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ABSTRACT. We analyze a model of agent based vaccination campaign against
influenza with imperfect vaccine efficacy and durability of protection. We prove
the existence of a Nash equilibrium by Kakutani’s fixed point theorem in the
context of non-persistent immunity. Subsequently, we propose and test a novel
numerical method to find the equilibrium. Various issues of the model are
then discussed, such as the dependence of the optimal policy with respect
to the imperfections of the vaccine, as well as the best vaccination timing.
The numerical results show that, under specific circumstances, some counter-
intuitive behaviors are optimal, such as, for example, an increase of the fraction
of vaccinated individuals when the efficacy of the vaccine is decreasing up to
a threshold. The possibility of finding optimal strategies at the individual
level can help public health decision makers in designing efficient vaccination
campaigns and policies.

1. Introduction. Vaccination is a widely used epidemic control tool which may
(and should) be analyzed from several perspectives, such as the design of fabrication
techniques, the study of its action mechanisms, the analysis — at the individual level
— of the medical issues of the vaccine, including its side effects, and the global impact
on the epidemic spread of some carefully designed vaccination protocols.

Obviously, these different viewpoints are strictly interconnected: for example,
the action mechanism of a vaccine determines its features and its protection effect
against the target illness, and the public health strategies are a consequence of the
former two aspects.

When looking at vaccination policies, two approaches are possible.
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The first one supposes that a health authority can decide of a vaccination plan,
which is then implemented. The plan optimizes the vaccination strategy as a func-
tion of the severity of the epidemic, its medical risks and the (economic and medical)
costs associated to the vaccine.

This framework, that is suitable for compulsory vaccination or when the individ-
uals fully adhere to the recommendations of the health authority, has been the first
one considered in the literature (see [39, 1, 52, 59, 23, 4, 46]).

However, this kind of studies is oriented to the best possible strategy for the
population as a whole, and it does not take into account the individual viewpoints.
Indeed, when the vaccination is a choice — on a voluntary basis — or when there
are debates on the risks or costs of the vaccine, the previous approach is not valid
anymore and the situation is better described by models that take into account the
individual decision level.

In this second group of models, the agents decide for themselves whether the
vaccination is suitable or not, but they cannot individually influence the epidemic
propagation, which is given by the collective choice of the population as a whole.

The study of the collective behavior of large populations of non-cooperative in-
teracting individuals — such as the problem considered in the present article — is a
complicated problem, but it recently received a firm mathematical ground thanks to
the Mean Field Game (MFG) theory, introduced in the literature by the pioneering
works of Lasry and Lions [49, 48, 50] and of Huang, Malhamé and Caines [41, 40].
From the point of view of modeling, mean field game theory combines mean field
theories, which are widely used in Physics and Mechanics, together with the notion
of Nash equilibria in game theory.

One of the main goals of MFG is the study of the existence of equilibria for
the whole population, namely a stable collection of individual strategies such that
nobody has any incentive to change his own strategy.

Before the development of the MFG theory, some earlier works were already
looking into this direction. We quote, for example, [30, 12, 35] which study the
question of disease eradication, market equilibrium and externalities regarding vac-
cination. More recent contributions (see [7, 6, 60, 31, 58, 47]) study the question of
Nash equilibria for a large number of individuals dealing with an epidemic. They
investigated many aspects, such as the impact of the subjective perceptions and in-
dividual behaviors on the equilibrium (see, for example, [19, 18, 57]), the presence
of several groups having distinct epidemic characteristics (see [34, 20, 16]), particu-
lar vaccination strategies or specific models about the available information at the
individual level (see [13, 8, 27, 25, 26, 33, 69, 11, 24]).

In this article, we introduce and analyze a model for a non-compulsory vaccina-
tion campaign against influenza viruses, with imperfect vaccine efficacy and limited
durability of protection (sometimes also called persistence as a shorthand for persis-
tence of antibodies). Our main purpose is the computation of the optimal individual
strategy (which allows to deduce the fraction of the population which chooses to be
vaccinated in absence of a specific obligation), with the purpose of helping decision
makers in designing efficient public health policies. Since compulsory vaccination
is the source of some ethical issues on informed consent and individual freedom,
knowledge of the optimal individual strategy is an essential step before deciding
that a given vaccine is mandatory. On the other hand, advertisement campaigns
for non-compulsory vaccination are effective only if their goal is compatible with
the optimal individual strategy.
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As the features of the target infectious disease heavily influence the dynamics of
the epidemic spread, our model cannot be immediately generalized to the vaccina-
tion against other diseases. However, the global strategy can be easily modified,
mutatis mutandis, for obtaining models adapted to other situations with a similar
behavior (i.e. the vaccine is imperfect and the immunity is not permanent).

We focus our attention on countries with temperate climates, which experience
a marked seasonal influenza peak during the winter months [66]. Hence our time
horizon will be annual.

Since influenza is a contagious disease, the major available tool against the spread
of the illness is given by vaccination.

However, vaccination has no permanent effect. Indeed, as pointed out in [21], the
protection against a virus, provided by the corresponding vaccine to an individual,
persists after some years and it is still effective in case of slight genetic mutations.
But, because of the antigenic drift [15], sufficient changes can accumulate in the
virus to allow influenza to reinfect the same host. The protection given by a previ-
ous vaccine can hence become useless. In order to overcome this phenomenon, the
influenza vaccine formula is annually reviewed. Note that vaccine mismatch is not
taken into account in our study, because it would lead to introduce different ques-
tions, oriented to the modeling of the vaccine itself, rather than to the vaccination
policies (which suppose, of course, that the annual release of the vaccine has a good
efficacy).

