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Abstract. A diffusive predator-prey system with a delay and surplus killing
effect subject to Neumann boundary conditions is considered. When the de-

lay is zero, the prior estimate of positive solutions and global stability of the

constant positive steady state are obtained in details. When the delay is not
zero, the stability of the positive equilibrium and existence of Hopf bifurcation

are established by analyzing the distribution of eigenvalues. Furthermore, an

algorithm for determining the direction of Hopf bifurcation and stability of bi-
furcating periodic solutions is derived by using the theory of normal form and

center manifold. Finally, some numerical simulations are presented to illustrate
the analytical results obtained.

1. Introduction. In ecological systems, the interactions between different species
can generate rich phenomena. Many models are derived to illustrate the predator-
prey system from the view of both mathematics and biology [2, 22, 28, 32]. Mean-
while, it is well known that the spatial structure may further affect the population
dynamics of the species [7, 8, 15]. The spatially homogeneous reaction-diffusion
predator-prey model with classical Lotka-Volterra interaction and no flux boundary
conditions has been studied by many scholars, and the unique positive steady state
solution is globally asymptotically stable in that case [21]. Our work is based on the
important contribution of Yi, Wei and Shi [35] in the bifurcation analysis from the
constant coexistence equilibrium solution of the following Rosenzweig-MacArthur
model with Holling type-II functional response [14, 27]:

(BP )



Ut − d1∆U = r1U

(
1−

U

K

)
−
m1UV

γ + U
, x ∈ Ω, t > 0,

Vt − d2∆U = −r2V +
m2UV

γ + U
, x ∈ Ω, t > 0,

∂νU = ∂νV = 0, x ∈ ∂Ω, t > 0.

U(x, 0) = U0(x) ≥ 0, V (x, 0) = V0(x) ≥ 0, x ∈ Ω.
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Here U = U(x, t), V = V (x, t) stand for the densities of the prey and predator at
time t > 0, and a spatial position x ∈ Ω, respectively; Ω is a bounded domain in
Rn with a smooth boundary ∂Ω; ν is the outward unit normal vector on ∂Ω, and
no flux boundary condition is imposed, so the system is a closed one. d1, d2 > 0
are the diffusion coefficients of the species, and r1, r2, m1, m2, K are positive real
constants; the prey population follows a logistic growth, r1 is the intrinsic growth
rate of U , and K is the carrying capacity; r2 is the mortality rate of the predator
in the absence of prey; m1 is the search efficiency of V for U and m2 represent
the conversion rate of prey to predator; the function U

γ+K denotes the functional

response of the predator to the prey density changes. The parameter γ(> 0) is the
half saturation constant which measures the “saturation” effect: the consumption
of prey by a unit number of predators cannot continue to grow linearly with the
number of prey available but must saturate at the value 1

γ [12, 14]. After Yi et al.,

the method of Hopf bifurcation analysis has been extensively applied in reaction-
diffusion equation, see [3, 36].

It is worth noting that the functional responses in two species are the same in
the model (BP ) since the principle of energy conversion, and the only difference is
that the coefficients are different. In fact, it is not always true in real ecological en-
vironment: energy can be converted or wasted. Motivated by this idea, we consider
an interesting but serious interaction between the prey and predator from the view
of wastage of energy. Biologists call this interaction “surplus killing”[20, 31]. It is
a common behavior exhibited by predators, in which they kill more prey than they
can immediately eat and then cache or abandon the remainder [19].

The term was invented by Dutch biologist Hans Kruuk [16] after studying spot-
ted hyenas in Africa and red foxes in England. Other than humans, surplus killing
has been observed among zooplankton, weasels, honey badgers, wolves, red foxes,
leopards, lions, spotted hyenas, spiders[1, 5, 9, 11, 17, 19, 20, 31]. The emergence
of these phenomena refers to the fact that animals may only partially consume or
abandon intact prey they have captured. There are many documented examples of
predators exhibiting surplus killing. For example, Samu and B́ıró [30] have found
that the wandering spider, Pardosa hortensis (Lycosidae), exhibited significant lev-
els of both partial feeding and prey abandonment at high rates of encounter with
prey. In Canada’s Northwest Territories, the researchers once found the bodies of
34 neonatal caribou calves that had been killed by wolves and scattered-some half-
eaten and some completely untouched-over 3 square kilometres. In surplus killing,
predators eat only the most-preferred animals and animal parts. Bears engaging in
surplus killing of salmon are likelier to eat unspawned fish because of their higher
muscle quality, and high-energy parts such as brains and eggs [16]. Surplus killing
can deplete the overall food supply, waste predator energy and risk them being in-
jured. Nonetheless, researchers say animals surplus kill whenever they can, in order
to procure food for offspring and others, to gain valuable killing experience, and to
create the opportunity to eat the carcass later when they are hungry again.

Inspired by their work, in this article, we would like to study the following
predator-prey system with the predator exhibiting a “surplus killing” behaviour
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which can be demonstrated by different functional responses in the equations.

∂u

∂t
− d1∆u = r1u(1−

u

K1
)−m1uv, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = r2v(1−

v

K2
) +

m2uv

γ + u
, x ∈ Ω, t > 0,

∂u

∂ν
=
∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0( 6≡ 0), v(x, 0) = v0(x) ≥ 0(6≡ 0), x ∈ Ω.

(1)

Here r1, r2 is the intrinsic growth rate of u, v, respectively; K1,K2 is the correspond-
ing carrying capacity of u, v; m1 is the predation rate, and m2 is the consumption
rate with m2 = αm1 where α is a positive constant; the Holling I type functional
response m1u and the Holling II type functional response m2u

γ+u show the “ surplus

killing” effect: the predators keep hunting whenever they find a potential targets,
but the conversion is limited since most of the prey they have captured are aban-
doned.

With a dimensionless change of variables:

ũ =
u

γ
, ṽ =

v

K2
, t̃ = r1t, d̃1 =

d1

r1
, d̃2 =

d2

r1
,

θ =
r2

r1
, γ̃ =

γ

K1
, m̃1 =

m1K2

r1
, m̃2 =

m2

r1
,

still denote ũ, ṽ, t̃, d̃1, d̃2, γ̃, m̃1, m̃2 by u, v, t, d1, d2, γ, m1, m2, then we obtain

∂u

∂t
− d1∆u = u(1− γu)−m1uv, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = θv(1− v) +

m2uv

1 + u
, x ∈ Ω, t > 0,

∂u

∂ν
=

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0.

u(x, 0) = u0(x) ≥ 0( 6≡ 0), v(x, 0) = v0(x) ≥ 0( 6≡ 0), x ∈ Ω.

