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Abstract. We propose an ultra-discretization for an SIR epidemic model with
time delay. It is proven that the ultra-discrete model has a threshold property

concerning global attractivity of equilibria as shown in differential and differ-

ence equation models. We also study an interesting convergence pattern of the
solution, which is illustrated in a two-dimensional lattice.

1. Introduction. Differential equations are used for modeling phenomena in many
disciplines e.g. economy, physics, engineering, biology and chemistry. Since exact
(analytical) solutions are not available in many cases if the mathematical model
is given as a nonlinear system, numerical solutions have enhanced our understand-
ing of the mathematical model [7]. Traditional numerical schemes such as Euler’s
method and Runge-Kutta method, however, may induce numerical instability, as
the discretization would change properties of solutions, such as stability and posi-
tivity, of the original model, thus numerical scheme should be carefully chosen to
preserve nature of the original system, see e.g. [4, 8].

The authors in [10] propose a system of difference equations as a discrete coun-
terpart of a continuous epidemic model, describing disease transmission dynamics
in continuous time. Qualitative properties of the model such as positivity, bound-
edness and convergence of the solutions are investigated. As a continuation work
of [10] in [11] a general system of difference equations is analyzed. In both papers,
proving convergence of the solution, when a parameter called the basic reproduction
number is greater than one, seems to be a challenging problem, while it is known
that the corresponding continuous model has an equilibrium that is globally sta-
ble. A “good” discretization is found in [23, 24, 5] for a class of epidemic models
formulated by delay differential equations in [2, 3, 29]. The authors in [24] prove
uniform persistence of the solution, corresponding to a result in [29] for a continuous
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SIRS model. The authors in [5] prove global stability of the endemic equilibrium
by a Lyapunov function, corresponding to the result established in [14] (see also
[6]). The discretization used in [24, 5] is a variation of backward Euler’s method
and is indeed known as Micken’s nonstandard finite difference method [15]. See
also [12, 16] for the application of Micken’s nonstandard finite difference method
to ordinary differential equation models. It is also known that some discrete-time
epidemic models exhibit periodic and chaotic behavior [1].

Ultra-discretization is proposed as a procedure to obtain a discrete system, where
unknown variables also take discrete values, thus a cellular automaton is defined,
see [21, 19]. In [27, 22, 20] the authors study discrete and ultra-discrete models for
epidemic models. In those papers it is shown that simple ultra-discrete models can
capture the disease transmission dynamics, which is seen in the original differential
equation models. In [27] the authors find conserved quantities for some special cases.
Cellular automata have been used to model disease transmission dynamics, see e.g.
[25, 26] and references therein. Since cellular automata are computational models,
in general, it is not straightforward to perform a mathematical analysis, in order to
provide theoretical insights into simulation studies. Our analytical approach in this
paper for the ultra-discrete model may be used to complement numerical simulation
studies for some cellular automaton models.

In this paper we start with a special case of the model considered in [5, 24] for a
discrete analogue of an epidemic model formulated by a system of delay differential
equations in [2, 3, 29, 14]. As delay differential equation form an infinite dimensional
dynamical system [9], after discretizing the system, we obtain a system of difference
equations of higher order, which is slightly complicated compared to the model
considered in [27]. From such a model we derive an ultra-discrete model, which is
formulated as a couple of piecewise linear difference equations (see e.g. [13]). Due
to time delay, integrability can not be usually expected and the application of the
ultra-discretization to a non-integrable system is still limited, but see also [17, 18].
We here prove that the ultra-discrete model exactly has the same threshold property
regarding global attractivity as in [5, 14]. In Section 4 we visualize the convergence
of the solution in a two-dimensional lattice and observe some interesting convergence
patterns. For a special initial condition, we derive a simple recurrence relation for
the solution in Lemma 3. The relation can explain the illustrated convergence
pattern.

