematical model:

dT

dt
= a− δ1TM − µ1T,

dM

dt
= b− δ2TM + αT1 − µ2M,

dT1
dt

= η1TM +
β1T1

1 + β2T2
− µ3T1,

dT2
dt

= η2TM +
γ1T2

1 + γ2T1
− µ4T2,

dK

dt
= cK +

ξ1T1
1 + ξ2T2

− µ5K, (4)

where T (0) > 0, M(0) > 0, T1(0) > 0, T2(0) > 0 and K(0) > 0 are initial conditions.
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2.2. Model properties: System (4) will be studied in a domain Ω ⊂ R5
+, where

all feasible solutions enter the region
Ω = {(T,M, T1, T2,K) ∈ R5

+ : 0 ≤ T ≤ a, 0 ≤ M ≤ b, 0 ≤ T1 ≤ η1ab
µ3−β1

, 0 ≤ T2 ≤
η2ab
µ4−γ1 , 0 ≤ K ≤

ξ1η1ab
(µ3−β1)(µ5−c)}.

Considering the assumptions, we denote the accumulation of T Cells (T (t)) and DCs
(M(t)) by a and b respectively. As the influx of T Cells and DCs are provided by
blood circulation, so no residual cells exist in the concerned region and it constantly
get replenished by new set of cells. Under this dynamical behaviour we assume that
concentration level of two immune cells are assumed to be governed by, T (t) ≤ a
and also M(t) ≤ b for any time t. Here, we take the one dimensional system and
try to predict the maximum concentration of Th1-Cells present in human body to
exhibit Psoriasis,

dT1
dt

= η1TM +
β1T1

1 + β2T2
− µ3T1. (5)

The positive effect of Th1-Cells on itself being very high in Psoriasis conferred by
the imbalance in the Th1 and Th2. The suppression effect of Th2-Cells is almost
negligible to encounter the over population of Th1-Cells. So we can infer that the
effect of Th2 on Th1 is almost absent or masked to become exhibited. The term
(β2T2) is neglected from the above ODE for further calculation. Thus the system
(5) is reduced to

dT1
dt

= η1TM + β1T1 − µ3T1.

From this equation it follows that

dT1
dt

≤ η1ab− (µ3 − β1)T1. (6)

Solving the above inequality (6), we get

T1(t) ≤ η1ab

µ3 − β1
+
(
T1(0)− η1ab

µ3 − β1

)
e−(µ3−β1)t.

For the positive value of (µ3 − β1) and for long time, we get

T1(t) ≤ η1ab

µ3 − β1
. (7)

Similarly, we can consider the Th2-Cell population from model system (4) to show
that the cell concentration is also bounded. From the non-negative magnitude of
T1(t) and the boundedness of the quantities T (t) and M(t) for the corresponding
equation of the system (4), we obtain the inequality

dT2
dt

≤ η2ab− (µ4 − γ1)T2. (8)

Solving the inequality (8) for the large value of t we get

T2(t) ≤ η2ab

µ4 − γ1
. (9)

We put the maximum value of T1(t) and neglecting the effect of T2(t) in the last
equation of our considered model system (4) and try to predict the maximum level
of Keratinocyte present in a psoriatic patient. Then, we have

dK

dt
≤ ξ1η1ab

µ3 − β1
− (µ5 − c)K. (10)
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After solving inequality (10) by considering large time duration and positive feature
of (µ5 − c), we get the maximum value of Keratinocytes

K(t) ≤ ξ1η1ab

(µ3 − β1)(µ5 − c)
. (11)

From above discussion and using the inequations (7, 9, 11) we can conclude with
the following theorem.

Theorem 2.1. The solutions of system (4) with initial conditions satisfy T (t) >
0,M(t) > 0, T1(t) > 0, T2(t) > 0,K(t) > 0 for all t > 0. The region Ω ⊂ R5

+ is
positively invariant and attracting with respect to system (4). �

3. Equilibrium analysis.

3.1. Existence condition: In this system, endemic equilibrium point E is steady
state solution where the excess production of Keratinocytes persist. For the ex-
istence of endemic equilibrium E = (T ∗,M∗, T ∗1 , T

∗
2 ,K

∗), its coordinates should
satisfy the conditions; E = (T ∗,M∗, T ∗1 , T

∗
2 ,K

∗) 6= 0, where T ∗ > 0; M∗ > 0;
T ∗1 > 0; T ∗2 > 0; K∗ > 0. The endemic equilibrium point is obtained by setting
equations of the system (4) to zero. Solving state variables in terms of T ∗ we obtain
the following