(2)

Considering that the biomass that predator consumed cannot convert into the new
production for an instant, we add time delay into the functional response of the
second equation of (2), and make it conform with natural situation:

∂u(x, t)

∂t
− d1∆u(x, t) = u(x, t)(1− γu(x, t))−m1u(x, t)v(x, t), x ∈ Ω, t > 0,

∂v(x, t)

∂t
− d2∆v(x, t) = θv(x, t)(1− v(x, t)) +

m2u(x, t− τ)v(x, t)

1 + u(x, t− τ)
, x ∈ Ω, t > 0,

∂u

∂ν
=
∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x, t) ≥ 0( 6≡ 0), v(x, t) = v0(x, t) ≥ 0(6≡ 0), x ∈ Ω, −τ ≤ t ≤ 0.

(3)
Here, d1, d2, θ, γ, m1 and m2 are all positive constants, and given that the predators
in nature don’t usually just eat one species, mostly they have other choices. Based
on this, we turn the growth of v into a logistic form which means u is not the only
hunting target for the predators, they can still live even though the prey u became
extinct.
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Define the real-valued Sobolev space

X := {(u, v) ∈ H2(0, lπ)×H2(0, lπ)|ux = vx = 0, x = 0, lπ},

with inner product 〈·, ·〉.
For sake of discussion, we make the following assumption:

(H1) m1 < 1.

The system (3) always has three non-negative constant equilibrium solutions:
E0(0, 0), E1(0, 1), E2(1/γ, 0), meanwhile, under the condition (H1), the system
also has a positive equilibrium E∗(u∗, v∗), where

u∗ =
1

2γθ

[
−Γ +

√
Γ2 − 4γθ2(m1 − 1)

]
,

v∗ =
1

m1
(1− γu∗).

with Γ = θγ − θ + θm1 +m1m2.
Our main contribution for this article is a detailed and rigorous analysis about

the global dynamics of the positive equilibrium of the diffusive predator-prey system
(2). Keeping other parameters constant, we use the predation rate m1 as a variable,
and find that different values of m1 result in distinct tendencies of the two species.
Because of the effect of “surplus killing”, the prey must raise their fertility rate or
reduce the chances of encountering a predator to avoid extinction. For system (3),
we shall be employing τ as our bifurcation parameter in our stability analyses to
follow. When the spatial domain Ω is one-dimensional, and the parameters satisfy

γθ−
m2m1

(1 + u∗)2
< 0, we show the existence of Hopf bifurcation. We derive an explicit

formula of the bifurcation point τn,j where n, j are integers with n has an upper
bound. From the Proposition 2.3 of [4], we get that the smallest value of τn,j is
τ0,0, which indicates that the periodic solutions bifurcated from the constant steady
state solutions at τ = τ0,0 are homogeneous. We have also studied the direction
of Hopf bifurcation and stability of bifurcating periodic solution, one can see the
details in Section 4.

The rest of the paper is organized as follows. In Section 2, the existence and
priori bound of a positive solution for the reaction diffusion system are given, and
the global asymptotically stability of positive equilibrium is proved. In Section 3,
the stability of the positive constant steady state is considered, and the existence
of the related Hopf bifurcation at the critical points is investigated with delay as
the bifurcation parameter. In Section 4, by applying the normal form theory and
center manifold reduction of partial functional differential equations, some detailed
results of Hopf bifurcation are derived. Some numerical simulations are presented
in Section 5. Throughout the paper, we denote N as the set of positive integers.

2. Analysis of solution for model without delay.

2.1. Existence and priori bound of solution. In this section, we shall investi-
gate the existence of a positive solution for system (3) with delay τ = 0, and give a
priori bound of the solution.

Clearly, the system (3) with τ = 0 is
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∂u(x, t)

∂t
− d1∆u(x, t) = u(x, t)(1− γu(x, t))−m1u(x, t)v(x, t), x ∈ Ω, t > 0,

∂v(x, t)

∂t
− d2∆v(x, t) = θv(x, t)(1− v(x, t)) +

m2u(x, t)v(x, t)

1 + u(x, t)
, x ∈ Ω, t > 0,

∂u

∂ν
=

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0(6≡ 0), v(x, 0) = v0(x) ≥ 0( 6≡ 0), x ∈ Ω,

(4)
where u0(x) = u0(x, 0), v0(x) = v0(x, 0).

Theorem 2.1. Suppose that d1, d2, θ, γ, m1, m2 are all positive, Ω ⊂ Rn is a
bounded domain with smooth boundary. Then

(a) the system (4) has a unique solution (u(x, t), v(x, t)) satisfying

0 < u(x, t) ≤ u∗(t), 0 < v(x, t) ≤ v∗(t), for t > 0 and x ∈ Ω,

where (u∗(t), v∗(t)) is the unique solution of
du

dt
= u (1− γu)

dv

dt
= θv(1− v) +

m2uv

1 + u
,

u(0) = u0, v(0) = v0,

(5)

and

u0 = sup
x∈Ω

u0(x), v0 = sup
x∈Ω

v0(x);

(b) for any solution (u(x, t), v(x, t)) of system (4),

lim sup
t→∞

u(x, t) ≤
1

γ
, lim sup

t→∞
v(x, t) ≤ 1 +

m2

θ
.

Proof. Define

f(u, v) = u(1− γu)−m1uv, g(u, v) = θv(1− v) +
m2uv

1 + u
.

Obviously, for any (u, v) ∈ R2
+ = {(u, v)|u ≥ 0, v ≥ 0}, one can see that

Dfv = −m1u ≤ 0, Dgu =
m2v

(1 + u)2
≥ 0,

thus system (4) is a mixed quasi-monotone system(see[23]). Let

(u(x, t), v(x, t)) = (0, 0) and (ū(x, t), v̄(x, t)) = (u∗(t), v∗(t)).

Substitute (u, v), (ū, v̄) into system (4) gives

∂ū

∂t
− d1∆ū− f(ū, v) = 0 ≥ 0 =

∂u

∂t
− d1∆u− f(u, v̄),

∂v̄

∂t
− d2∆v̄ − g(ū, v̄) = 0 ≥ 0 =

∂v

∂t
− d2∆v − g(u, v),

and

0 ≤ u0(x) ≤ u0, 0 ≤ v0(x) ≤ v0.
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Then (u(x, t), v(x, t)) = (0, 0) and (ū(x, t), v̄(x, t)) = (u∗(t), v∗(t)) are the lower-
solution and upper-solution of system (4), respectively. From Theorem 5.3.3 in [34],
we know that system (4) has a unique solution (u(x, t), v(x, t)) which satisfies

0 ≤ u(x, t) ≤ u∗(t), 0 ≤ v(x, t) ≤ v∗(t), t ≥ 0.