The paper is organized as follows. In Section 2 we introduce a system of difference
equations, which is a special case of the model studied in [5, 24] for discrete analogue
of continuous models. Applying a variable transformation together with taking a
limit, we derive an ultra-discrete model. In Section 3 global behavior of the solutions
is discussed. We prove that the model exhibits the threshold behavior, similar to the
difference equation studied in [5]. We here find that a subsequence of the solution
has a monotone property and this monotonicity is used for the proof. In Section
4 we illustrate the solution behavior in a two-dimensional lattice. To explain the
convergence pattern, we consider a special initial condition and derive a simple
recurrence relation. We summarize our results in Section 5.

2. Ultra discretization of an epidemic model. Our starting point is the fol-
lowing system of difference equations
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Sn+1 − Sn = M −MSn+1 −BSn+1In−ω, (1a)

In+1 − In = BSn+1In−ω −MIn+1 − ΓIn+1, (1b)

Rn+1 −Rn = ΓIn+1 −MRn+1, (1c)

with a positive initial condition. System (1) is a special case of the model considered
in [24, 5]. See also [6] for a model with nonlinear incidence. Here M,B and Γ are
positive parameters and ω is a positive integer. Let us define

R0 =
B

M + Γ
.

One can prove that system (1) always has the disease free equilibrium given by
(1, 0, 0) and that there exists an endemic equilibrium given by(

M + Γ

B
,
M

B

(
B

M + Γ
− 1

)
,

Γ

B

(
B

M + Γ
− 1

))
if R0 > 1 holds. The authors in [5] prove the following threshold type behavior.

Theorem 2.1.

(i) If R0 ≤ 1 holds, then the disease free equilibrium of (1) is globally asymptoti-
cally stable.

(ii) If R0 > 1 holds, then the disease free equilibrium of (1) is unstable and the
endemic equilibrium is globally asymptotically stable.

System (1) is proposed as a discrete analogue of the following disease transmission
dynamics model in continuous time:

S′(t) = M −MS(t)−BS(t)I(t− τ), (2a)

I ′(t) = BS(t)I(t− τ)−MI(t)− ΓI(t), (2b)

R′(t) = ΓI(t)−MR(t), (2c)

where S(t), I(t) and R(t) respectively denote fraction of susceptible, infective and
recovered population at time t. The constant M > 0 denotes the death rate. The
constant B > 0 is transmission coefficient and the constant Γ > 0 is the recovery
rate. The non-negative constant τ ≥ 0 can be interpreted as incubation period of
infection. This model was developed in [2] to describe transmission dynamics of a
vector-borne disease mosquito, see also [3]. In [14] it is shown that the continuous
model (2) exhibits the same threshold behavior as in Theorem 2.1 for (1).

Let us now derive an ultra-discrete model from system (1), following the same
procedure as in [27, 22, 20]. Since the third equation of (1) does not appear in
the first and second equations for S and I of (1), we focus on the first and second
equations of (1a) and (1b). For ε > 0 we introduce variables x and y via

Sn = exn/ε and In = eyn/ε,

and parameters µ, β and γ through

M = eµ/ε, B = eβ/ε and Γ = eγ/ε.

Notice that (1a) and (1b) are equivalently written as

Sn+1 =
Sn +M

1 +M +BIn−ω
, (3a)

In+1 =
In +BSn+1In−ω

1 +M + Γ
. (3b)
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Applying the variable transformation to (3) with letting ε→ +0, we get the follow-
ing ultra-discrete model

xn+1 = max (µ, xn)−max (0, µ, β + yn−ω) , (4a)

yn+1 = max (yn, β + xn+1 + yn−ω)−max (0, µ, γ) . (4b)

The key relation used here is the following limit

lim
ε→+0

ε log
(
eA/ε + eB/ε

)
= max(A,B)

for A,B > 0.
The initial condition of the system (4) is given as

x0 and y−j ∈ R for j ∈ {0, 1, · · · , ω} . (5)

Moreover, parameters µ, β and γ are given as real numbers. For simplicity, we
assume that 0 < µ ≤ γ. From (4) we then get

xn+1 = max (µ, xn)−max (µ, β + yn−ω) , (6a)

yn+1 = max (yn, β + xn+1 + yn−ω)− γ. (6b)

3. Global attractivity of equilibria. In this section, we study the global asymp-
totic behavior of the solutions of (6).