M∗ =
p1 − p2T ∗

T ∗
;

T ∗1 =
q1
T ∗
− q2T ∗ − q3;

T ∗2 =
s1T

∗ − s2(T ∗)2 + s3
s4(T ∗)2 − s5T ∗ + s6

;

K∗ =
(ξ1q1 − ξ1q2(T ∗)2 − q3T ∗)(s4(T ∗)2 − T ∗s5 + s6)

T ∗(µ5 − c)(m1(T ∗)2 − T ∗m2 +m3)
;

where
p1 = a

δ1
, p2 = µ1

δ1
,

q1 = µ2p1
α , q2 = δ2p2

α , q3 = b−δ2p1+µ2p2
α ,

s1 = η1p1 + q3µ3 − β1q3, s2 = β1q2 + η1p2 − q2µ3, s3 = β1q1 − q1µ3,
s4 = (η1p2 − q2µ3)β2, s5 = (η1p1 + q3µ3)β2, s6 = q1µ3β2,
m1 = s4 − ξ2s2, m2 = s5 − ξ2s1, m3 = s6 + ξ2s3.

Now putting the value of M∗, T ∗1 and T ∗2 in η2T
∗M∗+

γ1T
∗
2

1+γ2T∗
1
−µ4T

∗
2 = 0 we have

an fifth degree polynomial of T ∗ as

f(T ∗) = (T ∗)5 + a0(T ∗)4 + a1(T ∗)3 + a2(T ∗)2 + a3T
∗ + a4 = 0, (12)

where
a0 = q3d5−d6q2−d1

q2d5
, a1 = d2−q1d5+q2d7−q3d6

q2d5
, a2 = q3d7−q2d8+q1d6−d3

q2d5
,

a3 = d4−q1d7−q3d8
q2d5

, a4 = q1d8
q2d5

and di (i = 1 to 8) are expressed as bellow,
d1 = η2p2s4, d2 = s4η2p1 + η2p2s5 − s2γ1 + s2µ4,
d3 = η2p2s6 − s1γ1 + s1µ4 + s5η2p1, d4 = η2p1s6 + s3γ1 − s3µ4, d5 = s4γ2η2p1,
d6 = s5γ2η2p1 + s4γ2η2p1 + γ2µ4s2, d7 = s5γ2η2p1 + s6γ2η2p1 + γ2µ4s1,
d8 = γ2η2p1s5 − γ2µ4s3.
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Since f(∞) is always positive quantity for the polynomial f(T ∗), so it has at least
one root in [0,∞) if f(0) < 0. The polynomial (12) has at least one positive root
in [0,∞) if a4 < 0. From this we can construct the following lemma.

Lemma 3.1. For the positive value of T ∗, if p1 > p2T
∗, q1 > q2(T ∗)2 + q3T

∗,
T ∗2 > 0 and K∗ > 0 then the endemic equilibrium point exists.

3.2. Stability criteria: The Jacobian matrix for the endemic equilibrium of model
system (4) is given by,

J(T ∗,M∗, T ∗1 , T
∗
2 ,K

∗) =



− a
T∗ −δ1T ∗ 0 0 0

−δ2M∗ − b+αT
∗
1

M∗ α 0 0

η1M
∗ η1T

∗ −η1T
∗M∗

T∗
1

− β1β2T
∗
1

(1+β2T∗
2 )2 0

η2M
∗ η2T

∗ − γ1γ2T
∗
2

(1+γ2T∗
1 )2 −η2T

∗M∗

T∗
2

0

0 0 ξ1
1+ξ2T∗

2
− ξ1ξ2T

∗
1

(1+ξ2T∗
2 )2 c− µ5


After expanding with respect to the term (c−µ5) we get the characteristic equation
of the jacobian matrix in form,

(λ+ µ5 − c)(λ4 +A3λ
3 +A2λ

2 +A1λ+A0) = 0,

where
A0 = s11s22s33s44 + s12s23s31s44 − s12s23s34s41 + s21s12s43s34 − s12s21s33s44 −
s11s23s32s44 + s11s23s34s42 − s11s22s34s43,
A1 = s11s22s33+s44s11s22+s11s33s44+s22s33s44+s23s34s42+s12s31s23−s12s21s44−
s21s12s33 − s23s32s44 − s22s34s43 − s11s23s32 − s11s34s43,
A2 = s11s22 + s11s33 + s11s44 + s22s33 + s22s44 + s33s44 − s34s43 − s23s32 − s21s12,
A3 = s11 + s22 + s33 + s44,

and sij(i, j = 1 to 4) are governed by the bellow expression,

s11 = − a
T∗ , s12 = −δ1T ∗, s21 = −δ2M∗, s22 = − b+αT

∗
1

M∗ , s23 = α,

s31 = η1M
∗, s32 = η1T

∗, s33 = −η1T
∗M∗

T∗
1

, s34 = − β1β2T
∗
1

(1+β2T∗
2 )2 ,

s41 = η2M
∗, s42 = η2T

∗, s43 = − γ1γ2T
∗
2

(1+γ2T∗
1 )2 , s44 = −η2T

∗M∗

T∗
2

.