Since u0(x) 6≡ 0, v0(x) 6≡ 0, from the strong maximum principe, we have u(x, t), v(x,
t) > 0 when t > 0 for all x ∈ Ω. This completes the proof of part (a).

Let u1(t) be the unique solution of
du

dt
= u (1− γu) ,

u(0) = u0 > 0.

One can see that u1(t) → 1/γ as t → ∞, then for any ε > 0, there exists a T0 > 0
such that

u(x, t) ≤ 1/γ + ε, for t ≥ T0 and x ∈ Ω,

which implies that
lim sup
t→∞

u(x, t) ≤ 1/γ.

Let v1(t) be the unique solution of
dv

dt
= θv(1− v) +m2v,

v(0) = v0.

Then we have v1(t)→ 1 +
m2

θ
as t→∞. From

θv(1− v) +
m2uv

1 + u
≤ θv(1− v) +m2v,

it follows that v(x, t) ≤ v∗(t) ≤ v1(t). Hence, for any ε′ > 0, there exists a T ′0 > 0
such that

v(x, t) ≤ 1 +
m2

θ
+ ε′ for t ≥ T ′0 and x ∈ Ω,

which implies that

lim sup
t→∞

v(x, t) ≤ 1 +
m2

θ
.

The proof is complete.

2.2. Global stability of positive equilibrium. In this section, we shall give the
conditions to ensure that the positive constant equilibrium E∗(u∗, v∗) is globally
asymptotically stable by utilizing the upper-lower solution method introduced by
Pao [24].

Theorem 2.2. Suppose that d1, d2, θ, γ, m1 and m2 are all positive, and (H1)
and

(H2) m1

(
1 +

m2

θ(1 + γ)

)
< 1

are satisfied. Then the positive equilibrium E∗(u∗, v∗) of (4) is globally asymptot-
ically stable, that is E∗(u∗, v∗) is stable, and for any initial values u0(x) ≥ 0( 6≡
0), v0(x) ≥ 0( 6≡ 0),

lim
t→∞

u(x, t) = u∗, lim
t→∞

v(x, t) = v∗, for x ∈ Ω.
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Proof. In Section 2.1, we get that

u(x, t) ≤ 1/γ + ε, for t > T0, x ∈ Ω.

From (H2), we can choose an ε0 > 0 satisfying

m1 + (1 +m1)ε0 +
m1m2(1 + γε0)

θ(1 + γ + γε0)
< 1. (6)

Let c̄1 = 1/γ + ε0, without loss of generality, there exists a T1 > 0, such that
u(x, t) ≤ 1/γ + ε0 for any t > T1, and this in turn implies

∂v

∂t
= d2∆v + θv(1− v) +

m2uv

1 + u
≤ d2∆v + θv(1− v) +

m2c̄1v

1 + c̄1
,

for t > T1. Hence there exists a T2 > T1, such that v(x, t) ≤ c̄2 for any t > T2,
where

c̄2 = 1 +
m2c̄1

θ(1 + c̄1)
+ ε0.

Again we have

∂u

∂t
= d1∆u+ u(1− γu)−m1uv ≥ d1∆u+ u(1− γu)−m1uc̄2,

for t > T2. Since m1 < 1 and ε0 satisfies (6), then

1−m1c̄2 > 0, and 1−m1c̄2 − ε0 > 0.

Hence, there exists a T3 > T2, such that u(x, t) ≥ c1 > 0 for any t > T3, where

c1 =
1

γ
(1−m1c̄2 − ε0).

Finally, using the similar method shown above, we have

∂v

∂t
= d2∆v + θv(1− v) +

m2uv

1 + u
≥ d2∆v + θv(1− v) +

m2c1v

1 + c1
,

for t > T3, and we can ensure the following inequalities hold since ε0 chosen as in
(6),

1 +
m2c1

θ(1 + c1)
> 1, and 1 +

m2c1
θ(1 + c1)

− ε0 > 1.

Then there exists a T4 > T3 such that v(x, t) ≥ c2 > 0 for any t > T4, where

c2 = 1 +
m2c1

θ(1 + c1)
− ε0.

Therefor for t > T4, we obtain that

c1 ≤ u(x, t) ≤ c̄1, c2 ≤ v(x, t) ≤ c̄2,
and c1, c̄1, c2, c̄2 satisfy

1− γc̄1 −m1c2 ≤ 0, 1− c̄2 +
m2c̄1

θ(1 + c̄1)
≤ 0,

1− γc1 −m1c̄2 ≥ 0, 1− c2 +
m2c1

θ(1 + c1)
≥ 0.

Then (c̄1, c̄2) and (c1, c2) are a pair of coupled upper and lower solutions of system
(4), and when c1 ≤ u ≤ c̄1, c2 ≤ v ≤ c̄2, from the boundedness of the partial
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derivative of fi(i = 1, 2) with respect to u, v, we know that fi satisfies the Lipschitz
condition. Here we denote the Lipschitz constants by Li, i = 1, 2.

To investigate the asymptotic behavior of the positive equilibrium, we define two
sequences of constant vectors (ū(m), v̄(m)), (u(m), v(m)) from the recursion

ū(m) = ū(m−1) +
1

L1
[ū(m−1)(1− γū(m−1))−m1ū

(m−1)v(m−1)],

u(m) = u(m−1) +
1

L1
[u(m−1)(1− γu(m−1))−m1u

(m−1)v̄(m−1)],

v̄(m) = v̄(m−1) +
1

L2
[θv̄(m−1)(1− v̄(m−1)) +m2

ū(m−1)v̄(m−1)

1 + ū(m−1)
],

v(m) = v(m−1) +
1

L2
[θv(m−1)(1− v(m−1)) +m2

u(m−1)v(m−1)

1 + u(m−1)
],

(7)

where (ū(0), v̄(0)) = (c̄1, c̄2), (u(0), v(0)) = (c1, c2), Li is the Lipschitz constant,
i = 1, 2, and m = 1, 2, 3, · · · .