We moreover suppose that the immunity provided by the vaccine is time-depend-
ent. Indeed, as pointed out in several studies, the estimated protection against in-
fection, based on hemagglutination-inhibiting (HAI) antibody titers has a maximum
2-4 weeks after the vaccination, and it subsequently strictly decreases afterwards
[71, 54]. In particular, [54] estimates that there is a marked decline of the immu-
nity some months after the vaccination. This behavior is taken into account in our
analysis because it can be practically observed before reaching the time horizon of
the problem.

The aforementioned features of the illness will be considered, in this article, as
given data. Two main attributes of the vaccine are considered:

- the durability of protection, that can span from several months up to several
years — see [21, 17, 5] and the literature therein;

- the vaccine efficacy (noted VE, an input in our model), which is the theoreti-
cal success rate (to be distinguished from the vaccine efficiency, which is the
practical observed success and is the output of the model — see [70] for a pre-
sentation of the differences between the two). The VE can range from several
percents to almost perfect efficacy — see the meta-analysis in [56] and also [55];
other references include [51] and [67]. The VE can have effects on suscepti-
bility, infectiousness, disease progression, and so on; we only consider here
the impact on susceptibility, thus our VE is more specifically, with notations
in [38, Section 2.2], of V Eg kind.

Hence, our model is suitable for studying imperfect vaccines and takes into ac-
count not only the individual decision about the vaccination, but also the best
timing of the vaccination if the individual decides to be vaccinated.

Since the choice of the best timing problem of a vaccination campaign is very
actual and it is carefully studied by the health authorities, we hope that our model
can give a contribution to a better understanding of the vaccination dynamics in
order to suggest efficient policies. In particular, our model forecasts that, in the
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non-cooperative setting, when the protection given by the vaccine is not optimal,
the individual behaviors are only partially in agreement with the suggestions of the
World Health Organization (WHO), which encourages vaccination as soon as the
vaccine of the corresponding seasonal influenza is available [22]: the agents could
tend to delay the vaccination in order to arrive at the peak of the epidemic with the
best possible protection (see [62, Section “Vaccination Before October”] and also
[3, 29, 44, 9, 61] for recent references to intra-season waning of the vaccine-induced
immunity and its impact on vaccination timing).

Because of the relatively short time horizon of the model, we do not consider
any population dynamics, or any reinfection, since we suppose that antigenic drift
is not very important on such small time scales [15].

From the mathematical point of view, in this article we work in a discrete setting
and our model is described in terms of Markov chains. As far as the time horizon of
seasonal influenza has the order of magnitude of one year, this choice allows us to
model the coarse graining of the real situation and makes this model more suitable
for the applications.

Firstly, we prove that the individual vaccine model proposed here admits an
equilibrium. However, up to our knowledge, the equilibrium is not explicitly known.
Far from being a disadvantage, this situation prompted us into proposing a general
numerical method to find the equilibrium; this is a second contribution of this work
(see also [65] for some alternatives coming from the physics community for general
Mean Field Games). The numerical method is adapted from general works in game
theory (see Section 3) and is expected to give accurate results in any situation when
an individual chooses the right timing to perform some action (here vaccination)
with time-dependent costs. This procedure has been extensively tested in our model
and performs in a satisfactory way.

The structure of the paper is the following: the model is presented in Section 2
and the theoretical result guaranteeing the existence of an equilibrium in Section 2.3.
The numerical algorithm for finding the equilibrium is presented in Section 3 and
the numerical results in Section 4.

First of all, the numerical simulations describe a standard situation for seasonal
influenza dynamics. Subsequently, we test our model on two extreme cases (the
duration of the immunity is of one or six months only, see also [29]), which show
some striking behaviors of the population and which may help to understand the
strategic policies of the population.

Section 5 collects some considerations on the pertinence and validity of our ap-
proach.

2. The model. The model studies the dynamics of an epidemic in a population.
In what follows we will suppose that

- the infection does not cause the death of the patient (as it is well known,
the mortality associated to influenza does not induce significant modifications
in the population structure [28]); moreover, by considering a time horizon of
twelve months, we suppose that births and deaths, as well as age shifts, are
non relevant;

- after the disease, the individuals who have been infected acquire permanent
immunity (throughout the time horizon of our model): this means that we will
suppose the existence of a predominant virus strain, instead of considering a
mixing of viruses and therefore reinfection is a rare phenomenon;

- the incubation period is short when compared to the time scale of the model;
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- the individuals can be vaccinated. If the vaccine is successful, the protection
of the vaccine is maximal (but possibly not total) after a time delay, it remains
high during some period and then it decreases (see [54]);

- the vaccine is imperfect and the imperfections can be of two kinds (see [63,
38, 64] for further discussions): i) a all-or-none effect, where a fixed fraction
f of the vaccinated individuals is not at all protected (vaccination failure)
and the remainder fraction 1 — f is effectively immunized, and i) a leaky (or
incomplete) protection — which means that a vaccinated individual with effec-
tive immunization can still be infected (but not as much as a non-vaccinated
individual or a failed-vaccinated invidual). This leaky protection evolves in
time;

- the evolution of the epidemic can be influenced by seasonal effects, as is it the
case of influenza in temperate regions.

In what follows, we describe the model in pure mathematical terms, the quan-
tification of the different parameters will be then discussed in Section 4.