Lemma 3.1. For any solutions, there exists n̄ ∈ N+ such that xn ≤ 0 and yn ≤ µ−γ
for n ≥ n̄.

Proof. Let us assume that xn ≥ µ for some n ≥ 0. Then from (6a) one has that

xn+1 = xn −max (µ, β + yn−ω)

≤ xn − µ,

thus xn is decreasing with respect to n as long as xn ≥ µ. Therefore, there exists k
such that xk−1 ≥ µ and xk < µ. Then from (6a), it follows

xk+1 = µ−max (µ, β + yk−ω)

≤ 0.

Thus we get that xm ≤ 0 for all m ≥ k+ 1. So hereafter, without loss of generality
we can set xn ≤ 0 for all n ≥ 0. Since we have

xn+1 = µ−max (µ, β + yn−ω) ,

from (6a)

β + xn+1 + yn−ω = µ+ β + yn−ω −max (µ, β + yn−ω)

≤ µ

follows. Therefore, from (6b), we have

yn+1 ≤ max (yn − γ, µ− γ) . (7)

If yn ≤ µ then it is easy to see ym ≤ µ − γ for all m ≥ n + 1. Let us assume that
yn ≥ µ for some n ≥ 0. Then we have that yn+1 ≤ yn − γ, thus yn is decreasing
with respect to n as long as yn ≥ µ. Therefore, there exists ` such that y`−1 ≥ µ
and y` < µ. Then one obtains y`+1 ≤ µ− γ. According to the previous discussion,
there exists n̄ ≥ `+ 1 such that ym ≤ µ− γ for all m ≥ n̄.
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From Lemma 3.1, without loss of generality, we can set the initial condition as

x0 ≤ 0 and y−j ≤ µ− γ ≤ 0, j ∈ {0, 1, · · · , ω} .
Note that Lemma 3.1 implies{

(x, y) ∈ R2 | x ≤ 0, y ≤ µ− γ ≤ 0
}

(8)

is an invariant set. To discuss global attractivity of equilibria, we now consider the
following system

xn+1 = µ−max (µ, β + yn−ω) , (9a)

yn+1 = max (yn, β + xn+1 + yn−ω)− γ (9b)

in (8).

Theorem 3.2. Let us assume that β < γ holds. Then

xn = 0 for n ≥ 1 and lim
n→∞

yn = −∞.

Proof. Since for any n ≥ 0 one has that β + yn−ω ≤ β + µ − γ < µ from Lemma
3.1, it follows

max (µ, β + yn−ω) = µ.

Therefore it follows that xn+1 = 0 for any n ≥ 0 from (9a). Then, from (9b) we get

yn+1 = max (yn − γ, β − γ + yn−ω) . (10)

Let

Ym := max
0≤j≤ω

ym(ω+1)−j for m ∈ N+.

Note that ym(ω+1)−j ≤ Ym for j ∈ {0, 1, · · · , ω}. We show

y(m+1)(ω+1)−j ≤ Ym + max (−γ, β − γ) .

From (10), we have

y(m+1)(ω+1)−ω = ym(ω+1)+1

= max
(
ym(ω+1) − γ, β − γ + ym(ω+1)−ω

)
≤ max (Ym − γ, β − γ + Ym)

= Ym + max (−γ, β − γ) .

For some j ∈ {1, 2, · · · , ω} suppose that

y(m+1)(ω+1)−j ≤ Ym + max (−γ, β − γ) . (11)

Then using (10) and (11) we obtain

y(m+1)(ω+1)−j+1 = max
(
y(m+1)(ω+1)−j − γ, β − γ + ym(ω+1)−j+1

)
≤ Ym + max (−γ, β − γ) .

By mathematical induction, it holds that y(m+1)(ω+1)−j ≤ Ym+ max(−γ, β−γ) for
j ∈ {0, 1, · · · , ω}. Therefore we get

Ym+1 ≤ Ym + max (−γ, β − γ) .

Now it is obvious that limm→∞ Ym = −∞ and hence limn→∞ yn = −∞. We thus
obtain the conclusion.

If β > γ, xn and yn converge to a unique equilibrium. First we show that (9)
has a non-trivial equilibrium.
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Proposition 1. Let us assume that β > γ holds. Then (9) has an equilibrium
(−β + γ, µ− γ).