From the Routh-Hurwitz criteria(R-H criteria), if the three conditions viz. An>0
where (n = 0, 1, 2, 3), A3A2>A1 and A3A2A1>A

2
1 + A2

3A0 are satisfied then by
the following two proposition we can describe the stability situation of our system
[38, 39, 40]. Two proposition are established depending on RE , where RE = c

µ5
.

Proposition 1. If RE < 1 along with the R-H criteria the system will be stable at
the endemic equilibrium point E = (T ∗,M∗, T ∗1 , T

∗
2 ,K

∗). �

Proposition 2. If RE ≥ 1 and if R-H criteria is satisfied then E is an unstable
saddle point with four-dimensional stable manifold and one-dimensional unstable
manifold. �

4. Optimal control theoretic approach. Optimal control is suitable for moni-
toring a disease dynamics. By optimizing a particular performance, we usually solve
these types of problems through finding the time dependent profiles of the control
variable [41, 42, 43, 44]. It is apparent from our preceding discussion that to control
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Psoriasis, it is obligatory to suppress the Th1-Cells and Keratinocytes. This brings
innovative results to treatment of Psoriasis and we are exploring approaches for
such treatments by means of optimal control effort. We have taken our control set,
defined on [ts, tf ] subject to the condition 0 ≤ u(t) ≤ umax < 1, where ts and tf
are starting and finishing time of treatment, respectively. Even though we do not
study about the deviation or side effects of cytokine treatment i.e. IL−10 injecting,
we can implement a state that arranges the complete effects of this period, which
is programmed for any treatment [45]. We use the control effort to the Th1-Cells
regulation by various cytokines effect released by itself and also from Th2-Cells.
Hyper-proliferation of Keratinocytes due to pro-inflammatory cytokines which is
totally uncontrolled by Th2, is causal effect of Psoriasis. Treatment with IL − 10
has also a significant effect on unbounded growth of Keratinocyte. Thus a same
control profile is considered with the Keratinocyte proliferation term. We consider
all possible Lebesgue measurable functions satisfying for almost all t ∈ [tf , ts] the
following inequalities:

0 ≤ u(t) ≤ umax < 1

as controls that forming a control set U , and then define on this set our objective
functional for cost minimization fix it:

J(u) =

tf∫
ts

[
K(t) + 0.5B(u(t))2

]
dt, (13)

The objective function (13) expresses our goal to minimize costs for IL−10 injecting,
while minimize Keratinocytes. Where u(t) is an admissible control representing the
effect of IL − 10 injecting. In the objective functional the weight constants of
the Keratinocyte is considered as unity and B ≥ 0 is weight constant for IL − 10
injecting. The term 0.5B(u(t))2 stands for the cost associated with IL−10 injecting
in continuous way for psoriatic patient. We also assume that the cost is proportional
to the square of the analogous control function [34, 35, 46]. Therefore, we seek an
optimal control u∗(t) such that

min
u(·)∈U

J(u) = J(u∗). (14)

If u∗(t) is the optimal control, then the Pontryagin’s Minimal Principal may func-
tional to the reversed control approach [45, 47]. One of our objectives is to simulate
qualitatively the drug efficiency for Th1-Cell and Keratinocyte. To represent the
corresponding activity, we consider a control problem (14) together with the math-
ematical model described by system (4) such that:

dT

dt
= a− δ1TM − µ1T,

dM

dt
= b− δ2TM + αT1 − µ2M,

dT1
dt

= η1TM + (1− u)
β1T1

1 + β2T2
− µ3T1,

dT2
dt

= η2TM +
γ1T2

1 + γ2T1
− µ4T2,

dK

dt
= cK + (1− u)

ξ1T1
1 + ξ2T2

− µ5K, (15)

with known initial values for T , M , T1, T2 and K at ts.
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4.1. Existence of control problem: In this section, to show the existence of the
control problem, we study the system (15) with appropriate initial conditions. For
any bounded Lebesgue measurable controls and non-negative initial conditions, it
is obvious that non-negative bounded solutions to the state system exist [48]. Let
us discuss about our constructed optimal control problem (15), (13). In order to
obtain an optimal solution, first we discuss its existence by the following theorem.

