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Abstract. In this paper, we derive efficient drug treatment strategies for hep-

atitis B virus (HBV) infection by formulating a feedback control problem. We

introduce and analyze a dynamic mathematical model that describes the HBV
infection during antiviral therapy. We determine the reproduction number and

then conduct a qualitative analysis of the model using the number. A con-

trol problem is considered to minimize the viral load with consideration for
the treatment costs. In order to reflect the status of patients at both the ini-

tial time and the follow-up visits, we consider the feedback control problem
based on the ensemble Kalman filter (EnKF) and differential evolution (DE).
EnKF is employed to estimate full information of the state from incomplete

observation data. We derive a piecewise constant drug schedule by applying
DE algorithm. Numerical simulations are performed using various weights in

the objective functional to suggest optimal treatment strategies in different

situations.
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1. Introduction. Hepatitis B virus (HBV) infection is an important global health
problem implicated in liver cancer and cirrhosis. Nearly 2 billion people world-
wide have been infected and 240 million patients have suffered from chronic HBV
infection. Eighty percent of all liver cancer is caused by chronic hepatitis B, re-
sulting in half a million fatalities annually [22]. Several therapeutic agents have
been approved by the Food and Drug Administration, including interferon and
nucleosides/nucleotides analogues (NUCs) such as lamivudine, adefovir, entecavir,
telbivudine and tenofovir [1, 2, 13]. These agents fall into one of two categories:
inhibiting de novo infection and inhibiting viral production. Despite the success of
these drugs in reducing liver damage and delaying the progression of liver disease
in chronically infected people, their long-term use comes with substantial complica-
tions. A critical challenge in the treatment of patients with chronic Hepatitis B is
the emergence of drug resistance. In addition, high drug cost and complicated drug
regimens impose a burden on some patients who have limited access to antiviral
agents in developing countries [1].

Mathematical models have recently contributed significantly to understanding
many complex biological systems and investigating the dynamics and control of
virus such as human immunodeficiency virus (HIV) and hepatitis C virus. Many
researchers have used mathematical models to simulate the course of virus infection
and predict the potential response to different therapies [10, 18]. They also have
applied optimal control techniques with mathematical models to suggest optimal
treatment strategies for HIV, tuberculosis, and vector-borne diseases [3, 4, 17]. Sev-
eral studies have explored the optimization of strategies for vaccination distribution
for influenza using control theory [15, 16]. A mathematical model was developed
to estimate the effects of pre-exposure prophylaxis (PrEP) on the HIV epidemic in
South Korea [14].

Optimal control of HBV infection is the subject of research interest because it
may contribute to the development of effective treatment strategies. The effec-
tiveness of HBV therapy may be improved by developing dynamic drug strategies,
where the treatment schedule changes over time in response to the individual’s dis-
ease progression. The model we use to derive the optimal drug treatment strategies
for HBV infection is originally developed in [13], although the paper did not provide
a mathematical analysis of the model. The authors introduced immune effectors as
a new compartment in the model to show triphasic viral dynamics since traditional
biphasic models is not sufficient to explain long-term viral dynamics of hepatitis
B. In this paper, we first perform a qualitative analysis of the HBV model and
then consider feedback control of HBV infection incorporating current knowledge
of patients. The reproduction number is determined and the stability of the steady
state is investigated by using the number which is commonly used to measure the
potential for the disease spread in epidemiology. We also derive optimal treatment
strategies for HBV infection by formulating a feedback control problem. The model
predictive control (MPC) is an advanced feedback control methodology which solves
a finite-horizon open-loop control problem iteratively such that the current state is
measured at the sampling time [12]. Application of the MPC method requires full
information on the current state. In a clinical setting, however, it is impossible to
quantify all state variables because of a lack of technical skills. To overcome the
imperfection of the observation data, we use the ensemble Kalman filter (EnKF).
EnKF is a recursive algorithm that produces estimates of the optimal state of the
nonlinear system by using a series of observed data with noise [7, 8].
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A differential evolution (DE) algorithm is employed to derive the piecewise con-
stant drug schedule, where the current state is sampled at several measurement
times. DE, introduced by Price and Storn, is a population-based direct-search
global optimization algorithm. In the evolutionary computation, a population of
candidate solutions, called agents, iteratively progresses towards the optimum with
regard to a given measure of quality. These agents are moved around in the search-
space by perturbations using three main steps of mutation, crossover and selection
[21, Section 2.1, page 37-47].