We suppose that the time horizon T is finite, and that it can be discretized in
(N +1) (N €N) time instants tg = 0, t; = AT, to = 2AT, ..., t, =nAT,... ity =
T. The population is composed of

- susceptible individuals: Sy, is the proportion of individuals in this class at time
tn;

- infected individuals: I is the proportion of individuals in this class at time
tn, who have been infected at time t,,_,; moreover we denote by I,, the sum
of all I*¥;

- recovered individuals, is the proportion of individuals once they recover from
illness (after leaving the class of infected individuals);

- waccinated individuals: V,? is the proportion of individuals who have vacci-
nated at time ¢,,_p and have not been infected yet;

- failed vaccinated individuals: F,, is the proportion of individuals that vacci-
nated at t < t,,, whose vaccination failed and have not been infected yet.

The quantities w and 6 are counters. The first one measures the time interval
between the infection instant and the current instant, w =0, 1,..., Q € N, whereas
the second one measures the time lapse between the vaccination and the current
instant, 6 =0, 1,..., © € N.

The upper bound © indicates the maximal duration of the (possibly partial)
immunity given by the vaccine. In the case of seasonal influenza © is, in principle,
greater than the time horizon of the problem. However, in order to make our model
applicable also to other situations, we decide to take into account the theoretical
possibility to manage vaccines with very short persistency. For this reason, we
consider also the class V', which describes the vaccinated individuals that lost the
immunity given by the vaccine. Since we suppose that they do not vaccinate twice,
we need a specific class for describing them.

Similarly, €2 is the maximum time before recovery, and it depends on the prop-
erties of the illness itself.

The equations of the model, which conserves the total number of individuals,
have the following form:

Sn+1 = (Sn - Un) - BZTIn(Sn - Un) (1)
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N-—1
I8 = Bag [Fu+ Sn+ Y agVl| I, 2)

6=0
Jgjf_(1 VR)E  w=0,...,0-1 (3)
=1=f) Q= BRrln) Un (4)
fjf:u BRragl, )V, 6=0,...,0 -2 (5)
Vi = (1= BRpae—11n) Vi~ + (L= BRrla) Vi) (6)
Foi1=f (1= BArLn) Up + Fn (1 = BarIy) (7)

with initial conditions

So=2S80-, Ig=15, VI=0, V0>0, F =0, (8)

where

2.1.

- U describes the vaccination: U, = u,S,, where u,, is the proportion of in-

dividuals vaccinated after time t,, and before ¢,,;1; the admissible strategies
correspond to u,, € [0, 1];

the vector v = (7°,...,7%) € (R )?*! describes how fast an infected individ-
ual recovers and depends on the duration of the illness itself. In particular,
when v = 0, the individual will not recover in the next time instant; on the
contrary, when v* = 1, the individual will recover with certainty in the next
time instant.

The function 5(t) quantifies how infectious is a contact between an infected
individual and susceptible one at time ¢. To take into account the length of the
time interval AT, we work with SR := B(t,)AT and 4%, = v“AT. In order
to take into account the possible seasonality 3(-) is taken time-dependent, see
Section 4 for an example.

The vector ap describes the time instants of a function A() (ap = A(OAT))
with values in [0,1]. This vector quantifies the protection given by the vac-
cine in terms of the probability of infection if an individual is vaccinated. It
is known that this protection is not instantaneous, the immunity conferred
by the vaccine being maximal after a latency period. As explained in the
introduction, in the case of influenza vaccine, the protection is not complete,
and the effects of the vaccine decrease with time.

In what follows, we suppose that there exists a maximal time © > 0 of the
vaccine protection (which can be, however, greater than the time horizon of
the model). In particular ag = 1. Some possible candidates for the function
A are shown in Figure 1.

The societal cost and individual cost. Let r; and ry be the individual

cost for the illness and the vaccination respectively. These costs are intended to be
global costs. For example, they can be the monetary cost of the illness and of the
vaccine, but they can also express the medical side-effects of the vaccine and the
possible side-effects of the illness (see, for example, [53]).

We work under the meaningful assumption that r; > ry (although the alternative
r; <1y may also give non-trivial problems in particular situations, see [46]).

The total societal cost associated to the vaccination strategy U is:
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FIGURE 1. Two possible forms for the function A.
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(9)

which has to be minimized (see [39, 1, 52, 59, 23, 46]) within the set of all admissible
vaccination strategies U.

However this is not the strategy followed by individuals. They rather optimize
an individual cost function. In order to define it, we have to consider the individ-
ual dynamics (see Figure 2 for an illustration). It takes the form of a controlled
Markov chain with several states, susceptible (S), failed vaccination (F), recovered
(R), infected (indexed by the time counter w: I°,... I}, and, finally, vaccinated
states (indexed by the time counter : V°, ..., V®).

The Markov chain of the individual, denoted M,,, is described in terms of passage
probabilities:

P(
P(
P(
P(
P(
P(
P(

(

(

~

P

Mn+1
Mn+1
Mn+1
Mn+1
Mn+1
Mn+1
Mn+1
Mn+1

M1

=1°M, = S)
=V°|M, =9)

= F|M, = 9)

= R|M,, = I

= R|M,, = I*)
=1 M, =1v)
=1°|M,, =V?)

=V M, =V?) =1-ayBarl,,

=1°|M, = V®)

= (1 - )‘n) (1 - 6ZTIn)

= Barln

= (1 - f)>‘n (1 - 5ZTIn)
= fAn (1= BArIn)

=1
= ’YXT7
=1- 7XT7

= a@ﬁZTInv

= BZT[n

w =0,
w =0,

=0,.
0 =0,

L0-1

Q-1
.,0-1
,0-1

(10)
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P(Mpy1 = VO M, =V®) =1- 82,1,
P(M, 1 = I°|M,, = F) = 311,
P(My 1 = F|M, =F) =1— %1,

The conditions SR, <1, YKy < 1, Ay 2> 0, Ay, < 1 ensure the well-posedness of
this definition.