Theorem 4.1. There exists an optimal control u∗(·) ∈ U such that (14) subject to
the control system (15) with the initial conditions at t = ts.

Proof. Using the result demonstrated by Lukes et al., we wish to prove the existence
of our optimal control [49]. The necessary condition in this minimizing problem,
convexity of objective functional is satisfied. The set of the control variable U is
also convex and closed by definition. The optimal system is bounded which governs
the compactness required for the existence of the optimal control. Furthermore,
the integrand in the functional

[
K(t) + 0.5B(u(t))2

]
is convex on the control set

U . Note that the control parameter is nonnegative and the state variables are
nonnegative and bounded.

J(u) ≥ 0.5B‖u(·)‖2L2[0,T ]

Where ‖u(·)‖L2[0,T ] is norm of function space L2[0, T ], elements of which are admis-
sible controls from the set U . Which completes the existence of an optimal control
[48, 50].

4.2. Dynamics of the optimal system: For optimal control system, we define
the Hamiltonian,

H = K +
1

2
B(u)2 + ϑ1[a− δ1TM − µ1T ] + ϑ2[b− δ2TM + αT1 − µ2M ]

+ ϑ3[η1TM + (1− u)
β1T1

1 + β2T2
− µ3T1] + ϑ4[η2TM +

γ1T2
1 + γ2T1

− µ4T2]

+ ϑ5[cK + (1− u)
ξ1T1

1 + ξ2T2
− µ5K] + v1u+ v2(1− u),

where ϑ1, ϑ2, ϑ3, ϑ4 and ϑ5 are adjoint variables and v1, v2 are penalty multipliers.
Subject to the conditions, u = 0 when v1 6= 0 and v2 = 0 and u = umax when v1 = 0
and v2 6= 0.

Given an optimal control and corresponding states, there exists adjoint variables
ϑi (i = 1, 2, ..., 5) satisfying the following equations:

dϑ1
dt

= −∂H
∂T

= ϑ1(δ1M + µ1) + ϑ2δ2M − ϑ3η1M − ϑ4η2M,

dϑ2
dt

= − ∂H
∂M

= ϑ1δ1T + ϑ2(δ2T + µ2)− ϑ3η1T − ϑ4η2T,

dϑ3
dt

= − ∂H
∂T1

= −ϑ2α+ ϑ3

[
µ3 −

β1(1− u)

1 + β2T2

]
+ ϑ4

γ1γ2T2
(1 + γ2T1)2

− ϑ5
ξ1(1− u)

1 + ξ2T2
,

dϑ4
dt

= − ∂H
∂T2

= ϑ3
β1β2(1− u)T1

(1 + β2T2)2
+ ϑ4

[
µ4 −

γ1
1 + γ2T1

]
+ ϑ5

ξ1ξ2(1− u)T1
(1 + ξ2T2)2

,

dϑ5
dt

= −∂H
∂K

= ϑ5[µ5 − c]− 1, (16)

with transversality conditions (or boundary conditions) ϑi(tf ) = 0, for (i = 1, ..., 5).
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Again H can be expressed as,

H =
1

2
B(u)2 + ϑ3

β1(1− u)T1
1 + β2T2

+ ϑ5
ξ1(1− u)T1

1 + ξ2T2
+ v1u+ v2(1− u)

+other terms without u. (17)

and differentiating the expression for H with respect to u give

∂H

∂u
= Bu− ϑ3

β1T1
1 + β2T2

− ϑ5
ξ1T1

1 + ξ2T2
+ v1 − v2. (18)

The Hamiltonian (17) is minimized with respect to u at the optimal value u∗, so
the derivative of the H with respect to u furnished by the above equation (18) must
be zero at u∗. Now, using the fact

Bu∗ − ϑ3
β1T1

1 + β2T2
− ϑ5

ξ1T1
1 + ξ2T2

+ v1 − v2 = 0. (19)

Solving the equation (19) for the optimal control, we have,

u∗ =
ϑ3

β1T1

1+β2T2
+ ϑ5

ξ1T1

1+ξ2T2
− v1 + v2

B
. (20)

Now there are three cases to be observed.
Case 1. 0 < u∗ < umax, subject to the condition v1 = v2 = 0. Thus from equation
(20)

u∗ =
ϑ3

β1T1

1+β2T2
+ ϑ5

ξ1T1

1+ξ2T2

B
. (21)