The rest of this paper is organized as follows: Section 2 introduces and analyzes a
mathematical model describing the dynamics of HBV and immune response during
antiviral therapy. The section derives the reproduction number and investigates the
stability of the steady state. Section 3 formulates a feedback control problem based
on EnKF and DE to derive optimal drug treatment strategies for HBV infection.
The section addresses EnKF to estimate full information of the state at sampling
time from partial observation data and the DE to derive an optimal piecewise
constant control. Section 4 presents the results of numerical simulations with various
weights in the objective functional. Section 5 concludes.

2. Model analysis. The system of ordinary differential equations describing the
compartmental HBV infection dynamics is given by

dT

dt
= S − dTT − (1− η · µ1(t))bV T + αfIE

dI

dt
= (1− η · µ1(t))bV T +mI − dII − αIE

dV

dt
= (1− ε · µ2(t))pI − cV

dE

dt
= SE +

BEIE

(I +KE)
−DEE

(1)

where the four state variables T , I, V , and E represent the number of uninfected
or target cells, infected cells, virus load, and immune effectors, respectively.

Target cells are assumed to be produced at the constant rate S. Target cells
die at rate dTT and become infected at the rate bV T , where b is a new infection
rate of target cells. New infection with HBV is blocked by treatment with NUCs,
nucleoside analogues. The parameter η represents the efficacy of the treatment.
Thus, the infection rate is reduced to (1− ηµ1)bV T where 0 ≤ η ≤ 1.

Infected cells are produced at the rate of (1− ηµ1)bV T and divide by mitosis at
the rate of mI, where m is the mitotic production rate of infected cells. Infected
cells die at rate dII and are cleared by immune effector at rate αIE, where the im-
mune effector-induced clearance rate of the infected cells is represented as α in the
equation of the infected cell. The mechanism for immune effectors involves cytolytic
and noncytolytic activities. Immune effectors are thought to perform noncytolytic
activity, probably causing noncytolytic, cytokine-induced curing?of infected cells
[11, 20]. Although there is currently no way to measure noncytolytic immune ac-
tivity during HBV infection, it was assumed that the scale of noncytolytic activity
is related to the scale of cytolytic activity. Therefore, noncytolytic activity was
expressed using α with a calibration coefficient f in the first equation of the system
where 0 ≤ f ≤ 1.

Free virions are assumed to be produced from infected cells at the rate of pI.
The treatment of inhibiting viral production is introduced to reduce the rate by a
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factor of (1 − εµ2), where ε denotes the efficacy of the treatment. Then, HBV is
produced at the reduced rate of (1− εµ2)pI where 0 ≤ ε ≤ 1 and die at the rate of
cV . The immune effectors are produced at the constant rate SE and die at the rate

DEE. The immune effectors are stimulated at the rate of
BEIE

I +KE
, where BE is the

maximum birth rate for immune effectors and KE is the Michaelis constant. That
is, the stimulation of immune response is assumed to be similar to Michaelis-Menten
kinetics.

The control variables µ1(t) and µ2(t) represent time-dependent drug treatments
of inhibiting de novo infection and viral production satisfying 0 ≤ µi(t) ≤ 1,
(i = 1, 2), respectively. We assume that µi(t) = 0 and µi(t) = 1, (i = 1, 2)
represent no- and full treatment scenarios, respectively. For simplicity of notation
in the qualitative analysis, we assume that µ1(t) ≡ 1 and µ2(t) ≡ 1 in this section.
The mathematical model (1) contains many parameters that have to be assigned
before numerical simulations. The descriptions and values for the parameters are
summarized in Table 1. For a more detailed discussion of this model and parameter
values, see [13].

Description value units

S production rate of target cells 5× 105 cells
mL·day

dT death rate of target cells 0.003 1
day

η treatment efficacy of inhibiting de novo infection ∈ [0, 1] ·
b de novo infection rate of target cells 4× 10−10 mL

virions·day
f calibration coefficient of α for target cells 0.1 ·
m mitotic production rate of infected cells 0.003 1

day

dI death rate of infected cells 0.043 1
day

α immune effector-induced clearance rate of infected cells 7× 10−4 mL
cells·day

ε treatment efficacy of inhibiting viral production ∈ [0, 1] ·
p viral production rate by infected cells 6.24 virions

cells·day
c clearance rate of free virions 0.7 1

day

SE production rate of immune effectors 9.33 cells
mL·day

BE maximum birth rate for immune effectors 0.5 1
day

KE Michaelis-Menten type coefficient for immune effectors 4.07× 105 cells
mL

DE death rate of immune effectors 0.52 1
day

Table 1. Parameters used in the model (1). They are principally
extracted from Kim et al. [13].

For any biological model to be feasible, it is essential that all states of the model
must remain non-negative. A mathematical analysis of the model should include
verification of this property. We begin by defining a domain Ω for the HBV model
(1) and making assumptions for some parameters.