Proof. Let β > γ holds. We show that (9) has the constant solution (−β + γ, µ− γ).
From direct computations, one can see

µ−max (µ, β + µ− γ) = µ− (β + µ− γ) = −β + γ,

max (µ− γ, β − β + γ + µ− γ)− γ = max (µ− γ, µ)− γ = µ− γ.

Proposition 2. Let us assume that β > γ holds. It follows that

yn+1 =

{
µ− γ if yn−ω ≥ µ− β
max (yn − γ, β − γ + yn−ω) if yn−ω < µ− β.

Proof. Assume that µ ≤ β + yn−ω. Then it is straightforward to get xn+1 =
µ− (β + yn−ω) from (9a). Since we have yn ≤ µ− γ (see Lemma 3.1), we get

yn+1 = max (yn − γ, µ− γ)

= µ− γ.

On the other hand, assume that µ > β + yn−ω. Then xn+1 = 0 follows from (9a).
Thus we immediately obtain the conclusion from (9b) with xn+1 = 0.

We now show that every solution converges to the non-trivial equilibrium.

Theorem 3.3. Let us assume that β > γ. Then

lim
n→∞

xn = −β + γ and lim
n→∞

yn = µ− γ.

Proof. Let

y` :=
(
y`(ω+1), y`(ω+1)−1, · · · , y`(ω+1)−ω

)
for ` ∈ N+. From Proposition 2 one can see that

y`(ω+1)−k ≥ β − γ + y(`−1)(ω+1)−k

for k ∈ {0, 1, 2, · · · , ω} if y(`−1)(ω+1)−k ≤ µ− β. Therefore,

lim
`→∞

y`(ω+1)−k = µ− γ, k ∈ {0, 1, 2, · · · , ω},

i.e. each component of y` converges to the equilibrium as ` → ∞. Then, there
exists a sufficiently large integer m such that yn = · · · = yn−ω = µ− γ for n ≥ m.
For n ≥ m we obtain

xn+1 = µ− (β + µ− γ)

= −β + γ.

Corresponding to the first and second parts of Theorem 2.1, we show the thresh-
old behavior in Theorems 3.2 and 3.3 for the ultra-discrete epidemic model (9).

In Figures 1 and 2 we plot xn and yn with respect to n. In Figure 1, we set
ω = 0 so that the ultra-discrete model (9) has no time delay. The initial condition
is given as x0 = −3, y0 = −13. We set the parameters as µ = 1, γ = 6 and β = 3
in Figure 1(a) while µ = 1, γ = 6 and β = 9 in Figure 1(b). As in Theorems 3.2
and 3.3, one can see that y tends to −∞ as n→∞ in Figure 1(a) and that y tends
to µ− γ as n→∞ in Figure 1(b).
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(a) β < γ (b) β > γ

Figure 1. Numerical experiments xn and yn with ω = 0.

(a) β < γ

(b) β > γ

Figure 2. Numerical experiments xn and yn with ω = 10.

In Figure 2, we set ω = 10. The initial condition is chosen as x0 = −3 and
y−j = −16 + j for j ∈ {0, 1, · · · , ω}. We set the same parameters as Figures 1(a)
and 1(b) in Figures 2(a) and 2(b), respectively. As in Theorems 3.2 and 3.3, again
one can see that y tends to −∞ as n→∞ in Figure 2(a) and that y tends to µ− γ
in Figure 2(b). Comparing Figure 1 with Figure 2, it can be seen that the solution
is monotone for ω = 0. In the ultra discrete model (9) time delay does not change
qualitative dynamics, but changes the solution behavior.