Case 2. u∗ = 0, subject to the condition v1 6= 0 and v2 = 0. Hence from equation
(20)

v1 = ϑ3
β1T1

1 + β2T2
+ ϑ5

ξ1T1
1 + ξ2T2

. (22)

Case 3. u∗ = umax, subject to the condition v1 = 0 and v2 6= 0. Therefore from
equation (20)

umax =
ϑ3

β1T1

1+β2T2
− ϑ5 ξ1T1

1+ξ2T2
− v2

B
. (23)

Consequently, we can conclude the optimal value of u(t), i.e., u∗(t) for the control
u from (21, 22, 23) that

u∗ =


0, if ϑ3β1T1(1+ξ2T2)+ϑ5ξ1T1(1+β2T2)

B(1+β2T2)(1+ξ2T2)
≤ 0;

ϑ3β1T1(1+ξ2T2)+ϑ5ξ1T1(1+β2T2)
B(1+β2T2)(1+ξ2T2)

, if 0 < ϑ3β1T1(1+ξ2T2)+ϑ5ξ1T1(1+β2T2)
B(1+β2T2)(1+ξ2T2)

< umax;

umax, if ϑ3β1T1(1+ξ2T2)+ϑ5ξ1T1(1+β2T2)
B(1+β2T2)(1+ξ2T2)

≥ umax.

Therefore, we have the following theorem.

Theorem 4.2. If the objective cost function J(u) attains its minimum for the
optimal control u∗, then there exist adjoint functions ϑ1, ϑ2, ϑ3, ϑ4, ϑ5 satisfying the
equations (16) along with the transversality condition ϑi(tf ) = 0, (i = 1, ..., 5).
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5. System with impulsive therapy. In this section, we analyse our drug induced
system using modified impulsive method for better understanding of drug dynamics
[51, 52, 53]. Here, we study the effect of impulse with fixed IL−10 injecting to control
the Keratinocytes by reducing Th1-Cells. During the period of Biologic (IL − 10)
taken through injection the cell density of Th1 are made less by some proportion
r. Here we assume that the injections are taken at different time interval and the
direct effect of IL− 10 on Keratinocytes and Th2 is negligible. Now by taking the
maximum concentration of Th1 the one-dimensional impulsive differential equation
takes the form:

dT1
dt

= η1ab− (µ3 − β1)T1, for t 6= tk

∆T1 = −rT1, for t = tk where k = 1, 2, 3, ....., n. (24)

Here for single impulsive cycle tk ≤ t ≤ tk+1, the solution is

T1(t−k+1) =
η1ab

µ3 − β1

[
1− e−(µ3−β1)(tn+1−tn)

]
+ T1(t+n )e−(µ3−β1)(tn+1−tn).(25)

Where, T1(t−k ) is the value immediately before and T1(t+k ) is the value immediately
after the impulse. For simplicity of notation we use P instead of η1ab and Q for
(µ3 − β1). Now, for different successive time interval solutions become

T1(t−1 ) =
P

Q
,

T1(t+1 ) = (1− r)P
Q
,

T1(t−2 ) = (1− r)P
Q
e−Q(t2−t1) +

P

Q

[
1− e−Q(t2−t1)

]
,

T1(t+2 ) = (1− r)2P
Q
e−Q(t2−t1) + (1− r)P

Q

[
1− e−Q(t2−t1)

]
,

T1(t−3 ) =
P

Q

[
(1− r)2e−Q(t3−t1) + (1− r)e−Q(t3−t2) − (1− r)e−Q(t3−t1) +

1− e−Q(t3−t2)
]
,

T1(t+3 ) =
P

Q

[
(1− r)3e−Q(t3−t1) + (1− r)2e−Q(t3−t2) − (1− r)2e−Q(t3−t1)

+(1− r)− (1− r)e−Q(t3−t2)
]
,

T1(t−4 ) =
P

Q

[
(1− r)3e−Q(t4−t1) + (1− r)2e−Q(t4−t2) + (1− r)e−Q(t4−t3) +

1− (1− r)2e−Q(t4−t1) − (1− r)e−Q(t4−t2) − e−Q(t4−t3)
]
,

T1(t+4 ) =
P

Q

[
(1− r)4e−Q(t4−t1) + (1− r)3e−Q(t4−t2) + (1− r)2e−Q(t4−t3) +

(1− r)3e−Q(t4−t1) − (1− r)2e−Q(t4−t2) − (1− r)e−Q(t4−t3) + (1− r)
]
.