Ω = {(T, I, V,E) ∈ R4
+| 0 ≤ T + I ≤ S

D
, 0 ≤ V ≤ (1− ε)pS

cD
, 0 ≤ E ≤ SE

DE −BE
},

where D = min(dT , dI −m).

Assumptions:
A1: The mitotic production rate of infected cells is smaller than the death rate

of infected cells , i.e. m < dI .
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A2: The maximum birth rate for immune effectors is smaller than the death
rate of immune effectors, i.e. BE < DE .

Theorem 2.1. Assume that A1 and A2 hold, then Ω is positively invariant under
the system (1).

Proof. Note that the states T , I, V , and E decrease only in proportion to their
present sizes, and thus, all states remain nonnegative if their initial values are
nonnegative.

Adding the first two equations in the model (1), we obtain

d

dt
(T + I) = S − dTT +mI − dII − αIE(1− f)

≤ S − dTT − (dI −m)I

≤ S −D(T + I),

where D = min(dT , dI −m). Clearly T (t) + I(t) ≤ S
D for all t when initial value

T0 + I0 ≤ S
D . Similarly, we have V (t) ≤ (1− ε)pS

cD
and E(t) ≤ SE

DE −BE
for all t.

Therefore, Ω is positively invariant under the system (1)

Now we analyze the stability of the steady states by calculating the reproduction
number. In epidemiology, the basic reproduction number, R0, is defined as the
average number of secondary infections generated by a typical primary infection in
a susceptible population. It is used to determine whether or not a disease can spread
through the population. In this paper, the R0 is considered as the expected number
of target cells infected through viruses reproduced by a single infected cell. It is a
key threshold quantity for conducting qualitative analysis of the model. Because
the model (1) include treatment, we speak of a control reproduction number Rc
rather than a basic reproduction number R0. If there is no treatment (µ1(t) = 0,
µ2(t) = 0), then Rc reduces to R0.?

Clearly, the HBV model (1) has a unique virus-free equilibrium given by

EQ0 =

(
S

dT
, 0, 0,

SE
DE

)
.

Using the next generation approach [6, page 230], we calculate Rc, which is
critical to the stability of the virus-free equilibrium. To this end, we split the
HBV model (1) into two systems with a disease compartment x = (I, V )t and a
non-disease compartment y = (T, E)t as

dx

dt
= F − V and

dy

dt
=

S − dTT − (1− η)bV T + αfIE

SE +
BEIE

(I +KE)
−DEE

 ,
where

F =

[
(1− η)bV T

0

]
and V =

[
(dI −m+ αE)I
−(1− ε)pI + cV

]
.

The linearized equations for the disease compartment, x, at the virus-free equi-
librium can be written as

x′ = (F − V )x,
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where

F =
∂F
∂x

=

0 (1− η)b
S

dT
0 0

 and V =
∂V
∂x

=

dI −m+ α
SE
DE

0

−(1− ε)p c

 .
Then Rc is given by

Rc = ρ(FV −1) =
(1− η)bS(1− ε)p

cdT (dI −m+ α
SE
DE

)
, (2)

where ρ(A) denotes the spectral radius of a matrix A.

Theorem 2.2. Assume that A1 and A2 hold. The virus-free equilibrium, EQ0 for
the system (1) is locally asymptotically stable if Rc < 1 and unstable if Rc > 1.

Proof. At the virus-free equilibrium, the Jacobian matrix of the system (1) is

J(EQ0) =



−dT αf
SE
DE

−(1− η)b
S

dT
0

0 (m− dI − α
SE
DE

) (1− η)b
S

dT
0

0 (1− ε)p −c 0

0
BESE
KEDE

0 −DE


.

And the characteristic polynomial of the Jacobian matrix is given by

p(λ)

= (−dT − λ)(−DE − λ)

(
(m− dI − α

SE
DE
− λ)(−c− λ)− (1− ε)p(1− η)b

S

dT

)
.

Clearly, λ1 = −dT , λ2 = −DE are two of the eigenvalues of the Jacobian matrix.
Denote λ3 and λ4 as the other eigenvalues. These values are the roots of the
quadratic polynomial in p(λ) given by(

m− dI − α
SE
DE
− λ
)

(−c− λ)− (1− ε) p (1− η) b
S

dT

= λ2 −
(
m− dI − α

SE
DE
− c
)
λ

+

(
m− dI − α

SE
DE

)
(−c)− (1− ε) p (1− η) b

S

dT
.

So we have

λ3 + λ4 = m− dI − α
SE
DE
− c,

λ3λ4 =

(
m− dI − α

SE
DE

)
(−c)− (1− ε) p (1− η) b

S

dT

=

(
dI −m+ α

SE
DE

)
c (1−Rc) .