4. Monotone convergence in a two-dimensional lattice. We here visualize
the convergence of a solution using a two-dimensional lattice. We consider the case
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that β−γ > 0 holds, so the solution converges to the non-trivial equilibrium (−β+
γ, µ − γ), according to Theorem 3.3. The two-dimensional lattice is constructed
using two variables: time step and time delay. More specifically, let

u−jm := ym(ω+1)−j for m ∈ N+ and j ∈ {0, 1, · · · , ω}

to set a sequence with two variables (j,m). From Proposition 2, we have

u−jm =

{
µ− γ if u−jm−1 ≥ µ− β
max

(
u−j−1m − γ, u−jm−1 + β − γ

)
if u−jm−1 < µ− β,

(12)

for j ∈ {0, 1, · · · , ω − 1} and

u−ωm =

{
µ− γ if u−ωm−1 ≥ µ− β
max

(
u0m−1 − γ, u−ωm−1 + β − γ

)
if u−ωm−1 < µ− β.

(13)

In Figure 3, specifying parameters and the initial condition, we write a numerical
value of u−jm in the corresponding lattice. The black lattice represents that u−jm =
µ − γ i.e., the solution reaches the equilibrium. Of course, from Theorem 3.3, the
solution converges to the homogeneous equilibrium (with respect to j) as m→∞.
Moreover, one may observe interesting stepwise shape representing the convergence
pattern of the solution.

To explain the pattern we consider a special solution and derive an explicit
recurrence relation for the solution in Proposition 3. For k ∈ {1, 2, · · ·ω−1} set the
initial condition as

u−j0 = p for j ∈ {0, 1, · · · , ω} \ {k} ,

u−k0 = q,
(14)

with

p < q < µ− β. (15)

Lemma 4.1. Assume that

p+ kγ < q. (16)

Then it holds

u−j1 = p+ β − γ for j ∈ {k + 1, k + 2, · · · , ω} (17a)

u−j1 = q + β − γ − (k − j)γ for j ∈ {0, 1, · · · , k} . (17b)

Proof. Firstly, we show (17a) by mathematical induction. From (14), (15) and (16),
one has u00 = u−ω0 = p < µ− β, then from (13) one has

u−ω1 = max (p− γ, p+ β − γ)

= p+ β − γ.

Suppose that

u−j1 = p+ β − γ for some j ∈ {k + 2, k + 3, · · · , ω} .

From (12) one can see

u−j+1
1 = max (p+ β − 2γ, p+ β − γ)

= p+ β − γ.

Therefore we get (17a).
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(a) Solution ujm with an initial condition u−8
0 =

−12 and uj0 = −70 for j ∈ {−10, · · · , 0} \ {−8}
(b) Solution vjm with an initial condition v−3

0 =

−16 and uj0 = −40 for j ∈ {−10, · · · , 0} \ {−3}

(c) Solution wj
m with an initial condition w−8

0 =

−12, w−3
0 = −16 and wj

0 = −40 for j ∈
{−10, · · · , 0} \ {−8,−3}

Figure 3. A solution wjm is constructed by two solutions ujm and vjm
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Next we show (17b) by mathematical induction. From (14) one can see u−k−11 = p

and u−k0 = q, then from (12) and (15) one also has

u−k1 = max
(
u−k−11 − γ, u−k0 + β − γ

)
= max (p+ β − γ − γ, q + β − γ)

= q + β − γ.
Next suppose that

u−j1 = q + β − γ − (k − j)γ for some j ∈ {1, 2, · · · , k} .
Then from (12), one can see

u−j+1
1 = max (q + β − γ − (k − j + 1)γ, p+ β − γ)

= q + (β − γ)− (k − j + 1)γ.

We note that

q + (β − γ)− (k − j + 1)γ − (p+ β − γ) = q − p− (k − j + 1)γ

≥ q − p− kγ
> 0

holds by (16). Therefore, we get (17b).

Proposition 3. Assume that (16) and

q < p+ β − γ + (k + 1)γ (18)

hold. Then it holds that

u−jm = β − γ + u−jm−1 if u−jm−1 < µ− β, (19)

for m ≥ 1 and j ∈ {0, 1, · · · , ω}.

Proof. Note that (19) with m = 1 follows from Lemma 4.1. Firstly, assuming

u−j1 < µ− β, we show that (19) holds for m = 2 i.e.

u−j2 = β − γ + u−j1 . (20)

Here from (14) one has that u−ω1 ≤ u−k1 < µ− β. Then from (13) one has

u−ω2 = max
(
u01 − γ, u−ω1 + β − γ

)
= u−ω1 + β − γ.