The conditional rates A, are derived from a probability density & defined on
{to,...,tn—1} U{oo}; the value &, is the probability that the individual vaccinates
at time ¢, (if it was not infected before t,). In practice, the agent chooses the
probability distribution £ before the dynamics starts. Then, he selects a random
number n distributed with the aforementioned probability £, which means that
before the beginning of the epidemic he knows the time ¢,, at which he will vaccinate
(unless he is already infected by that time).

There is a mapping between X = (A\,)"- and ¢ defined by:

n=0
N-1 n—1
b= [O-M),  G=M][a-X), n<N-1 (11
n=0 k=0
&n .
Vn<N-1:X={" > (12)
0, otherwise.
:I.Failed Vaccination”b
(P
A
. *?@
FAn (1= BErTn) E %
'FUSusce'ptiblen: BarIn g Infected‘v." 1- ’YXT i Infected‘v." 1-— 71AT
® > 4o (b
. . g g
’VQDT }q;
“Recovered“v
. yl ®)
A=Nrn Q= BrpIn) : B
: §
{Partially {Partially
Immunized _) e —) Immunized _) cee
@) (9 ‘

FI1GURE 2. Individual model.
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The cost of a vaccination strategy depends on £ (see [47] for a similar situation).
The individual bears the cost r; when he enters class I and then he bears the cost
rv when he enters class V°. The cost for an individual will have three components:

- the cost r; of being infected before vaccination;

- the cost 1y of vaccination plus a possible cost of being infected while immunity
is still building or after the end of the protection period;

- the cost ry of failed vaccination plus a possible cost of being infected.

Note that an individual may incur both costs if he vaccinates and, moreover, if
he is infected. For an individual starting at My = S, the total cost is:

Jinai(&;U) = ryP (un<N{Mn+1 = VO, M, # VO}‘MO - S)
+rvP (Unen (M1 = F, M, # F}[My = S)
4P (un<N{Mn+1 = I° M, # IO}’MO = S) . (13)

This form for Ji,q;(&;U) is impractical and has to be made more explicit. One
possibility is to sum over the first passages from S to I°, V° of F. The following
quantities are useful for general n:

- the probability 1Y*! of infection (at time t, 4, or later) of an individual that
vaccinated in the interval [t,,t,+1], given by the formula:

S}

ot =1-T] (1 - BArak—n-1Ix), (14)

k=n
where we introduce the coefficient av_1 = 1;
- the conditional probability of being infected (strictly) before ¢, 1 (of a person
that did not vaccinate)
o =P[Up_o{ My =I}|Mo = S, My # V°, My # F,k <n],

given by the formula:

n

on=1-]] (1 - BKrlk) . Vn <N - 1. (15)
k=0

Note that the probability of being infected after the time n < N —1 is

1—ol ol -l

M T
where
N—-1
plo=1-T] (1 Bhslx).
k=0

Then, after elementary computations:

N-1
Tinai(§U) = 1105 boot > {7“190{1‘*‘(1—Sﬂfl)(rv+(1—f)TI¢X’I)+TIf(S@£o—<P£) &n-

n=0

(16)
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The individual cannot change U, neither S,,, I nor V,!. He can only choose his
vaccination strategy &. Denote

rrph + (1 —oh)(rv + (1= fyrep) ! +riflel, — ¢l), forn <N -1

9 =
rrpl, for n = N.
(17)
If we denote the Euclidean scalar product between two vectors X,Y € RV+1 by
N+1
(X,Y) = Z XY, (18)
k=1

then Jinqgi(&;U) = (€,9Y), where gV and ¢ are seen as vectors in RVFL. Tt has to
be minimized under the constraint & + -+ - +&n—1 + o = 1. Then any probability
distribution ¢ with support in {n|g¥ < g7,k =0,..., N} attains the minimum.
Now, for a given individual policy £ one can ask whether the equations (1)-(8)
are obtained when all individuals follow this vaccination policy, and in this case
what is the compatibility relationship between £ and U. Supposing identical initial
conditions Sy- and Iy-, the compatibility relation between the two dynamics is:

Un = A\nSh, (19)
i.e. A\, = uy, see the discussion after formula (8).

2.2. Failed vaccination. A simplified model can be proposed to tackle the possi-
bility of vaccination failure. Note that, for n < N — 1,

9 =r1feos + 1= lrren + A= ep)(rv /0= f) + )]
Therefore, since the term r7fol does not depend on n and (1 — f) is an overall
factor, the cost has exactly the same minimum as the one of a model without the
class F' when we replace ry by ry /(1 — f). Therefore, when the efficacy 1 — f of the
vaccine is not 100%, this can be treated by considering that the cost of the vaccine
is multiplied by (1 — f)~!. See Section 4 for some numerical illustrations.

Note however that this is a first order approximation as, in practice, the quantities
YT depend on the precise values of I and a different model with different classes
will change those values.

2.3. Equilibrium. Consider now the following mapping: for any given probability
law n on {tg,...,tn—1}U{o0} define A by (12) (using 7, instead of &), Uy, Sn, I
recursively by the relations (1)-(5) and (19). Denote C, = gY.

Let J(n) be the ensemble containing all optimal individual strategies £ that
minimize the cost (§,C,).

The goal of this subsection is to deduce the existence of an equilibrium of the
system, i.e. a common strategy which is a Nash equilibrium when it is used by all
agents of the population. The following result holds.