By assumption A1, we have λ3 + λ4 < 0 . Therefore, all of the eigenvalues of
the Jacobian matrix have negative real parts when Rc < 1. However, not all roots
of this polynomial can have negative real parts when Rc > 1. This means that the
virus-free equilibrium is locally asymptotically stable when Rc < 1 and unstable
when Rc > 1.
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We note that the global stability of the virus-free equilibrium can be established
by verifying the conditions of the global stability theorem in [5, page 176]. Consider
the abstract form of a mathematical model to introduce the theorem:

x′ = −Ax− f̂(x, y)
y′ = g(x, y)

(3)

where x denotes a disease compartment and y denotes a non-disease compartment.

Definition 2.3. A is called M-matrix if and only if there exists a matrix B ≥ 0
and a real number r ≥ ρ(B) such that A = rI −B.

Remark 1. [9] A is a M-matrix if and only if A is a real nonsingular matrix such
that aij ≤ 0 for all i 6= j and each entry of A−1 is nonnegative.

We now assume that y∗ is a globally asymptotically stable equilibrium of y′ =
g(0, y).

Theorem 2.4. [5, page 176] If A is a nonsingular M-matrix and f̂ ≥ 0, then (0, y∗)
is a globally asymptotically stable equilibrium of (3).

Theorem 2.5. Assume that A1 and A2 hold. If Rc < 1, then the virus-free equi-

librium, EQ0, is globally asymptotically stable when E(0) >
SE
DE

and dT ≤ dI −m.

Proof. Our model can be written as

x′ = −Ax− f̂(x, y)

y′ = g(x, y) =

S − dTT − (1− η)bV T + αfIE

SE +
BEIE

(I +KE)
−DEE

 , (4)

where

A =

−(m− dI − α
SE
DE

) −(1− η)b
S

dT
−(1− ε)p c

 ,

f̂(x, y) =

(1− η)bV (
S

dT
− T ) + αI(E − SE

DE
)

0

 .
It is clear that y∗ = ( SdT ,

SE

DE
) is a globally asymptotically stable equilibrium of

y′ = g(0, y) and a12 and a21 in the matrix A are nonpositive .
Now consider the inverse of A,

A−1 =
1

(dI −m+ α
SE
DE

)c(1−Rc)

 c (1− η)b
S

dT

(1− ε)p dI −m+ α
SE
DE

 .
Thus A is M-matrix when Rc < 1 by Remark 1.

In addition, E ≥ SE

DE
when E(0) > SE

DE
because of the form of the fourth equation

in our model (1) and T ≤ S
dT

when dT ≤ dI − m by Theorem 2.1. That is,

f̂(x, y) ≥ 0. Therefore, the virus-free equilibrium, EQ0, is globally asymptotically
stable when E(0) > SE

DE
and dT ≤ dI −m by Theorem 2.4.
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Theorem 2.6. Suppose that assumptions A1 and A2 hold. There exists a unique
positive chronic equilibrium if Rc > 1 and there is no chronic equilibrium if Rc < 1.

Proof. To determine a chronic equilibrium, (T ∗, I∗, V ∗, E∗), the following equations
are solved:

S − dTT ∗ − (1− η)bV ∗T ∗ + αfI∗E∗ = 0

(1− η)bV ∗T ∗ +mI∗ − dII∗ − αI∗E∗ = 0 (5)

(1− ε)pI∗ − cV ∗ = 0 (6)

SE +
BEI

∗E∗

I∗ +KE
−DEE

∗ = 0 (7)

By the third and fourth equations, we have

V ∗ =
I∗(1− ε)p

c
, E∗ =

−SE(I∗ +KE)

I∗(BE −DE)−KEDE
.

Substituting V ∗ and E∗ in the first equation

T ∗ =
S + αfI∗E∗

dT + (1− η)bV ∗
=
S + αfI∗ −SE(I∗+KE)

I∗(BE−DE)−KEDE

dT + (1− η)b I
∗(1−ε)p
c

. (8)

By the second equation and the above expression, we finally obtain a quadratic
polynomial, P (I∗);

P (I∗) = (1− η)b(1− ε)p(S(I∗(BE −DE)−KEDE)− I∗αfSE(I∗ +KE))

+(m−DI)(cdT + I∗(1− η)b(1− ε)p)(I∗(BE −DE)−KEDE)

+αSE(I∗ +KE)(cdT + I∗(1− η)b(1− ε)p)
= AI∗2 +BI∗ + C = 0

where

A = (m− dI)(1− η)b(1− ε)p(BE −DE) + αSE(1− f)(1− η)b(1− ε)p
B = (1− η)b(1− ε)p(S(BE −DE)− αfSEKE) + (m− dI)cdT (BE −DE)