Then for m ≥ 1, we know that

(u(0), v(0)) ≤ (u(m), v(m)) ≤ (u(m+1), v(m+1))

≤ (ū(m+1), v̄(m+1)) ≤ (ū(m), v̄(m)) ≤ (ū(0), v̄(0)),

and

(ū(m), v̄(m))→ (ū, v̄), (u(m), v(m))→ (u, v), as m→∞.
From the recursion (7), we can obtain that ū, u, v̄, v satisfy

ū(1− γū)−m1ūv = 0, θv̄(1− v̄) +
m2ūv̄

1 + ū
= 0,

u(1− γu)−m1uv̄ = 0, θv(1− v) +
m2u v

1 + u
= 0.

(8)

Simplify the equations, we get

γ(ū− u) = m1(v̄ − v), m2(ū− u) = θ(1 + ū)(1 + u)(v̄ − v).

Then we obtain
γ

m1
(ū− u) =

m2(ū− u)

θ(1 + ū)(1 + u)
. (9)

If we assume that ū 6= u, then we can get the following relation from Eq.(9)

u

1 + u
= 1−

θγ(1 + ū)

m1m2
. (10)

From Eq.(8), we can also have

v =
1

m1
(1− γū) and 1− v +

m2u

θ(1 + u)
= 0. (11)

Substituting the first equation of Eq.(11) and Eq.(10) into the second equation of
Eq.(11), it follows that

1−
1

m1
(1− γū) +

m2

θ

(
1−

θγ(1 + ū)

m1m2

)
= 0,

that is
1

m1
=

m2

θ(1 + γ)
+

1

1 + γ
. (12)
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This is a contraction to the condition (H2). Hence ū = u, and consequently v̄ =
v. Then from the Theorem 3.3 in [25] and Corollary 2.1 in [24], we can get the
asymptotic behavior of the positive solution.

Now we investigate the local stability of positive equilibrium E∗(u∗, v∗). Recall
that by writing the vector (u(x, t), v(x, t))T as

U(t) := (u(t), v(t))T .

Then the system (4) can be rewritten as

U̇(t) = D∆U(t) + F (U), (13)

where

D = diag{d1, d2}, and F : X → R2,

is defined by

F (U) =

 u(t) (1− γu(t))−m1u(t)v(t)

θv(t)(1− v(t))−
m2u(t)v(t)

1 + u(t)

 .

We consider the linearization at E∗(u∗, v∗) for

U̇(t) = D∆U(t) + LE∗(U), (14)

where

LE∗ =

 −γu∗ −m1u∗
m2v∗

(1 + u∗)2
−θv∗

 ,

and its characteristic equation satisfies

λξ −D∆ξ − LE∗ξ = 0. (15)

It is well known that the eigenvalue problem

−∆ϕ = µϕ, x ∈ (0, lπ), ϕx|x=0,lπ = 0,

has eigenvalues

µn = n2/l2, n ∈ N0 = N ∪ {0},
with corresponding eigenfunctions ϕn(x) = cos(nx/l), n ∈ N0. Let(

φ
ψ

)
=

∞∑
n=0

(
an
bn

)
cos(nx/l), an, bn ∈ C,

be an eigenfunction for (15). Then from a straightforward computation, we obtain
that the eigenvalues of (15) can be given by the following equations

det(λI +D
n2

l2
− LE1

) = 0, n ∈ N0,

where I is 2× 2 unit matrix. That is

λ2 − Tnλ+Dn +B∗ = 0, n ∈ N0. (16)

For all n ∈ N0 we have

Tn = −(d1 + d2)
n2

l2
− (γu∗ + θv∗) < 0,

Dn +B∗ =

(
d1

n2

l2
+ γu∗

)(
d2

n2

l2
+ θv∗

)
+
m1m2u∗v∗

(1 + u∗)2
> 0.
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Then all the roots of Eq.(16) have negative real parts. This implies that the pos-
itive equilibrium E∗(u∗, v∗) of (4) is locally asymptotically stable when m1 < 1.
Combining with the global attractivity proved before, we know that the constant
positive equilibrium E∗(u∗, v∗) is globally asymptotically stable.

The above result indicates that E∗(u∗, v∗) attracts all feasible solutions under the
condition (H1) and (H2). If (H2) doesn’t work but (H1) still holds, then E∗(u∗, v∗)
is local asymptotically stable. However, if m1 > 1, then E∗(u∗, v∗) disappears while
E1(0, 1) is global asymptotically stable. The critical curve can be drawn on the
(m1, γ) plane (see Fig.1).
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Figure 1. The critical curve on (m1, γ) plane. I: E∗(u∗, v∗) is
global asymptotically stable; II: E∗(u∗, v∗) is local asymptotically
stable; III: E∗(u∗, v∗) disappears while E1(0, 1) is global asymp-
totically stable. The parameters are chosen as follows: α = 0.3,
K2 = 0.2, θ = 0.5 with m2 = αm1/K2.

Remark 1. According to the relationship between the original equation (1) and the
dimensionless equation (2), we can illustrate the effect of “surplus killing”. There
are two different functional responses in equation (1), in order to be consistent with
the assumptions, let the consumption rate m2 be fixed. If the predation rate m1

is sufficiently small(keeping the other parameters constant), then (H1) and (H2)
can be satisfied, biologically, the two species can coexist and keep in a certain
density. But if m1 is not small enough such that (H2) holds, this coexistence will
be shaken, and only near the equilibrium point, they can maintain this balance.
As the parameters continue to change, (H1) is not satisfied, the balance will be
completely broken: the population of prey will collapse to zero, and then predator
population will grow into its carrying capacity. This’s reasonable, because the
predator population follows a logistic growth, they will never die out in this case,
but the prey doesn’t seem to be so fortunate: the predator exhibit a “surplus killing”
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behaviour, they will keep hunting whenever they can. So, the prey must enhance
its fertility rate or reduce the chance of encountering a predator to avoid extinction.

Remark 2. If m1 > 1, the boundary equilibrium E1(0, 1) is global asymptotically
stable for system (4). In fact, from the equation of predator in system Eq.(4), we
have

∂v

∂t
= d2∆v + θv(1− v) +

m2uv

1 + u
≥ d2∆v + θv(1− v).

It is well known that the positive solution of latter equation uniformly approach to
1 as t → ∞ under the same initial and boundary conditions. Since m1 > 1, and
the unique solution (u(x, t), v(x, t)) satisfies the conclusions of Theorem 2.1, then
we can choose a sufficient small ε > 0 and T0 > 0 such that 1− γu−m1(1− ε) < 0
and v(x, t) ≥ 1 − ε for any t > T0. Now, consider the equation of prey in system
Eq.(4),

∂u

∂t
= d1∆u+ u(1− γv)−m1uv ≤ d2∆u+ u(1− γu−m1(1− ε)),

for t > T0. Hence we have u(x, t) → 0 as t → ∞, and this result in turn implies
v(x, t)→ 0 as t→∞.