Here using (17a), (17b) and (18), we know that

u−ω1 + β − γ −
(
u01 − γ

)
= p− q + β − γ + (k + 1)γ > 0. (21)

Next suppose that

u−j2 = u−j1 + β − γ for some j ∈ {1, 2, · · · , ω} . (22)

From (12) and (22), one has

u−j+1
2 = max

(
u−j2 − γ, u

−j+1
1 + β − γ

)
= max

(
u−j1 + β − γ − γ, u−j+1

1 + β − γ
)

= max
(
u−j1 − γ, u

−j+1
1

)
+ (β − γ).

Let us show that

u−j+1
1 −

(
u−j1 − γ

)
≥ 0 for j ∈ {1, 2, · · · , ω} , (23)
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so that

u−j+1
2 = β − γ + u−j+1

1 (24)

holds. For j ∈ {k + 2, k + 3, · · · , ω}, one has u−j1 = u−j+1
1 by (17a). So we get (24).

For j = k + 1, from (17a) and (17b) one can see

u−j1 − γ = p+ (β − γ)− γ,
u−j+1
1 = q + (β − γ).

Thus we have u−j1 − γ < u−j+1
1 from (15). So again we obtain (24). For j ∈

{1, 2, · · · , k}, from (17b) one has u−j1 − γ = u−j+1
1 . We thus obtain (24). Conse-

quently, (19) follows when m = 2.

Finally, assuming u−jm−1 < µ − β, we show that (19) holds for m ≥ 3 by mathe-
matical induction. Suppose that for m ≥ 2

u−jm = u−jm−1 + β − γ for j ∈ {0, 1, · · · , ω} (25)

and u−jm < µ− β hold. From (13) one has

u−ωm+1 = max
(
u0m − γ, u−ωm + β − γ

)
.

Note that from (25) and (21), one can see

u−ωm + β − γ −
(
u0m − γ

)
= u−ω1 + β − γ −

(
u01 − γ

)
> 0.

Therefore we get

u−ωm+1 = u−ωm + β − γ.
For some j ∈ {1, 2, · · · , ω} suppose that

u−jm+1 = u−jm + β − γ (26)

holds. From (12) one has

u−j+1
m+1 = max

(
u−jm+1 − γ, u−j+1

m + β − γ
)
.

Note that from (26) and (25) one can see

u−jm+1 − γ = u−j1 +m(β − γ)− γ,
u−j+1
m + β − γ = u−j+1

1 +m(β − γ).

Then from (23) one can see

u−j+1
m + β − γ −

(
u−jm+1 − γ

)
= u−j+1

1 −
(
u−j1 − γ

)
≥ 0.

Therefore we get (19) for m ≥ 2 and j ∈ {0, 1, · · · , ω}.

When m = 0 the k-th component is the biggest component, i.e., u−k0 = max0≤j≤ω
u−j0 . In Lemma 4.1 we show that this relation is preserved when m = 1. It is also
shown that

u−j+1
1 = u−j1 − γ < u−j1 for j ∈ {1, 2, · · · , k} .

In this way u−j1 is ordered for j ∈ {0, 1, · · · , k}. Furthermore, from Lemma 3,
one can see that the monotone ordering is preserved for m ≥ 1. Consequently,
the stepwise shape appears as the convergence pattern illustrated in Figures 3(a)
and 3(b). In Figure 3, we set µ = 1, β = 11, γ = 6 and ω = 10. Figures 3(a)

and 3(b) have different initial conditions: k = 8, u−80 = −12 and u−j0 = −70 for

j 6= 8 in Figure 3(a) while k = 3, u−30 = −16 and u−j0 = −40 for j 6= 3 in Figure
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3(b). In both Figures 3(a) and 3(b) one sees that the k-th component reaches the
equilibrium firstly and then other components reach the equilibrium, according to
the ordering.