−(m− dI)(1− η)b(1− ε)pKEDE + αSEKE(1− η)b(1− ε)p+ αSEdT

C = −(1− η)b(1− ε)pSKEDE + αSEKEcdT − (m− dI)cdTKEDE

= KE((−m+ dI)DE + αSE)cdT (1−Rc)

By our assumptions, A > 0. And C < 0 if Rc > 1. This means there exists only
one positive root of P (I∗) and thus a corresponding chronic equilibrium, EQ∗ =
(T ∗, I∗, V ∗, E∗) if Rc > 1. On the other hand, there is no chronic equilibrium if
Rc < 1.

A general qualitative analysis of our model is very challenging due to the high
nonlinearities in our model. However, we are still interested in the stability of the
steady state, so we conducted a stability analysis of the steady state numerically.
Given the parameter values in Table 1, we plot the bifurcation diagram of the model
system (1) with varying ε and η = 0.5. In Figure 1, the x− and y−axes stand for Rc
and the steady state I∗, respectively. By checking the eigenvalues of Jacobian, we
verify that the virus-free steady state is locally asymptotically stable when Rc < 1
and it is unstable when Rc > 1. Moreover, our simulation supports that there exists
a chronic equilibrium which is locally asymptotically stable when Rc > 1.
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Figure 1. The bifurcation diagram of the model system

3. Feedback control. One of the study goals is to design optimal drug treatment
strategies using mathematical models and control techniques. One way to achieve
this goal is to consider an optimal control problem minimizing the number of virions
with consideration for the treatment costs. Thus, we define the objective functional
as

J(µ1, µ2) =

∫
w1 · V (t) + w2 · µ2

1(t) + w3 · µ2
2(t)dt (9)

The weight constants wi, (i = 1, 2, 3) can be chosen to balance the relative costs
of the virus load V and control efforts of µ1(t) and µ2(t). Then we formulate an
optimal control problem to minimize the objective functional constrained to the
dynamics of the HBV infection:

minimize J(µ1, µ2) subject to (1).

In our optimal control formulation, the MPC method is used in order to reflect
the status of patients at both initial time and follow-up visits. Therapy strategies
are determined based on the current state of the system at each sampling time,
which is the initial state for the open-loop control problem in each subinterval. In
order to formulate the MPC, we assume that the current state is measured at ti
where ti < ti+1 and Ti is the control horizon time such that ti+1 ≤ ti + Ti for
i = 0, 1, 2, · · · . The MPC algorithm proceeds as follows:

1. Solve the open-loop optimal control problem minimizing the objective func-
tional (9) in the interval [ti, ti + Ti] with the initial value x(ti) = xi,

2. Determine the state x(t) in the interval [ti, ti + Ti] by solving the model (1)
with the derived optimal control functions,

3. Determine xi+1 by using measured data and the predicted state x(t) at t =
ti+1,

4. Repeat this process over the next time interval [ti+1, ti+1 + Ti+1] with initial
value x(ti+1) = xi+1.

There are several technical issues to be addressed to implement our approach.
Synthesis of the nonlinear feedback control requires full knowledge of all the state
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variables. However, in a clinical setting, only partial information of the state is
given due to lack of technical skill to quantify all the state variables. The ideas
of the Kalman filter (KF) are employed to design a state estimator. Then we
are interested in restricted class of piecewise constant controllers that are usual
treatment protocols in practice. DE, an algorithm that optimizes a problem by
iteratively improving a candidate solution, has a great potential as a tool for deriving
piecewise constant strategies.

In this section, we give a brief summary of two main techniques, KF and DE,
used in the MPC. We begin with the basic ideas and background of KF and move
to modified algorithms to take care of nonlinearity and the system with continu-
ous dynamics and discrete measurements. In the second part, the DE method is
introduced and each step is explained with illustrations. Figure 2 shows how these
techniques are incorporated to solve a control problem to yield an efficient treatment
strategy.

Partial
Measurements

KF−−→ Full States DE−−→
Optimal

Treatment

Figure 2. Feedback control algorithm

3.1. Hybrid ensemble Kalman filter (EnKF). Kalman filter (KF) uses a series
of measurements observed over time containing noise and produces estimates of
state variables by a combination of the probability distribution from the model
prediction and the measurement. It is a recursive algorithm that only utilizes the
first two moments of the state, mean and covariance, to characterize the entire
optimal estimate for linear systems with additive Gaussian noise in both the process
model and the observation. Consider a linear, discrete system of dynamics and
measurement:

xk = Fk−1xk−1 + wk−1

zk = Hkxk + vk
(10)

where xk is a state vector, Fk the state transition model, and Hk the observation
model which maps the true state xk into the observation zk. There are several
assumptions for KF regarding noise terms in process and measurement models. The
initial state x0 is a Gaussian with a known mean x̄0 and a covariance matrix P0.
Noise wk and vk are assumed to be zero-mean Gaussian processes with covariances
Qk and Rk, respectively.