3. Stability of the positive equilibrium and Hopf bifurcation. In this sec-
tion, we shall study the stability of the positive constant steady state E∗(u∗, v∗) and
the existence of Hopf bifurcation for (3) with τ ≥ 0 by analyzing the distribution of
the eigenvalues. Here, we restrict ourselves to the case of one dimensional spatial
domain Ω = (0, lπ), for which the structure of the eigenvalues is clear, and let the
phase space C := C([−τ, 0], X).

The linearization of system (13) at E∗(u∗, v∗) is given by

U̇(t) = D∆U(t) + L∗(Ut), (17)

where L∗ : C → X is defined by

L∗(φt) = L1φ(0) + L2φ(−τ),

and

L1 =

(
−γu∗ −m1u∗

0 −θv∗

)
, L2 =

 0 0
m2v∗

(1 + u∗)2
0

 ,

φ(t) = (φ1(t), φ2(t))T , φt(·) = (φ1(t+ ·), φ2(t+ ·))T .
The corresponding characteristic equation satisfies

λξ −D∆ξ − L(eλ ·ξ) = 0, (18)

where ξ ∈ dom(∆)\{0}. Similar analysis to section 2, we can equivalently transform
(18) into the following equations.

det

(
λI +D

n2

l2
− L1 − L2e

−λτ

)
= 0, n ∈ N0.

That is, each characteristic value λ is a root of the equation

λ2 − Tnλ+Dn +B∗e
−λτ = 0, n ∈ N0, (19)

where
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Tn = −(d1 + d2)
n2

l2
− γu∗ − θv∗,

Dn =

(
d1

n2

l2
+ γu∗

)(
d2

n2

l2
+ θv∗

)
,

B∗ =
m1m2u∗v∗

(1 + u∗)2
.

Clearly, λ = 0 is not the root of Eq.(19), from the result of Ruan and Wei [29],
as parameter τ varies, the sum of the orders of the zeros of Eq.(19) in the open
right half plane can change only if a pair of conjugate complex roots appears on or
crosses the imaginary axis. Now we would like to seek critical values of τ such that
there exists a pair of simple purely imaginary eigenvalues.

Let ±iω(ω > 0) be solutions of the (n+ 1)th equation (19). Then we have

−ω2 − Tniω +Dn +B∗e
−iωτ = 0.

Separating the real and imaginary parts, it follows that{
B∗ cosωτ = ω2 −Dn,

B∗ sinωτ = −Tnω.
(20)

Then we have
ω4 − (2Dn − T 2

n)ω2 +D2
n −B2

∗ = 0. (21)

Denote z = ω2. Then (21) can be rewritten in the following form

z2 − (2Dn − T 2
n)z +D2

n −B2
∗ = 0, (22)

where

2Dn − T 2
n = −(d2

1 + d2
2)
n4

l4
− 2(d1γu∗ + d2θv∗)− (γ2u2

∗ + θ2v2
∗) < 0.

Hence Eq.(22) has a unique positive root

zn =
2Dn − T 2

n +
√

(2Dn − T 2
n)2 − 4(D2

n −B2
∗)

2
,

only if Dn and B∗ satisfy D2
n −B2

∗ < 0.
From the explicit formula of Dn and B∗, we know that Dn + B∗ > 0, for all

n ∈ N0. Since

Dn −B∗ = d1d2

n4

l4
+ (d1θv∗ + d2γu∗)

n4

l4
+D0 −B∗ →∞, as n→∞,

where

D0 −B∗ = γθu∗v∗ −
m2m1u∗v∗

(1 + u∗)2
,

and if

D0 −B∗ = u∗v∗

(
γθ −

m2m1

(1 + u∗)2

)
< 0,

we find a constant n∗ ∈ N such that for ∀n ∈ N0

Dn −B∗ < 0, for 0 ≤ n < n∗.

and
Dn −B∗ ≥ 0, for n ≥ n∗.

Here we denote the set

S = {n ∈ N0| Dn −B∗ < 0}.
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By Eq.(20), we have sinωnτ > 0, then

τn,j =
1

ωn

(
arccos

ω2
n −Dn

B∗
+ 2jπ

)
, j ∈ N0, n ∈ S. (23)

Following the work of Cooke and Grassman[6], we have

Lemma 3.1. Suppose that (H1) and D0 −B∗ < 0 are satisfied. Then

sign α′(τn,j) = 1, for j ∈ N0, n ∈ S,
where

α(τ) = Reλ(τ).

Proof. Substituting λ(τ) into Eq.(19) and taking the derivative with respect to τ ,
we obtain that

(2λ− Tn − τB∗e−λτ )
dλ

dτ
− λB∗e−λτ = 0.

Thus (
dλ

dτ

)−1

=
2λ− Tn − τB∗e−λτ

λB∗e−λτ
.

By Eq.(20), we have

Re
(

dλ
dτ

)−1
∣∣∣
τ=τn,j

=
2ωn cosωnτn,j − Tn sinωnτn,j

B∗ωn

=
2ω2

n − 2Dn + T 2
n

B2
∗

=

√
T 4
n − 4T 2

nDn + 4B2
∗

B2
∗

.

Since the sign of Re
(

dλ
dτ

)
is same as that of Re

(
dλ
dτ

)−1
, the lemma follows immedi-

ately.

From the Proposition 2.3 of [4], we have that

τn,j ≤ τn,j+1, for all j ∈ N0, n ∈ S,
and

τn,j ≤ τn+1,j , for all j ∈ N0, n ∈ S.
Then τ0,0 is the smallest τn,j . Denote τ0,0 as τ∗ so that the stability will change
when τ crosses τ∗. Summarizing the above analysis and indicated by Corollary 2.4
of Ruan and Wei [29], we have the following lemma.

Lemma 3.2. Assume that (H1) is satisfied.
(a) If either

T 4
n − 4T 2

nDn + 4B2
∗ < 0,

or

T 4
n − 4T 2

nDn + 4B2
∗ ≥ 0 and γθ −

m2m1

(1 + u∗)2
> 0,

for all n ∈ N0, then all the roots of (19) have negative real parts for τ ≥ 0.
(b) If

γθ −
m2m1

(1 + u∗)2
< 0,
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then for

τ = τn,j , j ∈ N0, n ∈ S,
the (n+ 1)th equation of (19) has a pair of simple pure imaginary roots ±iωn, and
all other roots have non-zero real parts. Moreover, all the roots of Eq.(19) have
negative real parts for τ ∈ [0, τ∗), and for τ > τ∗ , Eq.(19) has at least one pair of
conjugate complex roots with positive real parts.