Theorem 2.1. There exists at least one law n such that n € J(n) (i.e., an equilib-
rium,).

Proof. We use Kakutani’s fixed point theorem (see [43, page 457]) for the function
J(+) defined on the simplex

YNy = {(xo,...,xN) S RN—H‘xk >0, 20+ - -+zny = 1}. (20)

Recall that the assumptions of the theorem are the following:
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1. for any n € Xn11, the set J(n) is non-void, closed and convex; this property

is trivially verified in our setting.

2. the mapping J(-) is upper semi-continuous, or, stated otherwise, it has the

closed graph property.

The only hypothesis to check is the closed graph property of J(-). Let n‘ be a se-
quence of points in X1 (i.e., probability laws on {to,...,tx_1}U{oco}) converging
to n and ¢¢ € J(n*) converging to £. We have to prove that & € J(n).

We denote by S¢, U’ I¢, gUz (respectively S, U, I, gV) the dynamics corre-
sponding to n’ (respectively 7).

Let Z be the first index such that nz +- - -+ 1o, = 0. We consider the non-trivial
case when Z > 1.

Consider M (respectively \) the rates associated to n° (respectively n) by the
formula (12). In particular nz_; >0 and \y_, = 1.

Although n* — 1 as £ — oo we do not have that A* — X\, but we have instead
that Ay — A, for all n < Z. In particular A’ SY — X, S, for all n < Z. On the
other hand, since Az_; = 1 we have Sz = Sz_1(1 — Az_1)(1 — BRrIz-1) = 0 and
XY, — 1implies S% — 0; furthermore, S¢ being monotonically decreasing we also
have Sf; — 0 for any n > Z.

Since all rates A\’ are bounded by 1 we obtain thus that \‘S! — 0 = \,S,, for
all n > Z and thus ultimately )\fle; — A\Sy, for all n < N. This, combined with
the formulas (1)-(8) and (19) show that U* — U, S* — S, I* — I as ¢ — oco. Thus
we also have C,¢c — Cy; therefore the limit of any converging sequence of minimas
of C,¢ is also a minima of C,, which, given its definition, proves the closed graph
property of J(-). O

Remark 1. The theorem reduces the existence of the equilibrium to the study of
the mapping 7 +— C,. This mapping has a well-defined meaning for a large class of
vaccination games because the variable & is nothing else than the (mixed) individual
strategy and the vector C¢ collects the cost of pure strategies of the individual (given
the overall epidemic propagation dynamics). We expect that this methodology can
be generalized to other situations.

Remark 2. The result does not give any information about the uniqueness of the
fixed point. In the Mean Field Game framework, uniqueness results usually from
convexity considerations (see e.g., [49, 48, 41]) and it is not guaranteed, see [45] for
a situation where there is no uniqueness. Although this setting is not convex, in all
numerical simulations we pursued, a unique solution has always been found.

3. Finding the equilibrium. The result of the Section 2.3 guarantees the exis-
tence of at least one equilibrium. But, it does not prescribe a constructive method
to find it.

For arbitrary strategy &, introduce the quantity E(£) defined as follows: consider
a situation when all individuals use the strategy £. If the individual follows himself
the strategy & the expected cost is the average, with respect to the probability
distribution &, of costs C¢. By using the Euclidian scalar product (18) the cost can
be written as (£,C¢). But the individual can also choose some other strategies to
minimize his cost. For instance if C¢ reaches its minimum at the k-th component,
the best cost is obtained with a strategy that vaccinates at time t; with certainty.
When the minimum is not unique, the general value of the lowest cost that the
individual can reach is min,es, ., (n,C¢) where X1 is the space of all possible
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strategies. The mismatch between the cost of “following the others” and the “lowest
possible cost” is denoted with E(§). It represents the maximum gain obtained by
an individual if he changes unilaterally his strategy (and everybody else remaining
with the strategy £). In mathematical terms:

B(©) = (6.C) — min (1,Ce). 1)

Note that E(-) > 0 and that an equilibrium corresponds to a & such that (§,C¢) <
(n, Ce) for any other strategy n € Xy 1, which means E(§) = 0. The equilibrium can
be rephrased as finding a strategy £ such that the mapping & — E(§) is minimized.

A natural idea is then to try to minimize E(-) over ¥41. But, this intuitive
approach is not always the best one because, in order to be efficient, the minimiza-
tion of E(-) requires to compute, for instance, some gradient of C¢ with respect to
&, which could make the computations complicated.

Another idea is simpler and intuitively more appealing: the equilibrium will
be found by successive approximations in a way that mimics a real-life repeated
game (see also [32] for additional considerations). Consider a strategy candidate &
obtained at the iteration k and construct the cost C¢, obtained if everybody uses
the strategy &. An individual of this population will test whether & is optimal, i.e.
if it is a minimum of E(-). If this is the case then the equilibrium is &; otherwise
the individual will adjust its strategy & by exploring a strategy £x41, which is not
too far from &, but that goes towards the lowest possible cost min,es ., (1,Ce,). In
practice (with ideas close to the general framework of gradient flows, see [42] for an
entry point to this literature), one can choose £x11 to be a minimizer of a weighted
sum containing both desiderata, which can be expressed in mathematical terms:

WAL ). @)

where dist(-, ) is some suitable distance in X y11. Then the procedure is iterated till
convergence. This idea is similar to the paradigms of “Best Reply” (see [10]), “fic-
titious play” (see [14]) or “equilibrium flows” for which some proofs of convergence
exist under specific hypotheses. In particular the results in (see [68, Theorem 2,
item 2]) show that convergence is attained when the mapping 1 — C, in Remark 1
is continuous, which is proved in Theorem 2.1.