The KF algorithm consists of a prior step to predict by the process model and a
posterior step to update based on the measurement, which can be summarized as

• Prior estimation (prediction):

x̂−k = Fk−1x̂k−1

P−k = Fk−1Pk−1F
T
k−1 +Qk−1
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• Posterior estimation (update):

K = P−k H
T
k (HkP

−
k H

T
k +Rk)−1

x̂k = x̂−k +K(zk −Hkx̂
−
k )

Pk = (I −KHk)P−k

The probability distribution of state variables in a linear model is completely
characterized by its mean and covariance for all times if the initial condition follows
a normal distribution. For a nonlinear model, however, the first two moments of
the state will not characterize the full probability density, but do determine the
mean path and the dispersion about that path. A number of extensions have been
proposed to deal with nonlinear dynamics. We also note that physical systems are
often represented as continuous-time dynamics in conjunction with discrete-time
measurements.

ẋ(t) = f(x, t) + w(t)

zk = Hkxk + vk
(11)

The extended Kalman filter approximates the nonlinear dynamics model by a
linearization about the current state. This linear model is then propagated forward
under the basic KF algorithm and is used to approximate the optimal mean and co-
variance for the state of the system. It has been observed that the extended Kalman
filter may fail to achieve meaningful results, in the case of large nonlinearity or poor
initial guess. Another set of approaches based on sampling techniques have been
developed, as opposed to deterministic ones, to characterize the distributions. One
such approach, EnKF, generates numerous points sampled from the assumed dis-
tribution and propagates them forward to calculate the mean and variance of these
samples [8, page 38-46]. Adjustments have to be made to account for nonlinearity
and discrepancy in time. In this particular problem, we only shows the numerical
results obtained by applying EnKF because the results of both EKF and EnKF
algorithms are consistent. The hybrid version EnKF algorithm is given as follows:

• Initialize: Generate particles X = {x0,j} sampled from initial distribution

x̂(0) = E[x0,j ]

P (0) = E[(x0,j − E[x0,j ])(x0,j − E[x0,j ])
T ]

• Prior estimation (prediction):

X− = {x−k,j |ẋ
−
k,j = f(x−k,j , t) + w(t) with initial values xk−1,j ∈ X}

x̂− = E[X−]

P− = Cov[X−,X−]

• Posterior estimation (update):

Z− = {z−k,j = Hkx
−
k,j}

Z = {zk,j = zk + vk,j}

K = Cov[X−,Z−] · (Cov[Z−,Z−] + Cov[Z,Z])
−1

X = {xk,j = x−k,j +K(zk,j − z−k,j)}
x̂k = E[X ]

Pk = Cov[X ,X ]
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In order to apply the KF technique, we introduce the notation x and r to denote
the state and control vectors, respectively. Thus we define

x =


T
I
V
E

 , r =

(
η
ε

)

With the above notation, the HBV model (1) can be expressed in the form

ẋ = f(x(t), r(t), t).

For feedback control, we need current knowledge on the state of the system. We
assume that partial state observation of viral load V is available, which is rep-
resentative of the type of data in a clinical setting. Hence, the measurement or
observation takes the form

z =
(
0 0 1 0

)
x = Hx

3.2. Differential evolution (DE) method. DE is a direct-search global opti-
mization algorithm that was originally developed by Price and Storn in 1997. Let
J : RD → R be the cost functional to be minimized. The DE algorithm can then
be described as follows:

Step 1. Initialization The initial population of possible candidate vectors {xi :
i = 1, 2, .., Np} are generated by random sampling in the search-space. Each
element of a candidate vector of dimension D is denoted by xi = [xi,j : j =
1, 2, ..., D].

Step2 . Mutation Mutant vectors {vi} are generated according to

vi = xbest + P (xm − xn) i = 1, 2, ..., Np (12)

where xbest is the best candidate, {xm, xn} are two distinct arbitrary candidate
solution vectors and P ∈ (0, 2) is a mutation scale factor.

Step3 . Crossover A set of vectors {ui} is formed for each i = 1, 2, ..., Np,

ui,j =

{
vi,j , if randj(0,1)≤ CR
xi,j , otherwise

(13)

where j = 1, 2, ..., D and CR ∈ [0, 1] is a crossover probability.
Step4 . Selection The next generation vectors are selected as

xi =

{
ui, if J(ui) < J(xi)

xi, otherwise
(14)

Repeat steps 2-4 until the termination criteria are met.