From Lemmas 3.1 and 3.2, we have the following theorem.

Theorem 3.3. Assume that (H1) is satisfied.
(a) If

T 4
n − 4T 2

nDn + 4B2
∗ < 0,

or

T 4
n − 4T 2

nDn + 4B2
∗ ≥ 0 and γθ −

m2m1

(1 + u∗)2
> 0,

for all n ∈ N0, then the equilibrium point E∗(u∗, v∗) of system (3) is locally asymp-
totically stable for τ ≥ 0.

(b) If

γθ −
m2m1

(1 + u∗)2
< 0,

then system (3) undergoes a Hopf bifurcation at the equilibrium E∗(u∗, v∗) when
τ = τn,j, for j ∈ N0, n ∈ S. Furthermore, the positive equilibrium E∗(u∗, v∗) of
system (3) is asymptotically stable for τ ∈ [0, τ∗), and unstable for τ > τ∗.

4. Direction of Hopf bifurcation and stability of bifurcating periodic so-
lution. In section 3, we obtained some conditions under which the system (3)
undergoes a Hopf bifurcation. In this section, we shall study the direction of Hopf
bifurcation near the positive equilibrium and stability of the bifurcating periodic
solutions. We are able to show more detailed information of Hopf bifurcation by
using the normal form theory and center manifold reduction due to [10, 13, 33].

Rescaling the time t 7→ t/τ , and let ũ(x, t) = u(x, t) − u∗, ṽ(x, t) = v(x, t) − v∗,
then we have

∂ũ

∂t
= τ [d1∆ũ− γu∗ũ−m1u∗ṽ − f1(ut, vt)], x ∈ Ω, t > 0,

∂ṽ

∂t
= τ [d2∆ṽ − θv∗ṽ +

m2v∗

(1 + u∗)2
ut(−1) + f2(ut, vt)], x ∈ Ω, t > 0,

∂ũ

∂ν
= 0,

∂ṽ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ũ(x, t) = ũ0(x, t), ṽ(x, t) = ṽ0(x, t), x ∈ Ω,−1 ≤ t ≤ 0,

(24)

where

ut = u(x, t+ θ), vt = v(x, t+ θ), θ ∈ [−1, 0],

ũ0(x, t) = u0(x, t)− u∗, ṽ0(x, t) = v0(x, t)− v∗,
and for (φ1, φ2) ∈ C := C([−1, 0], X)

f1(φ1, φ2) = −γφ1(0)2 −m1φ1(0)φ2(0), (25)
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f2(φ1, φ2) = −θφ2(0)2 +
m2

(1 + u∗)2
φ1(−1)φ2(0)−

m2v∗

(1 + u∗)3
φ1(−1)2

−
m2

(1 + u∗)3
φ1(−1)2φ2(0) +

m2v∗

(1 + u∗)4
φ1(−1)3 +O(4).

(26)

Let τ = τ∗ + ε, from the discussion in section 4, we know that when ε = 0 system
(24) undergoes a Hopf bifurcation at the equilibrium (0, 0). Then we can rewrite
system (24) in a abstract form in the space C as

U̇(t) = D̃∆U(t) + Lε(Ut) + F (ε, Ut), (27)

where

D̃ = (τ∗ + ε)D and Lε : C → X, F : C → X

are defined, respectively, by

Lε(φ(θ)) = (τ∗ + ε)L1φ(0) + (τ∗ + ε)L2φ(−1),

F (ε, φ(θ)) = (F1(ε, φ(θ)), F2(ε, φ(θ)))T ,

with

(F1(ε, φ(θ)), F2(ε, φ(θ))) = (τ∗ + ε)(f1(φ1(θ), φ2(θ)), f2(φ1(θ), φ2(θ))),

where f1 and f2 are defined by (25) and (26) respectively.
The linearized equation at the origin (0, 0) has the form

U̇(t) = D̃∆U(t) + Lε(Ut). (28)

According to the theory of semigroup of linear operator [26], we have the solution
operator of (28) is a C0-semigroup, and the infinitesimal generator Aε is given by

Aεφ =

{
φ̇(θ), θ ∈ [−1, 0),

D̃∆φ(0) + Lε(φ), θ = 0,
(29)

with

dom(Aε) := {φ ∈ C : φ̇ ∈ C, φ(0) ∈ dom(∆), φ̇(0) = D̃∆φ(0) + Lε(φ)}.

When τ = 0, we denote the infinitesimal generator as A0.
Hence, equation (27) can be rewritten as the abstract ODE in C:

U̇t = AεUt +X0F (ε, Ut), (30)

where

X0(θ) =

{
0, θ ∈ [−1, 0),

I, θ = 0.

We denote

bn =
cos(nx/l)

‖ cos(nx/l)‖
, βn = {(bn, 0)T , (0, bn)T },

where

‖ cos(nx/l)‖ =

(∫ lπ

0

cos2(nx/l)dx

) 1
2

.

For φ = (φ
(1)

, φ
(2)

)T ∈ C, denote

φn = 〈φ, βn〉 =
(
〈φ

(1)

, bn〉, 〈φ
(2)

, bn〉
)T

.
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Define Aε,n as

Aε,n(φn(θ)bn) =

{
φ̇n(θ)bn, θ ∈ [−1, 0),∫ 0

−1
dηn(ε, θ)φn(θ)bn, θ = 0,

(31)

and
Lε,n(φn) = (τ∗ + ε)L1φn(0) + (τ∗ + ε)L2φn(−1),∫ 0

−1

dηn(ε, θ)φn(θ) = −
n2

l2
D̃φn(0) + Lε,n(φn),

where

ηn(ε, θ) =


−(τ∗ + ε)L2, θ = −1,

0, θ ∈ (−1, 0),

(τ∗ + ε)L1 −
n2

l2
D̃, θ = 0.

Denote A∗ as the adjoint operator of A0 on C∗ := C([0, 1], X).

A∗ψ(s) =

{
−ψ̇(s), s ∈ (0, 1],∑∞
n=0

∫ 0

−1
dηTn (0, θ)ψn(−θ)bn, s = 0.

Following [10], we introduce the bilinear formal (·, ·) on C∗ × C

(ψ, φ) =

∞∑
k,j=0

(ψk, φj)c

∫
Ω

bkbjdx,

where

ψ =

∞∑
n=0

ψnbn ∈ C∗, φ =

∞∑
n=0

φnbn ∈ C,

and
φn ∈ C := C([−1, 0],R2), ψn ∈ C∗ := C([0, 1],R2).