The term 1/27 weights the relative importance of staying close to & with respect
to optimizing the cost. In particular 7 can be interpreted as a pseudo-time counting
the number of infinitesimal adjustments required to converge to the equilibrium.
Note also that, when 7 — 0, the distance dist is the Euclidian distance and ¥y 11
is the whole RN*! the strategy ¢ can be seen as the time-indexed solution of the
differential equation

&k41 is a minimizer over X1 of n —

d
55(7) = Ce(r)-

In order to keep the presentation as simple as possible, we used as distance in
(22) the standard euclidian distance on R¥*! although in principle other distances
(such as the 2-Wasserstein distance) may give better performances.

In practice, the algorithm applied is the following:

Step 1.Choose a step 7 >0 and a starting distribution &;.

Set iteration count k=1.
Step 2. Compute {11 as in formula (22).

Step 3. If E({x+1) is smaller than a given tolerance then stop and
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exit, otherwise set k — k+ 1 and go back to Step 1.
In practice Step 2 is computed with a quadratic programming routine (quadprog
in Matlab/Gnu Octave) that can accommodate linear constraints.

Remark 3. The procedure proposed above can be extended in a straightforward
manner to any ‘rational individual’ vaccination model, by replacing the vector C¢
by a time-dependent function c¢(-), where ¢(t) is the cost of the pure strategy
consisting in vaccinating at the time ¢ under the assumption that everybody follows
the strategy &.

4. Numerical results. In order to test the model, we simulated the situation of
an epidemic with several sets of parameters, such as long or short durability of
protection, as indicated below.

4.1. Preliminary tests. We first tested the procedure for a situation when the
analytic result is known (see [31, 47]): we used the parameters in [47, Figure 5] and
obtained that the optimum individual strategy is a mixed strategy with £, = 33%
probability of vaccination at ¢ = 0 and &, = 67% probability of no vaccination;
its cost is 0.5067; this result is in a good agreement with the analytic result, i.e. a
mixed strategy with & = 34%, £, = 66% and a cost 0.5.

4.2. Equilibrium with decreasing immunity and imperfect efficacy. The
numerical values used in this simulations are the following: total simulation time
T =1 (one year), number of time instants: N = 365x 3 (three times a day); recovery
rate ¥ = v = 365/3.2 (mean recovery time 3.2 days, 0 = 20), high season basic
reproduction number Ry = 1.35, thus 5 = v Rp; recall that the basic reproduction
number is the average number of secondary infections generated by an infected
individual in a susceptible population and in absence of any vaccination, for details
see [2, Section 2.2 and beyond] and also [36, Section 3]. The initial proportion
of susceptibles is Sy = 0.94 and the initial proportion of infected individuals is
Iy = 2.0 x 1079; the relative costs are r; = 1 and ry = 0.005. To take into
account the seasonality of 5(t), we set Bmin = v/So and 5(t) = S for ¢t < th .= 1/2
(6 months) and then S(t) = Bmin for t > tg = 1/2; these parameters model an
epidemic lasting 6 months.

We set the vaccine efficacy to f = 50%; the durability of protection of the vaccine
is related to the decrease of the immunity. Although very few studies on decreasing
immunity dynamics are available, it is generally accepted that the immunity is rising
and reaches a peak after some weeks (here we took 3 weeks). Then it slowly declines
in a timescale of the order of months (see also [17, 29, 44, 9]). For instance, the study
in [54] found a significant decay (20% to 50%) over a period of 9 months. As we will
see, even if the immunity is not completely lost by the end of the season, this decay
influences the equilibrium. The main ingredient of the time-dependence t — A(t)
is an exponential decay term (see e.g., [37, page 458]); however in the exponential
model the immunity is acquired instantaneously upon vaccination. In order to take
into account the gradual gain in immunity, we included a multiplicative polynomial
term, which becomes negligible for large times; see also section 4.3.1 for a different
choice of A(t). With our notations, the function A(t) is

A(t) =1 — cyt2e 3t (23)

with constants c¢1, ca, c3 set such that the minimum value (zero) is reached in
t = 3/52 while 9 months after, i.e., at t = 3/52 + 9/12 the value is either M; =
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1/10 (which corresponds to 9/10 immunity still active 9 months after the peak)
or My = 1/3 (which corresponds to 2/3 immunity still active 9 months after the
peak).

We considered first the ‘ideal’ case of instantaneous and non-decaying immunity.
The corresponding equilibrium is a policy when people vaccinate at t = 0 (10% of
them). Intuitively, it means that, when the persistence is greater than the time
horizon of the problem, individuals choose to be vaccinated as soon as possible.

Then the equilibrium for M; was computed. The results are shown in Figure 3.
Note that the vaccination peak is delayed by one month, even if the decay in the
immunity is relatively moderate (immunity is still at 90% after 9 months).

Finally, a different situation when immunity falls to 66% is presented in Figure 4;
here the vaccination is delayed with approximately two months.

The differences between these three situations, both in the vaccination timing and
in the fraction of vaccinated individuals, are a consequence of the optimal criterion
of the agents, of the durability of protection of the vaccine and of the nonlinearity
of the contagion process. Due to the partial loss of immunity before the end of the
season, the agents tend to delay the vaccination in order to have the best possible
protection during the peak of epidemics. On the other hand, the reduction of the
efficiency of the vaccine motivates more individuals to be vaccinated in order to
increase group immunity and hence to reduce the contagion.
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FicUure 3. The optimal converged strategy ¢MFC at times
{to,...,tn—1} for subsection 4.2, case M. The weight of the non-
vaccinating pure strategy (i.e., corresponding to time ¢ = o00) is
88%; this means that 12% of the population vaccinates.