DE creates mutant agents using the scaled difference of two randomly selected
candidate vectors in the mutation step (Figure 3). In the algorithm, the scale factor
P ∈ [0, 2] gives the scatter around xbest and P > 1 is required for a successfully
optimized result, in general. The crossover step allows the construction of new can-
didate vectors by combining the current and mutant agents (Figure 4). CR ∈ [0, 1],
called a crossover probability, determines the extent of preference given to the mu-
tant in recombination of components in each candidate vector. The average number
of parameters mutated depends on the crossover probability and many genetic al-
gorithms recommend a crossover probability of 1/D, where D is the dimension of a
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solution vector. In the selection, replace the current agent in the population if the
candidate vector is an improvement.

Figure 3. Mutation step to create a mutant vector vi

Figure 4. Crossover step to yield one of the vectors vi, u
′
i, u
′′
i and

xi as a new candidate

In summary, mutation expands the search space, crossover incorporates candi-
date vectors from the previous generation and new candidate vectors for recombi-
nation, and selection admits the one with the best fitness to the next generation.
Therefore, mutation and crossover tend to increase the diversity of a population,
whereas selection reduces it. To avoid premature convergence due to the selection
pressure, it is crucial to choose P and CR that are of sufficient magnitude. Selecting
desirable parameters in DE has been the subject of much research, since the choice
of parameters can have a large impact on optimization performance [19].

4. Numerical results. We illustrate the nonlinear feedback control incorporating
EnKF and DE algorithms using synthetic data. We consider a drug treatment
strategy over 200 days with monthly measurement. A set of synthetic data is
constructed by adding 5% random noise to the model prediction of viral load V



680 JUNYOUNG JANG, KIHOON JANG, HEE-DAE KWON AND JEEHYUN LEE

for every time point for the measurement. The parameters used are summarized in
Table 1 and the initial values for state variables are

T0 = 1.4× 108, I0 = 3.75× 105, V0 = 5× 108, E0 = 100

At each sampling time, an initial guess for the covariance to start the EnKF is chosen
to be a diagonal matrix in which diagonal entries are 10. In the DE algorithm, the
population size Np, the differential weight P , and the crossover probability CR are
selected to be Np = 500, P = 1.1, and CR = 0.7, respectively. The values of the
drug efficacy for η and ε are set to 0.9.

To suggest general policies for efficient treatment, we run the simulations under
various settings. The weight constants wi in the objective functional (9) can be
chosen to balance the difference in the magnitudes and/or relative costs of the
viral load and the drug treatment. In fact, the second and third terms in the
objective functional (9) with weights w2 and w3 represent systemic costs of the
drug treatments which mean severity of unintended side effects as well as treatment
cost. In numerical simulations, weights for drug treatments w2 and w3 are varied
to compare the optimal treatment strategies under different relative costs, keeping
the weight for virus cells w1 = 10−7 fixed to balance the magnitudes.

Figure 5 displays the time dependent feedback controls and the corresponding
states with the choice of w2 = 10−5 and w3 = 10−5. Hybrid EnKF is used to
recover the full states (diamond) from the partial measurement (star). Then the
DE algorithm is followed to obtain the optimal piecewise constant functions. The
derived drug schedules for both treatments are nearly identical to the full treatment
in this case. That is, the maximum dosage of the both drugs are recommended for
the whole duration if the systemic costs of the drug treatments are relatively low
(w2 = 10−5 and w3 = 10−5). The corresponding optimal states obtained by solving
the system (1) are also presented. Drug treatment causes the low viral load, which
discourages an immune response.

The impact of different weights on feedback control is explored by varying the
weights for w2 and w3 in Figure 6 and Figure 7. The dosage of µ1 tapers off from the
end of treatment duration, whereas the dosage of µ2 is maintained, as the weights
for µ1 and µ2 increase simultaneously. In Figure 6, the temporal schedule of optimal
control µ1 stays at full dosage for 60 days and begins to reduce until it reaches the
level of 20% approximately in the end. We note that the decline in the dosage of
the drug inhibiting de novo infection is closely related to the virus load. Figure 7
shows that µ1 is almost zero except in the first 30 days whereas µ2 maintains its
maximum value during the whole period in the case of w2 = 10−1, and w3 = 10−1.
One may conclude that µ2 is more effective than µ1 in reducing the viral load and
infected cells due to underlying mechanisms when both controls have the same level
of reduction in inhibition. That is, it is more efficient that some patients who have
limited access to therapeutic agents due to high cost should reduce their use of drugs
that inhibit de novo infection while maintaining their use of drugs that inhibit viral
production.