Notice that ∫
Ω

bkbjdx = 0 for k 6= j,

we have

(ψ, φ) =

∞∑
n=0

(ψn, φn)c|bn|2,

where (·, ·)c is the bilinear form defined on C∗ × C

(ψn, φn)c = ψ
T

n (0)φn(0)−
∫ 0

−1

∫ θ

ξ=0

ψ
T

n (ξ − θ)dηn(0, θ)φn(ξ)dξ.

Let
q(θ)bn0 = q(0)eiωn0

τ∗θbn0 , q
∗(s)bn0 = q∗(0)eiωn0

τ∗sbn0

be the eigenfunctions of A0 and A∗ corresponding to the eigenvalues iωn0
τ∗ and

−iωn0τ
∗, respectively. By direct calculations, we chose

q(0) = (1, q1)T , q∗(0) = M(q2, 1)T ,

so that (q∗, q)c = 1, where

q1 = −
iωn0 + d1n

2
0/l

2 + γu∗
m1u∗

, q2 =
iωn0 − d2n

2
0/l

2 − θv∗
m1u∗

,

M =
(1 + u∗)

2

(q1 + q̄2)(1 + u∗)2 + τ∗m2v∗e
−iωn0

τ∗ .
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Then we decompose the space C as follows

C = P ⊕Q,

where

P = {zqbn0
+ zqbn0

|z ∈ C},
Q = {φ ∈ C|(q∗bn0 , φ) = 0 and (q∗bn0 , φ) = 0}.

That is P is the 2-dimensional center subspace spanned by the basis vectors of the
linear operator A0 associated with purely imaginary eigenvalues ±iωn0

τ∗, and Q is
the complement space of P .

Thus, system (30) could be rewritten as

Ut = z(t)q(·)bn0
+ z̄(t)q̄(·)bn0

+W (t, ·),

where

z(t) = (q∗bn0
, Ut), W (t, ·) ∈ Q, (32)

and

W (t, θ) = Ut(θ)− 2Re{z(t)q(θ)bn0
}. (33)

Then we have

ż(t) = iω0z(t) + q̄∗T (0)〈F (0, Ut), βn0〉, (34)

where

〈F, βn〉 := (〈F1, bn〉, 〈F2, bn〉)T .
It follows from Appendix A of [13](also see [18]), there exists a center manifold C0

and we can write W in the following form on C0 nearby (0, 0):

W (t, θ) = W (z(t), z̄(t), θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · , (35)

For solution Ut ∈ C0, we denote

F (0, Ut) |C0
= F̃ (0, z, z̄),

and

F̃ (0, z, z̄) = F̃20
z2

2
+ F̃11zz̄ + F̃02

z̄2

2
+ F̃21

z2z̄

2
+ · · · .

Therefore the system restricted to the center manifold is given by

ż(t) = iω0z(t) + g(z, z̄),

and denote

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

By direct calculation, we get

g20 =τ∗M̄

∫ lπ

0

b3n0
dx
[
q̄2 (−2γ − 2m1q1)− 2θq2

1

+
2m2q1

(1 + u∗)2
e−iωn0

τ∗
−

2m2v∗

(1 + u∗)3
e−i2ωn0

τ∗
]
,

g11 =τ∗M̄

∫ lπ

0

b3n0
dx
[
q̄2 (−2γ −m1(q1 + q̄1))− 2θq1q̄1

+
m2

(1 + u∗)2
(q1e

iωn0τ
∗

+ q̄1e
−iωn0τ

∗
+)−

2m2v∗

(1 + u∗)3

]
,
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g02 =τ∗M̄

∫ lπ

0

b3n0
dx
[
q̄2 (−2γ − 2m1q̄1)− 2θq̄2

1

+
2m2q̄1

(1 + u∗)2
eiωn0τ

∗
−

2m2v∗

(1 + u∗)3
ei2ωn0τ

∗
]
,

g21 =τ∗M̄

(
Q1

∫ lπ

0

b4n0
dx+Q2

∫ lπ

0

b2n0
dx

)
,

where

Q1 =
6m2v∗

(1 + u∗)4
e−iωn0τ

∗
−

2m2

(1 + u∗)3
(2q1 + q̄1e

−i2ωn0τ
∗
),

Q2 = q̄2

{
−2γ

[
W

(1)
20 (0) + 2W

(1)
11 (0)

]
−m1

[
W

(2)
20 (0) + 2W

(2)
11 (0) + q̄1W

(1)
20 (0)

+2q1W
(1)
11 (0)

]}
− 2θ

[
q̄1W

(2)
20 (0) + 2q1W

(2)
11 (0)

]
+

m2

(1 + u∗)2

[
q̄1W

(1)
20 (−1) +W

(2)
20 (0)eiωn0τ

∗
+ 2q1W

(1)
11 (−1) + 2W

(2)
11 (0)e−iωn0τ

∗
]

−
2m2v∗

(1 + u∗)3

[
W

(1)
20 (−1)eiωn0

τ∗
+ 2W

(1)
11 (−1)e−iωn0

τ∗
]
.

Since g20, g11, g02 have no concern with W (z(t), z̄(t), θ), then they can be calculated
by Eq.(34). In order to get g21, we need to compute W20 and W11. From (33), we
have

Ẇ = U̇t − żqbn0
− ˙̄zq̄bn0

=

{
A0W − 2Re{g(z, z̄)q(θ)}bn0

, θ ∈ [−r, 0),

A0W − 2Re{g(z, z̄)q(θ)}bn0 + F̃ , θ = 0,
.
= A0W +H(z, z̄, θ),

(36)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · .

Obviously,

H20(θ) =

{
−g20q(θ)bn0

− ḡ02q̄(θ)bn0
, θ ∈ [−r, 0),

−g20q(0)bn0 − ḡ02q̄(0)bn0 + F̃20, θ = 0,

H11(θ) =

{
−g11q(θ)bn0 − ḡ11q̄(θ)bn0 , θ ∈ [−r, 0),

−g11q(0)bn0
− ḡ11q̄(0)bn0

+ F̃11, θ = 0,

· · · .