4.3. Relationships between freedom of choice, durability of protection
and efficacy of the vaccine. We investigate in this subsection the robustness of
the numerical results with respect to various choices of parameters, in particular
the durability of protection and efficacy, as detailed below. The results of these
tests show that the freedom of choice to obtain the best individual result could
lead to more expensive individual costs than those obtained in a regulated setting,
where public health authorities prescribe individual policies (this phenomenon is
the so-called cost of anarchy, see Subsection 4.3.1). On the other hand, we show
that imperfect vaccines (i.e., with short durability of protection and limited efficacy)
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FIGURE 4. The optimal converged strategy &MFC at times
{to,...,tn—1} for subsection 4.2, case Ms. Here 15% of the popu-
lation vaccinates.

may be also acceptable, for a fraction of the population, as a tool for reducing the
contagion process, even if the vaccination is not compulsory.

4.3.1. Short durability of protection, large efficacy. To define the durability of pro-
tection of the vaccine we set t; = 5/365, t = 1/12 (one month, ® = 93) and
A(t) = 1 — 1y, 4,). The vaccine efficacy is set to 100%, i.e., we suppose a failure
rate f = 0. The step is 7 = 0.1 and we performed 1000 iterations.

The results are displayed in Figures 5, 6 and 7. A good quality equilibrium is
found, that is, the incentive to change the strategy E(€) is smaller than 1073 (two
orders of magnitude lower at the solution than at the initial guess). The cost of the
solution (¢MFY Cenre) is 0.0237.

The solution is a strategy ¢M¥“ supported at several time instants between 0.25
and 0.43 and also having 68% of the mass at the non-vaccinating time ¢ = oo.
Note that the cost is adapted accordingly, reaching its minimum at all points in
the support of the solution ¢M¥&  Generally the vaccination occurs when I,, has
large values, except at the end of the epidemic (time 0.5) when people expect the
epidemic to end and estimate that their infection probability is low; the individuals
have a strategic behavior, in coherence with the model. This can be compared
with the model in [8] where the vaccination rate is supposed proportional with the
number of people infected. The two models agree in a majority of time instants
except the end of the epidemic. This behavior has been observed across a wide
range of protection periods and initial conditions (the results are not shown here).
It is remarkably to see that a simple model such as in [8] has such a considerable
applicability.

It should be mentioned that the solution ¢M¥¢ with cost 0.0237, is not the so-
lution that minimizes the average cost across individuals (see also equation (9))
which is M(§) = (£,C¢): for instance the strategy £™" that vaccinates with
certainty at time ¢ = 0.0 (unless infected by that time) has M (™) = 0.005.
This result is not surprising and often appears in such contexts (see [47]). When
M (EMFG) > M(€™™) the game is said to have a positive cost of anarchy. It can
be intuitively explained as follows: suppose that everybody uses the strategy ™",
The cost of an individual with strategy n will be (1, Cemin) and it turns out that
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FicURE 5. Results for Subsection 4.3.1. Top: the optimal con-
verged strategy ¢MFC at times {to,...,tx_1}. The weight of the
non-vaccinating pure strategy (i.e., corresponding to time t = o)
is 68%. Bottom: the corresponding cost Cemrc. The red line cor-
responds to the cost of the non-vaccinating pure strategy
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there exists some 71 with (91, Cemin) < (§™™,Cemin). For instance here 7y can be
a pure non-vaccinator strategy whose cost is very low 8.0 x 1076, Therefore any
individual with current strategy €™ has an incentive to change his strategy (and
use 771) by hoping that everybody else remains with the strategy £™". This does
not happen and everybody slides towards n; and so on until the Nash equilibrium
EMFG is found. In the process the cost of everybody will increase and this is the
price to pay for equilibrium.

4.3.2. Long durability of protection, 100% efficacy. The parameters are identical as
in Subsection 4.3.1, except the durability of protection of the vaccine time ¢5 which
is set now to 6 months t; = 1/2 (© = 549). The convergence is quickly attained
(100 iterations) and the results are displayed in Figure 8. Although fewer people
vaccinate (only 9% here, to compare with 32% in Subsection 4.3.1), the higher
durability of protection of the vaccine improves the outcome. The equilibrium cost
becomes 5.18 x 1073, almost one order of magnitude lower than in the previous test.
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FIGURE 6. Results of Subsection 4.3.1. Top: the evolution of the
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FIGURE 7. The decrease of the incentive to change strategy F(&).
Note that F(£x) does not decrease monotonically. In fact, there is
no reason to expect such a behavior, since we are not minimizing
E(+) in a monotonic fashion.

4.3.3. Long durability of protection, smaller efficacy. In this Subsection, we test a
situation when the vaccine efficacy is only 50%. All other inputs are as in Subsec-
tion 4.3.2. The result, not shown here because very similar to those described in
the previous tests, has however several differences:
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FIGURE 8. Results of Subsection 4.3.2. Top: the optimal con-
verged strategy ¢MFG. The weight of the non-vaccinating pure
strategy (i.e., corresponding to time t = c0) is 91%. Bottom: the
corresponding cost Cemra. The thin horizontal line corresponds to
the cost of the non-vaccinating pure strategy (Cemra)ny1.

- the probability of the non-vaccinating strategy is now 86% (i.e. 14% of people
vaccinate);

- the cost of the optimal strategy is 0.0101.