...................................................................................................
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The general solution becomes

T1(t−n ) =
P

Q

[
(1− r)(n−1)e−Q(tn−t1) + (1− r)(n−2)

e−Q(tn−t2) + ....+ (1− r)e−Q(tn−tn−1) + 1− (1− r)(n−2)e−Q(tn−t1)

−(1− r)(n−3)e−Q(tn−t2) − ....− e−Q(tn−tn−1)
]

(26)

T1(t+n ) =
P

Q

[
(1− r)ne−Q(tn−t1) + (1− r)(n−1)

e−Q(tn−t2) + ....+ (1− r)2e−Q(tn−tn−1) − (1− r)(n−1)e−Q(tn−t1)

−(1− r)(n−2)e−Q(tn−t2) − ....− (1− r)e−Q(tn−tn−1) + (1− r)
]

(27)

The above general solution (26, 27) helps to predict the maximal Th1-Cells present
in formation of Psoriasis just before injection process start. Note that solution does
not depend on time between drug induced being fixed.

5.1. System under Fixed IL − 10 injecting process : For fixed time period,
i.e τ = tn+1 − tn is constant, then we have

T1(t−n ) =
P

Q

[
1 + (1− r)e−Qτ + (1− r)2e−2Qτ + ....+ (1− r)n−1e−(n−1)Qτ

−e−Qτ
(

1 + (1− r)e−Qτ + ....+ (1− r)n−2e−(n−2)Qτ
)]

=
P

Q

[1− (1− r)ne−nQτ

1− (1− r)e−Qτ
− e−Qτ 1− (1− r)n−1e−(n−1)Qτ

1− (1− r)e−Qτ
]

lim
n→∞

T1(t−n ) =
P

Q

[ 1

1− (1− r)e−Qτ
− e−Qτ 1

1− (1− r)e−Qτ
]

=
P

Q

[ 1− e−Qτ

1− (1− r)e−Qτ
]
.

This is the long-term maximum value of Th1-Cells. To keep this below a certain
threshold T̃1 of T1, thus we have

τ <
1

Q
ln
[P − (1− r)T̃1Q

P − T̃1Q

]
τ <

1

µ3 − β1
ln
[η1ab− (1− r)T̃1(µ3 − β1)

η1ab− T̃1(µ3 − β1)

]
≡ τmax (say). (28)

The maximum period mentioned by the equation (28) between two consecutive

IL − 10 injection required to maintain the Th1-Cell concentration below T̃1. The
threshold value T̃1 must satisfy

T̃1 <
η1ab

µ3 − β1
. (29)

It follows that, in the case of fixed IL−10 injecting process, we can derive a maximal
gap of injection (28) which is fixed and that may keep concentration of Th1 strictly
below a threshold described by the equation (29). Pro-inflammatory cytokines
released by Th1, play a crucial role in Psoriasis pathogenesis so by controlling Th1

using IL − 10 as a therapeutic agent hyper-proliferation of Keratinocyte will be
controlled.
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6. Numerical simulations. In the preceding section, we have used several ana-
lytic tools for a qualitative analysis of psoriatic case, both with and without drug
induced system. In this section, we carry out the numerical simulation of our model
system on the basis of analytical findings. Numerical values of the model parameters
are collected from different journals represented in Table 1. To test the numerical
experimentation we have used some initial values of model variables where it is
obvious that the values must satisfy the initial condition of the analytical measures
obtained from the study. So, applying the cardinal rule of scientific hypothesis we
have chosen the initial values in a ratio dependent form as T (0) = 50, M(0) = 40,
T1(0) = 20, T2(0) = 20, and K(0) = 80. Numerical simulations are done using
Mathworks MATLAB (version 7.6.0). In this section, we have tried to focus dynam-
ical cell interaction numerically towards the psoriatic expression that is considered
in our model. Stability of the cells were enumerated and then further dynamical
behavior of the cell components were numerically evaluated under control approach
as well as impulse IL− 10 therapy. Immune cells viz. T Cell, Dendritic Cell, Th1-

Parameter Assigned Value Range References

a 12 mm−3Day−1 9 - 15 mm−3Day−1 [33, 34, 54]
b 14 mm−3Day−1 12 - 14 mm−3Day−1 [33, 35, 55]
δ1 0.07 Day−1 0.005 - 0.15 Day−1 [34, 35, 56]
δ2 0.08 Day−1 0.00004 - 0.4 Day−1 [34, 35, 55]
µ1 0.02 Day−1 0.007 - 0.1 Day−1 [33, 34, 54]
η1 0.05 Day−1 Estimated [57]
η2 0.0025 Day−1 Estimated [57]
α 0.002 Day−1 - Assumed
µ2 0.05 Day−1 0.002-0.05 Day−1 [33, 35]
β1 0.02 Day−1 Estimated [15, 58]
β2 0.0001 Day−1 Estimated [15, 58]
µ3 0.12 Day−1 0.012 - 0.12 Day−1 [37]
µ4 0.24 Day−1 0.24 Day−1 [58]
γ1 0.51 Day−1 Estimated [15, 58]
γ2 0.035 Day−1 Estimated [15, 58]
ξ1 0.90 Day−1 - Assumed
ξ2 0.15 Day−1 - Assumed
µ5 0.65 Day−1 0.04-0.9 Day−1 [33]
c 0.50 Day−1 Estimated [22, 60]

Table 1. Parameters value using for numerical simulation.