Comparing the coefficients of (36) with the derived function of (35), we obtain

(A0 − 2iω0I)W20(θ) = −H20(θ), A0W11(θ) = −H11(θ), · · · . (37)

From (29) and (37), for θ ∈ [−1, 0), we have

W20(θ) = − g20

iωn0
τ∗

(
1
q1

)
eiωn0

τ∗θbn0 −
ḡ02

3iωn0
τ∗

(
1
q̄1

)
e−iωn0

τ∗θbn0 + E1e
2iωn0

τ∗θ,

W11(θ) =
g11

iωn0
τ∗

(
1
q1

)
eiωn0τ

∗θbn0
− ḡ11

iωn0
τ∗

(
1
q̄1

)
e−iωn0τ

∗θbn0
+ E2,

(38)
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where E1 and E2 can be obtained by setting θ = 0 in H, that is

(A0 − 2iω+
n0
τ∗I)E1e

2iω+
n0
τ∗θ |θ=0 +F̃20 = 0, A0E2 |θ=0 +F̃11 = 0. (39)

The terms F̃20 and F̃11 are elements in the space C , and

F̃20 =

∞∑
n=1

〈F̃20, βn〉bn, F̃11 =

∞∑
n=1

〈F̃11, βn〉bn.

Denote

E1 =

∞∑
n=0

En1 bn, E2 =

∞∑
n=0

En2 bn,

then from (39) we have

(A0 − 2iωn0τ
∗I)En1 bne

2iωn0
τ∗θ |θ=0= −〈F̃20, βn〉bn,

A0E
n
2 bn |θ=0= −〈F̃11, βn〉bn,

n = 0, 1, · · · .
Thus, En1 and En2 could be calculated by

En1 =

(
2iωn0τ

∗I −
∫ 0

−1

e2iωn0
τ∗θdηn(0, θ)

)−1

〈F̃20, βn〉,

En2 = −
(∫ 0

−1

dηn(0, θ)

)−1

〈F̃11, βn〉,

n = 0, 1, · · · ,
where

〈F̃20, βn〉 =


1√
lπ
F̂20, n0 6= 0, n = 0,

1√
2lπ
F̂20, n0 6= 0, n = 2n0,

1√
lπ
F̂20, n0 = 0, n = 0,

0, other,

〈F̃11, βn〉 =


1√
lπ
F̂11, n0 6= 0, n = 0,

1√
2lπ
F̂11, n0 6= 0, n = 2n0,

1√
lπ
F̂11, n0 = 0, n = 0,

0, other,

F̂20 =

 −2γ − 2m1q1

−2θq2
1 +

2m2q1

(1 + u∗)2
e−iωn0

τ∗ −
2m2v∗

(1 + u∗)3
e−i2ωn0

τ∗

 ,
F̂11 =

 −2γ −m1(q1 + q̄1)

−2θq1q̄1 +
m2

(1 + u∗)2
(q1e

iωn0
τ∗

+ q̄1e
−iωn0

τ∗
)−

m2v∗

(1 + u∗)3

 .
Hence, g21 could be represented explicitly.

Denote

c1(0) =
i

2ωn0
τ∗

(g20g11 − 2|g11|2 −
1

3
|g02|2) +

1

2
g21,

µ2 = − Re(c1(0))

τ∗Re(λ′(τ∗))
, β2 = 2Re(c1(0)),

T2 = − 1

ωn0
τ∗

(Im(c1(0)) + µ2(ωn0
+ τ∗Im(λ′(τ∗))).

(40)
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Then by the general result of Hopf bifurcation theory (see [13]), we know that the
parameters in (40) determine the properties of Hopf bifurcation which we can de-
scribe specifically: β2 determines the stability of the bifurcating periodic solutions:
the bifurcating periodic solutions are orbitally asymptotically stable(unstable) if
β2 < 0(> 0); µ2 determines the directions of the Hopf bifurcation: if µ2 > 0(< 0),
then the direction of the Hopf bifurcation is forward (backward), that is the bifurcat-
ing periodic solutions exist when τ > τ∗(< τ∗); and T2 determines the period of the
bifurcating periodic solutions: when T2 > 0(< 0), the period increases(decreases)
as the τ varies away from τ∗.

From 3.1 in Section 4, we know that Re(λ′(τ∗)) > 0. Combining with above
discuss, we obtain the following theorem

Theorem 4.1. If Re(c1(0)) < 0(> 0), then the bifurcating periodic solutions exists
for τ > τ∗(< τ∗) and are orbitally asymptotically stable(unstable).

5. Simulations. In this section, we make some simulations to support and extend
our analytical results. Taking l = 2, and choose

γ = 0.01, θ = 0.05, m1 = 0.20, m2 = 0.30, d1 = 1, d2 = 0.50.

Since m1 = 0.2 < 1, the positive equilibrium exists, through numerical calculation,
we get E∗(1.8663, 4.9067). From a simple verification, we also obtain that Dn−B∗ <
0 only for n = 0. That is S = {0}, and

ω ≈ 0.2074, τ∗ ≈ 4.6242.

Furthermore, we have c1(0) ≈ −0.08872+0.0200i, that is β < 0. From Theorem 3.3
and 4.1, the positive equilibrium E∗(1.8663, 4.9067) is locally asymptotically stable
when τ ∈ [0, τ∗) (see Fig.2), moreover, system (3) undergoes a Hopf bifurcation at
τ = τ∗, the direction of the Hopf bifurcation is forward and bifurcating periodic
solutions are orbitally asymptotically stable for τ > τ∗(see Fig.3).

Figure 2. The positive equilibrium is asymptotically stable when
τ ∈ [0, τ∗), where τ = 2 < τ∗ ≈ 4.6242.

If we choose

γ = 0.01, θ = 0.05, m1 = 2, m1 = 0.30, d1 = 1, d2 = 0.50, τ = 1.

Here we chose m1 = 2 > 1, then we know that the boundary equilibrium E1(0, 1)
is global asymptotically stable (see Fig.4).

The initial conditions in all simulations are given by u0(x, t) = 1.7 + 0.1 cos 2x,
v0(x, t) = 4.9− 0.1 cos 2x, (x, t) ∈ [0, 2π]× [−τ, 0].
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Figure 3. The bifurcating periodic solution is stable, where τ =
5 > τ∗ ≈ 4.6242.

Figure 4. The axial equilibrium E1(0, 1) is global asymptotically stable.

Remark 3. Fig.2 and Fig.3 come into being on the precondition of (H1), that
is to say, when the delay τ is less than the critical value τ∗, the population of
predator and prey will tend to a relatively stable state (see Fig.2); when the delay
τ is a little larger than the critical value τ∗, the polulation presents a periodic
oscillation phenomenon near the equilibrium point(see Fig.3). If the precondition
of (H1) is not satisfied, from Remark 1 and Remark 2, we know that the boundary
equilibrium E1(0, 1) is global asymptotically stable, the prey will go extinct at last,
but the predator will increase and reach its carrying capacity(see Fig.4).
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