Although here we consider a special solution such that the initial condition is
given as in (14), we can show that linear combination of two solutions can produce
a complicated pattern for the convergence of the solution. Consider two solutions
u−jm and v−jm of (12) and (13). Then

w−jm := max
(
u−jm , v−jm

)
(27)

is shown to be a solution of (12) and (13) as follows. Assume that u−jm−1 and v−jm−1
are less than µ− β, then w−jm−1 < µ− β. Using (12) one can compute

wjm = max
{

max
(
uj−1m − γ, ujm−1 + β − γ

)
,max

(
vj−1m − γ, vjm−1 + β − γ

)}
= max

(
uj−1m − γ, ujm−1 + β − γ, vj−1m − γ, vjm−1 + β − γ

)
= max

(
max

(
uj−1m , vj−1m

)
− γ,max

(
ujm−1, v

j
m−1

)
+ β − γ

)
= max

(
wj−1m − γ,wjm−1 + β − γ

)
.

Assume that either u−jm−1 > µ − β or v−jm−1 > µ − β. Then w−jm−1 > µ − β. In this

case one can prove w−jm = µ− γ.
Let the solution depicted in Figure 3(a) be u and the solution depicted in Figure

3(b) be v. Convergence pattern of the solution w, which is given by (27), is illus-
trated in Figure 3(c). From our discussion, the convergence pattern in Figure 3(c)
appears as the composition of the stepwise convergence pattern which is observed
in Figures 3(a) and 3(b).

5. Conclusion. In this paper we consider an ultra-discrete model with time delay.
The model is derived from a discrete epidemic model studied in [5, 24]. In Theorems
3.2 and 3.3, we show that the ultra-discrete model also has the threshold property
concerning global attractivity of equilibria, similar to the discrete epidemic model
[5] and the continuous epidemic model [14]. For the proof of global attractivity of
the non-trivial equilibrium in Theorem 3.3, we reduce the system (9) to the scalar
difference equation in Proposition 2 and then use a certain monotone property of
the solution, which is our important finding.

In Section 4 we further derive a simple recurrence relation for the solution, assum-
ing a special condition for the initial condition. The relation derived in Proposition
3 clearly shows that each component monotonically increases towards the equilib-
rium. Two-dimensional lattice seems to be an informative tool to illustrate such a
convergence patten.

For the ultra-discrete model (9), a linear combination of two solutions is shown
to be a solution. It would be interesting to investigate the structure of the solutions
of ultra-discrete models. Figure 3 may remind of an elementary cellular automaton
(see e.g. rule 252 in [28]). Exploring a possible connection to elementary cellular
automaton is our future work.
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[26] S. H. White, A. Martin del Rey and G. Rodŕıguez Sánchez, Modeling epidemics using cellular

automata, Appl. Math. Comp., 186 (2007), 193–202.

[27] R. Willox, B. Grammaticos, A. S. Carstea and A. Ramani, Epidemic dynamics: Discrete-time
and cellular automaton models, Phys. A, 328 (2003), 13–22.

[28] S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys., 55 (1983), 601–644.