Cell, Th2-Cell and Keratinocytes are plotted with respect to time to investigate the
qualitative behavior of considered cells between 150 days in Figure 2(A). From this
figure it is evident that due to interaction between T Cell and Dendritic Cell both
population will be decreased initially but due to the pro-inflammatory cytokines
secreted from Th1-Cells, DC population regains growth function. Both T-Cell and
DC densities reached to a stable condition after 100 days approximately. For cross
and self-regulatory cytokine effect which have already discussed in introduction sec-
tion, Th1 is up-regulated and Th2 is subjected to suppressed condition. After initial
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50 days both the population will be stable. For the cytokines viz. IFN − γ and
TGF − β secreted by Th1, Keratinocyte population is increased but the rate be-
come slow due to cytokines (IL − 10,IL − 4 etc.) released from Th2. Eventually,
Keratinocyte population will be stable between 60− 90 days.

Figure 2(B) gives the graph of RE as a function of c (growth of Keratinocyte
due to cell migration and protein) and µ5 (death of Keratinocyte due to normal
sequence). The figure illustrates that the change of the parameter RE as c and µ5

vary. We observe that when the ratio of accumulation rate of Keratinocyte obtained
from other growth factor (protein, cell migration etc.) and its natural death rate
becomes less than unity, our system will be locally asymptotically stable indicated
by dark blue region. It becomes unstable when the ratio will be greater than unity
located in the figure in all parts other than the blue region. Analytically, we obtain
the stability condition of all population i.e. RE < 1, where RE = c

µ5
and here we

also emphasis the stability criteria through numerical studies. From this figure it
is also clear that if the value of c below a certain level (approximate c ≤ 0.75) the
system is always stable even if higher level of µ5. For other values of the parameters,
however, RE is relatively stable with respect to variations.

In Figures 3(A) and 3(B), we consider two different set of population to show
our considered system ultimately reaches a stable state. Figure 3(A) indicates, for
different initial values Keratinocyte, DC and T cell ultimately converge to the point
(12, 14, 406). Similarly, in Figure 3(B) Th1 and Th2 cell also converges along with
Keratinocyte at point (101, 3, 406). As it is very stringent to evaluate the endemic
equilibrium analytically, so Figure 3 enables us to deduce the unique endemic equi-
librium numerically.

The variations of Th1, Th2 and Keratinocytes population with respect to time t
for without and with control approach are shown in Figure 4 where other parameters
are fixed as in Table 1. The solid lines indicate the cells behavior when disease is
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Figure 2. Time series plot of cell population and contour plot
(A) Qualitative nature of all cells (T Cell, Dendritic Cell, Th1-
Cell, Th2-Cell and Keratinocyte) during the disease progression.
(B) Contour plot of RE as a function of µ5 and c.
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under control with continuous dosing. Here, dotted line indicates the uncontrolled
growth of cell density which is highly relevant with psoriatic plaque. After applying
control input on Th1 and Keratinocyte population we get a substantial impact on
disease dynamics. Th2 density will be increased to a noticeable state after applying
control Biologic therapy which is also illustrated in Figure 4. It can be concluded
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Figure 3. Stability analysis using different cell population and
finding the endemic equilibrium of system dynamics (A) Consider-
ing three cells Keratinocyte, T Cell, Dendritic Cell. (B) Consider-
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from this figure that with proper inputs of control parameters u(t), it yields more
trustworthy results in decreasing the Keratinocyte and Th1 population as well as
increasing the Th2 level. This reflects that people affected with Psoriasis need to
take Biologic (IL − 10) continuously through injecting process for 65 − 70 days to
control the disease.

In Figure 5, drug dose is described with respect to time. Very high drug dose is
applied to control the high impact of pro-inflammatory cytokine effect at the initial
stage of therapy. Subsequently, the dose is decreased in very low amount at the time
interval 2 − 28 days to maintain the Th1 and Th2 level. After 28 days the dosing
amount will be decreased and finally after 65− 70 days no drug will required. The
change in slope of the curve indicate that the effect of IL− 10 on disease dynamics
is not always identical due to cross regulation between pro and anti-inflammatory
cytokines.