Therefore the equilibrium shifts towards a bigger fraction of the population that
vaccinate (in order to compensate lower vaccine efficacy). However, the overall
number of protected people is lower (50% of 14% being smaller than 100% of 9%)
which results in a larger overall equilibrium cost (about twice larger). We tested
other settings and these conclusions were consistently obtained: the introduction of
imperfect vaccines (here lower efficacy) generates overall lower coverage rates and
larger costs.

We also compared the previous result with the output of the model obtained by
setting the cost rv — v /(1 — f) = 0.01, f — 0. In this case the cost is 0.0103 and
the fraction of vaccinated individuals is 6.6%. This result confirms the qualitative
analysis of Subsection 2.2.

4.4. Effects of the failed vaccination rate on the vaccination strategy. We
analyze in this subsection the effects of the failed vaccination rate on the overall
vaccination policy. The numerical value of the vaccination cost is ry = 0.025,
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whereas the other parameters are the same as in Subsection 4.3.3. The results are
presented in Table 1.

’ Failed vaccination rate f \ Vaccination rate 1 — & ‘

0.00 5.04%
0.25 5.94%
0.50 7.02%
0.55 7.20%
0.60 7.29%
0.65 7.23%
0.75 5.74%
0.80 2.93%
0.85 0.00%

TABLE 1. Results for the Subsection 4.4. Individual vaccination
policy with respect to the failed vaccination rate of the vaccine.

When the failure rate f is small, the vaccination rate (1 — &) is increasing with
f. However, when the failure rate f is larger than a given value (in our numerical
simulations, when f > 0.60), the vaccination rate decreases as f increases.

When the failure rate is small, individuals tend to vaccinate more to compensate
the decrease in efficacy and therefore to contribute to the group protection and to
profit from it. However, after a given threshold, the construction of a group protec-
tion is too expensive, and consequently the individuals are reluctant to vaccination
(if f = 0.85, the vaccination rate (1 — £) is zero; in this case, the probability of
being infected is 14.38%).

5. Discussion. We analyzed in this work the vaccination equilibrium in a context
of rational individual vaccination choices; the situation is modeled as a Nash equi-
librium with an infinity of players. In our work, a special attention is given to the
presence of imperfect vaccines. We presented a theoretical approach (existence of
an equilibrium via the Kakutani fixed point theorem) and a numerical algorithm
(similar to a gradient flow). Both approaches have the advantage to use rather weak
assumptions on the structure of the model. For this reason, we hope that our study
will be useful even in more general situations, as those listed later on in this section,
which take into account more complicated individual and collective behaviors.

In the simulations dealing with an influenza epidemic, we remark that the long-
term behavior of the vaccine-induced immunity influences the best timing for the in-
dividuals to vaccinate. Indeed, when the protection of the vaccine against influenza
does not decrease within the time horizon of the problem, the individuals vaccinate
as soon as possible (in agreement with the recommendation given by WHO [22]).
However, if the vaccine efficacy decreases, the behavior of the population changes
and delays the vaccination for optimizing the vaccine protection around the peak
of the epidemic.

In addition, the previous simulations show that the imperfections of the vaccine
increase the overall cost. But the obtained equilibrium is such that the increased
vaccination rate does not compensate for the lower efficacy (or durability of protec-
tion) of the vaccine.

When the failure rate is below a given threshold, the cost for building a group
protection is advantageous with respect to the infection cost. In this case, a higher
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vaccination rate can be optimal to compensate for an increase in the failure rate.
However, this individual policy is far from the societal level optimal strategy, which
would consist in a global optimization of the vaccination policy.

Several assumptions in this work may motivate further studies:

- a general question is whether the individuals choose their vaccination strate-
gies beforehand; for instance, Fine and Clarkson (see [30]) argue that the
individuals will rather respond to the prevalence; see also [8] where the vac-
cination rate is dependent on the number of people infected. However the
“learning” of an equilibrium is a topic in itself in game theory (we refer to
the monograph [32] for general considerations). In our specific setting, an
encouraging factor is that the “game” is played several times (once each sea-
son, although with possible different vaccine efficacies), in such a way that a
learning mechanism could be recognized. Moreover, individuals have appro-
priate feedbacks (through general news for instance) on both the history of the
epidemic and the vaccination dynamics, as well as — more importantly — pro-
jections for the upcoming season (for example, data on the potential severity
of the epidemic and the expected dynamics of vaccination). Other factors can
also influence the decision, such as the number of reported cases and public
health campaigns. But, of course, the setting presented here remains ideal and
the interpretability of the results is dependent on our hypotheses. A model
that can detect to which extent the individuals adhere to this assumption
would be more versatile.

- the individuals are supposed perfectly aware of the past, present and future
epidemic dynamics: a model with limited information may be more realistic.
Such models can be at the mid-way between the MFG and the feedback (also
known as information-based) vaccination models, see [26, 25, 13];

- the individuals are identical. In particular the cost of the illness is exactly the
same, irrespective of age: considering several age groups may give interesting
results, especially if their strategies are different;

- the geographical heterogeneity in the propagation of the epidemic is neglected:
travels and intra/inter-community contacts may be important for the epidemic
propagation.

Some of the previous limitations can be overcome. For example, the geographical
heterogeneity in the propagation of the epidemic can be taken into account by
converting our model to a PDE-based description, and then by coupling it with a
population dynamics model. On the other hand, the stratification by age could be
handled by writing a more general model with a supplementary age variable. We
aim to take into account some of these perspectives in future studies.
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