http://dx.doi.org/10.1016/0025-5564(94)90025-6
http://www.ams.org/mathscinet-getitem?mr=MR1331508&return=pdf
http://dx.doi.org/10.1007/BF00169563
http://www.ams.org/mathscinet-getitem?mr=MR1972351&return=pdf
http://dx.doi.org/10.1016/S0362-546X(01)00528-4
http://dx.doi.org/10.1016/S0362-546X(01)00528-4
http://www.ams.org/mathscinet-getitem?mr=MR2740551&return=pdf
http://dx.doi.org/10.3934/mbe.2010.7.347
http://dx.doi.org/10.3934/mbe.2010.7.347
http://www.ams.org/mathscinet-getitem?mr=MR2946329&return=pdf
http://dx.doi.org/10.1080/10236198.2011.555405
http://dx.doi.org/10.1080/10236198.2011.555405
http://www.ams.org/mathscinet-getitem?mr=MR2128146&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1181254&return=pdf
http://dx.doi.org/10.1093/imanum/12.3.319
http://dx.doi.org/10.1093/imanum/12.3.319
http://www.ams.org/mathscinet-getitem?mr=MR1243878&return=pdf
http://dx.doi.org/10.1007/978-1-4612-4342-7
http://www.ams.org/mathscinet-getitem?mr=MR2389171&return=pdf
http://dx.doi.org/10.1016/j.cam.2006.10.065
http://dx.doi.org/10.1016/j.cam.2006.10.065
http://www.ams.org/mathscinet-getitem?mr=MR2520417&return=pdf
http://dx.doi.org/10.1155/2009/143019
http://dx.doi.org/10.1155/2009/143019
http://www.ams.org/mathscinet-getitem?mr=MR2477552&return=pdf
http://dx.doi.org/10.1016/j.matcom.2008.04.008
http://dx.doi.org/10.1016/j.matcom.2008.04.008
http://www.ams.org/mathscinet-getitem?mr=MR3064850&return=pdf
http://dx.doi.org/10.1007/978-1-4614-4559-3_7
http://www.ams.org/mathscinet-getitem?mr=MR2570523&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2008.10.014
http://dx.doi.org/10.1016/j.nonrwa.2008.10.014
http://www.ams.org/mathscinet-getitem?mr=MR1715559&return=pdf
http://dx.doi.org/10.1016/S0377-0427(99)00233-2
http://dx.doi.org/10.1016/S0377-0427(99)00233-2
http://www.ams.org/mathscinet-getitem?mr=MR2027166&return=pdf
http://dx.doi.org/10.1080/1023619031000146913
http://dx.doi.org/10.1080/1023619031000146913
http://www.ams.org/mathscinet-getitem?mr=MR3331650&return=pdf
http://dx.doi.org/10.3934/dcdsb.2015.20.173
http://arxiv.org/pdf/1509.07861
http://dx.doi.org/10.1088/0305-4470/31/24/006
http://dx.doi.org/10.1088/0305-4470/31/24/006
http://www.ams.org/mathscinet-getitem?mr=MR2100220&return=pdf
http://dx.doi.org/10.1016/j.physa.2003.10.051
http://dx.doi.org/10.1016/j.physa.2003.10.051
http://dx.doi.org/10.1103/PhysRevLett.76.3247
http://dx.doi.org/10.1103/PhysRevLett.76.3247
http://www.ams.org/mathscinet-getitem?mr=MR2598863&return=pdf
http://dx.doi.org/10.1142/S1793524509000807
http://www.ams.org/mathscinet-getitem?mr=MR2660999&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2010.05.007
http://dx.doi.org/10.1016/j.jmaa.2010.05.007
http://dx.doi.org/10.1016/S0304-3800(00)00294-5
http://dx.doi.org/10.1016/S0304-3800(00)00294-5
http://www.ams.org/mathscinet-getitem?mr=MR2316504&return=pdf
http://dx.doi.org/10.1016/j.amc.2006.06.126
http://dx.doi.org/10.1016/j.amc.2006.06.126
http://www.ams.org/mathscinet-getitem?mr=MR2012462&return=pdf
http://dx.doi.org/10.1016/S0378-4371(03)00552-1
http://dx.doi.org/10.1016/S0378-4371(03)00552-1
http://www.ams.org/mathscinet-getitem?mr=MR709077&return=pdf
http://dx.doi.org/10.1103/RevModPhys.55.601


666 MASAKI SEKIGUCHI, EMIKO ISHIWATA AND YUKIHIKO NAKATA

[29] T. Zhang and Z. Teng, Global behavior and permanence of SIRS epidemic model with time
delay, Nonl. Anal. RWA., 9 (2008), 1409–1424.

Received for publication March 12, 2017.

E-mail address: emafarms@gmail.com

E-mail address: ishiwata@rs.tus.ac.jp

E-mail address: ynakata@riko.shimane-u.ac.jp

http://www.ams.org/mathscinet-getitem?mr=MR2422552&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2007.03.010
http://dx.doi.org/10.1016/j.nonrwa.2007.03.010
mailto:emafarms@gmail.com
mailto:ishiwata@rs.tus.ac.jp
mailto:ynakata@riko.shimane-u.ac.jp

	1. Introduction
	2. Ultra discretization of an epidemic model
	3. Global attractivity of equilibria
	4. Monotone convergence in a two-dimensional lattice
	5. Conclusion
	Acknowledgments
	REFERENCES