Figure 6 depicts the comparative regulation of Keratinocyte and immune cells
to achieve the termination of psoriatic lesions through continuous dosing (optimal
drug dose) and impulsive dosing (drug efficacy r = 0.3, dosing interval τ = 10
days)of biologic. From our analytical study we derived the upper threshold of Th1

expressed by the equation (29), required to maintain normal Keratinocyte density
as 84 mm−3. The natural growth of Keratinocyte is estimated 195 − 200 mm−3

compare with the ratio of the other cells taken in our model [22, 61]. It is evident
from this figure, for impulse dosing the Th1 density is just below the threshold value
and oscillating with fixed amplitude while in continuous mode the Th1-Cells main-
tain a steady density much below the threshold boundary and maintaining a better
regulation for longer periods. The impulse dosing has suppressed Th1-Cell density
to a magnitude of 84 mm−3 whereas the continuous dosing has suppressed the same
cell to a density around 78 mm−3. We get a fruitful result for Th2 density while ap-
plying the biologic in optimal dose. For continuous dosing the Th2 cells reaches the
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cell density around 7 mm−3 and for impulsive dosing it is around 4 mm−3 keeping
the other parameters constant. In the last panel, we observe that the Keratinocyte
cells experience a reduction in density by the continuous and impulse therapy. It
is to be noted that although the Keratinocyte population is more suppressed using
IL− 10 in continuous mode but it is still remains above the threshold for both the
cases. Though Figure 6 illustrates that the optimal drug dose in continuous way is
more effective compare with impulse therapy but there are some biological restric-
tions for such continued dosing as evident from clinical literatures [29, 62]. in the
case, we wise to improve the impulse dosing to achieve our goal.

In order to find the safe and perfect dose of IL−10 injecting through impulse
way we exhibit the Figures 7. The time gap between two consecutive IL − 10 in-
jecting will be τ which is less than or equal to τmax i.e τ < τmax. From the Table 1
putting values of parameter in the expression τmax we get τmax = 25 days 2 hours,
therefore τ < 25 days 2 hours. Here we consider the drug efficacy r = 0.3 depending
upon our assumption the decay rate of Th1-Cells due to IL − 10 injecting process
is fixed and dosing interval 5.4 days. It is noticeable from this figure the Th1 den-
sity oscillates with fixed amplitude between 70 − 50mm−3 which is lower than its
threshold and the Th2 density increased to around 6 mm−3. In this figure we get a
sufficient change in behavior of Keratinocyte population which is suppressed to its
normal density (195− 200 mm−3) and also oscillates. The magnitude of oscillation
of Keratinocyte become fixed after 55 days. From this figure we can conclude that
the impulse dose of Biologic (drug efficacy r = 0.3, dosing interval 5.4 days) is more
appreciable for psoriatic patients.

7. Discussion and conclusion. In this paper, we have studied the role of pro-
inflammatory and anti-inflammatory cytokines for psoriatic patient by considering
a mathematical model. In our analytical study, we have verified the existence
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(blue line) and impulse therapy (green line) using Biologic (IL−10).
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condition and also we established the stability criterion of endemic equilibrium de-
pending on Routh-Hurwitz criteria and the condition RE is greater or less than
unity. Restriction on RE suggests, Keratinocyte will prevail with restrained growth
function only when the growth rate of the Keratinocyte originating from dermal
cell migration and protein is below the natural mortality rate of the Keratinocytes.
It is found that after 70 days of continuous therapeutic intervention, the disease
reaches normal state as observed through numerical analysis. We have analyti-
cally determined the threshold for Th1-Cell and we also get the theoretical value of
normal Keratinocyte proliferation rate from various clinical studies. We have com-
pared the balance of the cell population through numerical experimentations and
observed that on accounting the value of τ = 10 and τ = 5.4 days respectively the
Th1-Cell populations assumes normalcy with the drug efficacy parameter (r) being
fixed at 0.3. We conclude that, when Biologic (IL − 10) is applied in an impulsive
fashion, we obtained τ = 5.4 days the exact dose interval which is less than to
τmax = 25 days 2 hours. Our numerical outcomes associated with analytical results
which allow more precise prediction of model system connecting to impulsive dose
and optimal control to avoid the psoriatic lesion. Our study reveals that control of
Th1-Cells through an impulse based optimization reduces the hyper-proliferation of
Keratinocytes induced by Biologic (IL − 10) application is much safer and better
treatment than continuous treatment with Biologic.
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