In Figure 8, w2 = 10−3 and w3 = 10−2 are chosen to consider the case when
µ1 and µ2 have different costs to implement. It is observed that the dosage of µ2

maintains its maximum value up to the 90th day and then tapers off whereas the
dosage of µ1 maintains its full dosage for the whole treatment duration when the
cost of µ2 is higher than the cost of µ1.
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The relation between the relative dosage and the weights of two drugs are inves-
tigated further in Figure 9 and Figure 10. In the baseline case, we set efficacy of
both drugs η = ε = 0.9 and vary the weights w2 and w3 in the range [10−6, 100]. To
compared the total dosage of drugs that inhibit de novo infection and inhibit viral
production regarding to the change of weights, the difference µ2 − µ1 between the
total amount of µ2 and µ1 for the whole duration is displayed in the Figure 9. Then
the positive region of difference where the total dosage of µ2 is higher than µ1, is
divided from the negative one by a threshold curve (solid line). As it is noticed in
previous results, the case of same weights is included in the positive region because
µ1 begins first to reduce its dosage when the weights increase simultaneously.

In Figure 10, simulations are performed using various combinations of treatment
efficacy assuming the total efficacy of 99%. In the first row, threshold is portrayed
when the efficacy of viral production inhibitor is higher than the efficacy of de novo
infection inhibitor. The region where the dosage of µ2 is higher than µ1 is enlarged
as the efficacy of viral production inhibitor, ε , increases. On the other hand, the
positive region decreases if η rises as illustrated on the bottom.

We performed numerical simulations with monthly, biweekly, and weekly mea-
surement to investigate the influence of measurement time in Figure 11 - 13. Op-
timal treatment strategies are illustrated as weights w2 and w3 increase simultane-
ously. We also derived piecewise continuous optimal controls to carry out compar-
ative assessments of different treatment schedules. While the resulting strategies
are slightly different in details, the general conclusions are consistent. That in-
cludes that µ2 is more effective than µ1 in reducing the viral load and infected cells
assuming the same level of reduction in inhibition.

5. Conclusion. This paper formulates and analyzes a mathematical model of the
HBV infection for a better understanding of the interaction between the HBV in-
fection and the immune response during antiviral therapy. The qualitative analysis
shows that the proposed model possesses one virus-free equilibrium and one chronic
equilibrium with some assumptions. A detailed local/global stability analysis of the
virus-free steady state is conducted using the Jacobian matrix method combined
with the reproductive number. Bifurcation analysis is also performed to support
our theoretical results for the stability analysis numerically.

In addition, the paper considers a feedback control problem to reflect the status
at each sampling instance. The ideas of EnKF are used to address the issue of
incomplete observation data. Then we apply the DE algorithm to derive piecewise
constant control, which is the usual protocol in practice. The results of numerical
simulations indicate that as the treatment costs increase, the drug dosage tapers
off, resulting in decreased drug use. It is observed that µ2, which inhibits viral
production, may be more effective than µ1, which inhibits de novo infection, in
reducing the viral load assuming both controls have the same cost. However, drug
dosage is a function of weight and is determined by the relative costs of drugs, in
general.
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Figure 5. Feedback controls µ1, µ2 and the corresponding states
T, V, I, E with w2 = 10−5, w3 = 10−5.
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Figure 6. Feedback controls µ1, µ2 and the corresponding states
T, V, I, E with w2 = 10−3, w3 = 10−3.
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Figure 7. Feedback controls µ1, µ2 and the corresponding states
T, V, I, E with w2 = 10−1, w3 = 10−1.
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Figure 8. Feedback controls µ1, µ2 and the corresponding states
T, V, I, E with w2 = 10−3, w3 = 10−2.
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Figure 9. The difference between the total amount of µ2 and µ1

using same treatment efficacy (η = ε = 0.9).

Figure 10. The difference between the total amount of µ2 and
µ1 using various combinations of treatment efficacy assuming the
total efficacy of 99%.
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Figure 11. Piecewise constant controls with monthly, biweekly,
and weekly measurement and piecewise continuous controls with
monthly measurement using w2 = 10−5, w3 = 10−5.
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Figure 12. Piecewise constant controls with monthly, biweekly,
and weekly measurement and piecewise continuous controls with
monthly measurement using w2 = 10−3, w3 = 10−3.
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Figure 13. Piecewise constant controls with monthly, biweekly,
and weekly measurement and piecewise continuous controls with
monthly measurement using w2 = 10−1, w3 = 10−1.
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